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Chapter 1

Introduction.

The purpose of these notes is to provide a rapid introduction to von Neumann
algebras which gets to the examples and active topics with a minimum of
technical baggage. In this sense it is opposite in spirit from the treatises of
Dixmier [], Takesaki[], Pedersen[], Kadison-Ringrose[], Stratila-Zsido[]. The
philosophy is to lavish attention on a few key results and examples, and we
prefer to make simplifying assumptions rather than go for the most general
case. Thus we do not hesitate to give several proofs of a single result, or repeat
an argument with different hypotheses. The notes are built around semester-
long courses given at UC Berkeley and Vanderbilt though they contain more
material than could be taught in a single semester.

The notes are informal and the exercises are an integral part of the ex-
position. These exercises are vital and mostly intended to be easy.
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Chapter 2

Background and Prerequisites

2.1 Hilbert Space
A Hilbert Space is a complex vector spaceH with inner product 〈, 〉 : HxH →
C which is linear in the first variable, satisfies 〈ξ, η〉 = 〈η, ξ〉, is positive
definite, i.e. 〈ξ, ξ〉 > 0 for ξ 6= 0, and is complete for the norm defined by test

||ξ|| =
√
〈ξ, ξ〉.

Exercise 2.1.1. Prove the parallelogram identity :

||ξ − η||2 + ||ξ + η||2 = 2(||ξ||2 + ||η||2)

and the Cauchy-Schwartz inequality:

|〈ξ, η〉| ≤ ||ξ|| ||η||.

Theorem 2.1.2. If C is a closed convex subset of H and ξ is any vector in
H, there is a unique η ∈ C which minimizes the distance from ξ to C, i.e.
||ξ − η′|| ≤ ||ξ − η|| ∀η′ ∈ C.

Proof. This is basically a result in plane geometry.
Uniqueness is clear—if two vectors η and η′ in C minimized the distance

to ξ, then ξ, η and η′ lie in a (real) plane so any vector on the line segment
between η and η′ would be strictly closer to ξ.

To prove existence, let d be the distance from C to ξ and choose a sequence
ηn ∈ C with ||ηn − ξ|| < d + 1/2n. For each n, the vectors ξ, ηn and ηn+1

define a plane. Geometrically it is clear that, if ηn and ηn+1 were not close,
some point on the line segment between them would be closer than d to ξ.
Formally, use the parallelogram identity:

||ξ − ηn + ηn+1

2
||2 = ||ξ − ηn

2
+
ξ − ηn+1

2
||2
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= 2(||ξ − ηn
2
||2 + ||ξ − ηn+1

2
||2 − 1/8||ηn − ηn+1||2)

≤ (d+ 1/2n)2 − 1/4||ηn − ηn+1||2

Thus there is a constant K such that ||ηn−ηn+1||2 < K/2n or ||ξ− ηn+ηn+1

2
||2

would be less than d2.
Thus (ηn) is Cauchy, its limit is in C and has distance d from ξ.

Exercise 2.1.3. If φ ∈ H∗ (the Banach-space dual of H consisting of all
continuous linear functionals from H to C), kerφ is a closed convex subset
of H. Show how to choose a vector ξφ orthogonal to kerφ with φ(η) = 〈ξφ, η〉
and so that φ 7→ ξφ is a conjugate-linear isomorphism from H∗ onto H.

We will be especially concerned with separable Hilbert Spaces where there
is an orthonormal basis, i.e. a sequence {ξ1, ξ2, ξ3, ...} of unit vectors with
〈ξi, ξj〉 = 0 for i 6= j and such that 0 is the only element of H orthogonal to
all the ξi.

We will use the abbreviation ONB for orthonormal basis.

Exercise 2.1.4. Show that an ONB always exists (e.g. Gram-Schmidt) and
that if {ξi} is an ONB for H then the linear span of the {ξi} is dense in H.

A trivial but useful observation. If H and K are Hilbert spaces with
vectors ξi ∈ H and ψk ∈ K respectively then if

〈ξi, ξj〉 = 〈ψi, ψj〉 ∀i, j

then the map ξi 7→ ψi extends to a linear 〈, 〉-preserving bijection from the
closure of the subspace spanned by the ξi to the closure of the subspace
spanned by the ψi.

A linear map (operator) a : H → K is said to be bounded if there is a
number K with ||aξ|| ≤ K||ξ|| ∀ξ ∈ H. The infimum of all such K is called
the norm of a, written ||a||. The set of all bounded operators from H to K
is written B(H,K) and if H = K we use B(H). Boundedness of an operator
is equivalent to continuity.

To every bounded operator a between Hilbert spacesH and K, by exercise
2.1.3 there is another, a∗, between K and H, called the adjoint of a which is
defined by the formula 〈aξ, η〉 = 〈ξ, a∗η〉.

Exercise 2.1.5. Prove that

||a|| = sup

||ξ|| ≤ 1, ||η|| ≤ 1
|〈aξ, η〉|

= ||a∗|| = ||a∗a||1/2.
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Some definitions:
The identity map on H is a bounded operator denoted 1.
An operator a ∈ B(H) is called self-adjoint if a = a∗.
An operator p ∈ B(H) is called a projection if p = p2 = p∗.
An operator a ∈ B(H) is called positive if 〈aξ, ξ〉 ≥ 0 ∀ξ ∈ B(H). We say
a ≥ b if a− b is positive.
An operator u ∈ B(H) is called an isometry if u∗u = 1.
An operator v ∈ B(H) is called a unitary if uu∗ = u∗u = 1.
An operator u ∈ B(H) is called a partial isometry if u∗u is a projection.
The last three definitions extend to bounded linear operators between dif-

ferent Hilbert spaces.
If S ⊆ B(H) then the commutant S ′ of S is {x ∈ B(H)|xa = ax ∀a ∈ S}.
Also S ′′ = (S ′)′.

Exercise 2.1.6. A word on matrices. If ei is an ONB of H then ei 7→ ξi
(the characteristic function of {i}) defines a unitary from H to `2(N). So for
any ξ ∈ H,

ξ =
∞∑
i=1

〈ξ, ei〉ei

the sum being convergent in the norm of H.
If a ∈ B(H) we define the matrix of a wrt the ONB to be ai,j = 〈aei, ej〉.

For fixed i, j 7→ ai,j is in `2 and for fixed j, i 7→ ai,j is in `2. And a(ei) =∑
j ai,jej. Thus the matrix of a determines a and if b ∈ B(H) has matrix bi,j

then
abi,j =

∑
k

ai,kbk,j

the sum being absolutely convergent.

Exercise 2.1.7. Show that every a ∈ B(H) is a linear combination of two
self-adjoint operators.

Exercise 2.1.8. A positive operator is self-adjoint.

Exercise 2.1.9. Find an isometry from one Hilbert space to itself that is
not unitary. (The unilateral shift on H = `2(N) is a fine example. There is
an obvious orthonormal basis of H indexed by the natural numbers and the
shift just sends the nth. basis element to the (n+ 1)th.)

Exercise 2.1.10. If K is a closed subspace of H show that the map PK :
H → K which assigns to any point in H the nearest point in K is linear and
a projection.
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Exercise 2.1.11. Show that the correspondence K → PK of the previous
exercise is a bijection between closed subspaces of H and projections in B(H).

If S is a subset of H, S⊥ is by definition {ξ ∈ H : 〈ξ, η〉 = 0 ∀η ∈ S}.
Note that S⊥ is always a closed subspace.

Exercise 2.1.12. If K is a closed subspace then K⊥⊥ = K and PK⊥ = 1−PK.

Exercise 2.1.13. If u is a partial isometry then so is u∗. The subspace u∗H
is then closed and called the initial domain of u, the subspace uH is also
closed and called the final domain of u. Show that a partial isometry is the
composition of the projection onto its initial domain and a unitary between
the initial and final domains.

The commutator [a, b] of two elements of B(H) is the operator ab− ba.

Exercise 2.1.14. If K is a closed subspace and a = a∗ then

aK ⊆ K iff [a, PK] = 0.

In general (aK ⊆ K and a∗K ⊆ K) ⇐⇒ [a, PK] = 0.

2.2 The Spectral Theorem
The spectrum σ(a) of a ∈ B(H) is {λ ∈ C : a− λ1 is not invertible}.

Exercise 2.2.1. (Look up proofs if necessary.) Show that σ(a) is a non-
empty closed bounded subset of C and that if a = a∗, σ(a) ⊆ [−||a||, ||a|| ]
with either ||a|| or −||a|| in σ(a).

The spectral theorem takes a bit of getting used to and knowing how
to prove it does not necessarily help much. If one cannot “see” the spectral
decomposition of an operator it may be extremely difficult to obtain—except
in a small finite number of dimensions where it is just diagonalisation. But
fortunately there is nothing like a course in operator algebras, either C∗ or
von Neumann, to help master the use of this theorem which is the heart of
linear algebra on Hilbert space. The book by Reed and Simon, “Methods of
mathematical physics” vol. 1, Functional Analysis, contains a treatment of
the spectral theorem which is perfect background for this course. We will
make no attempt to prove it here—just give a vague statement which will
establish terminology.

The spectral theorem asserts the existence of a projection valued measure
from the Borel subsets of σ(a) (when a = a∗ or more generally when a is

8



normal i.e. [a, a∗] = 0) to projections in B(H), written symbolically λ →
E(λ), such that

a =

∫
λdE(λ).

This integral may be interpreted as a limit of sums of operators (necessitating
a topology on B(H)), as a limit of sums of vectors: aξ =

∫
λdE(λ)ξ or simply

in terms of measurable functions 〈ξ, aη〉 =
∫
λd〈ξ, E(λ)η〉. The projections

E(B) are called the spectral projections of a and their images are called the
spectral subspaces of a.

Given any bounded Borel complex-valued function f on σ(a) one may
form f(a) by f(a) =

∫
f(λ)dE(λ).

Exercise 2.2.2. If µ is a sigma-finite measure on X and f ∈ L∞(X,µ),
the operator Mf : L2(X,µ) → L2(X,µ), (Mfg)(x) = f(x)g(x), is a bounded
(normal) operator with ||Mf || = ess-supx∈X(|f(x)|). If f is real valued then
Mf is self adjoint. Find σ(f) and the projection-valued measure E(λ).

Exercise 2.2.3. If dim(H) < ∞ find the spectrum and projection-valued
measure for a (which is a Hermitian matrix).

The example of exercise 2.2.2 is generic -that any self-adjoint operator is
of the from Mf is another version of the spectral theorem.

Exercise 2.2.4. (A “visible” spectral decomposition.) Let H = `2(Z and let
u ∈ B(H) be translation by 1, i.e. uf(n) = f(n + 1). Then u + u∗ is self-
adjoint. Use the Fourier transform to exhibit a measure space (X,µ) and a
function f on it so that (H, u+u∗) is unitarily equivalent to (L2(X,µ),Mf ).

Proofs of the spectral theorem use the following general scheme:

If ξ ∈ H is any vector and a = a∗ ∈ B(H), let K be the closed linear span
of the {anξ : n = 0, 1, 2, 3, ...}, then a defines a self-adjoint operator on K
and one tries to find a finite measure µ on the spectrum σ(a) such that (K, a)
is isomorphic in the obvious sense to (L2(σ(a), µ), multiplication by x). It
is not to hard to see how this should go-if a is supposed to be multiplication
by x, then we know that, for each n ∈ N,∫

σ(a)

xndµ = 〈anξ, ξ〉.

Moreover by the classical Weierstrass theorem polynomials are dense in the
continuous functions on the compact set σ(a). So we appeal to some classical
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result from measure theory that says there is an appropriate measure. But
the inner product between anξ and amξ is then

∫
σ(a)

xn+mdµ so we may define
a unitary from K to L2(σ(a), µ) by sending amξ to the function xm on σ(a).

Note how it is the real numbers 〈anξ, ξ〉 that determine everything.

So if you cannot "see" the spectral decomposition of an explicit operator
a, all is not lost but you should sniff around the “moments” 〈anξ, ξ〉.

Continuing such an argument by restricting to K⊥ one obtains a full
spectral theorem.

Exercise 2.2.5. Show that a self-adjoint operator a is the difference a+−a−
of two positive commuting operators called the positive and negative parts of
a, obtained as functions of a as above.

2.3 Polar decomposition
Exercise 2.3.1. Show that every positive operator a has a unique positive
square root a1/2.

Given an arbitrary a ∈ B(H) we define |a| = (a∗a)1/2.

Exercise 2.3.2. Show that there is a partial isometry u such that a = u|a|,
and that u is unique subject to the condition that its initial domain is ker(a)⊥.
The final domain of this u is Im(a) = ker(a∗)⊥.

2.4 Tensor product of Hilbert Spaces.
If H and K are Hilbert spaces one may form their algebraic tensor product
H ⊗alg K (in the category of complex vector spaces). On this vector space
one defines the sesquilinear form 〈, 〉 by:

〈ξ ⊗ η, ξ′ ⊗ η′〉 = 〈ξ, ξ′〉〈η, η′〉
and observes that this form is positive definite. The Hilbert space tensor
product H ⊗ K is then the completion of H ⊗alg K. It is easy to see that if
a ∈ B(H), b ∈ B(K), there is a bounded operator a⊗ b on H⊗K defined by
a⊗ b(ξ ⊗ η) = aξ ⊗ bη.
Exercise 2.4.1. Let L2(X,H, µ) be the Hilbert space of measurable square
integrable functions (up to null sets) f : X → H, with H a separable Hilbert
space. For each ξ ∈ H and f ∈ L2(X,µ) let fξ ∈ L2(X,H, µ) be defined
by fξ(x) = f(x)ξ. Show that the map ξ ⊗ f 7→ fξ defines a unitary from
H⊗ L2(X,µ) onto L2(X,H, µ).
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Chapter 3

The definition of a von Neumann
algebra.

3.1 Topologies on B(H)

1. The norm or uniform topology is given by the norm ||a|| defined in
the previous chapter.

2. The topology on B(H) of pointwise convergence on H is called the
strong operator topology. A basis of neighbourhoods of a ∈ B(H) is
formed by the

N(a, ξ1, ξ2, ..., ξn, ε) = {b : ||(b− a)ξi|| < ε ∀i = 1, · · · , n}

3. The weak operator topology is formed by the basic neighbourhoods

N(a, ξ1, ξ2, ..., ξn, η1, η2, .., ηn, ε) = {b : |〈(b−a)ξi, ηi〉| < ε ∀i = 1, · · · , n}

Note that this weak topology is the topology of pointwise convergence on H
in the “weak topology” on H defined in the obvious way by the inner product.

The unit ball of H is compact in the weak topology and the unit ball
of B(H) is compact in the weak operator topology. These assertions follow
easily from Tychonoff’s theorem by embedding the unit balls in products of
discs using Hilbert space duality.

Exercise 3.1.1. Show that we have the following ordering of the topologies
(strict in infinite dimensions).

(weak operator topology) < (strong operator topology) < (norm topology)

Note that a weaker topology has less open sets so that if a set is closed in
the weak topology it is necessarily closed in the strong and norm topologies.
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3.2 The bicommutant theorem.
We will now prove the von Neumann “density” or “bicommutant” theorem
which is the first result in the subject. We prove it first in the finite dimen-
sional case where the proof is transparent then make the slight adjustments
for the general case.

Theorem 3.2.1. Let M be a self-adjoint subalgebra of B(H) containing 1,
with dim(H) = n <∞. Then M = M ′′.

Proof. It is tautological that M ⊆M ′′.
So we must show that if y ∈M ′′ then y ∈M . To this end we will “amplify”

the action ofM onH to an action onH⊗H defined by x(ξ⊗η) = xξ⊗η. If we
choose an orthonormal basis {vi} of H then H⊗H = ⊕ni=1H and in terms of
matrices we are considering the n xn matrices over B(H) and embedding M
in it as matrices constant down the diagonal. Clearly enough the commutant
of M on H⊗H is the algebra of all n xn matrices with entries in M ′ and the
second commutant consists of matrices having a fixed element of M ′′ down
the diagonal.

Let v be the vector ⊕ni=1vi ∈ ⊕ni=1H and let V = Mv ⊆ H ⊗ H. Then
MV ⊆ V and since M = M∗, PV ∈M ′ (on H⊗H) by exercise 2.1.14. So if
y ∈M ′′ (onH⊗H), then y commutes with PV and yMv ⊆Mv. In particular
y(1v) = xv for some x ∈M so that yvi = xvi for all i, and y = x ∈M .

Theorem 3.2.2. (von Neumann) Let M be a self-adjoint subalgebra of B(H)
containing 1. Then M ′′ = M (closure in the strong operator topology).

Proof. Commutants are always closed so M ⊆M ′′.
So let a ∈ M ′′ and N(a, ξ1, ξ2, ..., ξn, ε) be a strong neighbourhood of

a. We want to find an x ∈ M in this neighbourhood. So let v ∈ ⊕ni=1H
be ⊕ni=1ξi and let B(H) act diagonally on ⊕ni=1H as in the previous theorem.
Then the same observations as in the previous proof concerning matrix forms
of commutants are true. Also M commutes with PMv which thus commutes
with a (on ⊕ni=1H). And since 1 ∈ M , av = ⊕aξi is in the closure of Mv so
there is an x ∈M with ||xξi − aξi|| < ε for all i.

Corollary 3.2.3. If M = M∗ is a subalgebra of B(H) with 1 ∈M , then the
following are equivalent:

1. M = M ′′

2. M is strongly closed.

3. M is weakly closed.
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Definition 3.2.4. A subalgebra of B(H) satisfying the conditions of corollary
3.2.3 is called a von Neumann algebra.

(A self-adjoint subalgebra of B(H) which is closed in the norm topology
is called a C∗-algebra.)

3.3 Examples.
Example 3.3.1. Any finite dimensional *-subalgebra of B(H) containing 1.

Example 3.3.2. B(H) itself.

Exercise 3.3.3. Let (X,µ) be a finite measure space and consider A =
L∞(X,µ) as a *-subalgebra of B(L2(X,µ)) (as multiplication operators as
in exercise 2.2.2). Show that A = A′, i.e. A is maximal abelian and hence a
von Neumann algebra. (Hint: if x ∈ A′ let f = x(1). Show that f ∈ L∞ and
that x = Mf .)

Example 3.3.4. If S ⊆ B(H), we call (S ∪ S∗)′′ the von Neumann algebra
generated by S. It is, by theorem 3.2.2 the weak or strong closure of the
*-algebra generated by 1 and S. Most constructions of von Neumann algebras
begin by considering some family of operators with desirable properties and
then taking the von Neumann algebra they generate. But is is quite hard,
in general, to get much control over the operators added when taking the
weak closure, and all the desirable properties of the generating algebra may
be lost. (For instance any positive self-adjoint operator a with ||a|| ≤ 1
is a weak limit of projections.) However, if the desirable properties can
be expressed in terms of matrix coefficients then these properties will be
preserved under weak limits since the matrix coefficients of a are just special
elements of the form 〈ξ, aη〉. We shall now treat an example of this kind of
property which is at the heart of the subject and will provide us with a huge
supply of interesting von Neumann algebras quite different from the first 3
examples.

Let Γ be a discrete group and let `2(Γ) be the Hilbert space of all functions
f : Γ→ C with

∑
γ∈Γ

|f(γ)|2 <∞ and inner product 〈f, g〉 =
∑
γ∈Γ

f(γ)g(γ). An

orthonormal basis of `2(Γ) is given by the {εγ} where εγ(γ′) = δγ,γ′ so that
f =

∑
γ∈Γ

f(γ)εγ in the `2 sense. For each γ ∈ Γ define the unitary operator uγ

by (uγf)(γ′) = f(γ−1γ′). Note that uγuρ = uγρ and that uγ(ερ) = εγρ. Thus
γ 7→ uγ is a unitary group representation called the left regular representation.
The uγ are linearly independent so the algebra they generate is isomorphic
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to the group algebra CΓ. The von Neumann algebra generated by the uγ
goes under various names, U(Γ), λ(Γ) and L(Γ) but we will call it vN(Γ) as
it is the “group von Neumann algebra” of Γ.

To see that one can control weak limits of linear combinations of the uγ,
consider first the case Γ = Z/nZ. With basis u0, u1, u2, · · · , un−1, the element
u1 is represented by the matrix:

0 1 0 0 . .
0 0 1 0 0 .
0 . 0 1 0 0
0 . . 0 1 0
0 0 . . 0 1
1 0 0 . . 0


which is a matrix constant along the “diagonals”. Clearly all powers of u1 and
all linear combinations of them have this property also so that an arbitrary
element of the algebra they generate will have the matrix form (when n = 6):

a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


(Such matrices are known as circulant matrices but to the best of our knowl-
edge this term only applies when the group is cyclic.) If Z/nZ were replaced
by another finite group the same sort of structure would prevail except that
the “diagonals” would be more complicated, according to the multiplication
table of the group.

Now let Γ be an infinite group. It is still true that the (γ, ρ) matrix entry of
a finite linear combination of the uγ’s will depend only on γ−1ρ. As observed
above, the same must be true of weak limits of these linear combinations,
hence of any element of vN(Γ).

We see that the elements of vN(Γ) have matrices (w.r.t. the basis εγ)
which are constant along the “diagonals” : {(γ, ρ) : γρ−1 is constant}.

Exercise 3.3.5. Check whether it should be γ−1ρ or γρ−1 or some other
similar expression.....

Using the number cγ on the diagonal indexed by γ we can write, formally
at least, any element of vN(Γ) as a sum

∑
γ∈Γ

cγuγ. It is not clear in what
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sense this sum converges but certainly
∑
γ∈Γ

cγuγ must define a bounded linear

operator. From this we deduce immediately the following:
(i) The function γ 7→ cγ is in `2. (Apply

∑
γ∈Γ

cγuγ to εid.)

(ii) (
∑
γ∈Γ

cγuγ)(
∑
γ∈Γ

dγuγ) =
∑
γ∈Γ

(
∑
ρ∈Γ

cρdρ−1γ)uγ

where the sum defining the coefficient of uγ on the right hand side con-
verges since ρ 7→ cρ and ρ 7→ dρ−1γ are in `2.

Exactly what functions γ 7→ cγ define elements of vN(Γ) is unclear but
an important special case gives some intuition.

Case 1. Γ = Z.
It is well known that the map

∑
cnεn →

∑
cne

inθ defines a unitary V from
`2(Γ) to L2(T). Moreover V unV −1(eikθ) = V un(εk) = V ε(k+n) = einθeikθ so
that V unV −1 is the multiplication operator Meinθ . Standard spectral theory
shows that Meinθ generates L∞(T) as a von Neumann algebra, and clearly
if Mf ∈ L∞(T), V −1MfV =

∑
cnεn where

∑
cne

inθ is the Fourier series
of f . We see that, in this case, the functions γ 7→ cγ which define elements
of vN(Z) are precisely the Fourier series of L∞ functions. In case we forget
to point it out later on when we are in a better position to prove it, one
way to characterise the functions which define elements on vN(Γ) is as all
functions which define bounded operators on `2(Γ). This is not particularly
illuminating but can be useful at math parties.

At the other extreme we consider a highly non-commutative group, the
free group on n generators, n ≥ 2.

Case 2. Γ = Fn.
“Just for fun” let us compute the centre Z(vN(Γ)) of vN(Fn), i.e. those∑
cγuγ that commute with all x ∈ vN(Γ). By weak limits of linear combi-

nations, for
∑
cγuγ to be in Z(vN(Γ)) it is necessary and sufficient that it

commute with every uγ. This clearly is the same as saying cγργ−1 = cρ ∀γ, ρ,
i.e. the function c is constant on conjugacy classes. But in Fn all conjugacy
classes except that of the identity are infinite. Now recall that γ 7→ cγ is in
`2. We conclude that cγ = 0 ∀γ 6= 1, i.e. Z(vN(Γ)) = C1.

Note that the only property we used of Fn to reach this conclusion was
that every non-trivial conjugacy class is infinite (and in general it is clear
that Z(vN(Γ)) is in the linear span of the uγ with γ in a finite conjugacy
class.) Such groups are called i.c.c. groups and they abound. Other examples
include S∞ (the group of finitely supported permutations of an infinite set),
PSL(n,Z) and QoQ∗.

Unsolved problem in von Neumann algebras:
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Is vN(Fn) ∼= vN(Fm) for n 6= m (for n and m ≥ 2)?

Note that it is obvious that the group algebras CFn and CFm are not iso-
morphic. Just consider algebra homomorphisms to C. But of course these
homomorphisms will not extend to vN(Γ).

Definition 3.3.6. A von Neumann algebra whose centre is C1 is called a
factor.

Exercise 3.3.7. Show that B(H) is a factor.

Exercise 3.3.8. Suppose H = K1 ⊗ K2 and let M = B(K1) ⊗ 1 Show that
M ′ = 1⊗ B(K2) so that M and M ′ are factors.

This exercise is supposed to explain the origin of the term “factor” as in
this case M and M ′ come from a tensor product factorisation of H. Thus in
general a factor and its commutant are supposed to correspond to a bizarre
"factorisation" of the Hilbert space.

The factor we have constructed as vN(Γ) is of an entirely different nature
from B(H). To see this consider the function tr : vN(Γ) → C defined by
tr(a) = 〈aε1, ε1〉, or tr(

∑
cγuγ) = c1. This map is clearly linear, weakly

continuous, satisfies tr(ab) = tr(ba) and tr(x∗x) =
∑

γ |cγ|2 ≥ 0 (when
x =

∑
γ cγuγ). It is called a trace on vN(Γ). If Γ = Z it obviously equals

1
2π

∫ 2π

0
f(θ)dθ under the isomorphism between vN(Z) and L∞(T).

Exercise 3.3.9. (i)Suppose dimH < ∞. If tr : B(H) → C is a linear map
with tr(ab) = tr(ba), show that there is a constant K with tr(x) = Ktrace(x).

(ii) There is no non-zero weakly continuous linear map tr : B(H) → C
satisfying tr(ab) = tr(ba) when dim(H) =∞.

(iii) There is no non-zero linear map tr : B(H) → C satisfying tr(ab) =
tr(ba) and tr(x∗x) ≥ 0 when dim(H) =∞.

(iv) (harder) There is no non-zero linear map tr : B(H) → C satisfying
tr(ab) = tr(ba) when dim(H) =∞.

Thus our factors vN(Γ) when Γ is i.c.c. are infinite dimensional but seem
to have more in common with B(H) when dimH < ∞ than when dimH =
∞! They certainly do not come from honest tensor product factorisations of
H.

Let us make a couple of observations about these factors.
1)They contain no non-zero finite rank operators, for such an operator

cannot be constant and non-zero down the diagonal. (Take x∗x if necessary.)
2)They have the property that tr(a) = 0⇒ a = 0 for a positive element

a (a positive operator cannot have only zeros down the diagonal).
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3)They have the property that uu∗ = 1 ⇒ u∗u = 1 (i.e. they contain no
non-unitary isometries).

Proof. If u∗u = 1, uu∗ is a projection so 1 − uu∗ is too and tr(1 − uu∗) =
1− tr(u∗u) = 0.

Exercise 3.3.10. Show that in vN(Γ), ab = 1⇒ ba = 1. Show that if F is
any field of characteristic 0, ab = 1⇒ ba = 1 in FΓ.

Hints: 1) You may use elementary property 8 of the next chapter.
2) Only finitely many elements of the field are involved in ab and ba in

FΓ .

As far as I know this assertion is still open in non-zero characteristic. The
above exercise is a result of Kaplansky.

The next observation is a remarkable property of the set of projections.
4) If Γ = Fn, {tr(p) : p a projection in vN(Γ)} = [0, 1].

Proof. It is clear that the trace of a projection is between 0 and 1. To see that
one may obtain every real number in this interval, consider the subgroup 〈a〉
generated by a single non-zero element. By the coset decomposition of Fn the
representation of 〈a〉 on `2(Fn) is the direct sum of countably many copies
of the regular representation. The bicommutant of ua is then, by a matrix
argument, vN(Z) acting in an “amplified” way as block diagonal matrices
with constant blocks so we may identify vN(Z) with a subalgebra of vN(Γ).
Under this identification the traces on the two group algebras agree. But as
we have already observed, any element f ∈ L∞(0, 2π) defines an element of
vN(Z) whose integral is its trace. The characteristic function of an interval
is a projection so by choosing intervals of appropriate lengths we may realise
projections of any trace.

We used the bicommutant to identify vN(Z) with a subalgebra of vN(Γ).
It is instructive to point out a problem that would have arisen had we tried
to use the weak or strong topologies. A vector in `2(Γ) is a square summable
sequence of vectors in `2(Z) so that a basic strong neighbourhood of a on
`2(Γ) would correspond to a neighbourhood of the form {b :

∑∞
i=1 ||(a −

b)ξi||2 < ε} for a sequence (ξi) in `2(Z) with
∑∞

i=1 ||ξi||2 < ∞. Thus strong
convergence on `2(Z) would not imply strong convergence on `2(Γ). This
leads us naturally to define two more topologies on B(H).

Definition 3.3.11. The topology defined by the basic neighbourhoods of a,
{b :

∑∞
i=1 ||(a − b)ξi||2 < ε} for any ε and any sequence (ξi) in `2(H) with∑∞

i=1 ||ξi||2 <∞, is called the ultrastrong topology on B(H).
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The topology defined by the basic neighbourhoods

{b :
∞∑
i=1

|〈(a− b)ξi, ηi〉| < ε}

for any ε > 0 and any sequences (ξi), (ηi) in `2(H) with

∞∑
i=1

||ξi||2 + ||ηi||2 <∞

is called the ultraweak topology on B(H).

Note that these topologies are precisely the topologies inherited on B(H)
if it is amplified infinitely many times as B(H)⊗ 1K with dimK =∞.

Exercise 3.3.12. Show that the ultrastrong and strong topologies coincide
on a bounded subset of B(H) as do the weak and ultraweak topologies. That
they differ will be shown in 5.1.4.

Exercise 3.3.13. Repeat the argument of the von Neumann density theorem
(3.2.2) with the ultrastrong topology replacing the strong topology.

Here are some questions that the inquisitive mind might well ask at this
stage. All will be answered in succeeding chapters.

Question 1) If there is a weakly continuous trace on a factor, is it unique
(up to a scalar multiple)?

Question 2) If there is a trace on a factor M is it true that {tr(p) :
p a projection in M} = [0, 1]?

Question 3) Is there a trace on any factor not isomorphic to B(H)?

Question 4) Are all (infinite dimensional) factors with traces isomorphic?

Question 5) If M is a factor with a trace, is M ′ also one? (Observe that
the commutant of a factor is obviously a factor.)

Question 6) Is vN(Γ)′ the von Neumann algebra generated by the right
regular representation?

Question 7) If φ : M → N is a ∗-algebra isomorphism between von
Neumann algebras on Hilbert spaces H and K is there a unitary u : H → K
so that φ(a) = uau∗ for a ∈M?
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3.4 Elementary properties of von Neumann al-
gebras.

Throughout this chapter M will be a von Neumann algebra on a Hilbert
space H.

EP1) If a = a∗ is an element of M , all the spectral projections and all
bounded Borel functions of a are in M . Consequently M is generated by its
projections.

According to one’s proof of the spectral theorem, the spectral projections
E(λ) of a are constructed as strong limits of polynomials in a. Or the prop-
erty that the spectral projections of a are in the bicommutant of a may be
an explicit part of the theorem. Borel functions will be in the bicommutant.

EP2) Any element in M is a linear combination of 4 unitaries in M .

Proof. We have seen that any x is a linear combination of 2 self-adjoints,
and if a is self-adjoint, ||a|| ≤ 1, let u = a+ i

√
1− a2. Then u is unitary and

a = u+u∗

2
.

EP3) M is the commutant of the unitary group of M ′ so that an alter-
native definition of a von Neumann algebra is the commutant of a unitary
group representation.

This follows from EP2)

Exercise 3.4.1. Show that multiplication of operators is jointly strongly con-
tinuous on bounded subsets but not on all of B(H).

Show that ∗ : B(H) 7→ B(H) is weakly continuous but not strongly con-
tinuous even on bounded sets.

The following result is well known and sometimes called Vigier’s theorem.

Theorem 3.4.2. If {aα} is a net of self-adjoint operators with aα ≤ aβ
for α ≤ β and ||aα|| ≤ K for some K ∈ R, then there is a self-adjoint
a with a = limαaα, convergence being in the strong topology. Furthermore
a = lub(aα) for the poset of self-adjoint operators.

Proof. A candidate a for the limit can be found by weak compactness of
the unit ball. Then 〈aαξ, ξ〉 is increasing with limit 〈aξ, ξ〉 for all ξ ∈ H and
a ≥ aα ∀α. So limα

√
a− aα = 0 in the strong topology. Now multiplication

is jointly strongly continuous on bounded sets so s−lim aα = a.
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Note that we have slipped in the notation s−lim for a limit in the strong
topology (and obviously w−lim for the weak topology).

If a and (aα) are as in 3.4.2 we say the net (aα) is monotone convergent
to a.

EP4) M is closed under monotone convergence of self-adjoint operators.

The projections on B(H) form an ortholattice with the following proper-
ties:

p ≤ q ⇐⇒ pH ⊆ qH

p ∧ q = orthogonal projection onto pH ∩ qH

p⊥ = 1− p

p ∨ q = (p⊥ ∧ q⊥)⊥ = orthogonal projection onto pH + qH.

Exercise 3.4.3. Show that p ∧ q = s−lim n→∞(pq)n.

The lattice of projections in B(H) is complete (i.e. closed under arbitrary
sups and infs) since the intersection of closed subspaces is closed.

EP5) The projections in M generate M as a von Neumann algebra, and
they form a complete sublattice of the projection lattice of B(H).

Proof. If S is a set of projections in M then finite subsets of S are a directed
set and F →

∨
p∈F p is a net in M satisfying the conditions of 3.4.2. Thus the

strong limit of this net exists and is in M . It is obvious that this strong limit
is

∨
p∈Sp, the sup being in B(H).

Easier proof. For each projection p ∈M , pH is invariant under each element
of M ′. Thus the intersection of these subspaces is also.

EP6) Let A be a *-subalgebra of B(H). Let W be
⋂
a∈Aker(a) and K =

W⊥. Then K is invariant under A and if we let B = {a|K : a ∈ A}, then 1K is
in the strong closure of B, which is thus a von Neumann algebra. Moreover
on K, B′′ is the strong (weak, ultrastrong, ultraweak) closure of B.

Proof. By the above, if p and q are projections p ∨ q = 1− (1− p) ∧ (1− q)
is in the strong closure of the algebra generated by p and q. By spectral
theory, if a = a∗ the range projection Pker(a)⊥ is in the strong closure of the
algebra generated by a so we may apply the argument of the proof of EP5)
to conclude that

∨
a∈APker(a)⊥ is in the strong closure of A. But this is 1K.
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Finally, on K, let C be the algebra generated by 1 and B. Clearly C ′ = B′

and just as clearly the strong closure of B is the same as the strong closure
of C. So B′′ is the strong closure of B by the bicommutant theorem.

