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Existing preference estimation procedures do not incorporate the full structure of the spa-
tial model of voting, as they fail to use the sequential nature of the agenda. In the maximum
likelihood framework, the consequences of this omission may be far-reaching. First, in-
formation useful for the identification of the model is neglected. Specifically, information
that identifies the proposal locations is ignored. Second, the dimensionality of the policy
space may be incorrectly estimated. Third, preference and proposal location estimates
are incorrect and difficult to interpret in terms of the spatial model. We also show that
the Bayesian simulation approach to ideal point estimation (Clinton et al. 2000; Jackman
2000) may be improved through the use of information about the legislative agenda. This
point is illustrated by comparing several preference estimators of the first U.S. House
(1789–1791).

1 Introduction

THE TASK OF estimating legislative preferences from a sequence of binary votes makes
strong demands on coarse data (Londregan 2000a). Although several political scientists
have successfully devised widely accepted methods of dealing with the problem (e.g.,
Poole and Rosenthal 1996; Heckman and Snyder 1997), most recent work in the area
has involved refining the computation of these models (e.g., Poole 2000). Although this
research is certainly important, in this paper we follow Londregan (2000b) in arguing that
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there is additionaltheoreticalinformation about the process that generates roll call voting
that can be usefully employed by both methodologists interested in estimation issues and
Congressional scholars.

In the spatial model of voting (SMV) legislators’ voting decisions are determined by
their calculation of the utility differential between the state of the world where the proposal
passes and the state where the proposal fails. Furthermore, the state that results from the
proposal’s failure is predetermined by the agenda. This induces a dependence between “nay”
and “yea” locations in the issue space. However, existing preference estimation techniques
assume that the nay locations are unrelated to the legislative agenda and therefore free
parameters to be estimated.

That standard approaches to preference estimation treat all recovered parameters as
unrelated to the legislative agenda is best observed by noting that the estimates are unaffected
by a reordering of the sequence of votes. The estimates produced from estimating the actual
Congressional agenda are identical to estimates produced by an arbitrary reordering of the
voting sequence. In this paper, we contend that since the agenda reveals that the status
quo point is related to the location of the last proposal to have passed,the agenda should
constrain nay location estimates.

To demonstrate the intuition, consider an example from the first U.S. Congress (1789–
1791). One of the most important issues of the second session of the first Congress was
the determination of the funded rate of interest that the assumption of Revolutionary War
debt would pay (Cooke 1970). Alternatives of 3, 4, and 6% were debated and voted upon
during the Congress. This was a divisive issue, as some states had paid off most of their
debts (e.g., Connecticut), while others had hardly paid off any (e.g., Massachusetts). Con-
sequently, representatives from states without large debts (e.g,. Senator Oliver Ellsworth of
Connecticut) generally preferred lower interest rates.

For the purposes of example, assume that the default or status quo interest rate was set
by the Confederation Congress’s pledge of 6%. Consider the agenda of first voting on a
proposal to set the interest rate at 3% and then voting on a proposal to set the interest rate at
4%. If the 3% proposal passes, then a vote for the 4% proposal is a vote toraisethe interest
rate. In contrast, if the 3% proposal fails, then a vote for the 4% proposal is a vote tolower
the interest rate. Although we would certainly expect Ellsworth to support the 3% proposal,
our prediction about whether he would support the 4% proposal hinges on knowing whether
the 3% proposal passes.1 In other words, we need to know what the alternative to the 4%
proposal is. This example illustrates that proposal “nay” locations are determined by the
passage of previous proposals in the agenda. Ignoring this relationship neglects important
and useful information.

As a first step toward the incorporation of information about the agenda in the estimation
of legislator ideal points, in this paper we:

• Illustrate that current estimators do not incorporate all of the SMV’s assumptions
regarding the agenda.

• Prove analytically that this omission results in incorrect estimates of voter ideal points.

• Prove that the extent to which existing estimators are incorrect does not vanish as
the number of observations tends to infinity. Thus, adding more observations (either
proposals, legislators or both) does not solve the problem.

1Given that empirical estimation models must assume sincere voting to identify the problem, to be consistent
with existing estimation techniques, we assume sincere voting in all the examples.
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• Prove that if the analyst is sufficiently concerned with notunderestimatingthe dimen-
sionality of the policy space, maximum likelihood (ML) estimates of the dimensional-
ity of the policy space from the unconstrained model will be no greater than those from
the constrained ML model. Furthermore, with positive probability, estimates from the
unconstrained ML model will bestrictly lessthan those from the constrained ML
model.

• Compare constrained and unconstrained Bayesian simulation estimators and DW-
NOMINATE estimates for the first U.S. House using a simple procedure for incorpo-
rating constraints on the nay locations.

The results contained in this paper are important for three reasons. First, scholars can
incorporate information about the agenda into their empirical work to impose more struc-
ture on their estimation problem. In the context we consider, incorporation of the constraint
identifies proposal locations—providing researchers with potentially valuable information.
Second, given the incongruence between the behavioral assumptions of the SMV and stan-
dard estimators, it is difficult to identify exactly what it is that standard estimators measure.
As a consequence, tests of legislative theories imbedded in the SMV using these estimates
may be problematic. Third, by failing to account for the structure imposed on the status quo
by the SMV, estimates of the dimensionality of the policy space may be incorrect. This last
point is important when one considers the fact that the choice of dimensionality in formal
models of legislative behavior is not innocuous.2

As much can be done to advance preference estimation, we want to be clear about the
current paper’s scope. We do not:

• Address endogenous agenda formation or sophisticated voting.

• Address the consistency of preference estimators—although it is not possible that both
the constrained and the unconstrained estimators are consistent.