Thus if we were to define a von Neumann algebra as a weakly or strongly
closed subalgebra of B(H), it would be unital as an abstract algebra but its
identity might not be that of B(H) so it would not be equal to its bicommu-
tant. However on the orthogonal complement of all the irrelevant vectors it
would be a von Neumann algebra in the usual sense.

EP7) If M is a von Neumann algebra and p ∈M is a projection, pMp =
(M ′p)′ and (pMp)′ = M ′p as algebras of operators on pH. Thus pMp and
M ′p are von Neumann algebras.

Proof. Obviously pMp and M ′p commute with each other on pH. Now
suppose x ∈ (M ′p)′ ⊆ B(pH) and define x̃ = xp(= pxp) ∈ B(H). Then if
y ∈ M ′, yx̃ = yxp = ypxp = (xp)(yp) = xpy = x̃y, so x̃ ∈ M and x = px̃p.
Thus (pM ′)′ = pMp which is thus a von Neumann algebra.

If we knew that M ′p were a von Neumann algebra on pH we would be
done but a direct attempt to prove it strongly or weakly closed fails as we
would have to try to extend the limit of a net in M ′p on pH to be in M ′.

So instead we will show directly that (pMp)′ ⊆M ′p by a clever extension
of its elements to H. By EP2 it suffices to take a unitary u ∈ (pMp)′. Let
K ⊆ H be the closure of MpH and let q be projection onto it. Then K is
clearly invariant under M and M ′ so q ∈ Z(M). We first extend u to K by

ũ
∑

xiξi =
∑

xiuξi

for xi ∈M and ξi ∈ pH. We claim that ũ is an isometry:

||ũ
∑

xiξi||2 =
∑
i,j

〈xiuξi, xjuξj〉

=
∑
i,j

〈px∗jxipuξi, uξj〉

=
∑
i,j

〈upx∗jxipξi, uξj〉

= ... = ||
∑

xiξi||2

This calculation actually shows that ũ is well defined and extends to an
isometry of K. By construction ũ commutes with M on MpH,hence on K.
So ũq ∈M ′ and u = ũqp. Hence (pMp)′ = M ′p.
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Corollary 3.4.4. If M is a factor, pMp is a factor on pH, as is pM ′.
Moreover the map x 7→ xp from M ′ to M ′p is a weakly continuous *-algebra
isomorphism.

Proof. As in the proof of the previous result, the projection onto the closure
of MpH is in the centre of M , hence it is 1 . So if xp = 0 for x ∈ M ′,
xmpξ = mxpξ = 0 for any m ∈ M , ξ ∈ H. Hence the map x 7→ px is an
injective ∗-algebra map and pM ′ is a factor. So by the previous result (pMp)′

is a factor and so is pMp. Continuity and the is obvious.

Corollary 3.4.5. If M is a factor and a ∈ M and b ∈ M ′ then ab = 0
implies either a = 0 or b = 0.

Proof. Let p be the range projection of b and apply the previous corollary.

Exercise 3.4.6. Show that if M is a von Neumann algebra generated by the
self-adjoint, multiplicatively closed subset S, then pSp generates pMp (if p is
a projection in M or M ′). Show further that the result fails if S is not closed
under multiplication.

Exercise 3.4.7. Show that if M is a factor and V and W are finite dimen-
sional subspaces of M and M ′ respectively then the map a ⊗ b 7→ ab defines
a linear isomorphism between V ⊗W and the space VW spanned by all vw
with v ∈ V and w ∈ W .

EP8) If a ∈M and a = u|a| is the polar decomposition of a then u ∈M
and |a| ∈M .

Proof. By the uniqueness of the polar decomposition both |a| and u commute
with every unitary in M ′.

EP9) None of the topologies (except || ∗ ||) is metrizable on B(H) but
they all are on the unit ball (when H is separable) and B(H) is separable for
all except the norm topology.

Proof. First observe that a weakly convergent sequence of operators is bounded.
This follows from the uniform boundedness principle and 2.1.5 which shows
how to get the norm from inner products.

Here is the cunning trick. Let {ηi, i = 1, · · ·∞} be an orthonormal basis of
H and let ei be projection onto Cηi. Consider the family {em +men : m,n =
1, · · ·∞}. Let V a basic ultrastrong neighbourhood of 0 defined by ε and {ξi :∑
||ξi||2 < ∞} and let | − |V be the corresponding seminorm, then writing
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ξi =
∑

j ξ
i
jηj we have

∑
i,j |ξij|2 <∞. Now choose m so that

∑
i |ξim|2 < ε2/4

and n so that
∑

i |ξin|2 < ε2/4m2. Observing that ||en(ξi)||2 = |ξni |2 we have

|em +men|V ≤ |em|V +m|en|V

=

√∑
i

||emξ||2 +m

√∑
i

||enξ||2

≤ ε/2 + ε/2

so that em +men ∈ V .
On the other hand no subsequence of {em + men : m,n = 1, · · ·∞} can

tend even weakly to 0 since it would have to be bounded in norm which would
force some fixed m to occur infinitely often in the sequence, preventing weak
convergence! So by the freedom in choosing m and n to force em + men to
be in V , there can be no countable basis of zero for any of the topologies
(except of course the norm).

If we consider the unit ball, however, we may choose a dense sequence ξi of
unit vectors and define d(a, b) = [

∑
i 2
−i||(a− b)ξi||2]1/2 which is a metric on

the unit ball defining the strong topology. (Similarly for the weak topology.)
Separability of B(H) for separable H follows from looking at finitely sup-

port rational matrices for some onb. (Separability of the unit ball is more
subtle.)

We leave non-separability of B(H) in the norm topology as an exercise.

EP10) An Abelian von Neumann algebra on a separable Hilbert space is
generated by a single self-adjoint operator.

Proof. The unit ball of B(H) is a compact metrizable space in the weak
topology, hence it is separable. So the unit ball of a von Neumann algebra is
a separable metric space. So let {e0, e1, e2, · · · } be a sequence of projections
that is weakly dense in the set of all projections in the Abelian von Neumann
algebra A. Let a =

∑∞
n=0

1
3n
en. The sum converges in the norm topology so

a ∈ A. The norm of the self-adjoint operator a1 =
∑∞

n=1
1

3n
en is obviously at

most 1/2 so that the spectral projection for the interval [3/4, 2] for a is e0.
Continuing in this way we see that all the e′ns are in {a}′′.

This relegates the study of Abelian von Neumann algebras to the spectral
theorem. One can show that any Abelian von Neumann algebra on a sepa-
rable Hilbert space is isomorphic to either `∞({0, 1, · · · , n}) (where n = ∞
is allowed) or L∞([0, 1], dx) or a direct sum of the two. This is up to ab-
stract algebra isomorphism. To understand the action on a Hilbert space,
multiplicity must be taken into account.
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Chapter 4

Finite dimensional von Neumann
algebras and type I factors.

4.1 Definition of type I factor.

The first crucial result about factors (remember a factor is a von Neumann
algebra with trivial centre) will be the following “ergodic” property.

Theorem 4.1.1. If M is a factor and p and q are non-zero projections in
M there is an x ∈M with pxq 6= 0. Moreover x can be chosen to be unitary.

Proof. Suppose that for any unitary u ∈ M , puq = 0. Then u∗puq = 0 and( ∨
u∈M u

∗pu
)
q = 0. But clearly

∨
u∈M u

∗pu commutes with all unitaries u ∈M
so is the identity.

The reason we have called this an “ergodic” property is because of a per-
vasive analogy with measure-theoretic dynamical systems (and it will become
much more than an analogy). A transformation T : (X,µ) → (X,µ) pre-
serving the measure µ is called ergodic if T−1(A) ⊆ A implies µ(A) = 0 or
µ(X \ A) = 0 for a measurable A ⊆ X. If T is invertible one can then show
that there is, for any pair A ⊂ X and B ⊂ X of non-null sets, a power T n
of T such that µ(T n(A) ∩B) 6= 0. Or, as operators on L2(X,µ), ATNB 6= 0
where we identify A and B with the multiplication operators by their char-
acteristic functions. The proof is the same—the union of all T n(A) is clearly
invariant, thus must differ from all of X by a set of measure 0.

Corollary 4.1.2. Let p and q be non-zero projections in a factor M . Then
there is a partial isometry u ( 6= 0) in M with uu∗ ≤ p and u∗u ≤ q. p and q had been swapped

around in the proof, so we
interchanged uu∗ and u∗u
in the statement.

25



Proof. Let u be the partial isometry of the polar decomposition of pxq for x
such that pxq 6= 0.

Definition 4.1.3. If M is a von Neumann algebra, a non-zero projection
p ∈M is called minimal, or an atom, if (q ≤ p)⇒ (q = 0 or q = p).

Exercise 4.1.4. Show that p is minimal in M iff pMp = Cp.

Definition 4.1.5. A factor with a minimal projection is called a type I
factor.

4.2 Classification of all type I factors
We will classify all type I factors quite easily. We begin with the model,
which we have already seen.

Let B(H)⊗1 be the constant diagonal matrices on H⊗K. Its commutant
1⊗B(K) will be our model. It is the algebra of all matrices defining bounded
operators with every matrix entry being a scalar multiple of the identity
matrix on H. A matrix with a single 1 on the diagonal and zeros elsewhere
is obviously a minimal projection.

Theorem 4.2.1. IfM is a type I factor of a Hilbert space L, there are Hilbert
spaces H and K and a unitary u : L → H⊗K with uMu∗ = B(H)⊗ 1.

Proof. Let {p1, p2, ...} be a maximal family of minimal projections inM such
that pipj = 0 for i 6= j. (We assume for convenience that L is separable.) Our
first claim is that

∨
i pi = 1 so that L = ⊕ipiL. For if 1−

∨
i pi were nonzero,

by corollary 4.1.2 there would be a u 6= 0 with uu∗ ≤ p1 and u∗u ≤ 1−
∨
i pi.

By minimality uu∗ is minimal and hence so is u∗u contradicting maximality of
the pi. Now for each i choose a non-zero partial isometry e1i with e1ie

∗
1i ≤ p1

and e∗1ie1i ≤ pi. By minimality e1ie
∗
1i = p1 and e∗1ie1i = pi. Then M is

generated by the e1i’s, for if a ∈M we have a =
∑

i,j piapj the sum converging
in the strong topology. Moreover for each i and j, e1iae

∗
1j = p1e1iae

∗
1jp1 so

by minimality it is λi,jp1 for λi,j ∈ C. So piapj = e∗1ie1iae
∗
1je1j = λi,je

∗
1ie1j.

And so
a =

∑
i,j

λije
∗
1ie1j.

(The details of the convergence of the sum are unimportant—we just need
that a be in the strong closure of finite sums.)

If n is the cardinality of {pi}, let X = {1, 2, ..., n} and define the map
u : `2(X, p1L)→ L by

uf =
∑
i

e∗1if(i).
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Observe that u is unitary and u∗e1iu is a matrix on `2(X, p1L) with an identity
operator in the (1, i) position and zeros elsewhere. The algebra generated by
these matrices is B(`2(X))⊗ 1 on `2(X)⊗ p1L and we are done.

Remark 4.2.2. The importance of being spatial.

We avoided all kinds of problems in the previous theorem by constructing
our isomorphism using a unitary between the underlying Hilbert spaces. In
general given von Neumann algebras M and N generated by S and T respec-
tively, to construct an isomorphism between M and N it suffices to construct
(if possible !!!) a unitary u between their Hilbert spaces so that T is contained
in uSu∗. To try to construct an isomorphism directly on S could be arduous
at best. ter

4.3 Tensor product of von Neumann algebras.
If M is a von Neumann algebra on H and N is a von Neumann algebra on
K we define M ⊗N to be the von Neumann algebra on H⊗K generated by
{x⊗ y : x ∈M, y ∈ N}.

Exercise 4.3.1. Show that M ⊗ N contains the algebraic tensor product
M ⊗alg N as a strongly dense *-subalgebra.

Definition 4.3.2. Let M be a von Neumann algebra. A system of matrix
units (s.m.u.) of size n in M is a family {eij : i, j = 1, 2, ..., n} (n = ∞
allowed) such that

(i) e∗ij = eji.

(ii) eijekl = δj,keil

(iii)
∑

i eii = 1.

Exercise 4.3.3. Show that if {eij; i, j = 1, ..., n} is an s.m.u. in a von
Neumann algebra M , then the eij generate a type I factor isomorphic to
B(`2({1, 2, ..., n})) and that M is isomorphic (unitarily equivalent to in this
instance) to the von Neumann algebra e11Me11 ⊗ B(`2({1, 2, ..., n})).

4.4 Multiplicity and finite dimensional von Neu-
mann algebras.

Theorem 4.2.1 shows that type I factors on Hilbert space are completely
classified by two cardinalities (n1, n2) according to:
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n1 = rank of a minimal projection in M , and
n2 = rank of a minimal projection in M ′.

We see that the isomorphism problem splits into “abstract isomorphism”
(determined by n2 alone), and “spatial isomorphism”, i.e. unitary equivalence.
A type In factor is by definition one for which n = n2. It is abstractly
isomorphic to B(H) with dimH = n. The integer n1 is often called the
multiplicity of the type I factor.

We will now determine the structure of all finite dimensional von Neu-
mann algebras quite easily. Note that in the following there is no requirement
that H be finite dimensional.

Theorem 4.4.1. Let M be a finite dimensional von Neumann algebra on
the Hilbert space H. Then M is abstractly isomorphic to ⊕ki=1Mni(C) for
some positive integers k, n1, n2, ..., nk. (Mn(C) is the von Neumann algebra
of all n × n matrices on n-dimensional Hilbert space.) Moreover there are
Hilbert spaces Ki and a unitary u : ⊕i`2(Xi,Ki) → H (with |Xi| = ni) with
u∗Mu = ⊕iB(`2(Xi))⊗ 1.

Proof. The centre Z(M) is a finite dimensional abelian von Neumann al-
gebra. If p is a minimal projection in Z(M), pMp is a factor on pH.
The theorem follows immediately from theorem 4.2.1 and the simple facts
that Z(M) = ⊕ki=1piC where the pi are the minimal projections in Z(M)
(two distinct minimal projections p and q in Z(M) satisfy pq = 0), and
M = ⊕ipiMpi.

The subject of finite dimensional von Neumann algebras is thus rather
simple. It becomes slightly more interesting if one considers subalgebras N ⊆
M . Let us deal first with the factor case of this. Let us point out that the
identity of M is the same as that of N .

Theorem 4.4.2. If M is a type In factor, its type Im factors are all uniquely
determined, up to conjugation by unitaries in M , by the integer (or ∞)
k > 0 such that pMp is a type Ik factor, p being a minimal projection in
the subfactor N and mk = n.

Proof. Let N1 and N2 be type Im subfactors with generating s.m.u.’s {eij}
and {fij} respectively. If k is the integer (in the statement of the theorem)
for N1 then 1 =

∑m
1 eii and each eii is the sum of k mutually orthogonal

minimal projections of M , hence n = mk. The same argument applies to
N2. Build a partial isometry u with uu∗ = e11 and u∗u = f11 by adding
together partial isometries between maximal families of mutually orthogonal
projections less than e11 and f11 respectively. Then it is easy to check that
w =

∑
i ej1uf1j is a unitary with wfklw∗ = ekl. So wN2w

∗ = N1.
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Now we can do the general (non-factor) case. If N = ⊕ni=1Mki(C) and
M = ⊕mj=1Mrj(C) and N ⊆ M as von Neumann algebras, let pj be minimal
central projections inM and qi be those of N . Then for each (i, j), pjqiMqipj
is a factor and pjqiN is a subfactor so we may form the matrix Λ = (λij)
where λij is the integer associated with pjqiN ⊆ pjqiMqipj by theorem 4.4.2.

Exercise 4.4.3. Show that the integer λij defined above is the following:
if ei is a minimal projection in the factor qiN , λij = trace of the matrix
pjei ∈MrjC.

Example 4.4.4. Let M = M5(C)⊕M3(C) and N be the subalgebra of ma-
trices of the form: (

X 0 0
0 X 0
0 0 z

)
⊕ (X 0

0 z )

where z ∈ C and X is a 2×2 matrix. Then N is isomorphic toM2(C)⊕C
and if p1 = 1⊕ 0, q1 = 1⊕ 0, etc., we have

Λ = ( 2 1
1 1 ) .

The matrix Λ is often represented by a bipartite graph with the number
of edges between i and j being λij. The vertices of the graph are labelled by
the size of the corresponding matrix algebras. Thus in the above example
the picture would be:

This diagram is called the Bratteli diagram for N ⊆M .

Exercise 4.4.5. Generalise the above example to show that there is an in-
clusion N ⊆ M corresponding to any Bratteli diagram with any set of di-
mensions for the simple components of N .

4.5 A digression on index.
If N ⊆M are type I factors we have seen that there is an integer k (possibly
∞) such that M is the algebra of k × k matrices over N . If k < ∞, M is
thus a free left N-module of rank k2. It seems reasonable to call the number
k2 the index of N in M and write it [M : N ]. This is because, if H < G
are groups and CH ⊆ CG their group algebras, the coset decomposition of
G shows that CG is a free left CH-module of rank [G : H].
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Chapter 5

Kaplansky Density Theorem.

5.1 Some simple but telling results on linear
functionals.

We begin with a result about linear functionals of independent interest.

Theorem 5.1.1. Let V be a subspace of B(H) and let φ : V → C be a linear
functional. The following are equivalent:

(i) There are vectors in H, ξ1, ξ2, ..., ξn and η1, η2, ..., ηn with

φ(x) =
n∑
i=1

〈xξi, ηi〉

(ii) φ is weakly continuous.

(iii) φ is strongly continuous.

Proof. (i) ⇒ (ii) ⇒ (iii) are obvious, so suppose φ is strongly continuous.
One may use the seminorms

√∑n
i=1 ||aξi||2 as {ξ1, ξ2, ..., ξn} ranges over all

finite subsets of H to define the strong topology. Srong continuity implies
that there is an ε > 0 and {ξ1, ξ2, ..., ξn} such that

√∑n
i=1 ||aξi||2 < ε implies

|φ(a)| ≤ 1. But then if
√∑n

i=1 ||aξi||2 = 0 then multiplying a by large scalars
implies φ(a) = 0. Otherwise it is clear that |φ(a)| ≤ 1

ε

√∑n
i=1 ||aξi||2.

Now let ξ = ξ1 ⊕ ...ξn ∈ ⊕iH and let K = (V ⊗ 1)(ξ). Then define
φ̃ on V ⊗ 1(ξ) by φ̃(⊕ixξi) = φ(x). Observe that φ̃ is well-defined and
continuous so extends to K which means there is a vector η = ⊕ηi ∈ K with
φ(x) = φ̃(x⊗ 1)(η) = 〈(x⊗ 1)(ξ), η〉.

Exercise 5.1.2. Replace weak and strong by ultraweak and ultrastrong, and
the finite sequences of vectors by `2-convergent ones in the previous theorem.
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Corollary 5.1.3. If C is a convex subset of B(H), its weak and strong clo-
sures coincide.

Proof. Two locally convex vector spaces with the same continuous linear
functionals have the same closed convex sets. This is a consequence of the
Hahn-Banach theorem to be found in any text on functional analysis.

Corollary 5.1.4. If dimH =∞ the strong and ultrastrong topologies differ
on B(H).

Proof. Let (ξi) be an orthonormal basis of H and let ω(x) =
∑

i
1
n2 〈xξi, ξi〉.

Then ω is ultraweakly continuous but not strongly continuous. For if it were
weakly continuous it would be of the form

∑n
i=1〈xνi, ηi〉 and ω(p) = 0 where p

is the projection onto the orthogonal complement of the vector space spanned
by the νi. But by positivity ω(p) = 0 forces p(ξi) = 0 for all i.

5.2 The theorem
In our discussion of vN(Γ) we already met the desirability of having a norm-
bounded sequence of operators converging to an element in the weak closure
of a *-algebra of operators. This is not guaranteed by the von Neumann
density theorem. The Kaplansky density theorem fills this gap.

Theorem 5.2.1. Let A be a *-subalgebra of B(H). Then the unit ball of A
is strongly dense in the unit ball of the weak closure M of A, and the self-
adjoint part of the unit ball of A is strongly dense in the self-adjoint part of
the unit ball of M .

Proof. By EP6) we may assume 1 ∈ M and the worried reader may check
that we never in fact suppose 1 ∈ A. We may further suppose that A is
norm-closed, i.e. a C∗-algebra. Consider the closure of Asa, the self-adjoint
part of A. The * operation is weakly continuous so if xα is a net converging
to the self-adjoint element x ∈M , xα+x∗α

2
converges to x so the weak closure

of Asa is equal to Msa. Since Asa is convex, the strong closure is also equal
to Msa by 5.1.3.

Let us now prove the second assertion of the theorem. Let x = x∗ ∈ M ,
||x|| < 1, and ξ1, ..., ξn, ε > 0 define a strong neighbourhood of x. We must
come up with a y ∈ Asa, ||y|| < 1, with ||(x−y)ξi|| < ε. The function t→ 2t

1+t2

is a homeomorphism of [−1, 1] onto itself. So by the spectral theorem we may
choose an X ∈Msa with ||X|| ≤ 1, so that 2X

1+X2 = x. Now by strong density
choose Y ∈ Asa with

||Y xξi −Xxξi|| < ε, and || Y

1 +X2
ξi −

X

1 +X2
ξi|| < ε/4.
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Put y = 2Y
1+Y 2 and note that ||y|| ≤ 1.

Now consider the following equalities:

y − x =
2Y

1 + Y 2
− 2X

1 +X2

= 2(
1

1 + Y 2
(Y (1 +X2)− (1 + Y 2)X)

1

1 +X2
)

= 2(
1

1 + Y 2
(Y −X)

1

1 +X2
+

Y

1 + Y 2
(X − Y )

X

1 +X2
)

=
2

1 + Y 2
(Y −X)

1

1 +X2
+

1

2
y(X − Y )x.

By the choice of Y , we see that ||(y − x)ξi|| < ε. This proves density for
the self-adjoint part of the unit ball.

Now consider a general x ∈M with ||x|| ≤ 1. The trick is to form ( 0 x
x∗ 0 ) ∈

M ⊗M2(C). Strong convergence of a net
(
aα bα
cα dα

)
to ( a bc d ) is equivalent to

strong convergence of the matrix entries soA⊗M2(C) is strongly dense inM⊗
M2(C). Moreover if

(
aα bα
cα dα

)
→ ( 0 x

x∗ 0 ) strongly then bα tends strongly to x.
And ||bα|| ≤ 1 follows from ||

(
aα bα
cα dα

)
|| ≤ 1 and 〈bαξ, η〉 = 〈

(
aα bα
cα dα

) (
0
ξ

)
, ( η0 )〉.

Corollary 5.2.2. If M is a *-subalgebra of B(H) containing 1 then M is a
von Neumann algebra iff the unit ball of M is weakly compact.

Proof. The unit ball of B(H) is weakly compact, and M is weakly closed.
Conversely, if the unit ball of M is weakly compact, then it is weakly

closed. Let x be in the weak closure of M . We may suppose ||x|| = 1. By
Kaplansky density there is a net xα weakly converging to x with ||xα|| ≤ 1.
Hence x ∈M .
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Chapter 6

Comparison of Projections and
Type II1 Factors.

6.1 Order on projections

Definition 6.1.1. If p and q are projections in a von Neumann algebra M
we say that p � q if there is a partial isometry u ∈ M with uu∗ = p and
u∗u ≤ q. We say that p and q are equivalent, p ≈ q if there is a partial
isometry u ∈M with uu∗ = p and u∗u = q.

Observe that ≈ is an equivalence relation.

Theorem 6.1.2. The relation � is a partial order on the equivalence classes
of projections in a von Neumann algebra.

Proof. Transitivity follows by composing partial isometries. The issue is to
show that e � f and f � e imply e ≈ f . Compare this situation with sets
and their cardinalities.

Let u and v satisfy uu∗ = e, u∗u ≤ f and vv∗ = f, v∗v ≤ e. Note the
picture:

We define the two decreasing sequences of projections e0 = e, en+1 =
v∗fnv and f0 = f, fn+1 = u∗enu. The decreasing property follows by induc-
tion since p→ v∗pv gives an order preserving map from projections inM less
than f to projections inM less than e and similarly interchanging the roles of

e and f , v and u. Let e∞ =
∞∧
i=0

ei and f∞ =
∞∧
i=0

fi. Note that v∗f∞v = e∞ and

f∞vv
∗f∞ = f∞ so that e∞ ≈ f∞. Also e = (e− e1) + (e1− e2) + · · ·+ e∞ and

f = (f−f0)+(f1−f2)+· · ·+f∞ are sums of mutually orthogonal projections.
But for each even i, u∗(ei−ei+1)u = fi+1−fi+2 so ei−ei+1 ≈ fi+1−fi+2, and
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v∗(fi − fi+1)v = ei+1 − ei+2 so one may add up, in the strong topology, all
the relevant partial isometries to obtain an equivalence between e and f .

Note that if we had been dealing with vN(Γ) this argument would have
been unnecessary as we could have used the trace:

tr(v∗v) ≤ tr(e) = tr(uu∗) = tr(u∗u) ≤ tr(f) = tr(vv∗) = tr(v∗v)

so that tr(e − v∗v) = 0 which implies e = v∗v. However in general it is
certainly possible to get a projection equivalent to a proper subprojection of
itself. Just take the unilateral shift on B(`2(N)) which exhibits an equivalence
between 1 and the projection onto the orthogonal complement of the first
basis vector. This is analogous to the notion of an infinite set—one which is
in bijection with a proper subset of itself.

Definition 6.1.3. A projection p in a von Neumann algebra M is called
infinite if p ≈ q for some q < p, p 6= q. Otherwise p is called finite. A von
Neumann algebra is called finite if its identity is finite, and it is called purely
infinite if it has no finite projections other than 0. A factor is called infinite
if its identity is infinite.

We will show that purely infinite von Neumann algebras exist though it
will not be easy.

Remark 6.1.4. If dimH =∞ then B(H) is infinite.

Remark 6.1.5. A factor with a trace like vN(Γ) is finite.

Remark 6.1.6. Every projection in a finite von Neumann algebra is finite.
Or, more strongly, if p ≤ q and q is finite then p is finite.

For if p ≈ p′, p′ < p, p 6= p′ then p+ (q − p) ≈ p′ + (q − p) 6= q.

Remark 6.1.7. IfM is any von Neumann algebra, 1 is an infinite projection
in M ⊗ B(H) if dimH =∞.

Theorem 6.1.8. If M is a factor and p, q are projections in M , either p � q
or q � p.

Proof. Consider the family of partial isometries u with uu∗ ≤ p, u∗u ≤ q.
This set is partially ordered by u ≤ v if u∗u ≤ v∗v and v = u on the initial
domain u∗uH of u. This partially ordered set satisfies the requirements for
Zorn’s lemma so let u be a maximal element in it. If u∗u = q or uu∗ = p we
are done so suppose q − u∗u and p − uu∗ are both non-zero. Then by 4.1.1
there is a v 6= 0 with v∗v ≤ q − u∗u and vv∗ ≤ p − uu∗. But then u + v is
larger than u which was supposed maximal.
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Exercise 6.1.9. Show that two equivalent projections p and q in a finite
factor M are unitarily equivalent, i.e. there is a unitary u ∈M with upu∗ =
q.

We see that the equivalence classes of projections in a factor form a totally
ordered set. It is known that, on a separable Hilbert space, the possible
isomorphism types for this set are:

1) {0, 1, 2, ..., n} where n =∞ is allowed. “type In”
2) [0, 1] “type II1”
3) [0,∞] “type II∞”
4) {0,∞} “type III”

Strictly speaking this is nonsense as type III is the same as type I1 and
II1 is the same as II∞. We mean not only the order type but whether 1 is
infinite or not.

Observe that the type II1 case certainly exists. We saw that vN(F2) has
projections of any trace between 0 and 1. By the previous theorem it is clear
that the trace gives an isomorphism between the ordered set of equivalence
classes of projections and the unit interval. We will proceed to prove a
statement generalising this considerably.

Definition 6.1.10. A type II1 factor is an infinite dimensional factor M on
H admitting a non-zero linear function tr : M → C satisfying

(i) tr(ab) = tr(ba)

(ii) tr(a∗a) ≥ 0

(iii) tr is ultraweakly continuous.

The trace is said to be normalised if tr(1) = 1.

Definition 6.1.11. In general a linear functional φ on a *-algebra A is called
positive if φ(a∗a) ≥ 0 (and φ(a∗) = φ(a) though this is redundant if A is a
C∗-algebra), and faithful if φ(a∗a) = 0 ⇒ a = 0. A positive φ is called a
state if 1 ∈ A and φ(1) = 1. A linear functional φ is called tracial (or a
trace) if φ(ab) = φ(ba).

It is our job now to show that a II1 factor has a unique ultraweakly
continuous tracial state, which is faithful. First a preliminary result on ideals.

Theorem 6.1.12. Let M be an ultraweakly closed left ideal in a von Neu-
mann algebra M . Then there is a unique projection e ∈ M such that
M = Me. IfM is 2-sided, e is in Z(M).

Proof. M ∩M∗ is an ultraweakly closed *-subalgebra so it has a largest
projection e. Since e ∈ M, Me ⊆ M. On the other hand if x ∈ M let
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x = u|x| be its polar decomposition. Since u∗x = |x|, |x| ∈ M∩M∗. Hence
|x|e = |x| and x = u|x| = u|x|e ∈Me. SoM = Me.

Uniqueness follows easily since f = xe⇒ f ≤ e.
Moreover ifM is 2-sided, for any unitary u ∈ M , uM =M = uMu∗ =

Me = Mueu∗ so ueu∗ = e by uniqueness. Hence e ∈ Z(M).

Corollary 6.1.13. An ultraweakly continuous positive non-zero trace Tr on
a II1 factor is faithful.

Proof. LetM = {x ∈M : Tr(x∗x) = 0}. Then since x∗a∗ax ≤ ||a||2x∗x,M
is a left ideal and since Tr(ab) = Tr(ba),M is a 2-sided ideal. Moreover by
the Cauchy Schwarz inequality Tr(x∗x) = 0 iff Tr(xy) = 0 ∀y ∈ M . Thus
M is ultraweakly closed, being the intersection of the kernels of ultraweakly
continuous functionals. Thus M = Me for some central projection. And e
must be zero since M is a factor.

Corollary 6.1.14. If M is a type II1 factor on H and p ∈M is a non-zero
projection, pMp is a type II1 factor on pH.

Proof. This is clear—a trace on M restricts to a trace on pMp which is
non-zero by faithfulness and all the other properties are immediate. Since a
minimal projection in pMp would be minimal in M , pMp is infinite dimen-
sional.

The uniqueness of tr will follow easily once we have gathered some facts
about projections in a II1 factor.

Theorem 6.1.15. There are non-zero projections in a type II1 factor of
arbitrarily small trace.

Proof. Let d = inf{tr(p) : p ∈ M, p2 = p∗ = p 6= 0}. Suppose d > 0. Let
p be a projection with tr(p) − d < d. Then p is not minimal since we have
seen that M is not isomorphic to B(H). So there is a non-zero projection
q < p. But then we have tr(p− q) = tr(p)− tr(q) ≤ tr(p)− d < d. This is a
contradiction. So d = 0.

Theorem 6.1.16. Let M be a type II1 factor with an ultraweakly continuous
positive non-zero trace tr. Then {tr(p) : p ∈M, p2 = p∗ = p} = [0, tr(1)].

Proof. For r ∈ [0, tr(1)] consider S = {p : p a projection in M and tr(p) ≤
r}. Then S is a partially ordered set and if pα is a chain in S, p =

∨
α pα ∈M

and p is in the strong closure of the pα so p is in S. So by Zorn, S has a
maximal element, say q. If tr(q) were less than r, then by 6.1.8, q ≺ p. So
choose q′ ∼= q, q′ < p. Applying 6.1.14 to p−q′ we find a projection strictly
between q′ and p.
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Corollary 6.1.17. The map tr gives an isomorphism between the totally
ordered set of equivalence classes of projections on a type II1 factor and the
interval [0, tr(1)].

Proof. By 6.1.16 it suffices to show that the equivalence class of a projection
is determined by its trace. This is immediate from 6.1.8.

Exercise 6.1.18. Let M be a type II1 factor. Then for each n ∈ N there is
a subfactor N ⊆M with N ∼= Mn(C).

Corollary 6.1.19. Any two non-zero ultraweakly continuous normalised traces
on a type II1 factor are equal.

Proof. By the elementary facts it suffices to prove that two such traces Tr
and tr agree on projections. We may assume one of them, say tr, is positive.
By the previous exercise, 6.1.17, and the uniqueness of the trace on a matrix
algebra, tr and Tr are equal on projections for which tr is rational. Given
a projection for which tr(p) is irrational build an increasing sequence ei of
subprojections as follows:

Suppose we have already constructed ei with tr(ei) = Tr(ei) and tr(p)−
tr(ei) < 1/i. Then (p− ei)M(p− ei) is a type II1 factor so tr and Tr agree
on projections in it whose tr is arbitrarily close to tr(p − ei). So choose in
it a projection ei+1 between ei and p, on which tr and Tr agree and with
tr(p)− tr(ei+1) < 1

i+1
. Then tr and Tr agree on

∨
i ei which is equal to p by

the faithfulness of tr.

We shall see that a positive trace on a type II1 factor is norm-continuous
and a self-adjoint operator is actually a norm-limit of linear combinations
of its spectral projections so in fact an apparently weaker property than
ultraweak continuity is all we used in the previous corollary—namely that
the trace of the supremum of an increasing net of projections is the supremum
of the traces.

Corollary 6.1.20. Let M be a von Neumann algebra with a positive ultra-
weakly continuous faithful normalised trace tr. Then M is a type II1 factor
iff Tr = tr for all ultraweakly continuous normalised traces Tr.

Proof. We just have to show that Z(M) is trivial. But if it were not, choose
by faithfulness a projection p ∈ Z(M) with 0 < tr(p) < 1. Define Tr(x) =
( 1
tr(p)

)tr(xp). Then Tr is an ultraweakly continuous normalized trace different
from tr on 1− p.

Exercise 6.1.21. Let a be a non-zero positive self adjoint operator. Show
that there is a bounded piecewise smooth function f : R+ → R+ such that
af(a) is a non-zero projection.
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Exercise 6.1.22. A type II1 factor is algebraically simple. (Hint—use the
previous exercise to show that a 2-sided ideal contains a projection, then add
projections to obtain the identity.)

6.2 The GNS construction

Thus uniqueness of the trace implies factoriality. This suggests another in-
teresting way to construct a type II1 factor. If A = M2(C), A is embedded
in A⊗A as diagonal matrices: a ↪→ a⊗ 1. Iterate this procedure to form an
increasing sequence An of *-algebras with A1 = A and An+1 = An ⊗ A, and
consider the *-algebra A∞ = ∪nAn which could also be called ⊗∞alg,n=1An. If
we normalise the matrix trace on all matrix algebras so that tr(1) = 1 then
tr(a ⊗ 1) = tr(a) so that tr defines a positive faithful normalised trace on
A∞. Elements of A∞ can be thought of as linear combinations of tensors
of the form a1 ⊗ a2 ⊗ a3 ⊗ · · · ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · · , on which the trace is just
the product of the traces of the ai’s. We now turn A∞ into a von Neumann
algebra.