• Exhaustively consider ways to constrain the nay locations for a given agenda structure.
Instead, we present one example of a constraint.

The remainder of the paper is organized as follows. In Section 2 we consider simple
examples illustrating how ignoring the relationship between proposals and status quos
can result in erroneous preference estimates and misidentification of the policy space’s
dimensionality. Section 3 considers a large class of ML estimators and proves several
general results about the effects of ignoring the constraint in ML estimation. Section 4
presents and implements a constrained Bayesian simulation estimator for the first U.S.
House. Estimates are then compared to the unconstrained estimates and DW-NOMINATE.
Section 5 concludes and discusses the next steps in developing this approach. Finally, the
Appendix presents explicit definitions and proofs of the results in Section 3.

2 The Status Quo in the Spatial Model

The SMV, which is heavily relied upon in the derivation of theories about legislative behav-
ior, consists of a policy space, legislator preferences defined over the policy space, and an
agenda specifying the sequence of proposals to be voted on. In the SMV all payoff-relevant
information about the world following the implementation of a proposal is incorporated
into the proposal’s location in the policy space.

2For example, Miller (1993) rationalizes the use of a unidimensional model of legislative and presidential inter-
action with the fact that NOMINATE recovers a unidimensional policy space.
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In other words, a proposal’s location in the policy space includes not only the values
of dimensions changed by the proposal, but also the values of dimensions that are not
changed. For example, a proposal that increases only the minimum wage must also have a
defense spending component, a social security funding component, a congressional salary
component, etc.,even though the actual proposal never mentions these issues. To see why
this is true, consider a three-dimensional space. Any object in that space is defined by its
position in all three dimensions (i.e., a point in the space is of the formx = {a, b, c}). Hence,
if there are three policy dimensions, the location of every proposal must be defined in each
of the three policy dimensions, even if it explicitly deals with only one of the dimensions
(in which case the proposal’s value in the other policy dimensions corresponds to that of
the status quo). While this observation is not novel, it is an important and subtle component
of the SMV that needs to be taken seriously when interpreting ideal point estimates and
testing theories of voting.

The standard legislator preference assumptions, which we also adopt, are that preferences
are sufficiently well behaved so that each legislator has a most preferred point in the space
(i.e., ideal point) and that utility is decreasing in Euclidean distance from that ideal point.
We also make the usual assumption that we know the functional form of legislator utility
functions up to an ideal point.

Restated within the framework of the SMV, roll call data are generated by rational voting
defined with respect to three assumptions: (i) preference-relevant proposal information may
be represented by considering policies as points in a subset of Euclidean space, (ii) leg-
islators vote for a proposal if it is closer to their ideal point than the status quo is (i.e.,
voting is sincere), and (iii) the identity of a policy’s status quo is that of the last successful
proposal.

The implications of these three assumptions are illustrated in a second two-dimensional
example. In this example, there are two dimensions: a Guns dimension and a Roses
dimension. A location in the policy space is therefore described by the pair (G, R), where
G represents the value in the Guns dimension, and R represents the value in the Roses
dimension. Suppose that the initial status quo is (0, 0) and there are two proposals under
consideration: one that increases Guns by only 1 unit and one that increases Roses by only
1 unit. Consider the following two scenarios.

First, if the Guns proposal is voted on first, and both proposals are successful, then the
following path through the policy space results: (0, 0) to (1, 0) to (1, 1). In other words, in
the first vote, the Guns proposal (1, 0) is considered against the status quo (0, 0). When the
Roses proposal is voted upon, the choice is between (1, 1) and (1, 0) because the passage
of the Guns proposal moved the status quo from (0, 0) to (1, 0).

Alternatively, if the Guns proposal is voted on first and only the Roses proposal is
successful, the path is (0, 0) to (0, 1). In the first vote, the Guns proposal (1, 0) is considered
against the initial status quo (0, 0). Since the Guns proposal fails, nothing changes. Thus,
when the Roses proposal (0, 1) is considered, it too is considered against the initial status
quo (0, 0).

This example illustrates three points. First, proposals have a policy component in every
dimension, even in dimensions they do not explicitly affect. Second, there is a relationship
between nay locations and previously passed proposals. Third, the agenda matters, as an
arbitrary reordering of the agenda affects proposals’ nay locations.

Failure to constrain the status quo also affects our ability to recover the correct dimen-
sionality of the policy space. To see this, consider an example in which the legislators
(and policies) are intentionally chosen to form a basis forR2. Figure 1 presents the “true”
locations of legislators, proposals, and status quos.



P1: FIC/‘Seema’

WV007B-Clinton May 14, 2001 21:7

Legislator Ideal Points and the Spatial Voting Model 5

Fig. 1 Example true policy space. The true (by construction) locations of the ideal points of legislators
{1, 2, 3} and proposal locations{A, B,C} are given. For the voting agenda{A, B,C}, the policy
trajectory through the space is denoted by the arrows.

Fig. 2 Possible unidimensional representation of Fig. 1. This is one possible unidimensional repre-
sentation of Fig. 1 consistent with the voting behavior. As before,{1, 2, 3} denotes the locations of
legislator ideal points.{A, B,C} denotes possible cutpoints, with{y, n} indicating the direction of
the vote imposed by the cutpoint.

The observed roll call votes of legislators{1, 2, 3} on proposals{A, B, C} consist of
legislator 1 voting yes on all three proposals, legislator 2 voting no only on B, and legislator
3 voting yes only on C.

Figure 2 illustrates that with an unconstrained model, it is possible to recover cutpoints

Au: (1) First &
(2) last
“sentences” in
legend to Fig. 1
as meant?

and ideal points that perfectly predict the votes using a single dimension despite the fact that
the true dimensionality is two. This mistake is not possible under the constrained model.3

This section suggests that failing to constrain the status quo in a manner consistent with
the SMV may produce ideal point and proposal location estimates that are ambiguously
related to their true locations. Additionally, the analyst may be unable to recover the correct

3The unconstrained case recovers a unidimensional policy space as long as votes have “connected coalitions”
(i.e., 1 and 2 vote together or 2 and 3 vote together). This guarantees that a cutpoint exists and allows for the
selection of infinitely many appropriate yea and nay locations. The constrained model’s inability to fit this data
in one dimension results from the fact that although the votes on A and B imply that the yea location of proposal
A is in the Pareto set (i.e., between the ideal points of either 1 and 2 or 2 and 3), the observed voting also indicates
that all voters prefer to move to C from A, which is impossible if the yea location of A is in the Pareto set.
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dimensionality of the space. As one may question the extent to which these examples are
pathological, we now state and prove related results in some generality.

3 Agenda Constrained Maximum Likelihood Estimation

In this section, we consider the properties of two ML estimators—one that constrains nay
locations in the manner discussed above and one that treats nay locations as free parameters
to be estimated. The interpretation of these two estimators is that the constrained one is the
correct ML estimator given the data generation process that results from the SMV with a
particular type of noise. The unconstrained estimator is not the correct ML estimator. The
results of this section demonstrate the consequence of using the wrong estimator.

It is important to note that the notion of constrained estimators in this paper differs
from standard hypothesis testing settings. In this paper we argue that the constraint on nay
locations must be imposed because the constraint is assumed in all of the theories that are
to be tested or calibrated. Thus, the validity of the constraint is theoretically determined.
Consequently, it is unclear what a test of the validity of the constraint (e.g., with likelihood
ratio tests) implies because estimates that do not satisfy the constraint have no meaning in
terms of the SMV.

Put differently, to test the constraint, the world where the constraint does not hold must
make sense (i.e., be characterized by a probability model such that one can interpret its
parameters). Interpretation of estimates of bill locations and ideal points requires a model
of choice like the SMV, but the world where each bill has a free nay location isnotone mod-
eled by the SMV. Thus, if the constrained estimates perform worse than the unconstrained
estimates (note that by construction they cannot perform better), then the conclusion isnot
that the SMV is true and it is not desirable to incorporate the constraint. Rather, the con-
clusion is simply that it is possible to write out a likelihood function with more parameters
that attains a higher value at its optimum. Unfortunately, this better likelihood function is
only ambiguously related to the theories that we are interested in testing and calibrating.

With this observation, we first prove that the constraint (usually) binds. As a consequence,
the unconstrained estimator is not a feasible solution to the constrained problem. We then
show that given an underlying data generating process satisfying weak conditions, if the
constraint binds, the unconstrained ML ideal point estimates arenot equivalent to ideal
point estimates from the constrained problem. A corollary is that if a (strong or weak) law
of large numbers holds for the constrained estimator, then one will genericallynothold for
the unconstrained estimator. These two results should be interpreted as arguments why it is
not reasonable to pretend that the nay locations are unrelated to the yea locations.

We conclude the section by demonstrating that if one estimates the dimensionality of
the policy space through a procedure of iteratively using likelihood ratio tests, then for
sufficient levels of concern about concluding that the policy space is smaller than it is
(i.e., the probabilityβ of making a type II error in the Neyman–Pearson framework), the
constrained model’s results will be higher than those of the unconstrained model. Although
this last result is weak in the sense of not holding for arbitrary levels of concern about type II
errors, the intuition behind the proof clearly demonstrates the potential of unconstrained
estimators to misestimate the dimensionality.

3.1 Notation and Definition

We begin by presenting a general model of binary voting which yields a general likeli-
hood function. LetX ⊂ Rd denote thed-dimensional policy space. A generic element is
expressed in both vector and scalar notation as eitherx or (x1, x2, . . . , x j , . . . , xd). We
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assume that each legislator in the set of legislatorsL = {1, 2, . . . , i, . . . , L} has prefer-
ences over proposals that are representable by a utility function with parameterxi ∈ X.
It is customary to think of these parameters as ideal points, and we denote the vector of
legislator ideal pointsx = {x1, . . . , xL}. Thus, superscripts index dimensions, subscripts
index legislators and proposals, and a boldfaced element denotes a collection of vectors.

A legislator’s vote on a proposal is determined by comparing the utility that the legislator
attains from voting for and against the proposal. Associated with each proposal is a location
in the policy space representing the outcome induced by the proposal’s passage. A list of
T sequential proposals is an agendaa = (y1, . . . , yt , . . . , yT ), whereyt ∈ X denotes the
location in the policy space to which the status quo moves if thet th proposal passes. Thus,
the vote on proposaly1 occurs beforey2, which occurs beforey3, and so on, untilyT . A
vote by legislatori for (against) proposalt is denotedvi t = 1(0). A voting history of size
T , denotedh = (v11, . . . , vL1, v12, . . . , vL2, . . . , vLT ) ∈ {0, 1}LT , is a list of binary votes
cast by theL legislators for each of theT proposals. The group decision on proposalt is
denotedvt , with vt = 1 if the proposal passes and 0 otherwise.

We begin with the followingagenda assumption: the status quo for the periodt vote is the
last proposal that passed. Thus,qt = ym(t) for t = 1, 2, . . . , T , wherem(t) := max{ j : j <
t & v j = 1}. Note that as long as the mappingm(t) is a functionm : {1, 2, . . . , T} →
{1, 2, . . . , T}, the results presented here attain.