Define an inner product on A∞ by 〈x, y〉 = tr(y∗x). Then A∞ is a pre-
Hilbert space and let H be its completion. Note that Mn(C) is a von Neu-
mann algebra so tr(y∗x∗xy) ≤ ||x||2tr(y∗y). This means that the operator
Lx on A∞, Lx(y) = xy, satisfies ||Lx(ξ)|| ≤ ||x|| · ||ξ|| (where ||x|| is the
operator norm of the matrix x and ||ξ|| is the Hilbert space norm of ξ) and
so extends uniquely to a bounded operator also written Lx on H. One checks
that (Lx)

∗ = Lx∗ so x→ Lx defines a faithful (=injective) representation of
the *-algebra A∞ on H . LetM be the von Neumann algebra on H generated
by the Lx and identify A∞ with a subalgebra of M .

The trace on A∞ is defined by tr(a) = 〈aξ, ξ〉 where ξ is the element
1 ∈ A∞ considered as a vector in H. So tr extends to a trace on M which is
ultraweakly continuous, positive and normalised. It is also unique with these
properties by the uniqueness of the trace on the ultraweakly dense subalgebra
A∞ of M . If we can show that tr is faithful on M then it follows that M is a
type II1 factor. It is important to note that this does not follow simply from
the faithfulness of tr on A. In fact it is true but we need to do something to
prove it.

When we showed that Lx was bounded, the same calculation, with tr(ab) =
tr(ba), would have shown that Rx, right multiplication by x, is also bounded.
Associativity shows that Lx and Ry commute on A∞, hence on H. Thus M
commutes with Ry for each y ∈ A∞. Now we can show faithfulness: if

40



tr(x∗x) = 0 for x ∈M then for each a ∈ A∞ we have

||x(a)||2 = ||xRa(ξ)||2 = ||Rax(ξ)||2 ≤ ||Ra||2||xξ||2 = ||Ra||2tr(x∗x) = 0.

Since A∞ is dense, this means x = 0. So tr is faithful on M which is thus a
type II1 factor.

Exercise 6.2.1. Let Fn be the Fibonacci numbers. Show that there is a
unique (up to you to figure out in what sense) unital embedding of MFn(C)⊕
MFn+1(C) inside MFn+1(C) ⊕MFn+2(C) for n ≥ 3. Thus one may form the
*-algebra

F∞ = ∪∞n=1MFn(C)⊕MFn+1(C).

Show that there is a unique C∗-norm and unique positive trace on F∞ so we
may repeat the procedure above to obtain another type II1 factor.

Many points are raised by this example. The easiest to deal with are
the properties of the vector ξ which played a prominent role. We used both
Mξ = H and M ′ξ = H.

Definition 6.2.2. LetM be a von Neumann algebra on H. A vector ξ ∈ H is
called cyclic forM ifMξ = H and separating forM if (xξ = 0)⇒ (x = 0)
for all x ∈M .

Proposition 6.2.3. With notation as above, ξ is cyclic for M iff ξ is sepa-
rating for M ′.

Proof. (⇒) Exercise—in fact done in the discussion of A∞ above.

(⇐) Let p be the projection onto the closure of Mξ. Then p ∈ M ′. But
(1− p)ξ = 0 so p = 1.

The construction of M from A∞ is a special case of what is known
as the GNS construction (Gelfand-Naimark-Segal). Given a positive lin-
ear functional φ satisfying φ(a∗) = φ(a) on a *-algebra A we let Nφ be
{x ∈ A : φ(x∗x) = 0}. We also define a sesquilinear form 〈, 〉φ on A by
〈x, y〉φ = φ(y∗x). This form is positive semidefinite but this is enough for the
Cauchy-Schwartz inequality to hold so that N is the same as {x : 〈x, y〉φ =
0 ∀y ∈ A} so that N is a subspace and 〈, 〉φ defines a pre-Hilbert space
structure on the quotient A/N . Under favourable circumstances, left mul-
tiplication by x, Lx defines a bounded linear operator on it. Favourable
circumstances are provided by C∗-algebras.

Exercise 6.2.4. If φ is a linear functional on a C∗-algebra satisfying φ(a∗a) ≥
0 show that φ(a∗) = φ(a). Moreover if A is unital show that φ is norm-
continuous and in fact ||φ|| = φ(1).
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Remark 6.2.5. It is a standard elementary fact in C∗-algebras that one may
always adjoin an identity to a C∗-algebra.

Proposition 6.2.6. If A is a unital C∗-algebra and φ : A→ C is a positive
linear functional then

φ(y∗x∗xy) ≤ ||x||2φ(y∗y)

Proof. Let φ̃(a) = φ(y∗ay). Then φ̃ is positive so by the exercise φ̃(x∗x) ≤
||x||2φ̃(1).

It follows immediately that, given a positive linear functional φ on a unital
C∗-algebra, each x ∈ A determines a bounded linear operator πφ(x) on the
Hilbert space Hφ of the GNS construction via left multiplication: πφ(x)(y) =
xy. Moreover ||πφ(x)|| ≤ ||x|| and πφ(x∗) = πφ(x)∗ since 〈πφ(x)y, z〉 =
φ(z∗xy) = 〈y, πφ(x∗)z〉. Note that φ(x) = 〈πφ(x)1, 1〉.

To sum up we have the following:

Definition 6.2.7. If A is a C∗-algebra and φ is a positive linear functional
on A, the Hilbert space of the GNS construction is written Hφ and the rep-
resentation πφ by left multiplication is called the GNS representation.

Proposition 6.2.8. If A is a C∗-algebra on H and ξ ∈ H, define ωξ(a) =
〈aξ, ξ〉. Then ωξ is a positive linear functional and a 7→ aξ defines a unitary
u : Hωξ → Aξ such that uπωξ(a)u∗ = a.

Proof. Obvious.

If A is actually a von Neumann algebra, πφ(A) will not in general be one
on Hφ. This difficulty will be resolved in the next section.
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Chapter 7

Normality, complete additivity.

7.1 Normal states.
In quantum mechanics if ξ is a unit vector in a Hilbert space it defines a
"state" φ. In particular this means that if an observable is given by the
self-adjoint operator a then the average value of repeated observations of the
system in the state φ is 〈aξ, ξ〉. For this reason one calls a positive linear
functional φ a ”state" on a unital C∗-algebra provided φ(1) = 1.

Definition 7.1.1. If A is a C∗-algebra on H and φ is a state on A we say φ is
a vector state if there is a unit vector ξ ∈ H with φ = ωξ, i.e. φ(a) = 〈aξ, ξ〉
for all a ∈ A.

Not all states are vector states but our goal in this chapter is to show
that on von Neumann algebras there is a natural class of states which are
automatically vector states provided one amplifies the Hilbert space.

Definition 7.1.2. (i) If M is a von Neumann algebra a positive linear func-
tional φ is called completely additive if

φ(
∨
α

pα) =
∑
α

φ(pα)

whenever pα is a family of mutally orthogonal projections.
(ii) A positive linear map Φ : A → B between von Neumann algebras is

called normal if
Φ(
∨
α

aα) =
∨
α

Φ(aα)

for any increasing net (aα) of self-adjoint operators in A.

Our goal in this chapter is to show the following:
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Theorem 7.1.3. If φ is state on a von Neumann algebra M on H the fol-
lowing are equivalent:
(1) φ is normal.
(2) φ is completely additive
(3) φ is a vector state on H⊗ `2(N)
(4) φ is ultraweakly continuous.

The only implication that is not obvious from what we have done is
(2) =⇒ (3). To prove it we will put together some results. The first couple
actually establish (4) =⇒ (3) by 5.1.2.

Lemma 7.1.4. Let A be a C∗-algebra on H containing 1. If ψ is a positive
linear functional on A and ξ ∈ H is a vector with ψ ≤ ωξ (i.e. ωξ − ψ is
positive), then there is a s ∈ A′ with ψ = ωsξ.

Proof. Define a sesquilinear form (, ) on Aξ by (aξ, bξ) = ψ(b∗a). Cauchy-
Schwarz and ψ ≤ φξ give that |(aξ, bξ)| ≤ ||aξ||||bξ|| so (, ) is well-defined
and there is a bounded positive operator t on Aξ with 〈aξ, tbξ〉 = ψ(b∗a).
But 〈aξ, tbcξ〉 = ψ(c∗b∗a) = 〈b∗aξ, tcξ〉 = 〈aξ, btcξ〉 so that t ∈ A′ on Aξ. If
p = pAξ, tp is a positive operator in A′ and if s =

√
t, ψ(a) = 〈aξ, tξ〉 =

〈asξ, sξ〉 = ωξ(a).

.

Corollary 7.1.5. If ξ and η are vectors such that ω(a) = 〈aξ, η〉 is positive
(on a C∗-algebra A on H) then there is a vector ν with ω = ων.

Proof. For a ≥ 0,

〈aξ, η〉 = 1/4(〈a(ξ + η), ξ + η〉 − 〈a(ξ − η), ξ − η〉)

≤ 1/4ωξ+η(a).

Now we begin to show that complete additivity means that two states
cannot disagree too erratically.

Lemma 7.1.6. Let φ1 and φ2 be completely additive. Suppose p ∈ M is a
projection and φ1(p) < φ2(p) . Then there is a projection q ≤ p, for which
φ1(x) < φ2(x) ∀x ≥ 0 with qxq = x.

Proof. Choose a maximal family of mutually orthogonal “bad" projections
eα ≤ p for which φ1(eα) ≥ φ2(eα). By complete additivity

∨
α eα is bad so let

q = p −
∨
α eα. By maximality φ1(f) < φ2(f) for all projections f ≤ q and

since α is norm continuous, by the spectral theorem φ1(x) < φ2(x) ∀x ≥ 0
with qxq = x.
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Next we get vector state behaviour for φ on some small projection.

Lemma 7.1.7. There exists p > 0 and ξ ∈ H for which

φ(x) = 〈xξ, ξ〉 ∀x ∈ pMp

Proof. Choose ξ ∈ H with φ(1) = 1 < 〈ξ, ξ〉. Then by the previous lemma
there is a p > 0 for which φ(x) ≤ 〈xξ, ξ〉 ∀x ∈ pMp. By 7.1.4 we are
done.

Now we put together all the little parts and prove that (3) =⇒ (4) in
7.1.3. So let φ be a completely additive state on a von Neumann algebra M
acting on H. Let pα be a maximal family of pairwise orthogonal projections
admitting a vector ξα ∈ pαH with φ(x) = 〈xξα, ξα〉 on pαMpα. Then by
the previous lemma

∨
α pα = 1. And obviously ||ξα||2 = φ(pα). Since φ(pα)

can only be non-zero for countably many α we can assume the set of α’s is
countable.

By Cauchy-Schwarz, for any x ∈M ,

|φ(xpα)| ≤ φ(pαx
∗xpα)1/2φ(pα)1/2 = ||xξα||φ(pα)1/2.

So the linear functional xξα 7→ φ(xpα) is well-defined and bounded on
Mξα which means there is a vector ηα, ||ηα||2 = φ(pα), with

φ(xpα) = 〈xξα, ηα〉.

Moreover, also by Cauchy-Schwarz, |φ(x) −
∑

α∈F φ(xpα)| can be made
arbitrarily small by choosing the finite set F sufficiently large since φ is
completely additive. We conclude that there exist ξα, ηα, each of norm ≤
φ(α)1/2 with

φ(x) =
∑
α

〈xξα, ηα〉

which is the same as saying that φ(x) = 〈(x⊗1)ξ, η〉 for some ξ, η ∈ `2(N,H).
By corollary 7.1.5 we have proved theorem 7.1.3.

Sadly this proof doesn’t work. There’s a mistaken Cauchy Schwarz at
some point. The projections can not be made to add up in this way. One
needs to do a maximality argument with another Cauchy Schwarz.

Corollary 7.1.8. If φ is a normal state on the von Neumann algebraM then
the GNS representation πφ is ultraweakly continuous onto a von Neumann
algebra on Hφ.
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Proof. We saw in the last theorem that φ(x) = 〈x ⊗ 1(ν), ν〉 on H ⊗ `2(N).
The map x 7→ x ⊗ 1 is ultraweakly continuous. By 6.2.8 we have that πφ
is ultraweakly continuous since the reduction to M ⊗ 1(ν) is ultraweakly
continuous. So the kernel of πφ is an ultraweakly closed 2-sided ideal, hence
of the formMe for some e in the centre ofM . It follows that πφ is injective on
M(1−e) and since the norm of an operator x is determined by the spectrum
of x∗x, the unit ball of the image of M is the image of the unit ball which is
weakly compact so by 5.2.2 we are done.

We record a corollary that is used often without explicit mention:

Corollary 7.1.9. Let M be a von Neumann algebra and let A be a weakly
dense *-subalgebra of M generated by some self-adjoint set X. Suppose φ
is a faithful normal state on M and N is another von Neumann algebra
with faithful normal state ψ. If θ : X → N is a function, multiplicatively
extend θ to words w(x1, x2, · · ·xn). Then if ψ(w(θ(x1), θ(x2), · · · θ(xn)) =
φ(w(1, x2, · · ·xn)), θ extends uniquely to a von Neumann algebra isomorphism
from M to θ(X)′′.

Proof. Faithfulness of the states φ and ψ means that the extension of θ to
linear combinations of words is a well-defined *-isomorphism from A to the
*-subalgebra θ(A) of N which sends φ to ψ. This further extends to a unitary
between the GNS constructions for φ and ψ|θ(A) which intertwines the actions
of A and θ(A). We are done by 7.1.8.

7.2 Isomorphisms are spatial.
Recall that an isomorphism Φ : M → N between von Neumann algebras
on Hilbert spaces H and K respectively is called spatial if there is a unitary
u : H → K such that Φ(x) = uxu∗ for all x ∈ M . Though the title of this
section is not literally true, it becomes true on amplification as a result of
theorem 7.1.3:

Theorem 7.2.1. Given an isomorphism Φ : M → N between von Neumann
algebras on Hilbert spaces H and K respectively, there is a Hilbert space W
and a unitary u : H⊗W → K⊗W with Φ(x)⊗1 = u(x⊗1)u∗ for all x ∈M .

Proof. If ξ ∈ H defines the vector state φ on M ,then since normality (or
complete additivity) is defined by algebra, the state φ ◦ Φ−1 is also a vector
state on K⊗ `2(N) given by the vector η. This means that there is a unitary
from the closure of Mξ to the closure of Nη intertwining the actions of
x and Φ(x) ⊗ 1. One may exhaust H in this way to obtain an isometry
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u : H → ⊕αK ⊗ `2(N) intertwining the actions of M . For a big enough W ,
⊕αK ⊗ `2(N) is K ⊗ W and tensoring again by W we get an intertwining
isometry u : H⊗W → K⊗W . Now consider the action of M on
(H⊗W)⊕(K⊗W) defined in terms of matrices by

(
x⊗1 0

0 Φ(x)⊗1

)
. To say that

u intertwines the actions is precisely the same as saying that ( 0 0
u 0 ) is in M ′.

So ( 1 0
0 0 ) � ( 0 0

0 1 ) in M ′. Applying this to Φ−1 as well we see by theorem 6.1.2
that these two projections are equivalent in M ′. But any partial isometry
witnessing their equivalence has the form ( 0 0

w 0 ) with w a unitary between H
and K intertwining the actions. (Note that we never assumed that M was
more than a unital *-algebra on (H⊗W)⊕ (K ⊗W)).

7.3 Exercises on two projections.
Let p and q be projections onto closed subspaces H and K of the Hilbert
space U respectively. Let M = {p, q}′′.

Exercise 7.3.1. Show that U = (H∩K)⊕(H⊥∩K⊥)⊕(H∩K⊥)⊕(H⊥∩K)⊕W
for some W and this decomposition is invariant under p and q.

Exercise 7.3.2. Show that, on W, p and q are in “general position”, i.e.
p ∧ q = 0, p ∨ q = 1, (1− p) ∧ q = 0 and (1− p) ∨ q = 1.

Exercise 7.3.3. Show that if a ∈ B(H), 0 ≤ a ≤ 1,
(

a
√
a(1−a)√

a(1−a) 1−a

)
is a

projection on H⊕H. When is it in general position with ( 1 0
0 0 )?

Exercise 7.3.4. Let a = (p − q)2 and A = {a}′′. Show that a ∈ Z(M) and
that {a0 +a1p+a2q+a3pq+a4qp : ai ∈ A} is a *-algebra (which is necessarily
weakly dense in M).

Exercise 7.3.5. Show that pMp is abelian, generated by pqp.

>From now on suppose p and q are in general position.

Exercise 7.3.6. Show that p ∼= q in M . (Hint: consider the polar decompo-
sition of pq.)

Exercise 7.3.7. Show there is a 2×2 system of matrix units (eij) ∈M with
p = e11.

Exercise 7.3.8. Show that M is spatially isomorphic to B ⊗ M2(C) for
some abelian von Neumann algebra B generated by b, 0 ≤ b ≤ 1, with p

corresponding to ( 1 0
0 0 ) and q corresponding to

(
b
√
b(1−b)√

b(1−b) 1−b

)
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Now drop the hypothesis that p and q are in general position.

Exercise 7.3.9. Show that p ∨ q − p ∼= q − p ∧ q in M

Exercise 7.3.10. Show that if e and f are finite projections in a factor M
then p ∨ q is also finite. (In fact it’s true for a non-factor as well.)

(Here’s how to do it: use the previous exercise to reduce it to the case
where e and f are orthogonal. Then one can assume f = e⊥. Suppose we
could find an infinite projection p so that e ∧ p � e⊥ ∧ p⊥. Then

p = e ∧ p+ p− e ∧ p
� e⊥ ∧ p⊥ + p ∨ e− e ( remembering that e⊥ ∧ p⊥ = (e ∨ p)⊥)

≤ e⊥

so that p is finite.
To find such an e and p, construct an infinite projection p equivalent to

1− p (“halving”). Then either e∧ p � e⊥ ∧ p⊥ in which case we are done, or
e⊥ ∧ p⊥ � e ∧ p in which case we simply switch to e⊥ and p⊥.)

Alternative approach using group representations.

Exercise 7.3.11. Show that (Z/2Z)∗(Z/2Z) ∼= Zo(Z/2Z) (infinite dihedral
group).

Exercise 7.3.12. Classify all unitary representations of Zo(Z/2Z). (Hint—
use the spectral theorem for unitaries.)

Exercise 7.3.13. Observe that 2p− 1 and 2q − 1 are self-adjoint unitaries.

Exercise 7.3.14. Obtain the structure of 7.3.8 using the last 3 exercises.
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Chapter 8

The Predual

An ultraweakly continuous linear functional φ on a von Neumann algebra M
is norm continuous so defines an element of M∗. Our goal in this chapter is
to show that the set of all such φ is a closed subspace M∗ of M∗ and that
the duality between M∗ and M makes M equal to the Banach space dual of
M∗. We will first establish this in the special case M = B(H).

8.1 Trace class and Hilbert Schmidt operators.

The material in this section is standard so we will only prove results as it
suits us, otherwise referring any unproved assertions to Reed and Simon.

Lemma 8.1.1. If a ∈ B(H) is positive and (ξi) and (ηi) are two orthonormal
bases of H, then ∑

i

〈aξi, ξi〉 =
∑
i

〈aηi, ηi〉

(where ∞ is a possible value for the sum).

Proof. We have ∑
i

〈aξi, ξi〉 =
∑
i

||
√
aξi||2

=
∑
i

(
∑
j

|〈
√
aξi, ηj〉|2)

=
∑
j

(
∑
i

|〈
√
aηj, ξi〉|2)

=
∑
j

||
√
aηj||2
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=
∑
j

〈aηj, ηj〉

where every number is positive so the order of the sum is immaterial.

The number
∑

i〈aξi, ξi〉 of the previous theorem is called the trace of a,
written Trace(a).

Definition 8.1.2. An element a ∈ B(H) is said to be of trace class if
Trace(|a|) is finite.

If a is trace class and (ξi) is an orthonormal basis, the sum∑
i

〈aξi, ξi〉

converges absolutely and is called the trace, Trace(a), of a.

Theorem 8.1.3. The trace class operators on H form a self-adjoint ideal
of compact operators, I1, in B(H). The function |a|1 defined by |a|1 =
Trace(|a|) defines a norm on I1 for which it is complete. Moreover ||a|| ≤
|a|1.

Proof. The only thing not proved in Reed and Simon is completeness. For
this observe that if an is a Cauchy sequence in | − |1, it is Cauchy in || − || so
what we have to do is show that the norm limit of a | − |1-Cauchy sequence
(an) is trace class and that the sequence tends to that limit in | − |1. So
suppose ε > 0 is given. Then for m and n large enough

∞∑
i=1

〈|an − am|ξi, ξi〉 < ε.

So for any N ,
N∑
i=1

〈|an − am|ξi, ξi〉 < ε.

Now if bn tends in norm to b, then |bn| tends in norm to |b| (obviously
b∗nbn → b∗b, and approximate the square root function by polynomials on an
interval) so for each fixed i,

lim
n→∞

|an − am|ξi = |a− am|ξi.

So
∑N

i=1〈|a− am|ξi, ξi〉 < ε and letting N tend to ∞ we see that a ∈ I1 since
I1 is a vector space, and also that an → a in | − |1.
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The trace is independent of the orthonormal basis and if a is trace class
and b ∈ B(H), Tr(ab) = Tr(ba).

We see that each h ∈ I1 determines a linear functional φh on B(H) by
φh(x) = Trace(xh).

Definition 8.1.4. The trace-class matrix as above is called the density matrix
for the state φh.

Proposition 8.1.5. Each φh is ultraweakly continuous and its norm as an
element of B(H)∗ is |h|1.

Proof. Since h is compact, choose an orthonormal basis (ξi) of eigenvectors
of |h| with eigenvalues λi and let h = u|h| be the polar decomposition. Then

φh(x) =
∞∑
i=1

〈xu|h|ξi, ξi〉

so ultraweak continuity is apparent, and

φh(x) ≤
∞∑
i=1

||x|| || |h|ξi||

= ||x||
∞∑
i=1

λi

= ||x|| |h|1.

Moreover evaluating φh on u∗ gives ||φh|| = |h|1.

If H and K are Hilbert spaces, a bounded operator x : H → K is called
Hilbert-Schmidt if x∗x is trace class, i.e.

∑∞
i=1 ||xξi||2 < ∞ for some (hence

any) orthonormal basis (ξi) of H. The set of all Hilbert-Schmidt operators
from H to K is written `2(H,K) and if x is Hilbert-Schmidt, so is x∗, and x
is compact.

Theorem 8.1.6. If a ∈ B(H), b ∈ B(K) and x ∈ `2(H,K) then bxa ∈
`2(H,K). If x ∈ `2(H,K) and y ∈ `2(K,H) then yx is trace class. With the
inner product 〈x, y〉 = Trace(y∗x), `2(H,K) is a Hilbert space in which the
finite rank operators are dense.

Proof. See Reed and Simon.
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Exercise 8.1.7. Prove all the assertions made above about trace-class and
Hilbert-Schmidt operators.

Exercise 8.1.8. If H and K are Hilbert spaces construct a natural map from
K ⊗H∗ to `2(H,K) and show that it is unitary.

Let |x|2 be the Hilbert space norm on Hilbert-Schmidt operators.

Lemma 8.1.9. If x ∈ `2(H,K) and y ∈ `2(K,H) then Trace(xy) = Trace(yx).

Proof. First note that the result is true if we suppose that |x| is trace class.
For then let x = u|x| be the polar decomposition, choose an orthonormal
basis (ξi) of the final domain of u and extend it to an orthonormal basis of
K. Also extend (u∗ξi) to an orthonormal basis of H by vectors in ker(|x|).
Then

Trace(xy) =
∑
i

〈u|x|yξi, ξi〉

=
∑
i

〈|x|yuu∗ξi, u∗ξi〉

= Trace(|x|(yu))

= Trace((yu)|x|)

= Trace(yx.)

Now suppose only that x is Hilbert-Schmidt. Let ε > 0 be given and choose
x′ of finite rank with |x− x′|2 < ε. Then

|Trace(xy)− Trace(yx)| = |Trace((x− x′)y)− Trace(y(x− x′))|

which by Cauchy-Schwartz is ≤ 2ε|y|2.

Corollary 8.1.10. If ω is an ultraweakly continuous linear functional on
B(H), there is a trace class h so that ω = φh.

Proof. By 5.1.2 there are (ξi) and (ηi) in `2(N,H) so that ω(x) =
∑

i〈xξi, ηi〉.
Then if we define a and b from `2(N) to H by a(f) =

∑
i f(i)ξi and b(f) =∑

i f(i)ηi, a and b are Hilbert Schmidt and ω(x) = Trace(b∗xa) which is
Trace(xab∗) by the previous result.

Putting everything together so far, we have identified the image of the
Banach space I1 under the map h 7→ φh with the closed subspace of B(H)∗

consisting of ultraweakly continuous linear functionals. To close the loop we
only need to show that the Banach space dual of I1 is B(H).
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Theorem 8.1.11. If α : I1 → C is linear and bounded for | − |1, there is an
x ∈ B(H) so that α(a) = φa(x), and ||α|| = ||x||.

Proof. This is rather routine. Two vectors ξ and η define an element x of I1

by x(v) = 〈v, ξ〉η so one may define a sesquilinear form onH by (ξ, η) = α(x).
Boundedness of x follows from that of α so there is an appropriate x ∈ B(H).
To show that the norm of x as an element of the dual of I1 is actually ||x||,
suppose ||x|| = 1 and choose a unit vector ξ with ||xξ|| almost equal to 1.
Then Tr(hx) is almost 1 if h is the partial isometry which sends v ∈ H to
〈v, xξ〉 ξ

||xξ|| .

Exercise 8.1.12. Fill in the missing details in the previous proof.

Now we pass to von Neumann algebras though in fact these results work
for any ultraweakly closed subspace of B(H).

Theorem 8.1.13. If V is an ultraweakly closed subspace of B(H) then V =
V ⊥⊥ in the sense that if φ(x) = 0 for every ultraweakly continuous φ for
which φ(V ) = 0 then x ∈ V .

Proof. This is a simple application of the Hahn-Banach theorem—if x /∈ V
construct an ultraweakly continuous functional which is zero on V and non-
zero on x.

‘

Exercise 8.1.14. Exhibit a non-zero trace class operator on `2(Γ) which is
orthogonal to vN(Γ).

Theorem 8.1.15. If V is an ultraweakly closed subspace of B(H) then it
is canonically the dual Banach space of V∗ which is defined as the space
of ultraweakly continuous linear functionals on V . Moreover the ultraweak
topology on V is the weak-* topology on V as the dual of V∗.

Proof. If B is a Banach space with dual B∗ and V is a weak-* closed subspace
of B∗ then V is the dual of B/V ⊥ (surjectivity of the natural map from V to
the dual of V/B⊥ is a result of the previous theorem), so V is a dual space.
So we just have to identify the Banach space B/V ⊥ with the space of weak-*
continuous (as elements of B∗∗) linear functionals on V . This is a simple
exercise. Putting B = I1 we are done.

Exercise 8.1.16. If V is an ultraweakly closed subspace of B(H), show that
V∗ is a separable Banach space if H is a separable Hilbert space.
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8.2 A technical lemma.
Let us prove a lemma which shows what the techniques developed so far can
be good for. It will be crucial in our treatment of Tomita-Takesaki theory.
It is a “Radon-Nikodym” type theorem inspired by one due to Sakai([]).find reference

Lemma 8.2.1. Let λ ∈ R+ be given and let φ be a faithful ultraweakly
continuous state on a von Neumann algebra M . Let ψ ∈ M∗ be such that
|ψ(y∗x)| ≤

√
φ(x∗x)

√
φ(y∗y). Then there is an a ∈M1/2 (elements of norm

≤ 1/2) so that
ψ(x) = λφ(ax) + λ−1φ(xa).

Proof. For a ∈M let θa(x) = φ(λax+ λ−1xa). Then the map α : M →M∗,
α(a) = θa, is continuous for the topologies of duality between M and M∗.
But we know that this topology on M is the ultraweak topology so that
α(M1) is a compact convex set. By contradiction suppose that ψ is not in
α(M).

Then by Hahn-Banach there is an h ∈ M with <(ψ(h)) > D where
D = supa∈M1/2

<(θa(h)). But if h = u|h| = |h∗|u is the polar decomposition
of h, we have

θu∗/2(h) = 1/2(λφ(|h|) + λ−1φ(|h∗|))

so that
2D ≥ λφ(|h|) +

1

λ
φ(|h∗|) ≥ 2

√
φ(|h|)

√
φ(|h∗|).

But also D < |ψ(h)| = |ψ(u|h|1/2|h|1/2)| ≤
√
φ(|h|)

√
φ(u|h|u∗), a contradic-

tion.
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Chapter 9

Standard form of a II1 factor and
II∞ factors.

9.1 Standard form.

In this section M will be a von Neumann algebra with an ultraweakly con-
tinuous faithful normalized trace tr and L2(M, tr) will be abbreviated to
L2(M).

In section 6.2 we learned how to construct a von Neumann algebra from a
C∗-algebra and a positive linear functional on it. If we apply this construction
to L∞(X,µ) (when µ(X) <∞) with trace given by

∫
fdµ, the Hilbert space

would be L2(X, dµ). For this reason, if M is a type II1 factor we write
L2(M, tr) for the GNS Hilbert space obtained from the trace. In fact one
can define Lp spaces for 1 ≤ p ≤ ∞ using the Lp norm ||x||p = tr(|x|p)1/p.
A noncommutative version of the Holder inequality shows that || − ||p is a
norm and Lp(M) is the completion. We set L∞(M) = M and we shall see
that L1(M) is the predual M∗.

Let us fix on the notation Ω for the vector in L2(M) which is the identity
of M .

Proposition 9.1.1. If M is as above the || − ||-unit ball of M is a complete
metric space for || − ||2 and the topology defined by || − ||2 on the unit ball is
the same as the strong (and ultrastrong and *-strong) topology.

Proof. If xn is Cauchy in || − ||2 then for each a ∈ M , xna is also since
||xna||2 ≤ ||a|| ||xn||2. So we can define x on the dense subspace MΩ of
L2(M) by x(aΩ) = limn→∞xnaΩ. Since ||x|| ≤ 1, we have ||xξ|| ≤ ||ξ|| for
ξ ∈MΩ so x extends to a bounded operator on L2(M) which is obviously in
M , and xΩ = x = limn→∞ xn in || − ||2.
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The strong topology is obviously no stronger than || − ||2 since the sin-
gle seminorm a 7→ ||aΩ|| defines the || − ||2 topology. Moreover ||xaΩ|| ≤
||x||2||a|| shows that || − ||2 controls the strong topology on the unit ball.

Finally note that in the statement of the theorem it does not matter what
representation of M is used to define the strong topology on the unit ball as
the ultrastrong topology does not change under the manipulations that we
used to get the GNS construction from a II1 factor on an arbitrary Hilbert
space.

The action of M on L2(M, tr) is called the standard form of M . Note
that vN(Γ) on `2(Γ) is already in standard form. (We see that we could have
obtained our first example of a II1 factor by applying the GNS construction
to the group algebra CΓ with the trace tr(

∑
γ cγuγ) = cid.)

We now want to determine the commutant M ′ when M is in standard
form. It will be more convenient to adopt the clearly equivalent situation
where M is acting on a Hilbert space H and Ω is a cyclic and separating
vector in H with 〈xΩ,Ω〉 = tr(x) for x ∈M .

Definition 9.1.2. Let J : H → H be the antilinear unitary involution which
is the extension to H of the antiunitary isometry

J(xΩ) = x∗Ω.

Lemma 9.1.3. For x, a in M , and ξ, η in H

(i) 〈Jξ, Jη〉 = 〈η, ξ〉
(ii) JxJ(aΩ) = ax∗Ω

Proof. (i) If ξ = aΩ and η = bΩ, 〈Jξ, Jη〉 = tr(ba∗) = 〈η, ξ〉.
(ii) JxJ(aΩ) = J(xa∗Ω) = ax∗Ω.

Corollary 9.1.4. For M on H, JMJ ⊆M ′.

Proof. Left and right multiplication commute.

Lemma 9.1.5. For M on H, if x ∈M ′, JxΩ = x∗Ω.

Proof. Take a ∈M , then

〈JxΩ, aΩ〉 = 〈JaΩ, xΩ〉

= 〈a∗Ω, xΩ〉
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= 〈Ω, xaΩ〉

= 〈x∗Ω, aΩ〉.

Theorem 9.1.6. For M on H, JMJ = M ′.

Proof. We begin by showing that x 7→ 〈xΩ,Ω〉 is a trace on M ′:
For x, y ∈M ′,

〈xyΩ,Ω〉 = 〈yΩ, x∗Ω〉

= 〈yΩ, JxΩ〉

= 〈xΩ, JyΩ〉

= 〈xΩ, y∗Ω〉

= 〈yxΩ,Ω〉.

let us call Tr this trace on M ′. Then clearly the (M ′, T r,Ω) satisfy the
hypotheses we have been using so if K(xΩ) = x∗Ω is extended to H it
satisfies KM ′K ⊆ M ′′ = M . But by the previous lemma K coincides with
J on the dense subspace M ′Ω. Hence JM ′J ⊆M and we are done.

We see that the commutant of the left regular representation of Γ on
`2(Γ) is the von Neumann algebra generated by the right regular representa-
tion since JuγJεγ′ = εγ′γ−1 . And more generally the commutant of the left
action of M on L2(M) is the ∗-algebra of right multiplication operators. In
particular the commutant of a type II1 factor M on L2(M) is also a type
II1 factor. This is not the case for M on an arbitrary Hilbert space. For in-
stance we could consider M ⊗ 1 on L2(M)⊗H for some infinite dimensional
H. Then the commutant of M ⊗ 1 would be JMJ ⊗B(H)—infinite matrices
over JMJ .

Definition 9.1.7. A II∞ factor is a factor of the form M ⊗B(H) with M a
type II1 factor and dimH =∞.

Proposition 9.1.8. Let M be an infinite factor with a projection p ∈M so
that pMp is a type II1 factor. Then M is a II∞ factor.

Proof. Choose a maximal family {pα} of mutually orthogonal projections
in M with pα ∼= p ∀α. If it were the case that 1 −

∑
α pα � p then we

could contradict the maximality of the family {pα}. So write 1 = q +
∑

α pα
with q � p. By 7.3.10 the set of indices {α} is infinite so we may choose a
bijection with itself minus α0 and write 1 = q +

∑
α pα � pα0 +

∑
α 6=α0

pα �
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1. We conclude that
∑

α pα is equivalent to 1 so we may suppose it equal
to 1. We may then construct a system of matrix units by using partial
isometries implementing the equivalences between the pα to obtain the result
from exercise 4.3.3.