The probability that legislatori votes yea or nay on votet is given by

Pr(vi t = 1) = ρ(xi , yt ,qt )
(1)

Pr(vi t = 0) = 1− ρ(xi , yt ,qt )

with ρ : X × X × X→ [0, 1]. We assume that this mapping is smooth and not too flat
(explicitly defined in the Appendix). Under this specification and the assumption that the
voting lotteries are independent across both indices, the log-likelihood function is of the form

log£(a, x, q | h) =
L∑

i = 1

T∑
t = 1

[vi t logρ(xi , yt ,qt )+ (1− vi t ) log(1− ρ(xi , yt ,qt ))]. (2)

If the agenda assumption is ignored, the unconstrained ML estimator is

(au, xu, qu) ∈ arg max
a,x,q∈XL+2T

log£(a, x, q | h). (3)

However, if the assumption is incorporated, the constrained problem becomes

(ac, xc, qc, λ) ∈ arg max
a,x,q,λ∈XL+2T×RdT

+
log£(a, x, q | h)+

T∑
t = 1

λ′t (qt − ym(t)) (4)

where λ′t = (λ1
t , . . . , λ

j
t , . . . , λ

d
t ) in (4) is a d-dimensional row vector of Lagrange

multipliers. By log£u(h)(d) and log£c(h)(d) we denote the values of the objective functions
in (3) and (4) evaluated at the estimates (au, xu, qu) and (ac, xc, qc, λ), respectively, for a
fixedd <∞. We call the estimator defined by (4) a constrained ML estimator.

3.2 Results

Our first result establishes that the estimation of (3) will generally not yield estimates that
satisfy the constraint in Eq. (4). For example, inspection of NOMINATE proposal location
estimates reveals that the constraint is not accidentally satisfied. More rigorous statements
and proofs of all results appear in the Appendix.
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Lemma 1 (Constraint Binds). Generically, ML estimates to the unconstrained problem
(3) are not solutions to the constrained problem (4).

The intuition behind the result is straightforward. The constraintqt = ym(t) is a linear
restriction. In the space of possible estimates from unconstrained problems,XL+2T , the set
that also satisfies the constraint is a hyperplane of dimensiond(L + T). So, cases in which
the constraint happens to be satisfied are knife-edged. This is not surprising, as one should
not expect unconstrained estimators of a problem to turn out to also satisfy a constraint. In
light of the lemma, we assume that the constraint binds.4

Proposition 1 (Ideal Point Difference). Under regularity conditions, if the constraint
qt = ym(t) binds, the ideal point estimatesxu from (3) are genericallynot equivalent to the
ideal point estimatesxc from (4).

While proofs of the consistency of ML estimators of ideal points are plagued by the
problems associated with the fact that as the sample size tends to infinity the number of
estimated parameters and incidental parameters also tends to infinity, some results have
been attained (Haberman 1977; Heckman and Snyder 1997; Kiefer and Walfowitz 1956;
Wald 1948; Londregan 2000a). We sidestep this issue and make an observation regarding
the asymptotic importance of imposing the constraint on nay locations.

Proposition 2 (Nonvanishing Differences).Under regularity conditions, if the con-
straintqt = ym(t) binds in all but a finite number of sample sizes, and the estimators from
(3) and (4) have limits (xu

∞ andxc
∞, respectively), then the ideal point estimatesxc from (4)

and the estimatesxu from (3) generically do not have the same limit (xu
∞ 6= xc

∞).
An immediate application of this result is thatif the constrained ML estimator is consis-

tent, then for a generic subset of true population ideal points, the unconstrained estimator
of ideal points (3) is inconsistent.

For a fixed dimensionalityd, the unconstrained and constrained estimators are well
defined. Moreover, comparisons of the constrained (unconstrained) estimates with dimen-
sionality ofd andd − 1 allows for a likelihood ratio test of the hypothesis that the policy
space isd− 1 dimensional (DeSarbo and Cho 1989; Londregan 2000a). The following can
be shown.

Proposition 3 (Dimensionality Bias). If one is sufficiently concerned about avoiding
Type II error, then the highest dimension which will not be rejected using likelihood ratio
tests is (weakly) higher under the constrained model.

The interpretation of this proposition is that if we are sufficiently concerned about falsely
concluding that the dimensionality is too small (i.e.,β is close enough to 0), then the
dimensionality estimate of the policy space computed via the comparison of likelihood
ratios for the model that ignores the constraint [i.e., (3)] will lead us to conclude that the
dimensionality is smaller than the algorithm that compares these ratios for the model that
does not ignore the constraint [i.e., (4)].

The logic behind proposition 3 is similar to that behind the discussion of Fig. 2. Because
the unconstrained model has more “free” parameters than the constrained model, there are
configurations of true ideal points and bill locations which induce roll call voting that can
be estimated in a lower-dimensional (unconstrained) model. The unconstrained estimator

4An empirical test of the validity of the constraint would require specifying the probability distribution ofqt
conditional onym(t). The outcome of testing the constraint of the form

∥∥qt − ym(t)
∥∥ ≤ δ for an arbitraryδ will

hinge largely on the assumed conditional distributions ofqt given ym(t). Unfortunately, these distributions are
likely to be unidentified.
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achieves this by ignoring the relationship between yea and nay locations. The constrained
estimator, however, does not have this freedom.

4 Agenda Constrained Bayesian Simulation Estimation

ML theory allows us to determine the significance of the constraint with a high degree of
generality. To illustrate the effects of incorporating the constraint in a Bayesian simulation
estimation procedure, we examine estimates of the first U.S. House (1789–1791). Specif-
ically, this section compares constrained Bayesian simulation estimates to unconstrained
and DW-NOMINATE estimates.