It could conceivably happen that, given a II∞ factorM , the type II1 factor
of the form pMp depends on p (obviously only up to equivalence). We now
introduce the trace on a II∞ factor which will make this issue more clear.

If M is a type II1 factor, define the map tr from (M ⊗ B(H))+ (the set
of positive elements of M ⊗ B(H)), to [0,∞] by

tr((xij)) =
∞∑
i=1

tr(xii)

where we have chosen a basis of the infinite dimensional Hilbert space H to
identify M ⊗ B(H) with certain matrices over M .

Theorem 9.1.9. Let M be as above.
(i) tr(λx) = λtr(x) for λ ≥ 0.
(ii) tr(x+ y) = tr(x) + tr(y).
(iii) If (aα) is an increasing net of positive operators with

∨
α aα = a then

tr(
∨
α aα) = limα tr(aα).

(iv) tr(x∗x) = tr(xx∗) ∀x ∈M ⊗ B(H).
(v) tr(uxu∗) = tr(x) for any unitary u ∈ M ⊗ B(H) and any x ≥ 0 in
M ⊗ B(H).
(vi) If p is a projection in M ⊗ B(H) then p is finite iff tr(p) <∞.
(vii) If p and q are projections with p finite then p � q iff tr(p) ≤ tr(q).
(viii) p(M ⊗ B(H))p is a type II1 factor for any finite projection p.

Proof. The first two assertions are immediate. For (iii), note that the diago-
nal entries of positive matrices are ordered as the matrices, and all numbers
are positive in the sums. (iv) Is obvious using matrix multiplication. (v)
follows from (iv) via uxu∗ = (u

√
x)(
√
xu∗). For (vi), if tr(p) < ∞ but p is

infinite, there is a proper subprojection of p having the same trace as p. The
difference would be a projection of trace zero which is clearly impossible. If
tr(p) = ∞ then if q is a projection of finite trace, q � p and if q ≤ p then
tr(p − q) = ∞ so one may construct an infinite sequence of mutually or-
thogonal equivalent projections less than p. Using a bijection with a proper
subsequence, p dominates an infinite projection so is infinite itself. (vii) fol-
lows easily as in the case of a type II1 factor. For (viii) simply observe that
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tr(p) < ∞ means that p � q for some q whose matrix is zero except for
finitely many 1’s on the diagonal. And obviously qMq is a type II1 factor for
such a q.

Corollary 9.1.10. Let M be a II∞ factor on a separable Hilbert space and
tr be the trace supplied by a decomposition II1 ⊗ B(H). Then tr defines an
isomorphism of the totally ordered set of equivalence classes of projections in
M to the interval [0,∞].

Proof. Given the previous theorem, we only have to prove that any infinite
projection is equivalent to the identity. But if p is infinite choose u with
uu∗ = p and u∗u strictly less than p. Then (u∗)nun are a strictly decreasing
sequence of equivalent projections so we may write p as an orthogonal sum
p = p∞+

∑∞
i=1 pi with all the pi equivalent for i ≥ 1. Now write the identity as

a countable orthogonal sum of projections all � p1 (using the decomposition
II1 ⊗ B(H) if necessary). We see that 1 � p.

Unlike the II1 case, or for that matter the B(H) case, the trace cannot be
normalised (by tr(1) = 1 in the type II1 factor case or the trace of a minimal
projection being 1 in the B(H) case). This allows for the possibility of an
automorphism α of M with tr(α(x)) = λtr(x) for x ≥ 0 and λ > 0, λ 6= 1.

Exercise 9.1.11. Show that the trace on a II∞ factor is unique with prop-
erties (i) to (vi), up to a scalar.

Exercise 9.1.12. If α : M → N is a *-homomorphism from a type II1 factor
onto another, then α is an isomorphism, strongly continuous on the unit ball.
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Chapter 10

The Coupling Constant

We want to compare actions of a given II1 factor on (separable) Hilbert
spaces. We will show that they are parameterized by a single number in
[0,∞].

Definition 10.0.13. If M is a type II1 factor, by M-module we will mean a
Hilbert spaceH together with an ultraweakly continuous unital *-homomorphism
from M to a type II1 factor acting on H. Thus M acts on H and we will
write that action simply as xξ for x ∈M and ξ in H.

In fact the ultraweak continuity condition is superfluous. The identity
map makes the Hilbert space on which M is defined into an M -module.
Given M on H and another Hilbert space K, x 7→ x⊗ id makes H⊗K into
an M -module. The GNS representation makes L2(M) into an M -module.
(The notion ofM−M bimodule is defined similarly as two commuting actions
of M on some Hilbert space, L2(M) being the first example.) There is an
obvious notion of direct sum of M -modules. We will compare a given M -
module H with L2(M) by forming the direct sum of it H and infinitely many
copies of L2(M).

10.1 Definition of dimM H
Theorem 10.1.1. Let M be a type II1 factor and H a separable M-module.
Then there is an isometry u : H → L2(M)⊗ `2(N) such that ux = (x⊗ 1)u
(i.e. u is M-linear).

Proof. Form the M -module K = H⊕L2(M)⊗ `2(N). Let p = id⊕ 0 ∈ B(K)
be the projection ontoH and q = 0⊕id be the projection onto L2(M)⊗`2(N).
Both p and q are inM ′ (on K) which is a II∞ factor since q is clearly infinite in
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M ′ and if e is a rank one projection in B(`2(N)) then (0⊕(1⊗e))M(0⊕(1⊗e))
is a type II1 factor, being the commutant of M on L2(M).

Since q is an infinite projection inM ′, by 9.1.10 there is a partial isometry
in M ′ with u∗u = p and uu∗ ≤ q. Using the obvious matrix notation for
operators on K, let u be represented by

( a bc d ) .

Then calculating u∗u = p and uu∗ ≤ q gives b∗b+d∗d = 0 and aa∗+bb∗ = 0
so that

u = ( 0 0
w 0 )

for some isometry w : H → L2(M)⊗ `2(N).
Moreover the fact that u commutes with M̃ is equivalent to wx = (x⊗ 1)w
∀x ∈M .

Corollary 10.1.2. The commutant of a type II1 factor is either a type II1
factor or a type II∞ factor.

Proof. We leave the proof as an exercise.

Proposition 10.1.3. If u : H → L2(M) ⊗ `2(N) is an M-linear isometry
then uu∗ ∈M ′ on L2(M)⊗ `2(N) and tr(uu∗) is independent of u.

Proof. If v were another M -linear isometry then uu∗ = uv∗vu∗ so by 9.1.9
tr(uu∗) = tr((vu∗)(uv∗)) = tr(vv∗).

Observe that if M were replaced by C in the above construction the
number tr(uu∗) would be the dimension of H.

Definition 10.1.4. For a type II1 factor (or the n×n matrices) and an M-
module H, the number tr(u∗u) defined by the two previous results is called
dimM H, or the coupling constant or the M -dimension of H.

Put another way, any action ofM onH is unitarily equivalent to p(L2(M)⊗
`2(N)) for some p ∈ (M ⊗ 1)′. dimM(H) is then the trace in (M ⊗ 1)′ where
the trace is normalised so that tr(1 ⊗ q) = 1 for a rank one projection in
B(`2(N)).

Simply by reducing by projections in (M ⊗ 1)′ one obtains Hilbert spaces
whose M -dimension is any number in [0,∞].

Trivial examples
(i) dimM L2(M) = 1.
(ii) dimM(L2(M)⊗ `2(N)) =∞
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Note that the calculation of the trace in M ⊗ B(H) is actually the cal-
culation of a trace in B(H) in the usual sense of trace-class operators: (put
H = `2(N))

Proposition 10.1.5. Let q be the projection on L2(M)⊗H defined by q̃⊗ 1
where q̃ is the projection from L2(M) onto CΩ. Then if a ∈ M ⊗ B(H) (or
JMJ ⊗ B(H)),

TrM⊗B(H)(a) = Trace(qaq)

Proof. This is very easy- just extend Ω to an orthonormal basis of L2(M)
and tensor with a basis of `(N) to obtain a basis for the whole Hilbert space.
Then write out the sum for TrL2(M)⊗H(qaq) for this basis and notice that
q kills all terms not involving Ω. The remaining sum is the definition of
TrM⊗B(H)(a).

10.2 Elementary properties of dimM H
Theorem 10.2.1. With notation as above,

(i) dimM(H) <∞ iff M ′ is a type II1 factor.
(ii) dimM(H) = dimM(K) iff M on H and M on K are unitarily equivalent
(= spatially isomorphic).
(iii) If Hi are (countably many) M-modules,

dimM(⊕iHi) =
∑
i

dimM Hi.

(iv) dimM(L2(M)q) = tr(q) for any projection q ∈M .
(v) If p is a projection in M , dimpMp(pH) = trM(p)−1 dimM(H).

For the next two properties we supposeM ′ is finite, hence a type II1 factor
with trace trM ′.

(vi) If p is a projection in M ′, dimMp(pH) = trM ′(p) dimM H.
(vii) (dimM H)(dimM ′H) = 1.

Proof. Using an M -linear isometry u we see that M on H is unitarily equiv-
alent to M on uu∗L2(M)⊗ `2(N). This makes (i) and (ii) obvious.

To see (iii), choose M -linear isometries ui from Hi to L2(M)⊗ `2(N) and
compose them with isometries so that their ranges are all orthogonal. Adding
we get an M -linear isometry u with uu∗ =

∑
uiu
∗
i . Taking the trace we are

done.
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For (iv), choose a unit vector ξ ∈ `2(N) and define u(v) = v ⊗ ξ. Then
uu∗ is JqJ ⊗ e where e is a rank one projection.

(v) Let us first prove the relation in the case H = L2(M)q where q is a
projection in M with q ≤ p.

Then pxpΩ 7→ p(xΩ)p is a unitary from L2(pMp) to pL2(M)p which inter-
twines the left and right actions of pMp. Hence pMp on pL2(M)q is unitar-
ily equivalent to pMp on L2(pMp)q. So by (iv), dimpMp(pH) = trpMp(q) =
trM(p)−1trM(q) = trM(p)−1 dimM H.

Now if H is arbitrary, it is of the form e(L2(M)⊗ `2(N)) for e ∈ (M ⊗1)′.
But e is the orthogonal sum of projections all equivalent to ones as in (iv)
with q ≤ p.

(vi) We may suppose H = e(L2(M)⊗`2(N)) soM ′ = e(JMJ⊗B(`2(N))e
and p defines the isometry in the definition of dimM(pH). But p is a projec-
tion less than e in a II∞ factor so by uniqueness of the trace, dimM(pH) =
tr(M⊗1)′(p) = tr(M⊗1)′(p)/tr(M⊗1)′(e) dimM(H) = trM ′(p) dimM(H).

(vii) Observe that, on L2(M), dimM(H) dimM ′(H) = 1 so by (v) and
(vi) the result is true for M -modules of the form L2(M)p. Also if one forms
K = ⊕ki=1H then dimM⊗1(K) = k dimH and dim(M⊗1)′ K = k−1 dimM ′ by
(v). But any H can be obtained from L2(M) as ⊕ki=1L

2(M)p for suitable k
and p.

Example 10.2.2. If Γ0 < Γ are icc groups, vN(Γ0) acts on `2(Γ). And if γ ∈
Γ the unitary ρ(γ) of the right regular representation gives a vN(Γ0)-linear
unitary between `2(Γ0) and `2(Γ0γ

−1). Hence by the coset decomposition,
dimvN(Γ0)(`

2(Γ)) = [Γ : Γ0].

Example 10.2.3. (Due to Atiyah and Schmidt.)
Discrete series representations of locally compact groups.
Reduction by a finite projection in the commutant of a type II1 factor

occurs in the representation theory of locally compact groups. If a discrete
series representation is restricted to an icc lattice it generates a type II1
factor. The coupling constant is given by the ratio of the “formal dimension”
and the covolume of the lattice.

We illustrate in the case of PSL(2,R) which is the group of transforma-

tions of the upper half plane H = {z ∈ C : Im(z) > 0}, z 7→ az + b

cz + d
defined

by invertible real 2×2 matrices ( a bc d ). It is well known that there is a funda-
mental domain D for the action of the subgroup Γ = PSL(2,Z) illustrated
below:

DO FIGURE
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The set D and all its translates under PSL(2,Z) cover H and are disjoint
apart from boundaries which are of Lebesgue measure 0. Thus if µ is an
invariant measure equivalent to Lebesgue measure, L2(H, dµ) gives a unitary
representation of Γ which is unitarily equivalent to the left regular repre-
sentation tensored with the identity on L2(D, dµ), making L2(H, dµ) into a
vN(Γ)-module whose vN(Γ) dimension is infinite.

The measure
dxdy

y2
is Γ-invariant but we want to vary this procedure

slightly. For each n ∈ N consider
dxdy

y2−n . This measure is not invariant but

we can make the action of PSL(2,R) unitary on L2(H,
dxdy

y2−n ) by the formula

( a bc d ) f(z) =
1

(cz + d)n
f(
az + b

cz + d
)

(with perhaps an inverse matrix...—exercise as usual). This changes noth-
ing as far as how the representation looks to PSL(2,Z) so we obtain (unitarily

equivalent) vN(Γ)-modules Hn = L2(H,
dxdy

y2−n ) for each n.

The commutant of vN(Γ) on Hn is a II∞ factor. But as is well known,
holomorphic functions form a closed subspace of L2 functions which is mani-
festly invariant under PSL2(R). The ensuing unitary representation is known
to be irreducible and in the discrete series of PSL2(R). It can be shown to be
a finite projection in Γ′. Thus we have a concrete example of a vN(Γ)-module
with finite vN(Γ)-dimension or coupling constant.

In general, if G is a locally compact group with Haar measure dg, the
discrete series representations are precisely those irreducible unitary repre-
sentations π that are direct summands of the left regular representation on
L2(G, dg). So if Γ is a discrete subgroup with a fundamental domain D so
that G is covered by the γ(D) which are disjoint up to measure zero sets,
we may apply the same analysis as above to obtain a vN(Γ) module. The
obvious question is to calculate its coupling constant. This turns out to be
quite simple because of a key property of discrete series representations.

See [ref robert] for the proof that if H is a Hilbert space affording a
discrete series representation π of G, then the functions g 7→ 〈πgξ, η〉, the
so-called coefficients of π are in L2(G, dg), and that the following argument
is justified. We may then fix a unit vector η ∈ H and consider the map
T : H → L2(G) defined by

T (ξ)(g) = 〈πgξ, η〉
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This map is obviously G-linear so T ∗T commutes with G on H and is thus a
multiple of an isometry. Hence there is a constant dπ such that

dπ

∫
G

〈πgξ, η〉〈η, πgξ′〉dg = 〈ξ, ξ′〉.

If G is compact and Haar measure is normalized so that G has measure
1, dπ is the dimension of the vector space H. In general dπ depends on the
choice of Haar measure but obviously the product of dπ with the covolume∫
D
dg does not. The coefficients give an explicit embedding ofH in L2(G, dg).

Theorem 10.2.4.

dimvN(Γ)(H) = dπ covolume(Γ).

Proof. Realize H as pL2(G, dg) for some projection on L2(G, dg) commuting
with the left regular action λg.

Observe first that since D is a fundamental domain (for the left action of
Γ on G, the following unitary w gives an explicit Γ-linear isomorphism from
`2(Γ)⊗ L2(D) to L2(G, dg):

w(εγ ⊗ f)(g) = f(γ−1g).

Noting that `2(Γ) = L2(vN(Γ), we shall identify the operator w−1qw on
L2(G) and then apply 10.1.5. (Where q is the projection of 10.1.5.)

But wf =
∑

γ εγ ⊗ (f ◦ λγ|D) so that w−1qw is nothing but orthogonal
projection χD from L2(G) to L2(D). Hence by 10.1.5 we have

dimvN(Γ)(L
2(G, dg)) = Trace(χDpχD.)

We now have to calculate something invoking the definition of the formal
dimension. So let η be a unit vector in pL2(G) and consider the constant
function g 7→ ||λgη||2. If we choose an orthonormal basis ξn for L2(D) then
{λγξn} is a basis of L2(G). Thus

||λgη||2 =
∑
γ,n

|〈λgη, λγ(ξn)〉|2

Now integrate over the fundamental domain D to obtain

covolume(Γ) =
∑
γ,n

∫
D

|〈λgη, λγ(ξn)〉|2

=
∑
n

(
∑
γ

∫
D

|〈λγgη, ξn〉|2)
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=
∑
n

(
∑
γ

∫
γD

|〈gη, ξn〉|2)

=
∑
n

(

∫
G

|〈λgη, pξn〉|2)

and by the formula defining the formal dimension this is

=
1

(formal dimension)

∑
n

(||η||2||pξn||2)

=
1

(formal dimension)
dimvN(Γ)(H)

Where we can extend the basis of L2(D, dg) to a basis of L2(G, dg).

see also [1] pp. 142-148.

Proposition 10.2.5. If M is a type II1 factor on H then

(a) M has a separating vector if dimM(H) ≥ 1.

(b) M has a cyclic vector if dimM(H) ≤ 1.

Proof. Both assertions follow immediately by comparing H to L2(M)p or a
direct sum of copies of it.

In fact both conditions in the last proposition are iff. For that one needs
to control arbitrary vectors in L2(M). In fact the original definition of the
coupling constant by Murray and von Neumann was as follows. Let M on H
be a type II1 factor whose commutant is a type II1 factor. Choose any nonzero
vector ξ ∈ H and let p and q be projections onto the closures of Mξ and
M ′ξ respectively. Then p ∈ M ′ and q ∈ M and using the normalised traces

the coupling constant was defined as the ratio
trM(q)

tr′M(p)
, the hard part being

to show that this ratio is independent of ξ. Assuming this last statement
it is trivial to identify the Murray-von Neumann coupling constant with our
dimM(H) but at this stage we have nothing to offer in the way of a simplified
proof of why this number does not depend on ξ.

Example 10.2.6. (due to M. Rieffel) If (X,µ) is a measure space and Γ is
a countable group acting by measure preserving transformations on (X,µ)
so that Γ acts by unitaries uγ on L2(X,µ) in the obvious way. We say that
a measurable subset D ⊆ X is a fundamental domain for Γ if X = ∪γγ(D)
and µ(Dγ(D)) = 0 for all γ ∈ Γ, γ 6= id. (One may clearly suppose the
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γ(D) are disjoint by removing a set of measure zero.) In this situation the
abelian von Neumann algebra L∞(X)Γ of Γ-invariant L∞ functions may be
identified with the space L∞(D).

Now suppose Γ and Λ are two groups acting on X as above with funda-
mental domains D and E respectively. We may consider the von Neumann
algebra MΓ,Λ on L2(X,µ) defined as {{uγ : γ ∈ Γ} ∪ L∞(X)Λ}′′.
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Chapter 11

The Crossed Product
construction.

Perhaps the most useful way of producing von Neumann algebras from others
is the crossed product. In pure algebra, if G is a group acting by automor-
phisms on an algebra A we form the vector space of finite formal sums∑

g∈G

agug

with the ag ∈ A. We multiply the sums with the rules uguh = ugh (and
u1 = 1) and ugau−1

g = g(a) reminiscent of the semidirect product of groups-
we use the notation AoG for this algebra, called the "crossed product". It
is obviously universal for "covariant representations", i.e. whenever A acts
on a vector space V and g → vg is a representation of G on V with vgavg−1

then the action of A extends to one of AoG with ug acting via vg.
From our experience with group algebras we expect the von Neumann

algebra version to be neither so simple nor universal (for an icc group, almost
no group representations extend to the von Neumann algebra).

We begin by defining a very general notion of von Neumann algebraic
crossed product about which there is not a lot to say, but then examine it
carefully in special cases.

11.1 Group actions.
Let M be a von Neumann algebra and G a group. An action of G on M
is a homomorphism g 7→ αg from G to the automorphism group AutM of
M (where automorphisms may be assumed ultraweakly continuous if neces-
sary). The algebra of fixed points for the action is denoted MG and is a von
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Neumann algebra. A special case of some importance is when the action is a
unitary group representation g 7→ ug with ugMu∗g = M ∀g ∈ G. In that case
setting αg(x) = ugxu

∗
g defines an action of G on M (and M ′). We say that

the action α is implemented by the unitary representation ug. If the ug are
actually in M , we say that the action is inner as an inner automorphism of
M is by definition one of the form Adu(x) = uxu∗ for u a unitary in M . An
automorphism is called outer if it is not inner.

Actions are not always implementable though the notion depends on the
Hilbert space on which M acts.

Exercise 11.1.1. If (X,µ) is a measure space and T is a bijection of X
which preserves the measure class of µ (i.e. µ(A) = 0 ⇔ µ(T−1(A)) = 0.)
show how T defines an automorphism αT of L∞(X,µ). Show further that
this automorphism is implemented by a unitary u on L2(X,µ).

A bijection T as above is called ergodic if T (A) = A for a measurable
subset A ⊆ X implies either µ(A) = 0 or µ(X \ A) = 0.

Proposition 11.1.2. With notation as above T is ergodic iff the only fixed
points for αT are constant functions.

Proof. (⇒) Let f ∈ L∞ and αT (f) = f . After throwing away a null set we
may assume that f(x) = f(T (x)) for all x ∈ X. Then for every ε > 0, by
the definition of the essential supremum, µ({x : ||f || − |f(x)| < ε} 6= 0. But
this set is invariant under T so it is equal to X up to a set of measure 0.
Letting ε tend to 0 we see that µ({x : |f(x)| 6= ||f ||}) = 0. So we may assume
f(x) = eig(x) for some measurable g taking values in [0, 2π). Repeating the
argument for g gives f constant almost everywhere.

(⇐) If A is a measurable invariant set then its characteristic function is
fixed by α in L∞ iff A is invariant.

Exercise 11.1.3. Let σx = ( 0 1
1 0 ), σy = ( 0 −i

i 0 ) and σz = ( 1 0
0 −1 ) be the Pauli

spin matrices. Show that Adux, Aduy and Aduz define an action of the
group Z/2Z⊕ Z/2Z on the two by two matrices which is not implementable
for M2(C) on C2.

Exercise 11.1.4. Show that any group action is implementable for a type
II1 factor in standard form and more generally any automorphism group pre-
serving a faithful normal state is implementable in the GNS representation.

Exercise 11.1.5. Show that every automorphism of B(H) is inner.

Exercise 11.1.6. Show that the automorphism of vN(F2) coming from the
group automorphism which exchanges the 2 generators is outer.
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If G is a topological group there are many possible notions of continuity.
The most useful is that of pointwise *-strong convergence, i.e. we assume that
the map g 7→ α(g)(x) is *-strong continuous for any x ∈M . Typically many
other notions of continuity will be equivalent to that and even a measurability
assumption can be enough to ensure this continuity.

We will always assume pointwise *-strong continuity when referring to an
action of a topological group.

Exercise 11.1.7. Is the action by translation of R on L∞(R) pointwise norm
continuous? pointwise strongly continuous? pointwise *-strong continuous?

Actions of a given group on von Neumann algebras are easy to construct
but actions of a group on a given von Neumann algebra may be hard to come
by.

Definition 11.1.8. An action of G on M is said to be ergodic if MG = Cid.

Exercise 11.1.9. Show that if G acts preserving µ on (X,µ) then the re-
sulting action of G on L∞(X,µ) is ergodic iff the only measurable subsets
A ⊆ X which satisfy µ(g(A)∆A) = 0 ∀g ∈ G satisfy either µ(A) = 0 or
µ(X \ A) = 0.

(Here A∆B means A \B ∪B \ A.)

The following question is an intriguing open problem:

Does SU(3) have any ergodic action on a type II1 factor?

It is shown in [] that SU(2) has no such action and it is shown in [] that
if a compact group acts ergodically on a von Neumann algebra then that von
Neumann algebra has a faithful normal trace.

11.2 The crossed product
Suppose α is an action of the locally compact group G with Haar measure
dg on the von Neumann algebra M with Hilbert space H. Form the Hilbert
space K = L2(G,H) = L2(G) ⊗ H and let G act on K by ug = λg ⊗ 1, λ
being the left regular representation. Further, let M act on K by

(x̃f)(g) = αg−1(f(g))

.

Exercise 11.2.1. Show that x 7→ x̃ is an ultraweakly continuous *-isomorphism
of M onto a von Neumann subalgebra of B(K).
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Exercise 11.2.2. Show that ugx̃u∗g = α̃g(x).

Note that this gives another way of making a group action implementable,
at least when it is locally compact.

Definition 11.2.3. If M , H, G and α are as above, the crossed product
M oα G is the von Neumann algebra on K generated by {ug : g ∈ G} and
{x̃ : x ∈M}.

From now on we will drop the ˜ and identifyM with M̃ . Note that finite
linear combinations

∑
g xgug form a dense *-subalgebra ofMoαG. Moreover

the ug are linearly independent over M in the sense that
∑

g xgug = 0 ⇒
xg = 0 for each g in the sum. This dense subalgebra could be called the
algebraic crossed product.

There is a well-developed theory ofMoαG when G is compact or abelian,
but we shall be mostly interested in the case where G is discrete as then we
may replay the matrix element game that we played for vN(Γ) to gain control
of weak limits of elements in the algebraic crossed product. (In fact of course
vN(Γ) is the special case of the crossed product when M = C and the action
is trivial.) Indeed we see immediately as in 3.3.4 that if G is discrete, any
element ofMoαG defines a function g 7→ xg so that the sum

∑
g xgug stands

for a certain matrix of operators on K = H⊗ `2(G). Moreover any matrix of
this form which defines a bounded operator onK is inMoαG. This is because
the sum converges pointwise at least on the dense set of functions of finite
support from G to H. In the case where the crossed product is a II1 factor
we know that the commutant consists of right multiplication by elements of
M oα G so a weakly dense subalgebra of (M oα G)′ preserves this dense
subspace of vectors and on that subspace

∑
g xgug and right multiplication

by ug and x ∈M commute. We will return to the general case later on.
Moreover the formulae

(
∑

xgug)
∗ =

∑
αg(xg−1)ug

and
(
∑

xgug)(
∑

ygug) =
∑
g

{
∑
h

xhαh(yh−1g)}ug

are justified by matrix multiplication.

We shall now provide some sufficient conditions for M oα G to be a
factor—always assuming G is discrete.

Definition 11.2.4. An action α of G on M is called outer if the only g in
G for which αg is inner is the identity.
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Proposition 11.2.5. If G is a discrete group and α is an outer action of G
on the factor M then M oα G is a factor with M ′ ∩M oα G = C1.

Proof. If x =
∑
xgug ∈ Z(M) then equating coefficients in the expression

that x commutes with M gives us yxg = xgαg(y) ∀y ∈ M ,g ∈ G. By the
next lemma this implies xg = 0 for any g 6= 1. Thus x ∈ M . Since M is a
factor we are done.

Lemma 11.2.6. Let α ∈ AutM for a factor M . Suppose there is an x ∈M ,
x 6= 0, with

yx = xα(y) ∀ y ∈M.

Then α is inner.

Proof. If x were unitary this would be obvious. So take the adjoint of the
relation to obtain x∗y = α(y)x∗ ∀y ∈ M . Thus yxx∗ = xα(y)x∗ = xx∗y
and xx∗ ∈ Z(M). Similarly x∗x ∈ Z(M). But xx∗ and x∗x always have
the same spectrum so since M is a factor both xx∗ and x∗x are equal to the
same positive number λ. Dividing by

√
λ converts x into a unitary and we

are done.

These two results prompt the following definition.

Definition 11.2.7. An automorphism α of a von Neumann algebra M is
called free if

yx = xα(y) ∀ y ∈M ⇒ x = 0.

An action α is called free if αg is free for every g 6= id.

The argument of proposition 11.2.5 shows in fact that if α is a free action
on a von Neumann algebra M then Z(MoαG) ⊆M , in fact that M ′∩M oα

G ⊆M .

Theorem 11.2.8. If α is a free ergodic action of G on a von Neumann
algebra M , then M oα G is a factor.

Proof. This follows immediately from the preceding remark.

To understand the meaning of freeness for automorphisms of the form
αT we need to make a hypothesis on (X,µ) as otherwise one could envisage
a T which is non-trivial on X but for which αT is the identity. So we will
suppose from now on that (X,µ) is countably separated. This means there
is a sequence Bn of measurable sets with µ(Bn) > 0 for which, if x 6= y, there
is an n with x ∈ Bn but y /∈ Bn. Obviously Rn is countably separated.

Exercise 11.2.9. Show that αT = id means that Tx = x almost everywhere.
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Hint-look at the proof of the next result.

Proposition 11.2.10. If T is a transformation of (X,µ) then αT is free iff
µ({x : T (x) = x}) = 0.

Proof. (⇒)If A is any measurable set on which T = id then χAf = αT (f)χA
for all f ∈ L∞.

(⇐) First throw away any fixed points of T . Then suppose f1αT (f2) =
f2f1 ∀ f2 ∈ L∞. Let A be the support of f1. Then since T has no fixed
points, A = ∪n(A ∩ Bn \ T−1(Bn)). If f1 were non-zero in L∞, we could
thus choose an n for which µ(A ∩ Bn \ T−1(Bn)) > 0. Set f2 = χBn . Then
for any x ∈ A ∩ Bn \ T−1(Bn) we have f1(x)f2(x) 6= 0 but f1(x)f2(Tx) =
f1(x)χBn(Tx) = 0 since x /∈ T−1(Bn). Thus f1αT (f2) 6= f2f1 in L∞. So the
measure of A must be zero.

We conclude that if Γ is a countable group acting freely and ergodically
on a measure space (X,µ), preserving the class of µ, then the crossed product
L∞(X,µ) o Γ is a factor.

Note that if Γ is abelian, ergodic implies free.

Exercise 11.2.11. Show that freeness of the action actually proves that
L∞(X,µ) is maximal abelian in the crossed product.

The crossed product M oΓ when M is abelian and Γ is discrete is called
the group measure space construction. Here are several examples.

Example 11.2.12. X = Z, Γ = Z acting by translation, µ = counting
measure.

The action is free and ergodic and L∞(X,µ) o Γ = B(`2(Z)).

Example 11.2.13. The irrational rotation algebra-von Neumann algebra
version.

(X,µ) = (T1, dθ), Γ = Z generated by the transformation T where T (z) =
eiαz and α/2π is irrational.

Exercise 11.2.14. Use Fourier series to show that this T is ergodic.

Example 11.2.15. Let H be a finite abelian group and Γ =
⊕

n∈NH be
the countable group of sequences (hn) with hn eventually the identity. Put
X = G =

∏
n∈NH (the set of all sequences) with the product topology.

Then G is a compact group so has a Haar measure µ. Γ acts on X by left
translation. The action is clearly free and ergodic as we shall now argue.

There is a particularly von Neumann algebraic way to view this example
without even constructing the space (X,µ) !
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Let A = L∞(H) = CĤ be the group algebra of the dual group Ĥ, with its
usual trace. As in section 6.2, form the algebraic tensor product ⊗alg,n∈NA
with product trace tr. Then perform the GNS construction with respect to
tr to obtain an abelian von Neumann algebra. It may be identified with
L∞(G, µ) so the Hilbert space H of the GNS construction is L2(X,µ). But it
is clear that an orthornormal basis of H is given by finite sequences (χn) of
elements of Ĥ which define elements χ1⊗χ2⊗· · ·⊗1⊗1⊗1 · · · in ⊗alg,n∈NA.
The point is that these basis vectors are eigenvectors for the action of Γ on
L2(X,µ):

(hn)(χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · ) = (
∏
n

χn(hn)) χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · .

Ergodicity follows easily since the only basis element which is fixed by all the
(hn) is the one with all χn equal to 1.

Exercise 11.2.16. Show that if H = Z/2Z in this example then the sub-
algebra of the crossed product generated by ⊗alg,n∈NA and Γ is the algebraic
infinite tensor product of M2(C).

Both of the last two examples are special cases of a more general one:
X is a compact group with its Haar measure and Γ is a countable dense
subgroup acting (freely) by left translation. The Peter Weyl theorem shows
that this action is ergodic.

Example 11.2.17. Bernoulli shift.

If Γ is any infinite group and A = Z/2Z we may form the tensor product
indexed by Γ of a copy of A for each γ ∈ Γ. The von Neumann algebra thus
obtained is once again the L∞ space of the infinite product measure space,
this time with the set indexing the product being Γ. As in the previous
example we can obtain a basis of L2 indexed by functions from Γ to the set
{0, 1} which are almost always 0. These functions are the same as finite
subsets of Γ and the action of Γ on the Hilbert space is by permuting the
basis in the obvious way. Ergodicity follows from the fact that the orbit of
any non-empty subset is infinite.

One could also chose another trace than the usual one and modify the
orthonormal basis of A accordingly. The measures are the obvious ones unless
specified.

We give a few more examples of free ergodic actions without supplying
proofs of ergodicity.

Example 11.2.18. SL(2,Z) acts on T2 = R2/Z2 via the linear action on
R2.
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Example 11.2.19. PSL(2,Z) acts on R ∪ {∞} by linear fractional trans-
formations.

Example 11.2.20. SL(2,Z) acts on R2 by linear transformations.

Example 11.2.21. Q acts on R by translation.
There are two fairly easy ways to see that this action is ergodic. The first

is to reduce it to a dense subgroup of a compact group by observing that an
L∞ function on R which is invariant under translation by Z defines an L∞
function on the quotient T. Then use Fourier series.

The second way is a direct attack which should generalise to show thatbullshit

translation by any countable dense subgroup of a locally compact group is
ergodic. If f ∈ L∞(R) is invariant under Q, set things up so that there are
sets A and B both of nonzero measure, so that g(A) ∩ g(B) = ∅. Cover A
and B with intervals of the same width with rational endpoints. Some of
these must intersect A and B in non-nul sets. But all these intervals are all
translates of each other so g cannot be invariant up to sets of measure zero.

Example 11.2.22. The “ax+ b” group QoQ∗ acts on R

Example 11.2.23. Same as example 11.2.13 with H = Z/2Z but using a
normalised trace on CH which is different from the usual one. Such a trace is
specified by its values on the minimal projections of CH which we could call
p and 1− p for 0 < p < 1. The product measure is not absolutely continous
with respect to Haar measure, and it is not preserved by group translation
so this example is perhaps most easily approached by the von Neumann
algebra construction where one can implement the action of

⊕
n∈N Z/2Z by

unitaries. These unitaries come from ones on L2(H) which exchange two
points of unequal weight so they must be correctly scaled.

Exercise 11.2.24. Work out the details of example 11.2.23

In the examples we see four different kinds of free ergodic actions:
Type I : Γ acts transitively.11.2.12
Type II1 : Γ preserves a finite measure. 11.2.13,11.2.15,11.2.17,11.2.18
Type II∞ : Γ preserves an infinite measure.11.2.20,11.2.21
Type III : Γ preserves no measure equivalent to µ.11.2.19,11.2.22,11.2.23

11.3 The type of the crossed product.
We adopt the notations and conventions of the previous section. The map
Em : M oαΓ→M which assigns aid to the element

∑
γ∈Γ is destined to play
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a big role in the theory. It is called the conditional expectation onto M and
obviously satisfies the following contitions:

(i) E2
M = EM .

(ii) EM(x)∗ = EM(x∗), EM(1) = 1, EM(x∗x) = 0iffx = 0.
(iii) EM(x∗x) ≥ EM(x∗)EM(x), ||E(x)|| ≤ ||x||.
(iv) EM(axb) = aEM(x)b for a, b ∈M .
(v) EM is ultraweakly continuous.

So EM is a projection of norm one in the Banach space sense. The
condition (iv) says that EM is an M −M -bimodule map.

Theorem 11.3.1. If Γ acts non-transitively, freely and ergodically, preserv-
ing the finite measure µ then L∞(X,µ)oΓ is a II1 factor. If Γ preserves the
infinite σ-finite measure µ then L∞(X,µ) o Γ is a II∞ factor unless Γ acts
transitively in which case L∞(X,µ) o Γ is type I.

Proof. (i) It is clearer to prove a more general statement (in the case where
Γ preserves µ and µ(X) = 1). So suppose Γ preserves the faithful positive
ultraweakly continuous trace tr on the von Neumann algebra A and that its
action is free and ergodic. Then we claim M = A o Γ is a type II1 factor
(or a finite dimensional factor). By previous results we need only show that
it has an ultraweakly continous positive trace. So define Tr = tr ◦ EA on
M . Ultraweak continuity and positivity are obvious so by continuity and
linearity it suffices to prove Tr(auγbuη) = Tr(buηauγ). For either side of
the equation to be non-zero means η = γ−1 amd then the left hand side is
tr(aαγ(b)) = tr(α−1

γ (aαγ(b))) = tr(bα−1(a)) which is equal to Tr(buηauγ).
(ii) If µ is infinite and Γ does not act transitively then there are no

atoms hence there are subsets Y of X of arbitrary positive measure. Let
Y have finite non-zero measure and let ξ be the function ξ(γ) = δγ,id χY .
Then 〈auγξ, ξ〉 = ωξ(auγ) = δid,γ

∫
Y
a(x)dµ(x). One easily checks that

ωξ((pauγp)(pbuηp)) = ωξ((pbuηp)(pauγp)) so by 3.4.6 ωξ defines a positive
ultraweakly continuous trace on p(A o Γ)p which is a type II1 factor. But
A o Γ is not itself a type II1 factor since A contains an infinite family of
equivalent mutually orthogonal projections. By 9.1.8 we are done.

(iii) If Γ acts transitively then (X,µ) = (Γ, counting measure) and the
characteristic function of a set with one element is a minimal projection in
L∞(X,µ) o Γ.

Exercise 11.3.2. If Γ acts ergodically on (X,µ) preserving the σ-finite mea-
sure µ then any other invariant equivalent measure is proportional to µ.

We now want to show that there are factors that are neither of type I nor
type II. Suppose thatM = L∞(X,µ)oΓ is a type I or II factor. Then it has
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a trace tr : M+ → [0,∞]. We would like to define an invariant measure on X,
absolutely continous with respect to µ, by reversing the procedure of theorem
11.3.1 and defining the measure σ(A) to be tr(ξA) (ξA ∈ L∞(X,µ) ⊆ M).
Invariance of the measure σ is no problem. The snag is that tr(χA) could be
infinite for every non-null set A. We will show that this is not the case. To
this end the concept of lower semicontinuity will be useful.

Definition 11.3.3. If X is a topological space we say that f : X → R is
lower semicontinous if for every x ∈ X and ε > 0 there is an open set U ⊆ X
such that f(u) > f(x)− ε for all u ∈ U .
Exercise 11.3.4. Prove that if f is lower semicontinous then

(a)f−1((−∞, K])) is closed for every K ∈ R.
(b)f attains its minimum on any compact subset of X.

Exercise 11.3.5. If H is a Hilbert space and ξ ∈ H, the function a 7→ ||aξ||
from B(H) to R is weakly lower semicontinuous.

Exercise 11.3.6. If fα are lower semicontinous then ∨αfα is lower semi-
continous if it exists.

Lemma 11.3.7. Let M be a type I or II factor and tr : M+ → [0,∞] be
Trace in type I, as in 9.1.9 in type II∞ and the trace in type II1. Then for
each K ≥ 0, M1,K = {x : tr(x∗x) ≤ K} is weakly compact.

Proof. Clear in the II1 case. In a decomposition M ∼= N ⊗ B(`2(N)) on H
with N a type II1 factor or C we may assume by 10.2.5 that there is a vector
ξ ∈ e11H with ωξ a trace on e11Me11. So if ξi = ei1ξ we have, up to a scalar,
that

tr(x) =
∞∑
i=1

〈xξi, ξi〉.

By the previous exercises and weak compactness of the unit ball, we are
done.

Proposition 11.3.8. With notation as above, for x ∈M1,K let W (x) be the
weak closure of the convex set of finite sums {

∑
i λiuixu

∗
i :
∑

i λi = 1, λi >
0, ui unitary in L∞(X,µ)}. Then W (x) ⊆ M1,K and if φ(y) = tr(y∗y) for
y ∈ W (x) then φ attains its minimum at a unique point E(x) of W (x).

Proof. Note first that {z ∈ M : tr(z∗z) < ∞} is a vector space on which
||z|| = tr(z∗z) defines a prehilbert space structure. (Since (a + b)∗(a + b) ≤
2(a∗a+b∗b) as operators, and the parallelogram identity passes to the poten-
tially infinite sum defining tr.) Moreover W (x) is a weakly compact subset
of M so by lower semicontinuity φ attains its minimum at a point which is
unique by two dimensional Euclidean geometry as in 2.1.2.
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Proposition 11.3.9. Suppose thatM = L∞(X,µ)oΓ is a type I or II factor
for a free ergodic action of Γ on L∞(X,µ). Let tr be as above and p be a
projection in M with tr(p) <∞. Then

E(p) = EL∞(X,µ)(p)

and 0 < tr(E(p)2) ≤ tr(p).

Proof. Let E = EL∞(X,µ). By the uniqueness of E(p) it commutes with every
unitary in L∞ so it is in L∞ by 11.2.11. On the other hand E(y) = E(p)
for all y ∈ W (p) by the bimodule linearity of the conditional expectation
and its ultraweak continuity. So E(E(p)) = E(p) = E(p). But φ(E(p) ≤
φ(p) = tr(p)∞. Finally E(p) = E(p2) which is a positive non-zero self-
adjoint operator and hence has non-zero trace.

Theorem 11.3.10. Let Γ act freely and ergodically on the countably sepa-
rated σ-finite measure space (X,µ) so that there is no σ-finite Γ-invariant
measure on X absolutely continuous with respect to µ. Then L∞(X,µ) o Γ
is a factor not of type I or II.

Proof. If the crossed product were of type I or II, define the measure ρ on
X by ρ(A) = tr(χA). By the previous result ρ(A) would have to be finite
and non-zero for some A since the L∞ functionf = E(p)2 must dominate a
multiple of χA for some A (e.g. let A be those x with f(x) sufficiently close
to ||f ||). But then by ergodicity X = ∪γ∈Γγ(A) (up to null sets) so that ρ
is σ-finite. It is automatically absolutely continuous wrt µ. Invariance of ρ
under Γ follows from tr(uγxu

−1
γ ) = tr(x) for x ≥ 0.

Definition 11.3.11. A factor not of type I or II is called a type III factor.

Example 11.2.22 provides a type III factor since the subgroup Q acts
ergodically so the only possible invariant measure is a multiple of dx by
exercise 11.3.2 and this is not invariant under multiplication!

Note that the above technique works in somewhat greater generality than
actions of groups on measure spaces.

Exercise 11.3.12. Adapt the proofs of the results just obtained to show that
M oα Z is a type III factor if the action α is generated by a single automor-
phism of the II∞ factor scaling the trace by a factor λ 6= 1.

11.4 A wrinkle: 2-cohomology.
In a purely algebraic setting it is possible to "twist" the crossed product
construction with a 2-cocycle. So suppose G (with identity 1) acts on the
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unital algebra A. Call C the abelian group of central invertible elements of
A and let µ : G×G→ Cbe a function satisifying

11.4.1.
µ(g, h)µ(gh, k) = αg(µ(h, k))µ(g, hk)

Then one may define the algebra Aoα,µ of formal (finite) sums as for the
crossed product but with multiplication defined by (aug)(buh) = aαg(b)µ(g, h)ugh.
Then the cocycle condition ensures that this multiplication is associative.
(The same twisiting is possible for the semidirect product of groups.) In
order for u1 to be the identity for this algebra we need the normalisation
condition µ(1, g) = 1 = µ(g, 1) ∀g ∈ G. It also helps things along if we
assume further that µ(g, g−1) = 1.

Note immediately that such a cocycle can dramatically alter the crossed
product. The simplest case of this is for a finite abelian group G with the
algebra M just being C. Then if µ : G × G → T1 is antisymmetric and
bilinear (thinking additviely), it satisfies the cocycle condition 11.4.1 with
trivial action.

Exercise 11.4.2. Find a bilinear µ as above on G = Z/nZ×Z/nZ for which
Coµ G is isomorphic to Mn(C).

This makes the µ-twisted crossed product quite different from the un-
twisted one, which is abelian.

A trivial way to obtain 2-cocyles is to define µ(g, h) = ν(g)αg(ν(h)) for
some function ν : G → C. Such a cocycle is called a coboundary and the
twisted crossed product by a coboundary can be untwisted by multiplying the
ug’s by ν(g)−1 to obtain an isomorphism with the untwisted crossed product.

The 2-cocycles form a group under pointwise multiplication and the cobound-
aries are a subgroup. The quotient is called the second cohomology group
H2(G,C).

To make sense of this in the von Neumann algebra setting one begins with
the data for the usual crossed product, namely a von Neumann algebra M on
H with an action α of the discrete group G onM . The 2-cocycle will then be
a function µ from G×G to the unitary group of Z(M) satisfying 11.4.1 and
normalisation conditions. One then lets M act on `2(G,H) as for the usual
crossed product but one defines unitaries (ugf)(h) = µ(g, h)f(g−1h) instead
of the left regular representation.

Exercise 11.4.3. Find out the correct version of this formula so that the
cocycle condition implies uguh = µ(g, h)ugh.

Definition 11.4.4. The twisted crossed product M oα,µ G is the von Neu-
mann algebra on `2(G,H) generated by M and the ug defined above.
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One may also consider twistings by non-central elements but then one is
led into actions modulo inner automorphisms and the cocycles do not form
a group.

11.5 More on the group-measure space construc-
tion AoG, A = L∞(X,µ).

If G is a countable discrete group acting freely on the probability space
(X,µ) preserving µ we may identify the Hilbert space of the crossed product,
`2(G,L2(X,µ)) in the obvious way with H = L2(X × G) (with the product
of counting measure and µ).

The operators a ∈ L∞(X,µ) and ug defining the crossed product then
act on L2(X ×G) as follows:

(af)(x, h) = a(hx)f(x, h), and (ugf)(x, h) = f(x, g−1h)

The function 1(h, x) = δh,e is a cyclic and separating trace vector for
AoG which is thus embedded in H as follows:

If a =
∑
g

agug then (a1)(x, h) = ah(hx).

So if b =
∑

g bgug we have, using this embedding,

11.5.1.
(ab)(x, h) =

∑
g

ag(hx)bg−1h(g
−1hx)

Moreover since the action is free we may identify G × X with a subset,
necessarily measurable, of X×X via (x, g) 7→ (x, gx). This subset is nothing
but the graph Γ(∼) of the equivalence relation on X defined by the orbits
of G : x ∼ y iff y = gx for some (unique) g ∈ G.. Thus each element
a =

∑
g agug ∈ A o g defines a function on Γ(∼) by a(x, y) = ah(hx) for

y = hx. This all sounds like abstract nonsense until one observes that the
multiplication 11.5.1 becomes

11.5.2.
(ab)(x, y) =

∑
z∼x

a(x, z)b(z, y)

from which the group action has disappeared and been replaced entirely
by the orbits it defines! In particular if G1 and G2 are countable discrete
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groups acting freely on (X1, µ1) and (X2, µ2) respectively then any measur-
able isomorphism fromX1 toX2 which sends the orbits forG1 to the orbits for
G2 will define an isomorphism between L∞(X1, µ1)oG1 and L∞(X2, µ2)oG2.

The graphs of these equivalence relations can be interesting subsets of
X ×X. Here is a picture giving five points in the equivalence class [x] for all
x in the case of the irrational rotation by τ on the circle (which is identified
with the interval [0, 2π]:

τ

{

{

τ

τ

τ

{{ {

τ
Here the horizontal dotted lines just denote the identification of one point
with another mod 2π. Clearly if one continued one would see that the graph
of ∼ is dense in X ×X.

This led to the development of the now obvious notion of orbit equiva-
lence of actions of groups which is outside von Neumann algebras. The first
major result was that of Dye [] which states that two ergodic measure pre-
serving actions of Z are orbit equivalent. This was extended to actions of
amenable groups in [] and to non measure-preserving actions in []. Perhaps
not surprisingly, the IIIλ classification of Connes is reproduced.

Another development whose motivation is clear from the above is that
of the study of measurable equivalence relations with countable orbits. The
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definitive treatment is that of Feldman and Moore ([],[]). They construct a
von Neumann algebra from a suitably measurable equivalence relation ∼ on
(X,µ) with the property that the equivalence classes are all countable. They
give Γ(∼) the measure coming from counting measure vertically and µ hori-
zontally and consider the Hilbert space L2(Γ(∼)). Functions on Γ(∼) which
have finite vertical support for each x ∈ X form a *-algebra under the mul-
tiplication 11.5.2. This algebra acts on L2(Γ(∼)) and the "crossed product"
is the von Neumann algebra generated by this algebra. Everything is done
in great generality so the type III case is also covered. There are notions of
measure-class preserving, measure-preserving and ergodic for equivalence re-
lations, and even a notion of 2-cohomology which allows one to do a twisted
version.

Technically, everything depends on being able to show that the graph
of the equivalence relation admits measurable local sections so that it looks
somewhat like our picture for the irrational rotation. In particular Feldman
and Moore show that any of their equivalence relations is in fact the orbit
space for a group. It was open for a long time as to whether that group could
be assumed to act freely but a counterexample was found in []. (Note that
equivalence relations behave well with respect to restricting to subsets which
gives them an advantage over group actions.)

In [], Connes vastly extended the equivalence relation construction so
that it works in the context of "measured groupoids" where the equivalence
classes are not necessarily discrete and the ordered pair (x, y) is generalised
to a morphism from the object x to the object y. As his main new example,
Connes used smooth foliations where the morphisms are holonomy classes of
smooth paths joining two points in a leaf. The leaves in a foliation (such
as the flow lines of a vector field) can exhibit ergodic properties which make
Connes’ von Neumann algebra into a factor.

11.6 The normaliser-the full group.
How much of G and its action on M can be recovered from M inside M oG
for a free action? One thing that is canonically defined is the normaliser
N (M) = {u unitary in M o G|uMu∗ = M} This group obviously contains
the unitary group U(M) as a normal subgroup. There are two extreme
cases.
(i) If M is a factor. Suppose u =

∑
g agug is in N (M), then there is an

automorphism β of M so that ux = β(x)u ∀x ∈M . That is∑
g

agαg(x)ug =
∑
g

β(x)agug ∀x ∈M
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. So for each g ∈ G we have agαgβ−1(x) = xag. By 11.2.6 there can be only
one g for which ag is different from 0 and for that g, ag is unitary. We see
that the quotient N (M)/U(M) is in fact G itself. So we recover G and its
action (up to inner automorphisms) on M .

(ii) If M = L∞(X,µ) the situation is different and somewhat richer. As
before, if

∑
g agαg(x)ug ∈ N (M) there is a β such that∑

g

agαg(x)ug =
∑
g

β(x)agug ∀x ∈M.

But now freeness is less strong. For a given g we have agαg(x) = β(x)ag for
all x as before. Thus on the support of ag αg(x) = β(x) for all L∞ functions
x. So if the support of ag and ah intersect in a set of non-zero measure
then, arguing as in 11.2.10 the transformations defined by g and h would
agree on that set which is not allowed by freeness. After throwing away
sets of measure zero we may thus conclude that the supports of the ag’s are
disjoint ! Moreover since

∑
g agαg(x)ug is unitary,

∑
g aga

∗
g = 1 so that the

ag are all characteristic functions of subsets Sg which form a partition of X.
And on Sg, the transformation determined by β agrees with αg.

We thus have the remarkable structure of the transformations of X de-
termined by N (L∞(X)):
there is a partition of X into measurable subsets, on each of which the
transformation agrees with some element of G. It is just as clear from the
above calculation that such a transformation is implemented by a unitary in
N (L∞(X)). Playing freely and easily with sets of measure zero we define:

Definition 11.6.1. If G is a discrete group of automorphisms of L∞(X,µ),
the full group of G is the group of all automorphisms T for which there is a
partition X =

⋃
g∈GCg into disjoint sets with T = g on Cg.

It is perhaps not immediately obvious that the full group contains any
elements besidesG itself. But ifG acts ergodically then every subset is spread
all over the place so a maximality argument shows that one can extend any
partially defined element to an isomorphism. Note that the elements of the
full group preserve orbits under G. It can be shown that any orbit-preserving
isomorphism of G is in the full group.
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Chapter 12

Unbounded Operators and
Spectral Theory

There are many naturally arising examples of unbounded operators, some
of the most fundamental being multiplication by x and differentiation, the
position and momentum operators of quantum mechanics. Our immediate
motivation for studying unbounded operators here is to facilitate the study
of arbitrary von Neumann algebras acting on GNS Hilbert spaces. Here we
establish the necessary preliminaries on unbounded operators. The material
closely follows Reed and Simon [2].

12.1 Unbounded Operators
Definition 12.1.1. An operator T on a Hilbert space H consists of a linear
subspace D(T ), the domain of T , and a linear map from D(T ) to H.
Example 12.1.2.

(i) Mx, multiplication by x on L2(R).

D(Mx) =

{
f ∈ L2(R) :

∫
R
x2|f(x)|2dx <∞

}
.

(ii) T = d
dx

on L2([0, 1]). D(T ) = C1[0, 1].

In order to do some analysis we want to restrict our attention a little so
as not to consider completely arbitrary linear maps.

Definition 12.1.3. Let T be an operator on H. The graph of T is

Γ(T ) = {(ξ, T ξ) : ξ ∈ D(T )} ⊂ H ⊕H.

T is closed if Γ(T ) is closed in H⊕H.
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Remark 12.1.4. Note that if T is closed and D(T ) = H then T is bounded
by the Closed Graph Theorem.

Lemma 12.1.5. A linear subspace Γ ⊂ H ⊕ H is the graph of an operator
iff (0, η) ∈ Γ implies η = 0.

Proof. Straightforward.

Many operators are not closed, but can be extended to a closed operator.

Definition 12.1.6. Let S, T be operators on H. T is an extension of S,
denoted S ⊂ T , if Γ(S) ⊂ Γ(T ). Equivalently D(S) ⊂ D(T ) and T |D(S) = S.

Definition 12.1.7. An operator T is preclosed (or closable) if it has a closed
extension.

Lemma 12.1.8. Suppose T is preclosed. Then T has a smallest closed ex-
tension T . Γ(T ) = Γ(T ).

Proof. Take a closed extension A of T . Γ(A) is closed and contains Γ(T ) so
Γ(T ) ⊂ Γ(A). Γ(T ) is the graph of an operator (call it T ) because:

(0, η) ∈ Γ(T ) ⊂ Γ(A)⇒ η = A(0) = 0.

T is the smallest closed extension because for all closed extensions A, Γ(T ) =
Γ(T ) ⊂ Γ(A).

Definition 12.1.9. T is called the closure of T .

Remark 12.1.10. We thus obtain two equivalent definitions of a preclosed
operator:

(i) (0, η) ∈ Γ(T )⇒ η = 0.

(ii) (ξn ∈ D(T ), ξn → 0 and Tξn converges) ⇒ Tξn → 0.

Exercise 12.1.11.

(i) Define S on L2(R) by D(S) = C∞0 (R) (infinitely differentiable functions
with compact support), Sf = f ′. Show that S is preclosed.

(ii) Define T from L2(R) to C by D(T ) = L1(R) ∩ L2(R), T (f) =
∫
R f .

Show that T is not preclosed.

Definition 12.1.12. Suppose T is a closed operator. A core for T is a linear
subspace D0 ⊂ D(T ) such that T |D0 = T .
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We can perform basic arithmetic operations with (unbounded) operators
as follows: S+T is the operator with domain D(S+T ) = D(S)∩D(T ) and
(S + T )ξ = Sξ + Tξ. ST is the operator with domain D(ST ) = {ξ ∈ D(T ) :
Tξ ∈ D(S)} and (ST )ξ = S(Tξ). Of particular importance is the adjoint.

Definition 12.1.13. Let T be a densely defined operator on H. Let

D(T ∗) = {η ∈ H : ∃σ ∈ H such that 〈Tξ, η〉 = 〈ξ, σ〉∀ξ ∈ D(T )}
= {η ∈ H : ∃C > 0 such that |〈Tξ, η〉| ≤ C||ξ|| ∀ξ ∈ D(T )}.

For ξ ∈ D(T ∗) note that the element σ is unique (by the density of D(T ))
and define T ∗ξ = η.

Remark 12.1.14. Note that if S ⊂ T then T ∗ ⊂ S∗.

Exercise 12.1.15. Give an example to show that the domain of the adjoint
need not be dense. [In fact it can be {0}].
Proposition 12.1.16. Let T be a densely defined operator. Then

1. T ∗ is closed.

2. D(T ∗) is dense iff T is preclosed. In that case T = T ∗∗.

3. If T is preclosed then (T )∗ = T ∗.

Proof. Note that (η, σ) ∈ Γ(T ∗) iff < Tξ, η >=< ξ, σ > for all ξ ∈ D(T )
iff < (−Tξ, ξ), (η, σ) >= 0. Hence

Γ(T ∗) = {(−Tξ, ξ) : ξ ∈ D(T )}⊥ = (uΓ(T ))⊥ = uΓ(T )⊥,

where u : H⊕H → H⊕H is the unitary operator u(ξ, η) = (−η, ξ). Now:
1. Orthogonal complements are closed, hence Γ(T ∗) is closed.

2. Γ(T ) = (Γ(T )⊥)⊥ = u∗Γ(T ∗)⊥, so

(0, ξ) ∈ Γ(T ) ⇔ (−ξ, 0) ∈ Γ(T ∗)⊥

⇔ 0 =< (−ξ, 0), (η, T ∗η) >= − < ξ, η > for all η ∈ D(T ∗)

⇔ ξ ∈ D(T ∗)⊥.

Hence T is preclosed iff D(T ∗)⊥ = {0} iff D(T ∗) is dense.
In that case Γ(T ∗∗) = uΓ(T ∗)⊥ = u2Γ(T )⊥⊥ = −Γ(T ) = Γ(T ), so
T ∗∗ = T .

3. T ∗ = T ∗ = T ∗∗∗ = (T )∗.

Definition 12.1.17. An operator T is symmetric if T ⊂ T ∗. Equivalently
< Tξ, η >=< ξ, Tη > for all ξ, η ∈ D(T ). T is self-adjoint if T = T ∗. A
self-adjoint operator T is positive if < Tξ, ξ >≥ 0 for all ξ ∈ D(T ).
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12.2 Spectral Theory for Unbounded Opera-
tors

Definition 12.2.1. Let T be a closed operator on H. The resolvent of T is

ρ(T ) = {λ|λ1− T : D(T )→ H is a bijection}.

The spectrum of T is σ(T ) = C\ρ(T ).

Remark 12.2.2. Note that if λ1 − T : D(T ) → H is a bijection then
(λ1− T )−1 is bounded by the Closed Graph Theorem.

Exercise 12.2.3. The spectrum is highly dependent on the domain. Let
AC[0, 1] denote the set of absolutely continuous functions on [0, 1]. Let T1 =
d

dx
, T2 = d

dx
, with

D(T1) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1])}
D(T2) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1]), f(0) = 0}.

Show that T1 and T2 are closed. Show that σ(T1) = C while σ(T2) = ∅.

Proposition 12.2.4. Let (X,µ) be a finite measure space and F a measure-
able, real-valued, a.e. finite function on X. Let D(Mf ) = {g ∈ L2(X,µ) :
fg ∈ L2(X,µ)} and let Mfg = fg. Then Mf is self-adjoint and σ(Mf ) =
ess.range(f) = {λ ∈ C : µ({x : |λ− f(x)| < ε}) > 0 ∀ε > 0}.

Exercise 12.2.5. Prove Prop 12.2.4.

Theorem 12.2.6 (Spectral Theorem - Multiplier Form). Let A be a self-
adfoint operator on H with dense domain. Then there exists a finite measure
space (X,µ), a real-valued a.e. finite function f on X and a unitary operator
u : H → L2(X,µ) such that uAu∗ = Mf

Proof. See [2].

Remark 12.2.7 (Borel Functional Calculus). Note that the Spectral Theo-
rem allows us to define a Borel functional calculus for self adjoint operators.
Given a Borel function h on the spectrum of A, define h(A) = u∗Mh◦fu.

12.3 Polar Decomposition
Theorem 12.3.1. Let A : H → K be a closed, densely defined operator.
Then:
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(i) A∗A and AA∗ are positive self-adjoint operators (hence (A∗A)1/2 and
(AA∗)1/2 exist).

(ii) There exists a partial isometry with initial space Range(A∗A)1/2 and
final space Range(A) and

A = v(A∗A)1/2.

(iii) If A = uB for some positive B and partial isometry v with initial space
Range(B) then u = v and B = (A∗A)1/2.

(iv) In addition A = (AA∗)1/2v.

Proof. (i) Since Γ(A) is closed, it is a Hilbert space. Let P : Γ(A)→ H be
projection onto the first component. Since A is an operator Ker(P ) =
{0} and hence Range(P ∗) is dense in Γ(A) (so PP ∗H is a core for A).
Let ξ ∈ H, P ∗ξ = (η, Aη). Then, for all σ ∈ D(A),

< ξ, σ >=< P ∗ξ, (σ,Aσ) >=< η, σ > + < Aη,Aσ >

⇒ < ξ − η, σ >=< Aη,Aσ >

⇒ Aη ∈ D(A∗) and A∗Aη = ξ − η.

Thus D(A∗A) ⊃ PP ∗H which is a core for A. In addition Range(A∗A+
1) = H.
It is easy to see that A∗A is symmetric, so A∗A + 1 ⊂ (A∗A + 1)∗.
Let ξ ∈ D((A∗A + 1)∗). Since Range(A∗A + 1) = H there exists
ξ̃ ∈ D(A∗A + 1) with (A∗A + 1)∗ξ = (A∗A + 1)ξ̃(= (A∗A + 1)∗ξ̃).
Ker((A∗A + 1)∗) = {0} because Range(A∗A + 1) = H, and hence
ξ = ξ̃ ∈ D(A∗A+1). Thus (A∗A+1)∗ = A∗A+1 and so (A∗A)∗ = A∗A.

Finally, for ξ ∈ D(A∗A), < A∗Aξ, ξ >=< Aξ,Aξ >≥ 0 so A∗A is
positive, i.e. σ(A∗A) ⊂ [0,∞) (just use the Spectral Theorem).

(ii) As we noted above, D(A∗A) is a core for A. D(A∗A) is also a core for
|A| = (A∗A)1/2 (use spectral theory). Thus AD(A∗A) = RangeA and
|A|D(A∗A) = Range|A|. Note that for ξ ∈ D(A∗A),

|||A|ξ||2 =< A∗Aξ, ξ >=< Aξ,Aξ >= ||Aξ||2,

so that the map v : |A|ξ 7→ Aξ, ξ ∈ D(A∗A), extends to a partial
isometry with initial space |A|D(A∗A) = Range|A| and final space
AD(A∗A) = RangeA.
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For ξ ∈ D(|A|) take ξn ∈ D(A∗A) with (ξn, |A|ξn) → (ξ, |A|ξ). Then
Aξn = v|A|ξn → v|A|ξ and, as A is closed, ξ ∈ D(A) and Aξ = v|A|ξ.
For ξ ∈ D(A) take ξn ∈ D(A∗A) with (ξn, Aξn)→ (ξ, Aξ). Then

|A|ξn = v∗v|A|ξn = v∗Aξn → v∗Aξ.

Since |A| is closed, ξ ∈ D(|A|).
Hence D(A) = D(|A|) and A = v|A|.

(iii) If A = uB then A∗ = B∗u∗ = Bu∗. A∗A = Bu∗uB = B2 since u∗u is
projection onto Range(B). By uniqueness of the positive square root
of a positive operator (Exercise 12.3.3), (A∗A)1/2 = B. Thus the initial
space of u is Range(|A|) and u|A| = A = v|A| so u = v.

(iv)A = v(A∗A)1/2 soA∗ = (A∗A)1/2v∗ and henceAA∗ = v(A∗A)1/2(A∗A)1/2v∗ =
v(A∗A)v∗ (Exercise 12.3.3). Thus v implements the unitary equivalence
of AA∗|Range(A) and A∗A|Range(A∗). Hence (AA∗)1/2 = v(A∗A)1/2v∗ and
then A = v(A∗A)1/2 = (AA∗)1/2v.

Remark 12.3.2. Note that it was very important in (i) to establish that
D(A∗A) contained a core for A and hence was dense. It was not clear a
priori that D(A∗A) contained any elements other than 0.

Exercise 12.3.3. (i) Let T be a positive operator. Show that T 1/2T 1/2 = T .

(ii) Show that a positive operator has a unique positive square-root.

12.4 Unbounded operators affiliated with a von
Neumann algebra.

If M is a von Neumann algebra on H, an element a ∈ B(H) is in M iff
au = ua for every unitary in M ′. This inspires the following.

Definition 12.4.1. If T : D(T ) → H is a linear operator on the Hilbert
space H and M is a von Neumann algebra on H we say that T is affiliated
with M , written TηM if, for any unitary u ∈M ′,

uD(T ) = D(T ) and

uTξ = Tuξ ∀ξ ∈ D(T ).
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Lemma 12.4.2. If T is preclosed with closure T then TηM if TηM .

Proof. It is clear that TηM iff uΓ(T ) = Γ(T ) for all unitaries in M ′. But
this property passes to the closure of the graph.

Lemma 12.4.3. If T is a closed operator affiliated with M then

1. The projection onto Γ(T ) is a 2× 2 matrix of operators in M .

2. If T = u|T | is the polar decomposition of T then u ∈M and f(|T |) ∈M
for any bounded Borel function of |T |.

Proof. 1. is obvious from the characterisation of affiliation given in the
proof of the previous lemma.

2. follows from uniqueness of the polar decomposition and the bicommutant
theorem.
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Chapter 13

Tomita-Takesaki theory.

In chapter 9 we showed that the GNS construction on M using a faithful
normal trace produces a perfectly symmetric Hilbert space Htr with respect
to M and its commutant. This is because the map J , which is the extension
to Htr of the * operation on M , is an isometry. So x 7→ JxJ is the extension
to Htr of right multiplication by x∗. Unfortunately if we use a (normal)
non-tracial state φ the * operation is no longer an isometry and there is
no reason to expect either it or right multiplication by elements of M to
have bounded extensions to Hφ. But as we shall see, the * operation is
actually preclosed in the sense of unbounded operators and if S = J∆1/2

is the polar decomposition of its closure S, we will show that JMJ = M ′.
Quite remarkably, the operator ∆1/2 will satisfy ∆itM∆−it = M so that
a state actually gives rise to a dynamics – a one parameter automorphism
group of M (and M ′).

We will prove these results using a method of van Daele for which we
have followed some notes of Haagerup ([],[]). But before getting started on
this difficult theory it is essential to do some elementary calculations to see
how it all works out in the 2× 2 matrices.

Exercise 13.0.4. Let M be M2(C). Show that any state φ on M is of the
form φ(x) = Trace(hx) for some positive h of trace 1. And that φ is faithful
iff h is invertible. Thus with respect to the right basis,

φ(x) = Trace(x

(
1

1+λ
0

0 λ
1+λ

)
)

for some λ, 0 ≤ λ ≤ 1.

Exercise 13.0.5. With notation as in the previous exercise, suppose φ is
faithful and let S be the * operation on the GNS Hilbert space Hφ. Calculate
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the polar decomposition S = J∆1/2 and show that SMS = JMJ = M ′.
Show that ∆zM∆−z = M for z ∈ C so that σφz (x) = ∆zx∆−z = M defines a
representation of C as automorphisms of M which are ∗-automorphisms iff
z ∈ iR.

Exercise 13.0.6. Generalize the above to the n×n matrices and in fact any
finite dimensional von Neumann algebra.

13.1 S,F and their graphs.
Throughout this section M will be a von Neumann algebra on H and Ω ∈ H
a cyclic and separating vector for M and hence M ′. (The same data as a
faithful normal state.) Let S0 and F0 be the conjugate linear operators with
domains MΩ and M ′Ω defined by S0(xΩ) = x∗Ω and F0(xΩ) = x∗Ω for
x ∈M and M ′ respectively.

Lemma 13.1.1. In the sense of unbounded operators F0 ⊆ S∗0 and S0 ⊆ F ∗0
so that S0 and F0 have densely defined adjoints and hence are preclosed.

Proof. To show S∗0(a′Ω) is defined if 〈S0(aΩ), a′Ω〉 extends to a bounded
conjugate linear map on all of H. But 〈S0(aΩ), a′Ω〉 = 〈(a′)∗Ω, aΩ〉 which
is bounded as a function of aΩ by Cauchy-Schwartz. Hence a′Ω is in the
domain of S∗0 and S∗0(a′Ω) = (a′)∗Ω = F0(a′Ω). Interchanging S0 and F0 we
get the other inclusion.

Definition 13.1.2. Let S and F be the closures of S0 and F0 respectively.
Let S = J∆1/2 be the polar decomposition of S.

Observe that S0 = S−1
0 so S is injective and S2 = 1 in the sense of

unbounded operators. Thus ∆1/2 has zero kernel, J2 = 1 and J∆1/2J =
∆−1/2. The same goes for F and its polar decomposition, but we shall now
see that F = S∗.

Theorem 13.1.3. (Takesaki,[].) S∗ = F , F ∗ = S and the graph of S is the
set of all (cΩ, c∗Ω) where c is a closed densely defined operator affiliated with
M and Ω ∈ D(c) ∩D(c∗).