The construction of the agenda constrained Bayesian simulation estimator requires con-
straining parameter values of nay locations according to the legislative agenda. In the
notation of Jackman (2000), a yea vote on votej is a vote for the proposal locationθ j , and
a nay vote is for the proposal locationψ j . Given the discussion of the previous sections,
we define the mapping between the status quo of votej (i.e.,ψ j ) and proposal parameters
of vote j − 1 byψ j = θ j−1 if θ j−1 passes andψ j = ψ j−1 otherwise. The above mapping
assumes that a vote for a proposal is a vote to move in the policy space, and a vote against a
proposal is a vote to prevent movement. It is straightforward to show that incorporating the
constraint identifies the proposal parameters (i.e.,ψ j andθ j ). Thus, in the one-dimensional
setting examined, the constrained Bayesian simulation approach is able to recover proposal
locations—not just the midpoint associated with votej . As a consequence, it becomes
possible to work with and test theories about the behavior of proposals.5

In the illustration that follows, we consider one-dimensional estimates for two reasons.
First, this section is not intended as a source of empirical evidence in support of the an-
alytic results in Section 3. Instead this section demonstrates the usefulness of imposing
the constraint in Bayesian simulation estimation, just as the previous section demonstrates
the consequences of failing to impose the constraint in ML estimation. Second, calculation
of the unconstrained (and constrained) Bayesian simulation estimator in more than one
dimension introduces several identification issues. Given the complications identified by
Jackman (2001) in the simpler unconstrained Bayesian simulation estimator, addressing
these concerns is a paper in its own right.

4.1 Estimators Compared: The First U.S. House

There are several aspects which make the first House an interesting illustration. First, the
codification of the status quo that we employ is reasonable given the agenda structure
that prevailed. Inspection of the voting agenda reveals that a large number of similar bills
were considered sequentially (e.g., votes 13 through 23 and votes 63 through 75 all deal
with determining the location of the new seat of government). Second, given the small
number of issues debated, the gain from correctly capturing the interdependence of votes
is potentially large. Louis-Guillaume Otto, the Charg´e d’affaires of France, corresponding
in 1790, described the business of the first Congress:

The first session of [the first] Congress has had for its aim only the general organization of the
government. The second will be more important and more delicate: it will decide about the money
and the army. . . . A third object, much less interesting may give a more perceptible shock to the
new confederation. It is the eternal discussion about the residence [i.e., location of the capitol].
(O’Dwyer 1964)

5Note that although the NOMINATE algorithm provides bill locations, their identification depends critically on
the specific parametric assumptions made about the statistical and utility models.
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Third, the small number of proposals enables us to summarize graphically the movement
of the status quo through the policy space.

Figure 3 presents the legislator ideal point estimates produced by both the unconstrained
and the constrained Bayesian simulation estimators.6 The posterior distribution for each
was generated via an initialization run of 400,000 iterations with uninformative (diffuse)
priors. The subsequent 100,000 iterations were thinned by a factor of 100 to yield the 1000
realizations that were used to summarize the posterior. Thinning was utilized to reduce the
autocorrelation between the draws and use iterations that explore more of the parameter
space.

To highlight the resulting differences in the recovered estimates of the constrained and
unconstrained estimator, both are presented in Fig. 3. The legislators are rank-ordered
according to the posterior mean of the constrained estimator, with the open symbols repre-
senting the mean of the legislator posterior distributions, and the horizontal lines denoting
the 95% posterior confidence intervals.

Consistent with previous results, Fig. 3 reveals that the uncertainty associated with
the ideologically extreme legislators’ estimates is greater than that of centrally located
legislators. This differential uncertainty results from the lack of bills with extreme cutpoints,
as it is the presence of cutpoints that enables us to distinguish between legislators. Second,
because the Bayesian simulation approach provides for the (automatic) incorporation of
missing roll call data by treating missing data as additional parameters to be estimated,
estimates of legislators with a high number of abstentions (e.g., Bourn and F. Muhlengberg)
are recovered with more uncertainty.

Using standard assessments of the similarity of estimators, the difference between the es-
timates seems negligible. The Pearson and Spearman (rank-order) correlations between the
constrained and the unconstrained estimates are extremely high (.971 and .975 respectively).
The Pearson and Spearman correlations of the constrained estimates and DW-NOMINATE
are also fairly high, at .77 and .84, respectively, with the correlations between the uncon-
strained estimates and DW-NOMINATE being .84 and .90, respectively.7

Consideration of correlations alone may be misleading. Despite the appearance of sim-
ilarity, it is possible to identify some clear differences between the estimators. First, since
in Fig. 3 the legislators are ordered by the mean of the constrained posterior density (left),
the fact that the unconstrained posterior means (right) are not monotonic in the ordered
legislators demonstrates that the two estimators do not recover the same ordering, of leg-
islators. If the estimators recovered the same ordering, then both the constrained and the
unconstrained posterior means would increase as one moves from Matthews to Sturges.

Second, comparing the confidence intervals demonstrates that these differences in esti-
mates are not trivial relative to the precision of the estimates. In the unconstrained estimates,
the ideal point distributions of Sedgwick and Floyd contain hardly any overlap. However,
the estimates of the constrained model reveal that Floyd and Sedgwick are almost indis-
tinguishable. This phenomenon is not restricted to extreme legislators, as the ideal point
distributions of the centrally located Seney and Sinnickson overlap in the unconstrained

6We maintain the distributional assumptions of Jackman (2000) where possible, although since the posterior
distribution of the constrained estimator does not retain the conjugacy of the unconstrained estimator, the
Metropolis–Hastings algorithm is employed.

7The DW-NOMINATE scores were graciously provided by Keith Poole. Note that there are three legislators in
the ICPSR roll call data file without a DW-NOMINATE score: F. Muhlengberg, Bourn, and Giles. Note that
some part of the difference in correlations is due to the fact that the constrained estimates are estimated with
more variance.
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Fig. 3 Legislator ideal point estimates produced by the unconstrained (right) and the constrained
(left) Bayesian simulation estimators.

estimator but not in the constrained estimator. Although certainly not definitive, such dif-
ferences provide evidence that the constraint does indeed affect the ideal points that are
recovered.