Proof. Let (ξ, F ∗ξ) be in the graph of F ∗. By the definition of F we know
that 〈ξ, (a′)∗Ω〉 = 〈a′Ω, F ∗ξ〉. Now define operators a and b with domain
M ′Ω by ax′Ω = x′ξ and bx′Ω = x′F ∗ξ. Then a and b are closable for if x′
and y′ are in M ′ we have

〈a(x′Ω), y′Ω〉 = 〈x′ξ, y′Ω〉 = 〈ξ, (x′)∗y′Ω〉
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= 〈(y′)∗x′Ω, F ∗ξ〉 = 〈x′Ω, y′F ∗ξ〉 = 〈x′Ω, b(y′Ω)〉

so that as before a ⊆ b∗ and b ⊆ a∗.
Let c be the closure of a. Then cΩ = aΩ = ξ and c∗ = a∗ ⊇ b so

c∗Ω = F ∗ξ. Now by construction the domain of a is invariant under the
unitary group of M ′ and on it a commutes with the unitaries in M ′. This
means that c is affiliated withM . At this stage we have shown that the graph
of F ∗ consists of all (cΩ, c∗Ω) where c is a closed densely defined operator
affiliated with M and Ω ∈ D(c) ∩D(c∗).

We now want to show that the graph of F ∗ is contained in the graph of S.
This is not hard. Let c be as above and c =

√
c∗c be its polar decomposition.

Then if fn(t) = t for 0 ≤ t ≤ n and fn(t) = 0 for t > n we have that
fn(
√
c∗c) →

√
c∗c on any vector in the domain of c, and since c is affiliated

with M , fn(
√
c∗c) ∈M so that ufn(

√
c∗c)Ω is in the domain of S and tends

to ξ. Moreover fn(
√
c∗c)u∗Ω tends to c∗Ω = F ∗ξ so (ξ, F ∗ξ) is in the graph

of S.
Thus F ∗ ⊆ S and we have already observed that S ⊆ F ∗. Hence S = F ∗

and S∗ = F .

Corollary 13.1.4. The polar decomposition of F is J∆−1/2.

We now prove a crucial result connecting M and M ′.

Lemma 13.1.5. Let λ ∈ R+ be given. Then for a′ ∈ M ′ there is an a ∈ M
with aΩ in the domain of F and a′Ω = (λS + λ−1F )aΩ.

Proof. Assuming ||a′|| ≤ 1 we may apply theorem 8.2.1 to the ψ defined by
ψ(x) = 〈xΩ, a′Ω〉 and φ(x) = 〈xΩ,Ω〉 to obtain the existence of an a ∈ M
with

〈xΩ, a′Ω〉 = λ〈axΩ,Ω〉+ λ−1〈xaΩ,Ω〉

= λ〈xΩ, a∗Ω〉+ λ−1〈aΩ, x∗Ω〉.

Provided aΩ is in the domain of F this equation reads a′Ω = (λS+λ−1F )aΩ.
On the other hand rearranging the equation gives

〈aΩ, x∗Ω〉 = λ〈xΩ, a′Ω− λa∗Ω〉

so by Cauchy Schwartz aΩ is in the domain of F = S∗.

Corollary 13.1.6. For each ξ ∈ D(∆1/2) ∩ D(∆−1/2) there is a sequence
an ∈M with anΩ→ ξ, ∆1/2anΩ→ ∆1/2ξ and ∆−1/2anΩ→ ∆−1/2ξ.
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Proof. Set η = (S + F )ξ and choose a sequence a′n ∈ M ′ with a′n → η. By
the previous lemma there are an ∈ M with (S + F )anΩ = a′nΩ. But S +
F = J(∆1/2 + ∆−1/2) has bounded inverse (in the usual sense of unbounded
operators) so put ξn = (S + F )−1(a′nΩ). So anΩ = (S + F )−1a′nΩ → ξ.
Moreover

∆1/2anΩ = ∆1/2(∆1/2 + ∆−1/2)−1Ja′nΩ

and ∆1/2(∆1/2 + ∆−1/2)−1 is bounded by spectral theory. So ∆1/2anΩ →
∆1/2(S + F )−1(S + F )ξ = ∆1/2ξ. In the same way ∆−1/2anΩ→ ∆−1/2ξ.

We put everything together with a lemma linking M and M ′ on a dense
subspace to which many functions of ∆ can be applied.

Lemma 13.1.7. If ξ and η are in D(S) ∩ D(F ), a′, λ and a as in 13.1.5,
then

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈a′ξ, η〉.

Proof. By moving one S and F to the other side of the inner products, we
see by the previous lemma that we may assume ξ and η are xΩ and yΩ
respectively, both in D(F ), for x and y inM . But onMΩ, SaS acts by right
multiplication by a∗ so 〈SaSξ, η〉 = 〈xa∗Ω, yΩ〉 = 〈SaΩ, x∗yΩ〉. On the other
hand, systematically using F ∗ = S we obtain 〈FaFxΩ, yΩ〉 = 〈y∗xΩ, aΩ〉 =
〈Sx∗yΩ, aΩ〉 = 〈FaΩ, x∗yΩ〉. Combining these two we see

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈(λSa+ λ−1Fa)Ω, x∗yΩ〉.

But by 13.1.5 this is 〈a′Ω, x∗yΩ〉 = 〈a′ξ, η〉.

13.2 Proof of the main theorem.

We begin with an easy exercise in contour integration.

Exercise 13.2.1. Let S be the strip {z ∈ C : −1/2 ≤ <(z) ≤ 1/2}. Suppose
f is continuous and bounded on S and analytic on the interior of S. Then

f(0) =

∫ ∞
−∞

f(1/2 + it) + f(−1/2 + it)

2 coshπt
dt

Hint: Integrate
f(z)

sinπz
around rectangular contours in S tending to the

boundary of S.
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Proposition 13.2.2. With notation as in the previous section

a =

∫ ∞
−∞

λ2it ∆itJa′J∆−it

2 coshπt
dt

Proof. Since J∆1/2J = ∆−1/2 we have J(D(S) ∩ D(T )) = D(S) ∩ D(T ) so
after a little rearrangement the formula of 13.1.7 reads

〈Ja′Jξ, η〉 = λ〈a∆−1/2ξ,∆1/2η〉+ λ−1〈a∆1/2ξ,∆−1/2η〉.

Now let H0 be the dense subspace of all vectors in H which is the union of
all ξ[a,b](∆ for 0 < a < b <∞. Certainly H0 ⊆ D(S)∩D(F ), H0 is invariant
under J and ∆z for z ∈ C, and moreover for ξ ∈ H0, z 7→ ∆zξ is an entire
function of z.

For ξ, η ∈ H0 define the analytic function

f(z) = λ2z〈a∆−zξ,∆zη〉.

Then f is bounded in the strip S of the previous lemma and f(0) = 〈aξ, η〉.
Also f(1/2 + it) = 〈∆it∆1/2ξ, η〉 so that

f(1/2 + it) + f(−1/2 + it) = λ2it〈∆itJa′J∆−itξ, η〉.

So by the previous lemma we are done.

Theorem 13.2.3. Let M be a von Neumann algebra on H and Ω a cyclic
and separating vector for M . Suppose S is the closure of xΩ 7→ x∗Ω on MΩ.
Let ∆ = S∗S, and J be the antiunitary of the polar decomposition S = J∆1/2.
Then

(i) JMJ = M ′

(ii) ∆itM∆−it = M ∀t ∈ R
Proof. If a′ ∈M ′ we know that∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 coshπt
dt ∈M.

Conjugating by a unitary u ∈ M ′ and writing λ = e
iθ
2 we see that the

Fourier transforms of the strongly continuous rapidly decreasing functions
∆itJa′J∆−it

2 coshπt
and u

∆itJa′J∆−it

2 coshπt
u∗ are equal. Hence ∆itJa′J∆−it ∈ M for

all real t since it commutes with every unitary u ∈M ′. (Take inner products
with vectors if you are not happy with Fourier transforms of operator valued
functions.)

Putting t = 0 we see JM ′J ⊆ M and by symmetry JMJ ⊆ M ′. Hence
JMJ = M ′ and we are done.
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Definition 13.2.4. The operator J of the previous result is called the mod-
ular conjugation and the strongly continuous one-parameter group of auto-
morphisms of M defined by σφt (x) = ∆itx∆−it is called the modular auto-
morphism group defined by φ.

13.3 Examples.
Example 13.3.1. ITPFI

The acronym ITPFI stands for “infinite tensor product of finite type I”.
These von Neumann algebras are formed by taking the *-algebra A∞ as the

union A∞ of tensor products Am =
m⊗
k=1

Mnk(C), the inclusion of Am in Am+1

being diagonal. The state φ on A∞ is then the tensor product of states on
each Mnk . One may then perform the GNS construction with cyclic and
separating vector Ω given by 1 ∈ A∞, to obtain the von Neumann algebra

M =
∞⊗
k=1

Mnk(C) as the weak closure of A∞ acting on Hφ. The case where

all the nk are equal to 2 and all the states are the same is called the “Powers
factor” and the product state the “Powers state” as it was R.Powers who first
showed that they give a continuum of non-isomorphic type III factors.

A slight snag here is that we do not know that Ω defines a faithful state
on M . But if we proceed anyway to construct what have to be J and ∆ we
will soon see that the state is indeed faithful, i.e. Ω is cyclic for M ′Ω.

Recall from exercise 13.0.6 that, forMn(C), and φh(x) = trace(xh) where
h is the diagonal matrix (density matrix) with hii = µi,

∑
µi = 1, µi > 0,

then Jn(eij) =
√

µj
µi
eji and ∆n(eij) = µi

µj
eij (where dependence on h has been

suppressed).

To diagonalise the modular operators on Hφ completely it is most con-
vincing to choose an orthonormal basis di of the diagonal matrices, with
d1 = 1. Then a basis for the Hilbert space Hφ is formed by tensors ⊗∞k=1vkΩ
where vk = 1 for large k, and is otherwise a di or an eij with i 6= j.

We can guess that J is, on each basis vector, the tensor product of the J ’s
coming from the matrix algebras. Defining it as such it is clearly an isometry
on A∞Ω and thus extends to all of Hφ. But then, for any x ∈ A∞, JxJ is in
M ′ by the finite dimensional calculation! But the linear span of these JxJΩ
is dense so Ω is cyclic for M ′ and hence separating for M . We are hence in
a position to apply Tomita-Takesaki theory. Each of the basis elements is in
MΩ so S(⊗∞k=1vkΩ) = ⊗∞k=1wkΩ where wk is vk if vk is diagonal, and eji if
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vk = eij. So JS is diagonal and hence essentially self-adjoint. We conclude
that

J(xΩ) = Jm(x)Ω and ∆(xΩ) = ∆m(x)Ω for x ∈ Am,

and

σφt =
∞⊗
k=1

σφhk .

Example 13.3.2. Group-measure-space construction.

Let Γ be a discrete group acting on the finite measure space (X,µ) pre-
serving the class of the finite measure µ. The Hilbert space of the crossed
product L∞(X,µ) is L2(X,µ)⊗ `2(Γ) and as we saw in chapter 11 the vector
1⊗ εid is a cylic and separating vector Ω for M = L∞(X,µ) o Γ.

Since the class of µ is preserved by the γ ∈ Γ the Radon Nikodym theorem
guarantees positive L1 functions hγ so that φ(hγαγ(y)) = φ(x) where φ(y) =∫
X
ydµ. We know that, if x ∈ L∞(X,µ) then S(uγx) = x∗uγ−1 . In general

we will not be able to completely diagonalise ∆ but the same argument as
in the previous example gives that the domain of ∆ is

{f : Γ→ L2(X,µ) :
∑
γ

∫
X

|hγ(x)f(x)|2dµ(x) <∞}

on which
(∆f)(γ) = hγf(γ),

and
(Jf)(γ) = h−1/2

γ f(γ).

We can now finally answer the question as to which sums
∑

γ xγuγ define
elements of M = L∞(X,µ) o Γ.

Theorem 13.3.3. With notation as above, if the function γ 7→ xγ ∈ L∞(X,µ)
is such that

∑
γ xγuγ, interpreted as a matrix of operators as in section 11.2,

defines a bounded operator, then that operator is in M = L∞(X,µ) o Γ.

Proof. By 13.2.3 it suffices to show that
∑

γ xγuγ commutes with JxuγJ for
all x ∈ L∞(X,µ) and γ ∈ Γ. And for this it suffices to check that the
commutation holds on functions of the form f ⊗ εγ for f ∈ L2. This is just
a routine computation.

Exercise 13.3.4. Show that example 13.3.1 is in fact a special case of this
group-measure-space example in which L∞(X,µ) is provided by the tensor
products of the diagonal elements and the group Γ is a restricted infinite
Cartesian product of cyclic groups, constructed from the non-diagonal eij’s.
Conclude by the method of 11.2.15 that ITPFI algbras are factors.
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This example brings to light a significant inadequacy of our treatment of
Tomita-Takesaki theory. We would like to treat the case where the measure
of the space is infinite. Although of course we could choose an equivalent
finite measure, this choice may not be natural. To do this we would have
to consider the theory of “weights” which are to states as the trace on a II∞
factor is to the trace on a type II1 factor. We need the same notion in order
to understand the origin of the term “modular” used above as coming from
the modular function on a non-unimodular locally compact group. But a
serious treatment of weights would take many pages so we simply refer the
reader to Takesaki’s book [3].

Example 13.3.5. Hecke algebras à la Bost-Connes.
If G is a finite group let ug and vg be the unitaries of the left and right

regular representations respectively. If H is a subgroup, the projection pH =
1
|H|
∑

h∈H vh projects from `2(G) onto functions that are right translation
invariant under H, i.e. functions on the quotient space G/H. Thus the so-
called “quasi-regular” representation of G on G/H is a direct summand of
the left regular representation and we have from EP7 of chapter 3.4 that the
commutant of the action of G on `2(G/H) is pHρ(G)pH where ρ(G) is the
algebra generated by the right regular representation (of course isomorphic
to C). This commutant is spanned by the pHvgpH which, thought of as
functions on G, are multiples of the characteristic functions of the double
cosets HgH which form the double coset space H\G/H. The subalgebra
of ρ(G) spanned by these double cosets is the space of H − H bi-invariant
functions and we see it is the commutant of G on `2(G/H). It is known as
the Hecke algebra for the pair (G,H) and has a considerable role to play
in the representation theory of finite groups. A famous example is the case
where G is the general linear group over a finite field and H is the group of
upper triangular matrices. The coset space is then the so-called “flag variety”
and the Hecke algebra in this case leads to a lot of beautiful mathemtatics.
See Bourbaki [].

Nothing could better indicate how differently things work for infinite dis-
crete groups than how the Hecke algebra works. Far from being direct sum-
mands, the quasiregular representations can be totally different from the left
regular representations and can even generate type III factors! These Hecke
algebras give nice examples where the modular operators can be calculated
explicitly.

Definition 13.3.6. A subgroup H of the discrete group G is called almost
normal if either of the two equivalent conditions below is satisfied.

(a) gHg−1 ∩H is of finite index in H for all g ∈ G.
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(b) Each double coset of H is a finite union of left cosets of H (i.e. the
orbits of H on G/H are all finite).

IfH is almost normal in G one may construct operators in the commutant
of the quasiregular representation of G on `2(G/H) as follows:

Given an element x of G/H let εx be the characteristic function of x.
These functions form an orthonormal basis of `2(G/H). Moreover each vector
εx is cyclic for the action of G hence separating for the commutant. If D is
a double coset of H define TD by the matrix

(TD)x,y =

{
1 if y−1x = D;
0 otherwise.

check this typesetting

Clearly TD is bounded since H is almost normal and it obviously com-
mutes with the action of G. From the definition we have

T ∗D = TD−1 .

It is also easy to check that

TDTE =
∑
F

nFD,ETF

where the structure constants are defined by

nFD,E =

{
#(E/H) if F ⊆ ED;
0 otherwise.

x

check typesetting here

We will call the von Neumann algebra generated by the TD’s the Hecke-
von Neumann algebra of the pair H ⊆ G and write it HvN(G,H). The
vector state φ defined on HvN(G,H) by εH is faithful and normal, and
〈TDεH , TD′εH〉 = 0 unless D = D′ so that the TD’s are orthogonal. It is thus
easy to calculate the operators for the modular theory on Hφ (note that this
is not `2(G/H)). We guess as usual that J(TDΩ) = (constant)TD−1Ω and
by counting cosets in double cosets (or sizes of orbits of H on G/H) we find
that the constant has to be (#(D/H))1/2(#(H\D))−1/2. Thus as before JS
is diagonal on the basis TDΩ of Hφ so essentially self-adjoint and

∆(TDΩ) =
#(H\D)

#(D/H)
TDΩ

with the obvious domain. Thus

σφt (TD) =

(
#(H\D)

#(D/H)

)it

TD.
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Examples of almost normal subgroups are not hard to find. The classical
example of Hecke himself is the case where G = SL(2,Q) and H = SL(2,Z).
In this case the Hecke algebra is abelian. Bost and Connes in [4] examined
the case of the ax+b group over the rationals with the subgroup being integer
translations. They showed that HvN(G,H) in this case is a type III factor
and made a connection with prime numbers.

13.4 The KMS condition.

In the examples of the previous section the operators of the modular group
were easy to calculate explicitly, including the domain of ∆. One can imagine
that this is not always so. If we are particularly interested in the modular
group σφt it would be useful to be able to guess it and show that the guess is
right without bothering about the domain of ∆. The KMS (Kubo-Martin-
Schwinger) condition from quantum statistical mechanics allows us to do just
that. The modular group came from the non-trace-like property of a state
and the KMS condition allows us to correct for that. Let us do a formal
calculation assuming that the modular group can be extended to complex
numbers (remember that Ω is fixed by S, J and ∆):

φ(xy) = 〈yΩ, x∗Ω〉
= 〈yΩ, J∆−1/2∆x∆−1Ω〉
= 〈∆x∆−1Ω, SyΩ〉
= 〈y∆x∆−1Ω,Ω〉.

We conclude that
φ(xy) = φ(yσφi (x)).

Thus the trace is commutative provide we operate by the modular group.

Exercise 13.4.1. If M is finite dimensional and φ is a faithful state, show
that φ ◦ σφt = φ and that for each x and y in M there is an entire function
F (z) with, for t ∈ R,

F (t) = φ(σφt (x)y) and
F (t+ i) = φ(yαt(x)).

If M is infinite dimensional we would not expect the function F (z) of the
previous exercise to be entire.
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Definition 13.4.2. Let αt be a strongly continuous one parameter automor-
phism group of a von Neumann algebra M , and φ be a faithful normal state
on M . We say that α satisfies the KMS condition for φ if φ ◦ αt = φ and ,
for each x and y in M , there is a function F , continuous and bounded on
the strip {z : 0 ≤ =m(z) ≤ 1}, analytic on the interior of the strip and such
that for t ∈ R,

F (t) = φ(σφt (x)y) and
F (t+ i) = φ(yαt(x)).

Theorem 13.4.3. If φ is a faithful normal state on a von Neumann algebra
M then σφt is the unique one parameter automorphism group satisfying the
KMS condition for φ.

This chapter has been heavily technical so we defer the proof, which is by
approximation on dense subspaces of the domain of ∆ to which the previous
calculations can be applied, to an appendix. We content ourselves here with
an interesting corollary, identifying a part or M on which φ behaves as a
trace.

Corollary 13.4.4. For a ∈M the following are equivalent:

1. φ(ax) = φ(xa) for all x ∈M .

2. σφt (a) = a for all t ∈ R.

Proof. (1 ⇒ 2) Observe that for x ∈ M , 〈x∗Ω, aΩ〉 = 〈Ω, xaΩ〉 = 〈Ω, axΩ〉
(by 1). So 〈SxΩ, aΩ〉 = 〈a∗Ω, xΩ〉 so that aΩ ∈ D(S∗) and S∗(aΩ) = Ω∗. So
∆(aΩ) = aΩ, ∆itaΩ = aΩ and finally σφt (a) = a for all t ∈ R.

(2⇒ 1) φ(σφt (x)a) = φ(σφt (xa)) = φ(xa) so that F (t) is constant. Use the
Schwarz reflection principle to create a holomorphic function, constant on R,
in the union of the strip with its complex conjugate. Thus F is constant on
the strip and φ(xa) = φ(ax).

Definition 13.4.5. The von Neumann subalgebra of M defined by either of
the conditions of the previous corollary is called the centraliser of the state
φ.
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Chapter 14

Connes’ theory of type III factors.

14.1 The Connes unitary cocycle Radon-Nikodym
theorem.

This result will allow us to extract information from the modular group of a
state which is independent of the state.

Theorem 14.1.1. Let φ and ψ be faithful normal states on a von Neumann
algebra M . Then there is a strongly continous map t → ut from R to the
unitary group of M so that

σφt = Adutσψt ∀ t ∈ R.

Morevoer ut satisfies the cocycle condition utσψt (us) = ut+s.

Proof. We define the faithful normal state Φ on M ⊗M2(C) by Φ((x)ij) =
1
2
(φ(x11) +ψ(x22)). The projection p = ( 1 0

0 0 ) is fixed by σΦ by 13.4.4. So σΦ

defines a one parameter automorphism group of pM⊗M2(C)p which satisfies
the KMS condition for φ. Hence σΦ

t (x ⊗ e11) = σφt (x) ⊗ e11. Similarly
σΦ
t (x ⊗ e22) = σψt (x) ⊗ e22. Let Vt = σΦ

t (1 ⊗ e21). Then VtV
∗
t = ( 0 0

0 1 )
and V ∗t Vt = ( 1 0

0 0 ). Hence Vt = ( 0 0
vt 0 ) for some unitary vt ∈ M . Routine

computations give the rest.

Corollary 14.1.2. If M is a factor and σφt is outer for any φ and t then M
is of type III.

Proof. By the previous result it suffices to exhibit a single faithful normal
state on a type II factor with inner modular group. In the II1 case use the
trace and in the II∞ case choose a faithful normal state φ on B(H) and use
tr⊗φ, using the KMS condition (if necessary) to very that the modular group
for the tensor product is the tensor product of the modular groups.
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Corollary 14.1.3. The subgroup of all t ∈ R for which σφt is inner is inde-
pendent of the faithful normal state φ.

Definition 14.1.4. The subgroup of the previous corollary, which is an in-
variant of M , is called T (M).

We shall now calculate T (M) for the Powers factor Rλ where this refers
to the ITPFI factor with all nk = 2 and all states having the same density

matrix h =

(
1

1+λ
0

0 λ
1+λ

)
.

Theorem 14.1.5.
T (Rλ) =

2π

log λ
Z

.

Proof. By the formula for the modular group σφ2π
log λ

= id so 2π
log λ

Z ⊆ T (Rλ).
For the other direction it suffices to show that an automorphism α of the
form

α = ⊗∞k=1Adu

is outer whenever the unitary u is not a scalar.
For this first define uk = ⊗k1u and observe that if α = Adv then (uk ⊗

1)−1v = id on the matrix algebra Ak = ⊗k1M2(C). By exercise 4.3.3 this
means that v = uk ⊗ w. Now it is clear from our basis that we can choose
⊗pj=1xi ⊗ 1Ω with non-zero inner procuct with vΩ. But then fixing p and
letting k tend to infinity we see that

〈(⊗pj=1xi ⊗ 1)Ω, vΩ〉 =

p∏
j=1

〈xi, u〉〈1, u〉k−p〈1, w〉.

The left hand side does not depend on k and |〈1, w〉| ≤ 1 so we must have
|〈1, u〉| = 1 which means that u is a scalar multiple of 1 by the Cauchy-
Schwarz inequality.

We conclude that the Powers factors Rλ are type III factors, mutually
non-isomorphic for different values of λ.

14.2 Type IIIλ.
The spectrum of the modular operator ∆ is easy to calculate for an ITPFI
factor. It is simply the closure of the set of all ratios µi

µj
as µ varies over

all the density matrices defining the product state. Apart from being closed
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under the inverse operation this set of non-negative real numbers has no
particular structure and can be altered easily by making changes in finitely
many density matrices which of course do not change the factor.

Definition 14.2.1. If M is a von Neumann algebra the invariant S(M)
is the intersection over all faithful normal states φ of the spectra of their
corresponding modular operators ∆φ.

Theorem 14.2.2. A factor M is of type III iff 0 ∈ S(M).

Theorem 14.2.3. (Connes-van Daele) S(M) \ {0} is a closed subgroup of
the positive real numbers.

There are only three kinds of closed subgroups of R+.

Definition 14.2.4. A factor M is called type IIIλ for 0 ≤ λ ≤ 1 if

λ = 0 : S(M) = {0} ∪ {1}
0 < λ < 1 : S(M) = {0} ∪ {λn : n ∈ Z}

λ = 1 : S(M) = {0} ∪ R+

Theorem 14.2.5. The Powers factor Rλ is of type IIIλ.

In his thesis, Connes showed that every type IIIλ factor for 0 < λ < 1 is Connes thesis

canonically isomorphic to the crossed product of a type II∞ factor with an
action of Z whose generator scales the trace by λ.

IfA is a locally compact abelian group with an action α on a von Neumann
algebra M , there is an action α̂ of the Pontryagin dual Â on the crossed
product M oα A satisfying

α̂a(x) = x for x ∈M
α̂â(ua) = â(a)ua if ua are the unitaries defining the crossed product.

The existence of the so-called “dual action” α̂ is trivial proved since it is
implemented by the obvious unitary representation of Â on L2(A).

Exercise 14.2.6. If A is finite consider the projection p =
∑

a ua ∈M oA.
Show that pMoAp = MAp and thus show that (MoαA)oα̂ Â is isomorphic
to M ⊗M|A|(C).

107



Observe that the crossed product of a von Neumann algebra M on H by
the modular group σφ does not depend, up to isomorphism, on the faithful
normal state φ. This follows from theorem 14.1.1 by defining the unitary V
on L2(R,H) by

V f(t) = utf(t)

where ψ is another faithful normal state with unitary one-cocycle ut. Conju-
gating the operators that generate MoσφR by V one obtains the generators
of M oσψ R.

Theorem 14.2.7. The crossed product of M by the modular group admits a
trace satisfying the properties of 9.1.9

Definition 14.2.8. The action of R̂ on Z(M oσφ R) is called the “flow of
weights” of M .

Theorem 14.2.9. (Takesaki duality) The crossed product

(M oσφ R) o
σ̂φ

R̂

is isomorphic to the tensor product M ⊗ B(H) for H = L2(R).

Thus if M is a factor the flow of weights is ergodic.

Theorem 14.2.10. If M is a factor of type IIIλ the flow of weights is

III1: The trivial flow on a one point set if M is III1.

IIIλ: The transitive flow on the circle with period 2π
λ
if M is of type IIIλ,

0 < λ < 1.

III0: Ergodic non-transitive if M is of type III0.

Moreover any ergodic non-transitive flow arises as the flow of weights for
some type III0 factor.
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Chapter 15

Hyperfiniteness

Definition 15.0.11. A von Neumann algebraM on a separable Hilbert space
is called hyperfinite if there is an increasing sequence An of finite dimensional
*-subalgebras of M which generates M as a von Neumann algebra.

15.1 The hyperfinite type II1 factor R
The first main result about hyperfiniteness was proved by Murray and von
Neumann in []. We will use R to denote the hyperfinite II1 factor whose
uniqueness they proved.

Theorem 15.1.1. Up to abstract isomorphism there is a unique hyperfinite
II1 factor.

Sketch of proof. One works with the norm ||x||2 = tr(x∗x)1/2 on M . It is
not hard to show that a von Neumann subalgebra N of M is strongly dense
inM iff it is dense in ||−||2. Given a subalgebra A ofM and a subset S ⊆M
one says

S ⊆ A

ε

if for each x ∈ S there is a y ∈ A with ||x− y||2 < ε.

The hyperfiniteness condition then implies:

For every finite subset S ⊆ M and every ε > 0 there is a finite dimen-
sional *-subalgebra A of M with

S ⊆ A.

ε

109



The next step is to show that the A in the preceeding condition can be
chosen to be the 2n× 2n matrices for some (possibly very large) n. This part
uses what might be described as “II1 factor technique”. One begins with A
and approximates all its minimal projections {ei} by ones whose traces are
numbers of the form k/2n. The matrix units of A can be changed a little bit
in || − ||2 so that, together with matrix units conecting projections of trace
1/2n less than the ei, they generate a 2n×2n matrix algebra containing, up to
ε, the matix units of A. Perturbation of the matrix units will involve results
of the form:

If u ∈ M satisfies ||(uu∗)2 − uu∗||2 < ε then there is a partial isometry
v ∈M with ||v − u||2 < F (ε)
(for some nice function f with f(0) = 0).

or:

If p and q are projections with ||pq||2 < ε then there is a projection q′ with
pq′ = 0 and ||q − q′|| < F (ε).

or:

If fij are “almost n× n matrix units”, i.e.

(a) ||fij − fji||2 < ε

(b) ||fijfkl − δj,kfil||2 < ε

(c) ||1−
∑n

i=1 fii||2 < ε

then there are n×n matrix units eij with ||eij−fij|| < F (ε) where F depends
only on n and F (0) = 0.

Such results are proved by a skilful use of the polar decomposition and
spectral theorem.

Thus one shows that in a hyperfinite type II1 factor one has:

Property * : For every finite subset S ⊆M and every ε > 0 there is a
2n × 2n matrix subalgebra of M with

S ⊆ A.

ε

One may now proceed to prove the theorem by choosing a || − ||2-dense
sequence xk in M and inductively constructing an increasing sequence of
2nk × 2nk matrix algebras Ak with the property that

For each k = 1, 2, 3, ..., {x1, x2, ..., xk} ⊆ Ak .

1/k
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The union of the Ak’s is clearly dense in || − ||2. This is enough to prove
the theorem since the Ak’s can be used to give an isomorphism of M with
the type II1 factor ⊗∞M2(C) constructed in section 6.2.

To construct Ak+1 from Ak one needs to arrange for the new algebra
to contain the one already constructed. So to the elements x1, x2, ..., xk+1,
add matrix units eij for Ak+1. Now use property * to obtain a B almost
containing the xi and the matrix units, with ε small enough to control sums
over the matrix units eij. In B we know there are approximate matrix units
close to the eij so by a technical lemma, exact matrix units fij close to the
eij. Now choose a unitary close to the identity which conjugates the fij to
the eij and use this unitary to conjugate B to a superalgebra of Ak. This
superalgebra is Ak+1 and it contains the xi up to epsilon since u is close to
the identity.

This completes the sketch of the proof. The technique involved is con-
sidered standard in von Neumann algebras and the details can be found in
. dixmier

Corollary 15.1.2. If S∞ is the group of finitely supported permutations of
a countably infinite set then vN(S∞) ∼= ⊗∞M2(C).

Proof. The subgroups of S∞ permuting an increasing sequence of finite sets
show that vN(S∞) is hyperfinite.

It is surprising at first sight that the type II1 factor L∞(X,µ)oZ obtained
from an ergodic measure-preserving transformation T is hyperfinite. This can
be shown by Rokhlin’s tower theorem which asserts that, for each n ∈ N and
each ε > 0 there is a measurable subset A ⊆ X with

(1) T i(A) ∩ T j(A) = ∅ for 1 ≤ i < j ≤ n, and

(2) µ(X \ ∪ni=0T
i(A)) < ε.

The unitary u1 of the crossed product and the characteristic function of A
can be combined, with a little perturbation to get the identity, to get a n×n
matrix algebra. Careful application of the tower theorem will allow one to
get any element of L∞(X,µ), and u1, in this matrix algebra up to some ε.
This was first proved by Henry Dye in who went on to prove that in fact all Dye

groups of polynomial growth give hyperfinite II1 factors in this way.
The ultimate result in this direction is the celebrated “Injective factors”

theorem of Connes who showed that hyperfiniteness for a von Neumann al-
gebraM on H is equivalent to “injectivity” which means there is a projection
in the Banach space sense of norm one from B(H) onto M . This theorem,
whose proof is a great, great tour de force, has a raft of corollaries, many of
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which were open questions. Let us just mention the fact that it follows easily
that any subfactor of R which is infinite dimensional is in fact isomorphic to
R. It also implies that vN(Γ), as well as L∞(X,µ)oΓ is hyperfinite as soon
as Γ is amenable.

15.2 The type III case.
The complete classification of injective(=hyperfinite) factors is a triumph
of 20th. century mathematics. Connes showed in that there is only oneConnes actions

trace-scaling automorphism of R⊗B(H) for each scaling factor λ 6= 1 up to
conjugacy. Together with this shows that for each λ with 0 < λ < 1 there isConnes Injective factors

a unique injective factor of type IIIλ.

Using results of Krieger in , his thesis and , Connes showed that hyperfi-krieger

injective nite type III0 factors are classified by their flow of weights (up to conjugacy of
flows, not orbit equivalence). This means that there is a rather large number
of III0 factors but their classification is in the realm of ergodic theory rather
than von Neumann algebras.

The remaining case of injective type III1 factors was solved by Haagerup
in . There is just one such factor and a hyperfinite factor is “generically” ofuffeIIIone

type III1.
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Chapter 16

Central Sequences.

16.1 Generalities.
Definition 16.1.1. If M is a type II1 factor, a central sequence in M is a
norm bounded sequence (xn) with limn→∞ ||[xn, a]||2 = 0. A central sequence
is said to be trivial if limn→∞ ||xn − tr(xn)id||2 = 0. M is said to have
property Γ if there is a central

The collection of all central sequences is clearly a C∗-subalgebra of `∞(N,M).
If ω is a free ultrafilter on N, the subalgebra Iω of `∞(N,M) consisting of
sequences with limn→ω ||xn||2 = 0 is a 2-sided ideal of `∞(N,M). Note also
that M is embedded in `∞(N,M) as constant sequences.

Definition 16.1.2. With notation as above, the ultraproduct ofM along ω is
the quotient of `∞(N,M) by Iω. It is written Mω. The algebra of (ω-)central
sequences is the centraliser Mω = M ′ ∩Mω of M in `∞(N,M).

By compactness, the trace on M defines a trace on Mω by

tr((xn)) = lim
n→ω

tr(xn)

and by definition it is faithful on Mω.

Exercise 16.1.3. Show that the unit ball (in the C∗ norm) ofMω is complete
in || − ||2 so that Mω and Mω are von Neumann algebras.

16.2 Central sequences in R

All models for R exhibit central sequences in abundance. The most obvious
situation is that of ⊗∞M2(C). Fixing x ∈M2(C) we can define the sequence
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xn = 1⊗ 1⊗ 1...x⊗ 1⊗ 1... with the x in the nth slot in the tensor product.
For large enough n, xn will commute with any element in the algebraic tensor
product so by the obvious (in the II1 case!) inequality ||[xn, a]|| ≤ 2||xn|| ||a||2
we see that (xn) is central and clearly non-trivial if x is not a scalar. Just as
clearly the central sequence algebra is non-commutative as we only need to
choose x and y that do not commute and construct the sequences (xn) and
(yn) as above. In fact it is not hard to show that Rω is a factor.

Theorem 16.2.1. The central sequence algebra Rω is a type II1 factor.

Proof. If (xn) represents an element X ∈ Rω,finish proof!

16.3 Type II1 factors without property Γ.

Theorem 16.3.1. Let Γ be an icc group possessing a subset ∆ not containing
the identity and three elements α, β and γ such that

(a)Γ = {1} ∪∆ ∪ α∆α−1

(b)∆, β∆β−1 and γ∆γ−1 are mutually disjoint.

then for x ∈ vN(Γ),

||x− tr(x)id||2 ≤ 14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.