We quantify the relative uncertainty associated with the constrained and unconstrained
ideal point estimates by comparing the standardized mean difference between the upper and
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the lower bounds of the 95% confidence intervals. Lettingδc
i (δu

i ) denote the length of the
confidence interval of legislatori ∈ L in the constrained (unconstrained) model andδ́c (δ́u)
denote the maximum of these distances overi for the respective estimators, the statistics are
σ c =∑i δ

c
i /(L δ́

c) andσ u =∑i δ
u
i /(L δ́

u). We find thatσ c = .40 andσ u = .37. The order-
ing of these two numbers is not surprising, as one would expect more error in the constrained
model. Recalling the discussion in the beginning of Section 3, it is not possible to test the
validity of the constraint without formulating a framework in which one can interpret the con-
strained and unconstrained estimates. Consequently the relative sizes ofσ c andσ u should not
be construed as evidence that the unconstrained model is preferred to the constrained model.

Although incorporation of the constraint yields different ideal point estimates, the greater
innovation provided by the constraint is that it enables us to recover proposal locations—not
just the midpoint (as is the case in the unconstrained estimator). As a result, it is possible
to trace the trajectory of the policy agenda. Figure 4 presents this information.

The horizontal axis in Fig. 4 denotes the policy location of the proposal, and the ver-
tical axis presents the agenda sequence—with the initial status quo represented by the
open square (top), and subsequent proposals represented by open or filled diamonds de-
pending on whether the proposal fails or passes. The locations of the legislators’ posterior
means are indicated by the short vertical lines located just above the horizontal axis, with
the median legislator’s ideal point denoted by the vertical line that extends through the
graph.

There exists a substantial amount of uncertainty in the location of successful proposals.
For the 108 proposals considered in the first U.S. Congress, 26 of the 51 (51%) successful
proposals have 95% posterior confidence bounds that span the entire range of recovered
(mean) ideal points. In contrast, only 21 of the 57 (37%) unsuccessful proposals span that
range. This may seem counterintuitive given that the location of successful proposals appear
in the likelihood function at least twice as many times as unsuccessful proposals (i.e., it is
a yea location on the first vote and then a nay location until a proposal beats it). However,
in a one-dimensional model, when a yea location enters into the likelihood function many
times, unless the voting coalitions are connected on each vote, error is introduced into the
yea location estimate.

This phenomenon provides weak evidence either that a one-dimensional solution is
insufficient for the constrained estimation problem or that log rolls occurred on some votes—
causing disconnected coalitions to form. The possibility of the latter is especially relevant in
the first House, where a log roll between issues dealing with the assumption of Revolutionary
war debt and the location of the capitol is commonly termed the Compromise of 1790
(Jefferson 1829). However, the existence of this log roll is highly contested (including
Bowling 1968, 1971; Cooke 1970; Risjord 1976). Assessing whether a higher-dimensional
model is better for this Congress is beyond the scope of this article.

Inspection of the proposal path through the issue space reveals several interesting find-
ings. As expected, successful policies overlap the median voter’s ideal point far more often
(33 of 51) than do unsuccessful policies (21 of 57). However, it is still easy to find cases
where a noncentrist proposal defeats a centrist status quo.

The seventh roll call passed H.R.19, a bill to allow for compensation to members of
Congress, their clerks, and officers, by a vote of 30–16. Inspection of Fig. 4 demonstrates
that the proposal’s posterior mean is outside the Pareto set generated by the legislators’
posterior means.

Although there is substantial movement between the seventh and the sixth roll call, it is
important to recall the interpretation of such movement. Although the sixth proposal is a
vote on receding from certain Senate amendments on a proposal establishing a duty on ships
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Fig. 4 Legislator ideal point estimates, proposal locations, and trajectory of the policy agenda using
the constrained model.

built in the United States (H.R.5), thelocationof proposal 6 in Fig. 4 represents the state
of affairs which results after the passage of the previous five bills. Similarly, the location of
the seventh roll call in Fig. 4 summarizes the state of affairs with the modification that now
Congressmen and their clerks and officers receive compensation. In other words, whereas
the location of the sixth proposal represents the state of the world in which the first six
proposals pass, the location of the seventh proposal represents the state of the world in
which the first six proposals passandCongressmen are compensated.
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As a substantive observation, the 75th roll call passed S.12 and established Washington,
D.C. (Philadelphia), as the permanent (temporary) capitol by a 32–29 margin. Despite Otto’s
prediction that this debate would be “uninteresting,” 25 of the first 75 votes pertained to
this issue, with Fig. 4 identifying two sequences of such votes. Examination of Fig. 4 also
reveals that the posterior mean location of the 75th roll call passing S.12 is very close to
the median legislator’s ideal point—much closer than most of the previous (unsuccessful)
proposals. Given the closeness of the vote, the size of the proposal’s confidence interval is
surprising—highly suggestive of the possibility of a log roll.8

Although we cannot compare proposal locations of the constrained and unconstrained
estimators because the locations are identified only for the constrained estimator, it is
possible to compare the recovered cutpoints of the roll call votes. The Pearson and Spear-
men correlations between the constrained and the unconstrained cutpoints are .25 and
.24, respectively. In contrast to the correlations of ideal point estimates, incorporation
of the constraint greatly affects estimates of parameters associated with the legislative
agenda.

This discussion is not intended to be a structured analysis of the first U.S. Congress. Such
an endeavor would require far more investigation, consideration and knowledge than we
have brought to the topic. However, the above observations demonstrate two main points.
First, inclusion of the constraint does seem to affect the inferences that one draws. Second,
identification of proposal locations by using information contained in the agenda opens up
several avenues for future research.

5 Conclusion

To the extent that contemporary scholars of American politics utilize preference estimates
to test and calibrate theories imbedded in the SMV, it is desirable for these estimates to share
the basic assumptions of the SMV. We argue that the assumptions of existing procedures
are incompatible with the SMV and illustrate the resulting pathologies. By constraining the
nay locations, both ML and Bayesian simulation estimators of legislative roll call voting
can be improved so as to make the resulting estimates more consistent with the theories
being tested. The relevance of the constraint is analytically proven in the ML framework
and illustrated with data in the context of the Bayesian simulation approach.

In addition, incorporation of the constraint provides researchers with an important new set
of estimates—proposal locations. Given these estimates (or ones based on a more detailed
description of the agenda process), it becomes possible to test questions such as, What is
the behavior of the status quo over time? Are extreme bills more likely to get closed rules
than open rules? and Do log rolls occur? Given the nature of these questions, it is clear that
incorporation of the constraint will provide valuable information in the quest to characterize
the behavior of Congress.

On a different scale, empirical investigation of proposal-making and roll call voting in
specific policy areas is an endeavor in which the insight of this paper may be most rewarding
(e.g., Krehbiel and Rivers 1988). In this setting, knowledge of procedural minutiae may be
used to model the relationship between votes more accurately. Furthermore, with a small
number of substantively related roll call votes and a large number of legislator ideal points
to estimate, the identification granted by the use of the agenda may be especially valuable.

8In fact, we hypothesize that a statistical test of the log rolling hypothesis may be constructed using the uncertainty
estimates on such a vote.
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Appendix

In this appendix we make explicit the concepts discussed in Section 3 and rigorously restate
the lemma and propositions with proofs.

We assume that the gradientsDxi ρ(xi , yt ,qt ), Dqtρ(xi , yt ,qt ), Dytρ(xi , yt ,qt ) and the
corresponding Jacobian of second derivatives exist onX3. We also assume thatρ(·, ·, ·) is
not too flat. Specifically, for eachi , we require that the subset ofX 3 for which

T∑
t=1

Dxi

(
Dxi (ρ(x∗i , yt ,qt ))

ρ(x∗i , yt ,qt )

)
=

T∑
t=1

Dxi

(
Dxi (ρ(x∗i , yt , ym(t)))

ρ(x∗i , yt , ym(t))

)
(A1)

holds has an empty interior.9 If this condition fails, a very knife-edged distribution and
agenda pair is being considered. Note that ifρ(·, ·, ·) is induced by normal or extreme value
errors with legislators having quadratic or exponential preferences, then the condition holds.

We now consider Lemma 1. For fixedd, L , T , the space of possible optimization prob-
lems is infinite dimensional. However, for fixedd, L , T , the space of possible unconstrained
estimates isXL+2T , a subset of finite-dimensional Euclidean space. It is in this space that
we work. Note that for anyA ⊂ XL+2T with an empty interior, the Lebesgue measure ofA
[denotedleb(A)] is 0.

Lemma 1. In the space of unconstrained ML estimates to the unconstrained problem
(3), the set which would also be solutions to the constrained problem (4) has Lebesgue
measure 0.

Proof. If (au, xu, qu) is the solution to (3), a necessary condition for it to be the solution
to (4) is thatqu

t = yu
m(t). In the spaceXL+2T the setA := {(a, x, q) : qt = ym(t)} is the

intersection of the hyperplaneH = {(a, x, q) : a ∈ RdL, x ∈ RdT,qt = ym(t)} andXL+2T .
Sinceleb(H ) = 0, leb(A) = 0. ¥

A stronger result regarding the space of ML problems and not the space of ML estimates
is available at thePolitical Analysisweb site. We now prove propositions 1 and 2.

Proposition 1. If the constraintqt = ym(t) binds, then ideal point estimates from (3)
are generically not equivalent to ideal point estimates from (4).

Proof. Assume the hypothesis. The first-order conditions with respect to the ideal point
estimates for the two problems for eachi are, respectively,

T∑
t=1

vi t

ρ(xi , yt ,qt )
Dxi (ρ(xi , yt ,qt ))−

T∑
t=1

1− vi t

ρ(xi , yt ,qt )
Dxi (ρ(xi , yt ,qt )) = 0

(A2)
T∑

t=1

vi t

ρ(xi , yt , ym(t))
Dxi (ρ(xi , yt , ym(t)))−

T∑
t=1

1− vi t

ρ
(
xi , yt , ym(t)

)Dxi (ρ(xi , yt , ym(t))) = 0

(A3)

9With slight abuse of matrix notation we use the fraction notationDxi (ρ(·, ·, ·))/ρ(·, ·, ·) to denote the product
of a scaler 1/ρ(·, ·, ·) and a vectorDxi (ρ(·, ·, ·)). The term empty interior is relative to the Euclidean topology.
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In (A3) the fact thatqt = ym(t) has been used. Moreover, by assumption the constraint is
not satisfied in (3) so thatqu 6= qc. It remains to verify that generically the samex cannot
solve both (A2) and (A3). It is sufficient to show that given anyx which solves both (A3) and
(A2), for every neighborhood of that point inXL there exists a pointx′ which solves (A3)
but not (A2), as this implies that the set of constrained ML ideal point estimatesx which
are also unconstrained ML estimates has an empty interior and is thus the complement of a
generic subset ofXL. To show this, assume that there is a vectorx∗ which solves both (A2)
and (A3). From (A2) and (A3) this implies that, for eachi ,