Proof. Write x as
∑

ν∈Γ xνuν . We will frequently use the formula

||[x, uρ]||22 = ||uρ−1xuρ − x||2 =
∑
ν∈Γ

|xν − xρνρ−1|2.

By replacing x by x − tr(x)id it suffices to prove the result if tr(x) = 0
and we may suppose ||x||2 = 1 so that for such an x we must show 1 ≤
14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.

We first make a simple estimate. If Λ is any subset of Γ and ρ ∈ Γ then

|
∑
ν∈Λ

|xν |2 −
∑
ν∈Λ

|xρνρ−1|2| =
∑
ν∈Λ

(|xν |+ |xρνρ−1|)||xν | − |xρνρ−1||

≤
∑
ν∈Λ

(|xν |+ |xρνρ−1|)(|xν − xρνρ−1|)

≤ 2||x||2(
∑
ν∈Λ

|xν − xρνρ−1|2)1/2

114



so that if ρ ∈ {α, β, γ} we have

|
∑
ν∈Λ

|xν |2 −
∑
ν∈Λ

|xρνρ−1 |2| ≤ 2ε

where ε = max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.
Let us now first overestimate ||x||2 = 1:

1 ≤
∑
ν∈∆

|xν |2 +
∑
ν∈∆

|xανα−1|2

≤ 2
∑
ν∈∆

|xν |2 + 2ε.

Now underestimate it:

1 ≥
∑
ν∈∆

|xν |2 +
∑
ν∈∆

|xβνβ−1|2 +
∑
ν∈∆

|xγνγ−1|2

≥ 3
∑
ν∈∆

|xν |2 − 4ε.

Let y =
∑

ν∈∆ |xν |2 and eliminate y from the inequalities 1 ≤ 2y+ 2ε and
1 ≥ 3y − 4ε to obtain

ε ≥ 1/14

as desired.

It is easy to come up with groups having subsets as in the previous the-
orem. For instance if G = F2, free on generators g and h, let ∆ be the set
of all reduced words ending in a non-zero power of g. Let α = g, β = h and
γ = h−1. The same works for more than two generators. We conclude:

Theorem 16.3.2. The type II1 factor vN(Fn) for n ≥ does not have property
Γ.
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Chapter 17

Bimodules and property T
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Chapter 18

Fermions and Bosons:CAR and
CCR

According to physics lore, the states of a quantum system are given by (the
one-dimensional subspaces of) a Hilbert space H and if two systems have
state spaces H and K, the joint system has state space H ⊗ K. Fermions
are particles such that "the wave function of several fermions is antisymmet-
ric" which means that it is the antisymmetric tensor product ΛnH which
describes n identical fermions. Bosons are particles whose wave functions
are symmetric so it is the symmetric tensor power SnH which describes n
identical bosons. In order to treat families with an unlimited number of
fermions and Bosons we need the fermionic and bosonic Fock spaces (which
are Hilbert space direct sums):

F(H) = ⊕∞n=0ΛnH

and
S(H) = ⊕∞n=0S

nH.

The passage from H to F(H) or S(H) is known as “second quantisation’.
We will not attempt to explain the physics above but will define properly

these two Fock spaces and how they give rise to interesting von Neumann
algebras related to physics.

Both these Fock spaces are subspaces of the "full Fock space" or tensor
algebra

T (H) = ⊕∞n=0 ⊗n H

T (H) is related to quantum physics also though so far in a less funda-
mental way through the large N behaviour of random N ×N matrices and
Voiculescu’s free probability.
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18.1 The Fock spaces.

18.1.1 Full Fock space

Definition 18.1.2. If H is a real or complex Hilbert space the full Fock space
T (H) is the Hilbert space direct sum ⊕∞n=0 ⊗n H. By definition ⊗0H is one
dimensional, spanned by the "vacuum" vector Ω.

Even whenH is real one complexifies T (H) so that it is a complex Hilbert
space.

For each n and f ∈ H the operator `(f) : ⊗nH → ⊗n+1H given by

`(f)(ξ1 ⊗ ξ2 · · · ξn) = f ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn

is clearly bounded by ||f || so extends to an operator we will call `(f) on all
of full Fock space.

Exercise 18.1.3. (i) Show that

`(f)∗(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = 〈ξ1, f〉ξ2 ⊗ ξ3 · · · ξn,

`(f)∗(ξ) = 〈ξ, f〉Ω for ξ ∈ ⊗1H,
and `(f)∗Ω = 0.

(ii) Show that
`(f)∗`(g) = 〈g, f〉

Proposition 18.1.4. The action of the `(f) and `(f)∗ on full Fock space is
irreducible.

Proof. It suffices to show that any non-zero vector in T (H) is cyclic. The
vacuum vector Ω is obviously cyclic. Note that the linear span of the images
of the `(f)`(f)∗ is the orthogonal complement Ω⊥. The projection onto Ω⊥

is thus in {`(f), `(f)∗}′′. If ξ is any vector we are thus done if 〈ξ,Ω〉 6= 0.
Otherwise 〈ξ, f1 ⊗ f2 · · · fn〉 must be non-zero for some fi ∈ H. But then
〈`(f1)`(f2) · · · `(fn)Ω, ξ〉 6= 0 and the vector (`(f1)`(f2) · · · `(fn))∗ξ, which
can be reached from ξ, projects non-trivially onto the vacuum and is thus
cyclic.

One may also consider the right creation operators r(ξ) defined by

r(f)(ξ1 ⊗ ξ2 · · · ξn) = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn ⊗ f.
They satisy the same relations as the `(f) and almost commute with them.
To be precise
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18.1.5.
`(f)r(g) = r(g)`(f)

and
`(f)r(g)∗ − r(g)∗`(f) = −〈f, g〉pΩ

where pΩ is projection onto the one dimensional subspace spanned by the
vacuum.

The r(f)’s and r(f)∗’s act just as irreducibly as the `’s.

18.1.6 Fermionic Fock space.

Given a Hilbert spaceH, the nth. exterior or antisymmetric power ofH is the
Hilbert space ΛnH = p(⊗nH) where p is the antisymmetrisation projection

p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
1

n!

∑
σ∈Sn

(−1)σξσ(1) ⊗ ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n)

Definition 18.1.7. The fermionic Fock space of H is the Hilbert space direct
sum

F(H) = ⊕∞n=0ΛnH

.

Given ξ1, ..ξn ∈ H we set

ξ1 ∧ ξ2 ∧ · · · ∧ ξn =
√
n! p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn)

Exercise 18.1.8. Show that 〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn, η1 ∧ η2 ∧ · · · ∧ ηn〉 is the
determinant of the matrix whose (i, j) entry is 〈ξi, ηj〉.

Obviously if σ ∈ Sn,

ξσ(1) ∧ ξσ(1) ∧ ξσ(2) · · · ∧ ξσ(n) = (−1)σξ1 ∧ ξ2 ∧ · · · ∧ ξn.

Exercise 18.1.9. For f ∈ H define A(f) : ⊗nH → Λn+1H by

A(f)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
1√
n!
f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn,

show that A(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.
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Exercise 18.1.10. The previous exercise shows that for each f ∈ H there is
a bounded linear map from ΛnH to Λn+1H defined by:

a(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.

Show that

a(f)∗(ξ1 ∧ ξ2 ∧ · · · ∧ ξn+1) =
n+1∑
i=1

(−1)i+1ξ1 ∧ · · · ξ̂i · · · ∧ ξn+1

We have sloppily left out the n on our operators a(f). But we can put
them all together to form the densely defined operators a(f) and a(f)∗ on
F(H) whose domain is the algebraic direct sum of the ΛnH.

Exercise 18.1.11. Show that these densely defined operators satisfy the CAR
relations.

Exercise 18.1.12. Show that ||a(f)ξ|| ≤ ||ξ|| for ξ in the domain of a(f) so
a(f) an a(f)∗ extend to bounded operators on F(H) which are one another’s
adjoints and satisfy the CAR relations.

Exercise 18.1.13. Imitate 18.1.4 to show that the *-algebra generated by
the a(f) acts irreducibly on fermionic Fock space.

18.2 CAR algebra, CCR algebra and the (ex-
tended) Cuntz algebra.

18.2.1 CAR algebra

Definition 18.2.2. If H is a complex Hilbert space the CAR (canonical
anticommuation relations) algebra CAR(H) is the unital *-algebra with gen-
erators a(f) for each f ∈ H subject to the following relations:
(i) The map f 7→ a(f) is linear.
(ii) a(f)a(g) + a(g)a(f) = 0 ∀f, g ∈ H.
(iii) a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉 ∀f, g ∈ H.

(the identity is implicit on the right hand side of (iii))

We already know a non-trivial representation of the CAR algebra on
Fermionic Fock space.

Exercise 18.2.3. Show that if dimH = 1, CAR(H) is isomorphic toM2(C).
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Proposition 18.2.4. If dimH = n < ∞, the Fock space representation is
irreducible and faithful so CAR(H) ∼= M2n(C).

Proof. Irreducibility was already shown. This means that the dimension
of the image of the representation is 22n. But words in the a(f) may be
rearranged without changing their linear span so that all a(f)’s come before
all a(g)∗’s. Moreover the order of the a(f)’s in a word only matters up to a
sign so that, after choice of a orthogonal basis, the CAR algebra is linearly
spanned by words given by pairs of subsets of the basis-one for the a(f)’s
and one for the a(f)∗’s. Thus the dimension of the CAR algebra is ≤ 22n

and the Fock space represenation is bijective.

Corollary 18.2.5. If K is a subspace of H, the obvious inclusion map of
CAR(K) into CAR(H) is injective.

Proof. If K is finite dimensional this follows from the simplicity of a matrix
algebra. In general an element of CAR(H) is a finite linear combination of
words on a(f)’s and a(f)∗’s so in CAR of a finite dimensional subspace.

Corollary 18.2.6. There is a unique C∗-norm and a unique normalised trace
on CAR(H).

Proof. This follows from the uniqueness of the norm and trace on a matrix
algebra as in 18.2.5

We will see an explicit formula for the trace on words in the a(f) and
a(f)∗ later-it is a "quasi-free" state.

Exercise 18.2.7. Show that ||a(f)|| = ||f ||.
This shows that, if we choose an orthonormal basis ξi of H (supposed

separable), the *-algebra generated by {a(ξi)|i = 1, 2, · · ·∞} is dense in the
C∗-completion of CAR(H). Thus this C∗-algebra is in fact isomorphic to the
inductive limit of 2n× 2n matrices and one obtains the hyperfinite II1 factor
as its GNS completion.

From now on we will abuse notation by using CAR(H) for the C∗-algebra
completion.

Exercise 18.2.8. A unitary u on H obviously defines an automorphism αu
of CAR(H) (sometimes called a Bogoliubov automorphism) by functorially
extending αu(a(f)) = a(uf). In particular choosing u = −1 makes CAR(H)
into a Z/2Z-graded algebra. Define a notion of graded product A ⊗Z/2Z B
for Z/2Z-graded algebras A and B. Show that if V and W are orthogonal
Hilbert subspaces of H then CAR(V ⊕W ) ∼= CAR(V )⊗Z/2Z CAR(W ).
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18.3 Vacuum expectation value
The vacuum vector Ω defines a state ωΩ on CAR(H) as usual via 〈xΩ,Ω〉
which as we know would reconstruct Fock space via the GNS construction.
The following formula is clear:

18.3.1.

ωΩ

(
a(fm)∗a(fm−1)∗ · · · a(fm)∗a(g1)a(g2) · · · a(gn)

)
= δm,n det (〈gi, fj〉)

We know that states on matrix algebras are given by tr(h)̇ so we would
like to know what ωΩ looks like in this picture. For this we will construct an
explicit isomorphism between CAR(H) and M2n(C). To do this it suffices
to exhibit a family of n commuting 2 × 2 matrix algebras. If we choose an
orthonormal basis ξ, each a(ξ) will give a 2×2 matrix algebra but they won’t
quite commute. But this can be fixed up by unitaries which implement the
Bogoliubov automorphism corresponding to −1.

So let H be a Hilbert space and let {ξi | i = 1, 2, ...∞} be an orthonormal
basis. Set

ai = a(ξi) ∈ CAR(H)

and vi = 1− 2a∗i ai. The vi commute among themselves so put

uk =
k∏
i=1

vi.

Exercise 18.3.2. Show:
v2
i = 1 = u2

i , ujaiuj = −ai for i ≤ j and ujaiuj = ai for i > j.

If we put ek12 = ukak, then [ek12, e
j
12] = 0 = [ek12, (e

j
12)∗] for all j, k so that

the ek12 generate mutually commuting 2 × 2 matrix units with ek11 = aka
∗
k

and ek22 = a∗kak. This gives an isomorphism between the CAR algebra of the
linear span of ξ, ξ2 · · · ..., ξn withM2n(C) and hence CAR(H) with ⊗∞1 M2(C).
Observe that uk implements the Bogoliubov automorphism for −1 and thus
depends on the basis only up to a sign.

Now we can see what the vacuum expectation value looks like:

ωΩ(ekij) =

{
0 i 6= j or i = 1

1 i = j = 2

Thus in the matrix picture if h = ( 0 0
0 1 ) then ωΩ is the product state

ωΩ(⊗∞i=1xi) =
∞∏
i=1

tr(hxi).

124



18.4 Quasi-free states
We will now generalise formula 18.3.1 to what are called quasi-free states.
The operator a in the theorem below is called the “covariance" of the state.

Theorem 18.4.1. For each self-adjoint a on H, 0 ≤ a ≤ 1 there is a state
φa on CAR(H) defined by

φa
(
a(fm)∗a(fm−1)∗ · · · a(f1)∗a(g1)a(g2) · · · a(gn)

)
= δm,n det (〈agi, fj〉)

Proof.

Lemma 18.4.2. Theorem 18.4.1 is true if a is a projection p and dimH =
n <∞.

Proof. Choose a basis ξ1, ξ2, ..., ξk for pH and η1, η2, ..., ηn−k for (1−p)H. We
claim that if v = η1 ∧ η2 ∧ · · · ηn−k the the vector state ωv is the required
state. For this note that it suffices to prove the formula

ωv
(
a(fm)∗a(fm−1)∗ · · · a(f1)∗a(g1)a(g2) · · · a(gn)

)
= δm,n det (〈pgi, fj〉)

when the f ’s and g’s are basis vectors since both sides are suitably multilinear.
If any of the f ’s and g’s is in (1− p)H both sides are zero. If all the f ’s and
g’s are in pH the left hand side is 〈g1 ∧ · · · ∧ gn ∧ v, f1 ∧ · · · fm ∧ v〉 which is
0 unless m = n in which case it is the determinant:(

det(〈gi,fj〉) 0

0 det(〈ηi,ηj〉)

)
= det (〈pgi, fj〉)

Lemma 18.4.3. Theorem 18.4.1 is true if p is a projection.

Proof. Choose bases ξ1, ξ2, · · · for pH and η1, η2, · · · for (1− p)H and let Vk
be the subspace of H spanned by {ξi, ηj|1 ≤ i, j ≤ k}. Then for each k there
is a state on CAR(Vk) satisfying the formula and these states are coherent
with the inclusions CAR(Vk) ⊂ CAR(Vk+1). By density and continuity of
states they extend to a state on CAR(H) still satisfying the formula of the
theorem.

To end the proof of theorem 18.4.1 we form H ⊕ H and consider the
projection

p =

(
a
√
a(1−a)√

a(1−a) 1−a

)
. Obviously the quasifree state φp on CAR(H ⊕ H) restricts to a state on
CAR(H)⊕ 0 satisfying the formula of the theorem.
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Exercise 18.4.4. Show that if a is diagonalisable with eigenvalues λi then
using the basis of eignvectors to identify CAR(H) with ⊗∞M2(C), the quasi-
free state with covariance a becomes a product state with hi =

(
λi 0
0 1−λi

)
.

Let us think a little more about a quasi-free state whose covariance is a
projection p, first in finite dimensions. The vector of the GNS construction
has been identified with η1∧ η2 · · · ∧ ηk where the η are an orthonormal basis
for (1 − p)H. Physicists think of this η1 ∧ η2 · · · ∧ ηk as a new "vacuum" in
which the "states" η1, · · · ηk have been filled. There is no particular reason not
to use this notation when dim(1− p)H =∞ so the vacuum is η1∧ η2∧ η3 · · ·
which represents Dirac’s “sea” and a state η1 ∧ η2 · · · ∧ η̌i ∧ · · · represents an
excitation of the vacuum by a “hole" or antiparticle ηi.

One may make of this what one likes but there is a particularly signifi-
cant mathematical consequence. If ut is a one-parameter group of unitaries
on H which commutes with p then the corresponding group of Bogoliubov
automorphisms αt preserves φp and so defines a one parameter unitary group
Ut(πφp(x)Ωp) = πφp(αt(x))Ωp of the GNS space Hp with vacuum vector Ωp

for φp. The map from (1− p)H to H, η 7→ a(η)∗Ωp is anti -linear so the sign
of t will be reversed. More concretely suppose for simplicity that ut has an
orthonomal basis of eigenvectors {ξk|k ∈ Z} with

utξk = eiEktξk,

and that p is the projection onto the space spanned by the ξk with Ek < 0.
Then following through the definition of Ut, we see that

Utξk =

{
eiEktξk if Ek ≥ 0

e−iEktξk if Ek < 0.

Physically this is remarkable. If we start with a Hamiltonian inadmissible
because of its negative energy eigenvalues, second quantisation with the ap-
propriate quasi-free state turns all the negative energies into positive ones!

18.5 Complex structure

One may obtain the existence of the quasi-free states without basis calcula-
tions by changing the complex structure on H.

Definition 18.5.1. If K is a real Hilbert space, a complex structure on K is
an orthogonal transformation J with J2 = −1.
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Lemma 18.5.2. A real Hilbert space K with inner product (, ) and a complex
structure J can be made into a complex Hilbert space by defining the action
of C as (x+ iy)ξ = xξ + yJξ and the inner product

〈ξ, η〉 = (ξ, η)− i(Jξ, η)

Proof. The vector space structure is routine as is sesquilinearity of 〈, 〉. But
〈ξ, ξ〉 = (ξ, ξ)− i(Jξ, ξ) and (Jξ, ξ) = −(ξ, Jξ) = −(Jξ, ξ) which is therefore
zero. Hence <,> is positive definite and defines the same norm as (, ) so
completeness is unchanged.

Definition 18.5.3. The Clifford algebra of a real Hilbert space K is the
(complex) *-algebra generated by c(f) subject to:
(i) The map f 7→ c(f) is real linear.
(ii) c(f) = c(f)∗ ∀f ∈ K.
(iii) {c(f), c(g)} = 2(f, g) ∀f, g ∈ H.

(clearly c(f)2 = (f, f) is equivalent to (iii)).

Proposition 18.5.4. If K is a real Hilbert space with complex structure J ,
mapping a(f) to 1

2
(c(f)−ic(Jf)) defines an isomorphism of the CAR algebra

of the complex Hilbert space onto the Clifford algebra of K. The inverse map
is given by c(f) 7→ a(f) + a(f)∗.

Proof. It is routine that f 7→ a(f) is complex-linear and satisfies the CAR
relations, so the map extends to all of CAR. Also a(f) + a(f)∗ satisfies the
Clifford algebra relations and is an inverse to a(f) 7→ 1

2
(c(f)− ic(Jf)) on the

generators hence on all of the Clifford algebra.

Thus given a complex Hilbert space H and another complex structure J
on the underlying real Hilbert space, there is an isomorphism of complex *-
algebras χJ : CAR(H)→ CAR(HJ) and hence a representation of CAR(H)
every time we have one of CAR(HJ), in particular the Fock representation
of HJ gives a representation of CAR(H). Explicitly if we follow the isomor-
phism through the Clifford algebra we obtain

18.5.5.
χJ(a(f)) =

1

2

(
A(f − Jif) + A(f + Jif)∗

)
where we have used A(f) for the generators of CAR(HJ).

The simplest J if given by choosing a projection p ∈ B(H) and changing
of i on pB(H)⊥, thus J = ip− i(1− p) (which is actually C-linear).
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Exercise 18.5.6. Show that the state induced on CAR(H) by ξ and the Fock
vacuum for HJ with J as above is quasi-free of covariance p.

The question thus becomes: what does HJ , and hence its Fock space,
look like? If H is a Hilbert space let H be the dual Hilbert space of H and
ξ 7→ ξ be the canonical antilinear map from H to its dual.

Proposition 18.5.7. Let q = (1 − p). Then the map ξ 7→ pξ ⊕ qξ is a
C-linear isomorphism from HJ to pH⊕ (1− p)H.

Exercise 18.5.8. If the Hilbert space H is the direct sum K ⊕ L, show that
F(H) is canonically isomorphic to

⊕∞n=0 ⊕i+j=n
(
ΛiK ⊗ ΛjL

)
Thus F(HJ) ∼= ⊕∞n=0⊕i+j=n

(
ΛipH⊗Λj(1− p)H

)
on which CAR(H) acts

according to 18.5.5.

Exercise 18.5.9. Show how the general quasi-free states are related to arbi-
trary complex structures on a complex Hilbert space.

18.5.10 CCR algebra

18.5.11 Cuntz algebra

Definition 18.5.12. Given the complex Hilbert space H, let the extended
Cuntz algebra of H, C(H), be the unital ∗-algebra with generators `(f) for
each f ∈ H subject to the following relations:
(i) The map f 7→ `(f) is linear.
(ii) `(f)∗`(g) = 〈g, f〉 ∀f, g ∈ H.

The `(f) defined on full Fock space show that this algebra is non-trivial.

Exercise 18.5.13. Show that the representation of C(H) on full Fock space
is faithful.

This means that there is a C∗-norm on C(H) so we may consider it as a
C∗ algebra.

Exercise 18.5.14. If ξ1, ξ2, ..., ξn are orthogonal unit vectors then `(ξi) are
isometries with orthogonal ranges, and the projection

n∑
i=1

`(ξi)`(ξi)
∗

depends only on the space spanned by ξ1, ξ2, ...., ξn.
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If H is finite dimensional and ξi is an orthonormal basis we see that the
projection p = 1−

∑n
i=1 `(ξi)`(ξi)

∗ doesn’t depend on anything. We may take
the quotient C∗ algebra by the two sided ideal generated by this projection.
This quotient is THE Cuntz algebra discovered by Cuntz in []. Note that
in the representation on full Fock space p is the projection onto the vacuum
that we used to prove irreducibility.

The case dimH = 1 is already interesting. The full Fock space is `2(N)
and if ξ is a unit vector, `(ξ) is the unilateral shift. C(H) in this case is
known as the Toeplitz algebra and there is an exact sequence 0→ k(`2(N)) 7→
C(H) 7→ C(S1) where k(`2(N)) is the ideal generated by 1− `(ξ)`(ξ)∗ which
is the compact operators.

If dimH > 1 it is known that the Cuntz algebra is simple ([]).
We refer to [] for a development of the notion of quasi-free states on

the extended Cuntz algebra. Most important is of course the vacuum state
φ = ωΩ. It is obvious that C(H) is spanned by products of the form
`(f1)`(f2) · · · `(fm)`(g1)∗ · · · `(gn)∗ and the vacuum expectation value of this
word is 0 unless m = n = 0.

Given a subspace V of H, C(V ) is naturally included in C(H).

Definition 18.5.15. Let `(V )′′ be the von Neumann algebra generated by
C(V ) on T (H).

Proposition 18.5.16. Let x ∈ `(V )′′ be such that φ(x) = 0. Then there is a
sequence xi with ||xi|| ≤ ||x|| of linear combinations of products of the form
`(f1)`(f2) · · · `(fm)`(g1)∗ · · · `(gn)∗ (with m or n different from zero) such that
xi tends strongly to x.

Proof. Use Kaplansky density to get xi’s in C(V ) then subtract φ(xi) times
the identity. Since φ is continuous the correction tends to zero.

Lemma 18.5.17. The state φ has the following "freeness" property:
let V1 and V2 be orthogonal subspaces of H and suppose x1x2 · · ·xn is a product
in `(H)′′ such that
(i) φ(xi) = 0 ∀i
(ii) Each xi is in `(V1)′′ or `(V2)′′ and xi ∈ `(V1)′′ ⇐⇒ xi±1 ∈ `(V2)′′, then

φ(x1x2 · · ·xn) = 0

.

Proof. Applying the previous proposition we can work in the C(V )’s where
the result is obvious from orthogonality.
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Observe that the result works just as well for any family of mutually
orthogonal subspaces and appropriate words. Note that the "free" terminol-
ogy comes from vN(Fn) where the algebras generated by the generators of
Fn have this property with φ replaced by the trace (by essentially the same
reasoning).

Definition 18.5.18. If A is a complex unital *-algebra with a state φ, two
unital *-subalgebras A1 and A2 will be called φ-free if
φ(x1x2 · · · xn) = 0 whenever x1x2 · · ·xn is a product in A such that
(i) φ(xi) = 0 ∀i
(ii) Each xi is in A1 or A2 and xi ∈ A1 ⇐⇒ xi±1 ∈ A2.

make sure defintion of state
applies to a general *-
algebra The analogue of the Clifford algebra generators would be c(f) = `(f) +

`(f)∗. Taking commutators reveals nothing interesting but considering C(H)
on full Fock space where we have the right creation operators and we may
form d(f) = r(f) + r(f)∗.

Proposition 18.5.19. [c(f), d(f)] = 〈g, f〉 − 〈f, g〉
Proof. See 18.1.5

We see that c(f) and d(f) commute if 〈f, g〉 is real.
Definition 18.5.20. A real subspace of H on which 〈, 〉 is real will be called
isotropic A real structure on H is one of the following equivalent notinons.
(i) An antilinear involution σ on H.
(ii) An isotropic subspace V of H with H = V + iV .

The subspace V is the fixed points for the involution σ.

Definition 18.5.21. If V is an isotropic subspace of H, call c(V ) the von
Neumann algebra generated by the c(f) for f ∈ V on T (H).

Lemma 18.5.22. If V is an isotropic subspace of H then φ is a trace on
c(V ).

Proof. By continuity it suffices to show that φ(wc(f)) = φ(c(f)w) for all
f ∈ V any word w on the c(g)’s. But

〈wc(f)Ω,Ω〉 = 〈wf,Ω〉 (18.1)
= 〈wd(f)Ω,Ω〉 (18.2)
= 〈d(f)wΩ,Ω〉 (18.3)
= 〈wΩ, d(f)Ω〉 (18.4)
= 〈wΩ, c(f)Ω〉 (18.5)
= 〈c(f)wΩ,Ω〉 (18.6)
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We will write tr for the restriction of φ to c(V ).

Lemma 18.5.23. If V is a real structure on H, Ω is cyclic and separating
for c(V ).

Proof. By symmetry with the d(f)’s it suffices to prove that Ω is cyclic for
c(V ). By induction on n suppose c(V )Ω contains ⊕ni=0 ⊗i H. Then for
v ∈ ⊗nH, c(f)v = f ⊗ v + x with x ∈ ⊗n−1H. Hence c(V )ω contains
f ⊗ (⊗nH) and since H = V + iV we are done.

We see that c(V ) is a finite von Neumann algebra in standard form on
T (H). We will see that for dimh > 1 it is a type II1 factor by showing it is
isomorphic to vN(Fn) where n = dimH, but let us begin by understanding
the one dimensional case. Any unit vector ξ spans a real structure and `(ξ) is
unitarily equivalent to the unilateral shift so that c(ξ) is given by the matrix(

0 1 0 0 ···
1 0 1 0 ···
0 1 0 1 ···
0 0 1 0 ···
···

)

Lemma 18.5.24. c(ξ) has no eigenvalues.

Proof. If the eigenvalue were λ then it would have to be real. Let the eigen-
vector be (xn) with n ≥ 0. λ = 0 is easily excluded so xn+1 = λxn− xn−1 for
n ≥ 1 and x1 = λx0. Thus xn = Aσn + Bσ−n with both A and B different
from 0. So (xn) is not square summable.

Although this lemma is enough to obtain our type II1 factor result, let
us complete the spectral analysis of c(ξ) by obtaining the moments, i.e. the
traces or vacuum expectation values of c(ξ)n for n ≥ 0. Our method will be
a bit long-winded but adapted to further calculations.

Lemma 18.5.25. We have

tr(c(ξ)n) =

{
0 if n is odd

1
m+1

(
2m
m

)
if n = 2m

Proof. Let x = c(ξ). Then we want to calculate

〈(x+ x∗)(x+ x∗) · · · (x+ x∗)Ω,Ω〉.

That this is zero for odd n is obvious, so put n = 2m. Expand the product
into 2n terms, each a word on x and x∗. We want to enumerate those which
give a non-zero contribution to trace. There must be as many x’s as x∗’s and
the word must end in x. We proceed to reduce the word by the following
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algorighm: the last occurrence of x∗ is followed by an x so use x∗x = 1 to
eliminate the pair. The new word must also end in x so continue until only
〈Ω,Ω〉 remains. We may record the sequence of eliminations of (x∗, x) pairs
by pairing them as indicated below for a typical word:

x∗ x x x∗ x x∗ x x.
The diagram above the word is known as a Temperley-Lieb diagram

or non-crossing pairing or planar pairing. It consists of m smooth non-
intersecting arcs joining the letters in the word. Thus for every such picture
up to isotopy there is a contribution of 1 to the trace. It remains only to
count such Temperley-Lieb diagrams. Let tn be the number of such diagrams,
with t0 set equal to 1. Then by considering the letter to which the first letter
of the word is connected, it is obvious that

tn+1 =
n∑
j=0

tjtn−j for n ≥ 0.

Multiplying both sides by zn+1 and summing over n we get

Φ(z)− 1 = zΦ(z)2

where Φ(z) =
∑∞

n=0 is the generating function for the tn. So

Φ(z) =
1−
√

1− 4z

2z

and if we expand using the binomial formula we get the answer.

Corollary 18.5.26. For −2 ≤ x ≤ 2 let dµ = 1
2π

√
4− x2dx. Then there

is a trace preserving isomorphism of c(ξ)′′ onto L∞([−2, 2], dµ) sending c(ξ)
onto the operator of multiplication by x.

Proof. By7.1.9 it suffices to prove that

1

2π

∫ 2

−2

xn
√

4− x2dx =

{
0 if n is odd

1
m+1

(
2m
m

)
if n = 2m

We leave this as an exercise.
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Now return to showing that c(V )′′ ∼= vN(Fn) for n = dimH. We will do
this when n = 2, leaving the general case as a straightforward generalisation.
So letH be a two dimensional complex vector space with real structure V and
let V1 and V2 be the subspaces of V spanned by orthonormal vectors f1 and
f2 respectively. Then by lemma 18.5.17 we see that c(V ) is generated by two
abelian subalgebras c(V1) and c(V2) with the property that tr(x1x2 · · · xn) = 0
whenever tr(xi) = 0 ∀i and the xi are in c(V1) or c(V2) depending only on
i mod 2. But then if w = x1x2 · · ·xn is any such product without imposing
tr(xi) = 0 we may in a universal way calculate the trace of w by writing
xi = (xi − tr(xi)) + tr(xi). The result depends only on the traces of the
xi. So if M is any other finite von Neumann algebra with faithful normal
trace tr generated by two abelian subalgebras A1 and A2 having the same
property, we can construct an isomorphism between M and c(V ) as soon as
we are given tr-preserving isomorphisms from A1 to c(V1), and A2 to c(V2)
respectively.

Let us record this more formally.

Theorem 18.5.27. Let (A,A1, A2, φ) and (B,B1, B2, ψ) be algebras and
states as in definition 18.5.18, with A1 and A2 free with respect to φ and
B1 and B2 free with respect to ψ. Suppose θi are unital *-isomorphisms from
Ai to Bi for i = 1, 2, taking φ to ψ. Then there is a unique *-isomorphism
from the algebra generated by A1 and A2 onto the algebra generated by B1

and B2 extending θ1 and θ2.

Proof. By faithfulness it suffices to show that

φ(y1y2 · · · yn) = ψ(θ(y1)θ(y2) · · · θ(yn))

whenever each yi is in either A1 or A2 and θ is θ1 or θ2 accordingly. We will
prove this assertion by induction on n. We may clearly assume successive yi’s
belong to different Ai’s since otherwise we can reduce the length of the word
using the properties of the θi and apply the inductive hypothesis. But then
write xi = yi−φ(yi) so that yi = φ(yi) + xi. Expanding (φ(y1) + x1)(φ(y2) +
x2) · · · (φ(yn) + xn) we see x1x2 · · · xn plus a linear combination of words of
length less than n with coefficients the same as those expanding (ψ(θ(y1)) +
θ(x1))(ψ(θ(y2)) + θ(x2)) · · · (ψ(θ(yn)) + θ(xn)) in the same way. The freeness
condition and the inductive hypothesis imply the desired equality.

Corollary 18.5.28. Let H be a Hilbert space of dimension n with complex
structure V . Then c(V )′′ ∼= vN(Fn).

Proof. If Fn is free on generators ai and xi is an orthonormal basis in V for
H, then by 18.5.26,both {uai}′′ and c(Rxi) are L∞ of a standard atomless
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probability space so there are trace preserving isomorphisms between them.
We are done by 7.1.9 and the previous theorem (with 2 replaced by n).

We can generalise 18.5.25 immediately to dimH > 1 as follows.

Proposition 18.5.29. Let f1, f2, ..., fk be vectors in H. Then

〈c(f1)c(f2)...c(fk)Ω,Ω〉 =
∑∏

i,σ(i)

〈fi, fσ(i)〉

where the sum is over all planar pairings σ of (1, 2, 3, · · · , k), with i < σ(i).

Proof. The same argument as in 18.5.25 applies.

Remark 18.5.30. We may form the *-algebra C〈X1, X2, · · ·Xn〉 of polyno-
mials in n non-commuting self-adjoint variables. The previous work may be
considered as defining a trace on this algebra by sending Xi to c(ξi) for an
orthonormal basis {ξi} of V .

Thus the trace of a word x1x2x3 · · ·xk, where each of the xi is one of the
Xi is the number of Temperley Lieb diagrams as below for which xj = xj if
they are joined by a curve in the diagram:

x∗1 x2 x3 x∗4 x5 x∗6 x7 x8.
We call this trace the Voiculescu trace on C〈X1, X2, · · ·Xn〉. An explicit

formula like that of 18.5.25 is not so clear and it can be difficult to work
with a scalar product for which the words are not orthogonal. This can be
corrected by using the obvious orthonormal basis of Fock space as tensor
products of the ξi. Multiplication in this basis is more complicated but not
much more so:

Exercise 18.5.31. Define multiplication on C〈X1, X2, · · ·Xn〉 as follows:
Let x1x2 · · ·xp and y1y2...yq be words on X1, X2, · · ·Xn. Then

x1x2 · · ·xp?y1y2...yq =

min(p,q)∑
i=0

δxp,y1δxp−1,y2 · · · δxp−i+1,yix1x2 · · ·xp−iyi+1yi+2 · · · yq

Thus for instance

X2
1X2X3 ? X3X2X1X2 = X2

1X2X
2
3X2X1X2 +X2

1X
2
2X1X2 +X3

1X2 +X1X2
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We would like to show how the Voiculescu trace arises in the study of large
random matrices. For this we will use Wick’s theorem concerning jointly
Gaussian random variables. A complex (centred) Gaussian random vari-
able is a sum A+ iB of two independent identically distributed real centred
Gaussian random variables. The variance of A + iB is

√
E(A2) + E(B2),

and E((A + iB)2) = 0. Suppose Z1, Z2 · · ·Zn are complex centred jointly
Gaussian random variables with E(ZiZj) = aij.