T∑
t=1

2vi t − 1

ρ(x∗i , yt ,qt )
Dxi (ρ(x∗i , yt ,qt )) =

T∑
t=1

2vi t − 1

ρ
(
x∗i , yt , ym(t)

)Dxi

(
ρ(x∗i , yt , ym(t)

))
(A4)

We now consider an arbitraryε−ball of x∗ denotedB(x∗, ε). Sincevi t 6= 1
2, if (A4)

holds at everyx ∈ B(x∗, ε), for eachi we must have

T∑
t=1

Dxi

(
Dxi (ρ(x∗i , yt ,qt ))

ρ(x∗i , yt ,qt )

)
=

T∑
t=1

Dxi

(
Dxi

(
ρ
(
x∗i , yt , ym(t)

))
ρ
(
x∗i , yt , ym(t)

) )
(A5)

at everyx ∈ B(x∗, ε), contradicting the assumption that (ρ(·, ·, ·), y) is not too flat. Thus there
is a point arbitrarily close tox∗ for which the equivalence in (A4) does not hold. Thus the re-
sult follows. ¥

Proposition 2. If the constraint binds in all but a finite number of sample sizes, and
the estimators from (3) and (4) almost surely converge toxu

∞ andxc
∞, respectively, then

xu
∞ 6= xc

∞.

Proof. Assume the hypothesis. By the fact that the Jacobian exists, the first-order condi-
tions for problems (3) and (4) are continuous. Sincexc→ xc

∞ andxu→ xu
∞, the continuous

mapping theorem (Durrett 1995) implies that the sample averages of the left-hand side of the
first-order conditions (A2) and (A3) converge to the constrained population first-order con-
ditions evaluated atxc

∞ andxu
∞. But the arguments of the above proof applied to the limiting

first-order conditions yield the result. ¥

We now formalize the test of dimensionality. Assuming that (4) is the correct model, it
is well known that the restriction fromd to d′ = d − 1 can be tested usingLc(d, h) :=
2((log£c(h)(d) − log£c(h)(d − 1)). We assume that this statistic has distributionX 2

L+T
(α). We denote the critical value of the distributionX 2

L+T (α) by c(L + T, α).10 Defining
Lu(d, h) in an analogous manner, we may consider the stochastic process of likelihood
ratio values (LLRs){Lc(d, h)}∞d=1 and {Lu(d, h)}∞d=1. The estimated dimensionalites are
dc(h;α) := min{n ∈ N : Lc(d, h) ≤ c(L+T, α)} anddu(h;α) := min{n ∈ N : Lu(d, h) ≤
c(2T + L , α)}, whereN denotes the set of natural numbers. For a finite-dimensional data
set and fixedα, bothdc(h, α) anddu(h, α) are finite.

It is clear that ifLc(d, h) ≥ Lu(d, h) for almost everyh, the constrained procedure
will find a (weakly) higher dimensionality than the unconstrained procedure. Thus, it is
sufficient to show thatLc(d, h) ≥ Lu(d, h) andLc(d, h) > Lu(d, h) for a nonnull set of

10The critical valuec(n, α) is just the value found from a standardX 2 table withn degrees of freedom and a
P value of 1− α.
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h’s to show thatEhdc(h;α) > Ehdu(h;α). The operatorEh(·) takes the expectation of an
h-measurable function with respect to the underlying data (i.e., roll call votes).11

We assume thatρ(·, ·, ·) can be expressed as Pr(ω < ‖xi − qt‖ − ‖xi − yt‖), whereω
is a random variable whose distribution has at most a countable number of discontinuities,
and that for anya, x, q, any pattern of roll call voting is possible.

Proposition 3 (Dimensionality Bias). Fix L andT . There existsε > 0 s.t.Ehdc(h;α) >
Ehdu(h;α) for all α > 1 − ε.

Proof. Assume the hypothesis. First, we establish the existence ofEhdc(h;α) and
Ehdu(h;α), then we establish the ordering. SinceL , T are finite and anyh ∈ H (the set of
L × T matrices with elements in{0, 1}) can be predicted via perfect voting in a sufficiently
high-dimensional space, for anyh ∈ H there exists ad̄c and d̄u s.t. Lc(d̄u, h) = 0 and
Lc(d̄c

, h) = 0. This implies thatdc(h; α) anddu(h; α) exist for each (h, α). SinceL , T
finite implies thatH is finite, the expectationsEhdc(h; α), Ehdu(h; α) exist for eachα.

For someε > 0 and for eachh ∈ H, α ≥ 1 − ε implies thatdc(h;α) = d̄c and
du(h; α) = d̄u. It remains only to establish that for eachh ∈ H, d̄c ≥ d̄u and for some
h ∈ H, d̄c

> d̄u
. The former fact is true because any profile (ac, xc, qc) from (4) for which

perfect voting yields the datah is also admissible for (3), and under the constrained model
this profile will yield perfect voting that induces the roll callh. To illustrate that for some
h ∈ H, d̄c

> d̄u, we exhibit an algorithm that for a givenL , T ≥ 3 will yield anh for which
d̄c
> d̄u: Taking L3 := min{n ≤ L : L is divisible by 3} andT3 := min{n ≤ T : L is

divisible by 3}, construct theL × T, h matrix as

hi j =
{

1 if {i ≤ L3/3} or {i ≤ 2L3/3 and j ≤ T3/3} or { j ∈ (2T3/3, T)}
0 otherwise

The matrixh corresponds to the replication of the roll call in the third example ofL3

legislators andT3 votes, with the leftover voters voting the same as the thirdL3/3 voters. The
leftover votes are all unanimous rejections. Since this roll call is perfectly fit in one dimension
without the constraint and not with the constraint, we haved̄c

> d̄u. Thus, the result is
shown. ¥
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