Theorem 18.5.32.

E(Z1Z2 · · ·Zn) =
∑
σ

∏
i<σ(i)

aiσ(i)

where the sum is over all pairings σ of {1, 2, · · ·n}.

Now let X = Xij be a self-adjoint N × N random matrix. This means
that the Xij are jointly Gaussian complex random variables with

Xij = Xji for i 6= j and Xiiis real,

and all other matrix entries are independent. Suppose E(|Xij|2) = d.We
want to consider E(Trace(Xk)). Writing this out in full we get

∑
i1,i2,···ik

E(Xi1i2Xi2i3Xi3i4 · · ·Xiki1).

The individual terms in this sum can each be expanded using Wick’s
formula. In the figure below we have represented a typical term in the ex-
pansion, each black dot being an occurrence of X and the pairing is indicated
by curves outside the circle. We have used a circle rather than a straight line
segment to emphasize the cyclic aspect of the trace.
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Because of the independence of the Gaussians we will only get a non-zero
condition when k is even and the indices at one end of the pairing are the
same as at the other end, but in the opposite order. In order to get a non-zero
contribution, In the figure above this forces i1 = i4, i4 = i6, i6 = i3, i3 = i2
and i7 = i1. So in fact there are only 3 freely varying indices, i1, i5 and
i8 each of which gives a contribution to the total sum of d3. We represent
each such contribution below where we have thickened the curves defining
the pairing into (flat) ribbons. Observe that the indices i1, i5 and i8 extend
to the boundary components of the surface obtained by gluing the ribbons
to a central disc. There are N3 ways to assign the indices and once assigned,
each term contributes dk/2. So the total contribution of all terms with the
given pairing is N3dk/2.
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Now consider a general pairing and proceed in the same way. If we glue in
(abstract) discs along the boundary components we get an orientable surface
whose Euler characteristic is “V-E+F" which in general will be 1− k/2 + F
where F is the number of discs glued in, i.e. the number of freely varying
indices for the given pairing. If g is the genus of the surface, we have 2−2g =
F + 1− k/2 which gives

F = k/2 + 1− 2g.

So the total contribution of all terms with the given pairing is NFdk/2. We see
that if d = 1√

N
then this contribution will be N1−2g so that 1

N
E(Trace(Xk))

will tend, as N →∞, to the number of pairings with g = 0. But if the pairing
is planar, obviously g = 0 and if g = 0 we know from the classification of
surfaces that we get a 2-sphere, from which it is clear that the partition is
planar! Hence we have shown:

lim
N→∞

1

N
E(Trace(Xk)) =

{
0 if k is odd

1
m+1

(
2m
m

)
if k = 2m

The above argument works equally well with n random N ×N matrices
X1, X2, · · ·Xn each of which has entries with covariance as above and for
which entries in different random matrices are independent. We see we have
proved the following:
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Theorem 18.5.33. If w is a word on the random matrices X1, X2, · · ·Xn

as above then limN→∞
1
N
E(Trace(w)) exists and is equal to the Voiculescu

trace of the same word viewed as an element of C〈X1, X2, · · ·Xn〉.

This result, together with 18.5.28 gave Voiculescu a remarkable new in-
sight into the vN(Fn) and he was able to prove some spectacular isomor-
phisms between them -[].
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Chapter 19

Subfactors

19.1 Warmup. Finite Groups.

Let G be a finite group with an outer action α on the type II1 factor M . Let
N = MG be the fixed point algebra. We continue the notational conventions
from chapter 11 on the crossed product.

A covariant representation of (M,α) is an action of M on some Hilbert
space H together with a unitary representation vg on H with vgxv∗g = αg(x)
for g ∈ G and x ∈M .

Proposition 19.1.1. For finite groups the crossed product is universal for
covariant unitary representations. In fact any covariant representation of
(M,α) extends to an isomorphism from M oG onto {M, {vg}}′′ by sending
ug to vg.

Proof. Define π : M o G → {M, {vg}}′′ by π(
∑

g agug) =
∑

g agvg. π is
obviously ultraweakly continuous so its image is a von Neumann algebra.
But that image contains M and the vg. And a type II1 factor is simple.

A canonical way to obtain a covariant representation is to extend the
action of G on M to L2(M). We call these unitaries wg. We see that, for
finite groups only, another model for the crossed product is the von Neumann
algebra on L(M) generated by M and the wg.

Exercise 19.1.2. dimM M oG = |G|.

Proposition 19.1.3. The extension to L2(M) of the conditional expectation
EN : M → N is eN = 1

|G|
∑

g wg.

Proof. Obvious.
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Theorem 19.1.4.

JN ′J = {M ∪ {wg}}′′ = {M ∪ {eN}}′′

Proof. Clearly J commutes with the wg and eN so the assertion is the same
as N ′ = {M ′∪{wg}}′′ = {M ′∪{eN}}′′. BothM ′ and the wg’s are in N ′ so it
suffices to prove that N ′ ⊆ {M ′ ∪ {eN}}′′ or equivalently {M ′ ∪ {eN}}′ ⊆ N
which follows from the assertion:

x ∈M and [x, eN ] = 0 =⇒ x ∈ N.

For this just evaluate xeN and eNx on the identity inside L2(M).

Remark 19.1.5. There is actually quite a bit of content here. How you
would write an individual wg for instance as an element of {M ∪ {eN}}′′?

Corollary 19.1.6. If G is a finite group acting by outer automorphisms on a
type II1 factorM thenMG is a subfactor with trivial centraliser, dimMG(L2(M)) =
|G| and (MG)′ ∩M oG = CG.

Proof. N is the commutant of a type II1 factor inside a type II1 factor, hence
a type II1 factor. And N ′ ∩M = (M ′)′ ∩ {M ′ ∪ {vg}}′′ which is the scalars
by 19.1.1 and 11.2.5. For the dimension calculation note that by 11.2.5 we
obtain M ⊆ M o G from any covariant representation. In particular we
can start with the crossed product on its own L2 space and reduce by a
projection of trace |G|−1 in its commutant. Thus by the formulae governing
the behaviour of dimM , dim{M,{wg}}′′ L

2(M) = |G|−1 and the result follows
from 19.1.4. The last assertion is a trivial caclulation.

Exercise 19.1.7. If α is an outer action of the finite group G on the type
II1 factor M and ξ : G→ T is a one dimensional character, show there is a
unitary u ∈M with

αg(u) = ξ(g)u ∀g ∈ G
.
Hint: try a 2x2 matrix argument, changing the action α⊗1 by Advg, vg being
the unitary

(
1 0
0 ξ(g)

)
.

The group Ĝ of all 1-dimensional characters ξ : G → T acts on M o G
via the formula

α̂ξ(
∑
g

agug) =
∑
g

ξ(g)agug

This is called the dual action.
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Exercise 19.1.8. Show that the dual action (even for infinite groups G) is
outer.

If G is abelian one may form the crossed product

(M oα G) oα̂ Ĝ

Exercise 19.1.9. Show that if G is finite, the second dual action of G on
(M oα G) oα̂ Ĝ is conjugate to the "stabilised" action

α⊗ Ad`g
on M ⊗ B(L2(G)) (where `g is the left regular representation).

The result of the previous exercise remains true for locally compact abelian
groups and motivates an alternative definition of the crossed product as the
fixed points for the stabilised action.

19.2 Index.
Inspired by the above and 10.2.2 we make the following:

Definition 19.2.1. If N ⊆M are II1 factors, the index [M : N ] of N in M
is the real number dimN L

2(M).

Exercise 19.2.2. Show that [M : N ] = 1 implies N = M .

Proposition 19.2.3. (i) If M acts on H so that dimN H <∞ then

[M : N ] =
dimN H
dimM H

.

(ii) If [M : N ] < ∞ and p is a projection in N ′ ∩M then set [M : N ]p =
[pMp : pN ], then

[M : N ]p = trN ′(p)trM(p)[M : N ].

(for any action of M on H for which N ′is a type II1 factor.) (iii) If {p} is
a partition of unity in N ′ ∩M then

[M : N ] =
∑
p

[M : N ]p
tr(p)

.

(iv) If N ⊆ P ⊆M are type II1 factors then

[M : N ] = [M : P ][P : Q].

(v) If M acts on H such that dimN H <∞ then

[M : N ] = [N ′ : M ′]
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Proof. (i) Certainly M ′ (on H) is a type II1 factor since N ′ is and taking the
direct sum of finitely many copies of H will not change the ratio dimN H

dimM H
. So

we may assume dimM H ≥ 1 which means there is a projection p in M ′ with
pH ∼= L2(M) as an M module. But the trace of this p in N ′ is the same as
the trace in M ′ by uniqueness of the trace. Hence by the properties of the
coupling constant, dimN H

dimM H
does not change under reduction by this p.

(ii) This follows immediately from (i) and properties of the coupling constant.
(iii) Just sum [M :N ]p

trM (p)
over p.

(iv) The only case of interest is when [M : N ] <∞. Then the result follows
immediately from (i).
(v) Immediate from (i).

Corollary 19.2.4. If N ′ ∩M 6= Cid then [M : N ] ≥ 4.

Definition 19.2.5. We call a subfactor irreducible if N ′ ∩M = Cid.

Definition 19.2.6. A subfactor N ⊆M is called locally trivial
if [M : N ]p = 1 for any minimal projection in N ′ ∩M .

Exercise 19.2.7. Show that dim(N ′ ∩M) ≤ [M : N ].

Here is a list of what might be called the "classical" subfactors- ones
whose existence owes nothing to the dedicated development of subfactor the-
ory.

Example 19.2.8. The trivial subfactors.
If M is a type II1 factor, so is M ⊗Mk(C) for any integer k > 0. We can

embed M in M ⊗Mk(C) by x 7→ x ⊗ 1. It is clear that L2(M ⊗Mk(C)) is
the direct sum of k2 copies of L2(M) so [M ⊗Mk(C) : M ] = k2.

Example 19.2.9. Continuously varying index.
Choose a projection of trace d in the hyperfinite type II1 factor R. Then
pRp and (1 − p)R(1 − p) are isomorphic by hyperfiniteness so choose a von
Neumann algebra isomorphism θ : pRp→ (1− p)R(1− p). Let M be R and
N be the subalgebra {x + θ(x)|x ∈ pRp}. It is clear that pMp = Np and
(1− p)M(1− p) so by lemma 19.2.3,

[M : N ] =
1

d
+

1

1− d
.

As d varies between 0 and 1, this index takes all real values ≥ 4.

Observe though that N ′∩M contains p so the subfactor is reducible. The
set of index values for irreducible subfactors of R is not understood though
for other type II1 factors it may be the interval [4,∞]
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Example 19.2.10. Group-subgroup subfactors.
If G is a discrete group acting by outer automorphisms on the type II1 factor
M , and H is a subgroup of G, it is clear that M ⊗H is a subfactor of M ⊗G
of index [G : H].

If G is finite we may consider MG ⊆ MH which also has index [G : H]
by 19.1.2 and 19.2.3

Example 19.2.11. Making the trivial non-trivial.

Definition 19.2.12. An action of a compact group on a factor M is called
minimal if (MG)′ ∩M = Cid.

If G has a minimal action α on M and ρ is an irreducible unitary repre-
sentation of G on Ck we may take the action α⊗ Adρ on M ⊗Mk(C). One
then defines the "Wassermann subfactor"

(M ⊗ 1)G ⊆ (M ⊗Mk(C))G.

The point is that the commutant of (M ⊗ 1)G in M ⊗Mk(C) is already just
Mk(C) by minimality of the action. So the fixed points are indeed factors
and the Wassermann subfactor is irreducible.

Already for finite groups this provides lots of examples. If G is infinite
there is a simple way to construct minimal actions. Just take a finite dimen-
sional unitary representation ρ and consider ⊗∞1 Adρ on R. The group S∞ is
contained in the fixed points via its (inner) action permuting the tensor prod-
uct factors. Moreover if we choose an orthonormal basis {xi|i = 1, 2, ...k2} for
Mk(C) with x1 = 1, an orthonormal basis of R is formed by tensors ⊗∞j=1xi(j)
indexed by functions i : N → {1, 2, · · · , k2} with i(j) = 1 for sufficiently
large j. The action of S∞ on this basis has only one finite orbit-that of the
identity. So the only fixed points on in L2(R) are the scalar multiplies of the
identity.

Example 19.2.13. Finitely generated discrete groups.
This example shows that finite index subfactors can be infinite objects in
disguise. Let Γ = 〈γ1, γ2 · · · γk〉 be a finitely generated discrete group. We
have seen that Γ can act in lots of ways, in particular outer, on type II1
factors. Choose any action on M and for each x in M define the matrix
d(x) = xi,j over M by

xi,j =

{
0 if i 6= j

γi(x) if i = j
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Then consider the subfactor

D(M) = {d(x)|x ∈M} ⊆M ⊗Mk(C).

This subfactor is locally trivial so its index is k2 and one may think of it as
a "twisted" version of the trivial subfactor of index k2.

Exercise 19.2.14. Show that dim(D(M)′ ∩M ⊗Mk(C)) = k iff γ−1
i γj is

outer whenever i 6= j.

In fact one may easily extract the image of Γ modulo inner automorphisms
from the subfactor D(M).

We now want to consider an entirely arbitrary subfactor. For this the fol-
lowing "basic construction" is important. We have already seen its usefulness
for finite group actions.

Proposition 19.2.15. Let N ⊆ M be a type II1 factors acting on L2(M)
and let eN be the extension to L2 of the trace-preserving conditional EN
expectation onto N . Then

JN ′J = (JNJ)′ = {M, eN}”.

Proof. Already done in 19.1.4.

Definition 19.2.16. The von Neumann algebra 〈M, eN〉 = {M, eN}” of the
previous result is said to be the "basic construction" for N ⊆M .

Here are the most important facts about the basic construction. It will
be convenient from now on to use τ for [M : N ]−1. Since 〈M, eN〉 is a type
II1 factor its trace is unique and its restriction to M is the trace of M . So
we just use tr for it.

Proposition 19.2.17.
(i) For x ∈M, [x, eN ] = 0 iff x ∈ N .
(ii) eNxeN = EN(x)eN for x ∈M .
(iii) [M : N ] <∞ iff 〈M, eN〉 is a type II1 factor, in which case

[〈M, eN〉 : M ] = [M : N ].

(iv) M +MeNM is a weakly dense *-subalgebra of 〈M, eN〉.
(v) eN〈M, eN〉eN = NeN
(vi) tr(eN) = [M : N ]−1

(vii) For x ∈M , tr(eNx) = τtr(x)
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Proof. (i) was done in 19.1.4.
(ii) is a consequence of the bimodule property of EN on the dense subspace
M of L2(M).
(iii) is immediate from proposition 19.2.15.
(iv) Closure ofM+MeNM under multiplication follows from (ii). It contains
M and eN hence is dense.
(v) Follows immediately from (ii) and (iv).
(vi) Follows from (v) and the behaviour of the coupling constant under re-
duction by projections-note that eN(L2(M)) = L2(N).
(vii) tr(xeN) = tr(eNxeN) = tr(eNxeN) = tr(EN(x)eN) = τ(EN(x) where
we deduce the last equality from uniqueness of the trace on the type II1 factor
N . Since the conditional expectation preserves the trace, we are done.

From now on we will use τ for [M : N ]−1.

Corollary 19.2.18. There is no subfactor N ⊆M with 1 < [M : N ] < 2.

Proof. By the uniqueness of the trace we see that trN ′(eN) = τ . Thus trN ′(1−
eN) = 1− τ . Hence [(1− eN)〈M, eN〉(1− eN) : N(1− eN)] = (1− τ)2(1/τ)2

which is less than 1 if 1/2 < τ < 1.

If we suppose [M : N ] < ∞ we see we may do the basic construction
for M ⊆ 〈M, eN〉. In the type II1 factor 〈〈M, eN〉, eM〉 we have the two
projections eM and eN .

Proposition 19.2.19.

eMeNeM = τeM and eNeMeN = τeN

.

Proof. For the first relation we must show that EM(eN) = τid. But this is
just another way of saying (vii) of 19.2.17.
To prove the second relation, by (iv) of 19.2.17 it suffices to apply each side
to elements of the form x + yeNz ∈ L2(〈M, eN〉) for x, y, z ∈ M . To do this
note that eN acts by left multiplication.

Corollary 19.2.20. If [M : N ] 6= 1 then

eM ∨ eN =
1

1− τ
(eN + eM − eMeN − eNeM)

Proof. The relations show that eN and eM generate a 4-dimensional non-
commutative algebra. By our analysis of two projections its identity must
be a multiple of (eM − eN)2. The normalisation constant can be obtained by
evaluating the trace.
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Note that the special case eN ∨ eM = 1 (which is equivalent to τ = 1/2
or index 2) means that eN and eM satisfy an algebraic relation.

Exercise 19.2.21. Use this relation to prove that, in index two, 〈〈M, eN〉, eM〉
is the crossed product of 〈M, eN〉 by an outer action of Z/2Z. Use duality
to deduce Goldman’s theorem ([]): a subfactor of index 2 is the fixed point
algebra for an outer Z/2Z action.

Let φ be the golden ratio 1+
√

5
2

.

Corollary 19.2.22. There is no subfactor N ⊆M with 2 < [M : N ] < φ2.

Proof. We see that eN and eM are equivalent in the algebra they generate
so their traces are equal wherever they are. Thus tr〈〈M,eN 〉,eM 〉(eN∨M) =
trN ′(eN∨M) = 2τ and

[(1− eN ∨ eM)〈〈M, eN〉, eM〉(1− eN ∨ eM) : (1− eN ∨ eM)N ] = (1− 2τ)2τ−3

This is less than 1 if φ−2 < τ < 1/2.

If we did yet another basic construction in the same way and calculated
the trace of the supremum of the three conditional expectations we would
conclude that there is no subfactor with index between φ2 and 3. But it is
high time to systematise the process.

19.3 The tower of type II1 factors and the ei’s.
Definition 19.3.1. Let N ⊆ M be a subfactor of finite index τ−1. Set
M0 = N,M1 = M and define inductively the tower of type II1 factors

Mi+1 = 〈Mi, eMi−1
〉.

Set ei = eMi−1
for i = 1, 2, 3, · · · .

Proposition 19.3.2. The ei’s enjoy the following properties.
(i) e2

i = e∗i = ei
(ii) eiej = ejei if |i− j| ≥ 2
(iii) eiei±1ei = τei
(iv) tr(wei+1) = τtr(w) for any word w on {e1, e2, · · · ei}.

Proof. These are all trivial consequences of the 19.2.17 and 19.2.20. Note
that the trace in (iv) is unambiguous by uniqueness of the trace on a type
II1 factor.
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The relations of proposition 19.3.2 were discovered, albeit in a slightly
disguised form, in statistical mechanics in [], and were presented in almost
the above form in [] although property (iv) does not appear. With a beautiful
insight they were given a diagrammatic form in []. They are now universally
known, in whatever form, as the Temperley-Lieb relations or the Temperley-
Lieb algebra. We present Kauffman’s diagrammatics in the appendix A.

There is a lot of interesting combinatorics going with the Temperley-Lieb
algebra but we want to get directly to the results on index for subfactors.
Here are some exercises to familiarise the reader with these relations.

Exercise 19.3.3. Any word w on e1, e2, · · · en which is reduced in the obvious
sense with respect to the relations 19.3.2 contains en (and e1) at most once.

Exercise 19.3.4. The dimension of the algebra generated by 1 and e1, e2, · · · en
is at most

1

n+ 2

(
2n+ 2

n+ 1

)
(This exercise is the first hint that there might be some connection be-

tween subfactors and random matrices-see 18.5.25.)

19.4 Index restrictions
It is clear from the restrictions we have obtained so far that we should be
interested in the trace of the sup of the first n ei’s.

Definition 19.4.1. Let Pn(τ) be the polynomials defined by P0 = 1, P1 = 1
and

Pn+1 = Pn − τPn−1

Thus P2 = 1 − τ = tr(1 − e1), P3 = 1 − 2τ = tr(1 − e1 ∨ e2) and
P4(τ) = 1− 3τ + τ 2.

Exercise 19.4.2. Define q by τ−1/2 = q+q−1. Show that Pn(τ) is essentially

the "quantum integer" [n+ 1]q =
qn+1 − q−n−1

q − q−1
, to be precise

Pn(τ) =
[n+ 1]q
([2]q)n

Definition 19.4.3. Put f0 = 1 and for each n = 1, 2, 3, · · · let

fn = 1− e1 ∨ e2 ∨ · · · ∨ en

.
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Note that the fn are decreasing.

Theorem 19.4.4. If fn 6= 0 then

tr(fn+1) = Pn+2(τ)

Proof. Observe that the assertion is true for n = 0. Now suppose it is true
up to n. For convenience set sn = 1 − fn = e1 ∨ e2 ∨ e3 · · · ∨ en. We want
to calculate tr(sn ∨ en+1) and we know tr(sn) and tr(en). So it suffices to
calculate tr(sn ∧ en+1). To do this note that en+1snen+1 = EMn(sn)en+1 by
19.2.17, and EMn(sn) is in the algebra generated by {1, e1, e2, · · · en−1} by
19.3.3 and (iv) of 19.3.2. But by the bimodule property for a condional
expectation eiEMn(sn) = EMn(sn)ei = ei for i ≤ n − 1. So snEMn(sn) is
the identity for the algebra generated by {e1, e2, · · · en−1} and EMn(sn−1) =
sn−1+(1−sn−1)EMn(sn). However 1−sn−1 is a minimal and central projection
in this algebra so

EMn(sn) = sn + λ(1− sn)

for some constant λ. Obviously 0 ≤ λ ≤ 1 because conditional expectations
do not increase norms. But if λ were equal to 1, we would have EMn(sn) = 1
which implies sn = 1, i.e. fn = 0 by faithfulness of the conditional expecta-
tion. Thus λ < 1 and taking the limit as k →∞ of (en+1snen+1)k,

en+1 ∧ sn = en+1sn−1

Taking the trace we see that tr(en+1 ∧ sn) = τtr(sn−1).
Finally tr(sn+1) = tr(sn)+τ−τtr(sn−1) and tr(fn+1) = tr(fn)−τtr(fn−1).

By induction and the definition of the Pn we are through.

The formula of the next theorem is due to Wenzl in [] which contains
complete information about families of projections on Hilbert space satisfying
(i),(i) and (i)

Theorem 19.4.5. If fn 6= 0 then

fn+1 = fn −
Pn(τ)

Pn+1(τ)
fnen+1fn

Proof. It is easy to check for n = 1 and n = 2 for good measure.
So suppose fn 6= 0. Then by the previous result Pn+1(τ) 6= 0 and we may

consider the element x = fn −
Pn(τ)

Pn+1(τ)
fnen+1fn. Obviously eix = 0 = xei
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for i ≤ n and en+1x = en+1fn− Pn(τ)
Pn+1(τ)

EMn(fn)en+1fn. By induction and the
definition of Pn,

EMn(fn) =
Pn+1(τ)

Pn(τ)
fn−1

Since the fn are decreasing we get en+1x = 0 = xen+1 which means x is a
(possibly zero) multiple of fn+1. But the trace of x is Pn+2(τ) so we are done
by the previous theorem.

Theorem 19.4.6. Let N ⊆M be type II1 factors. Then if [M : N ] < 4 it is
4 cos2 π/n for some n = 3, 4, 5, . . . .

Proof. Observe that Pn(0) = 1 for all n. If we put q = eiθ in 19.4.2 we see
that τ−1 = 4 cos2 θ and

Pn−1(τ) =
sinnθ

2n−1 sin θ(cos θ)n−1

This is zero for q a 2nth. root of unity (except q = 1) and the one with
largest cosine is θ = π/n. Thus the smallest real zero of Pn is 1

4 cos2 π/(n+1)
.

Moreover π/(n+1) < π/n < 2π/(n+1). So Pn+1(τ) < 0 between 1
4 cos2 π/(n+1)

and 1
4 cos2 π/n

while Pk(τ) > 0 for k ≤ n and τ in the same interval. Thus
if τ is strictly between 1

4 cos2 π/(n+1)
and 1

4 cos2 π/n
we conclude that fn > 0 and

tr(fn+1) < 0 which is impossible.

19.5 Finite dimensions

It is nice to have these restrictions on the values of the index but at this
stage the only values we know between 1 and 4 are 2 and 3. We will show
that all the values of theorem 19.4.6 actually occur. We will use a kind
of "bootstrap" method. If the value of the index exists then there are ei’s
satsfying the relations of 19.3.2. But then we may consider the von Neumann
algebra in the towerMn generated by {e1, e2, e3, · · · }. We will show that this
is a factor. Moreover we will see that the subfactor generated by {e2, e3, · · · }
will be seen to have index τ−1. But this presupposes the existence of the
subfactor! For τ < 1/4 we can get the ei’s from the tower obtained from
example 19.2.9. For τ ≥ 1/4 we will be able to construct a tower coming
from inclusions A ⊆ B of finite dimensional von Neumann algebras which
gets around the problem. For this we obviously need to know how the basic
construction works in finite dimensions.
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Recall from 4.4.3 that a unital inclusion A ⊆ B of finite dimensional von
Neumann algebras is given by a vector ~v whose entries are labelled by the
minimal central projections of A and a matrix Λ = λp,q where q runs over the
minimal central projections in A an p over the minimal central projections in
B. Λ~v is then vector whose entries are the ranks of the simple components of
B. If e ≤ p is minimal in A and f ≤ q is minimal in B then ef is a projection
of rank λp,qin the factor qB.

Definition 19.5.1. We call ~v as above the dimension vector of a finite di-
mensional von Neumann algebra and the matrix Λ the inclusion matrix. We
will write ~vA and ΛB

A if we need to specify which algebras we are talking about.
We will say the inclusion is connected if Z(A) ∩ Z(B) = Cid, which can be
recognised by connectedness of the obvious bipartite graph associated to the
inclusion matrix.

Thus in full:

ΛB
A~vA = ~vB

This information is conveniently recorded graphically:

1

5 4

2 3

Here A = M2(C)⊕M3(C)⊕C so ~vA =
(

2
3
1

)
and B = M5(C)⊕M4(C) so

~vB = ( 5
4 ). There is no "multiplicity" so minimal projections in A are sums

of minimal projections in different simple components of B and the inclusion
matrix is ( 1 1 0

0 1 1 ).

Exercise 19.5.2. If A ⊆ B and B ⊆ C then ΛC
A = ΛC

BΛB
A.

This can be done by pure thought observing that ΛB
A is just the matrix

of the inclusion map from K0(A) to K0(B).
The basic construction can be performed without recourse to a trace

simply by defining it as the commutant on B of the right action of A which
allows us to identify its centre with that of A. But we are after the ei’s so
lets use (positive) traces.

Definition 19.5.3. If A is a finite dimensional von Neumann algebra with
trace tr define the trace vector ~tr to be the row vector whose entries are
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indexed by the central projections of A and whose pth. entry is tr(e), e being
a minimal projection in A, e ≤ p.

Remark 19.5.4.
(i)A trace is clearly normalised iff ~tr · ~vA = 1.
(ii) If A ⊆ B are as above and Tr is a trace on B whose restriction to A is
tr then:

~TrΛ = ~tr

Given a (normalised) faithful trace Tr on B we may perform the basic
construction 〈B, eA〉 exactly as for type II1 factors.

The centre of 〈B, eA〉 can be identified with that of A by x 7→ JxJ so the
inclusion matrix for B ⊆ 〈B, eA〉 will have the same shape as the transpose
of that of A ⊆ B.

Exercise 19.5.5. Show that

Λ
〈B,eA〉
B = (ΛB

A)t

Thus in the example above we would get the "Bratteli" diagram:

4

5 4

2 3 1

5 9

for the tower A ⊆ B ⊆ 〈B, eA〉.
In the non-factor case there is no canonically defined trace on the basic

construction. For obvious reasons we would like to have such a trace TR
with the crucial property TR(eAx) = τTr(x) for x ∈ B.

Theorem 19.5.6. If A ⊆ B is a connected inclusion with matrix Λ, there is
a unique normalised trace Tr on B which extends to a trace TR on 〈B, eA〉
such that EB(eA) ∈ Cid. ~TRΛΛt = τ−1 ~TR for τ satisfying EB(eA) = τeA.

Proof. Observe that if f is a minimal projection in A then eAf is a minimal
projection in 〈B, eA〉 by (v) of 19.2.17. If p is a minimal central projection
in A with pf = f , we want to show that eAf is under JpJ . To do this it is
enough to show that JpJeAf 6= 0. But applying it to the identity in B we get
fp. So if Tr has an extension TR satisfying TR(eAx) = τTr(x) for x ∈ B,
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TR(eAf) = τTr(f). This means that the trace vector ~TR is τ ~tr where tr is
the restriction of Tr to A. On the other hand by exercises 19.5.2 and 19.5.5
we have ~tr = ~TRΛΛt. So ~TR is the suitably normalised Perron-Frobenius
eigenvector for the irreducible matrix ΛΛt with eigenvalue τ−1. Hence TR is
unique and so is Tr.

Corollary 19.5.7. If τ−1 is the Perron Frobenius eigenvalue for an irre-
ducible matrix ΛtΛ for an N-valued matrix Λ, there exists a von Neumann
algebra M with faithful trace tr containing an infinite sequence of projections
ei satisfying the relations of 19.3.2.

Proof. Choose a connected inclusion A ⊆ B with matrix Λ and trace TR
on 〈B, eA〉 as above. Then if we consider the inclusion B ⊆ 〈B, eA〉, we see
that ~Tr = ~TRΛ is the Perron-Frobenius eigenvector for ΛΛt so the trace on
〈B, eA〉 guaranteed by the previous theorem has the same value of τ and is
equal to TR. We may thus iterate the basic construction always using the
trace given by the theorem. To getM just use GNS on the union of the (C∗-)
algebras in the tower.

Remark 19.5.8. In fact the M constructed above is a type II1 factor (pro-
vided τ 6= 1 ....). This follows from the fact that the only trace on the tower
is in fact the one used. See exercise 6.2.1.

19.6 Existence of the 4 cos2 π/n subfactors.

Definition 19.6.1. GIven a finite von Neumann algebra M with faithful
normal normalised trace tr containing a sequence ei of projections satisfying
19.3.2 we define the algebra P = {e1, e2, e3 · · · }′′ and the subalgebra Q =
{e2, e3, · · · }.

We will have shown the existence of subfactors of index 4 cos2 π/n for
each n = 3, 4, 5, · · · if we can show:

(i) For each n there exists an N-valued matrix Λ whose norm is 2 cosπ/n.

(ii) P and Q are type II1 factors and [P : Q] = 4 cos2 π/n.
Let us begin with (i) since it is easy. Just consider the matrix which is the

adjacency matrix Λn in the bipartite sense for the graph An with n vertices:
..........
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Thus for n = 2m even, Λn is m×m and for n = 2m+ 1 it is m× (m+ 1).
In both cases

λi,j =

{
1 if i = j or j + 1

0 otherwise

Exercise 19.6.2. Show that ||Λn|| = 2 cos π/(n+ 1).

Note that these are not the only choices for Λ. If Λ is the bipartite adja-
cency matrix for a Coxeter-Dynkin graph of type A, D or E one has:

||Λ|| = 2 cos π/n where n =



n+ 1 for An
2n− 2 for Dn

12 for E6

18 for E7

30 for E8

These are the only possibilities for ||Λ|| < 2 (see []).

Now let us show that P (and hence obviously Q) is a factor.
We will need a simple lemma.

Lemma 19.6.3. With notation as in 19.6.1, any normal trace on P is de-
termined by its restriction to all commutative subalgebras of the form AI =
{ei|i ∈ I}′′ where I is a subset of N with the property that

i, j ∈ I =⇒ |i− j| ≥ 2

.

Proof. If φ is a normal trace on P it is determined by its value on words
on the ei’s. But it is a simple matter to deduce from exercise 19.3.3 that
any word can be reduced after cyclic permuations to a multiple of a word in
which all the indices of ei’s differ by at least two.

Theorem 19.6.4. Let P , M and tr be as in definition 19.6.1. Then P is a
type II1 factor (provided τ 6= 1).

Proof. By 19.6.3 it suffices to show that any normal normalised trace on P
is equal to tr. But let φ be such a trace. Let I be as in 19.6.3. Embed I into
an infinite set J with the same property. Let i < j be elements of J with
nothing in between i and j in J . We claim the the normaliser of AJ contains
a self-adjoint unitary u such that ueiu = ej and ueku = ek for k 6= i, j.
For this just consider the algebra generated by 1, ei, ei+1, ei+2 · · · ej. The
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projections ei and ej are equivalent in this finite dimensional von Neumann
algebra and it is a simple exercise to see that two equivalent projections in a
matrix algebra are always conjugate under a self-adjoint unitary.

But AJ is the infinite tensor product of copies of C2 with product state
given by tr(ei) = τ . And the normaliser contains the group S∞ acting by
permuting the tensor product components. So just as in 19.2.11, the action of
S∞ is ergodic and there is only one invariant probability measure absolutely
continuous with respect to tr. Thus tr = φ on AJ and we are done.

The last detail is to show that Q ⊆ P has the right index.

Theorem 19.6.5. [P : Q] = τ−1.

Proof. Perform the basic construction 〈P, eQ〉. P is spanned by words of the
form ae1b with a and b in Q. Let R = {e3, e4, · · · }′′. Using 19.3.2 we have
e1(ae1b) = ER(a)e1b and e1eQe1(ae1b) = τER(a)e1b. And easily eQe1eQ =
τeQ. Thus eQ and e1 are equivalent in 〈P, eQ〉.

We conclude first that 〈P, eQ〉 is a type II1 factor since eQ is a finite
projection ( eQ〈P, eQ〉eQ = QeQ), and a finite projection in a II∞ factor
cannot be in a II1 subfactor. So tr(eQ) = τ−1 since tr(e1) = τ−1.

19.7 The structure of the algebras En = {e1, e2, · · · en}′′.
We have that En is finite dimensional but we will see that its dimension
depends on τ . Clearly En ⊆ En+1 so there is a Bratteli diagram to compute.

Theorem 19.7.1. "Generically", that is for 0 < τ ≤ 1/4, the Bratteli dia-
gram for the tower En is below:

Where E0 = Cid and we have recorded the traces of minimal projections
in each simple summand.

Proof. The calculation of E0 ⊆ E1 ⊆ E2 is trivial. So proceed inductively.
Then En+1 is obtained from En by adding en+1 which satisfies

en+1xen+1 = EEn−1(x)en+1 for x ∈ En
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Appendix A

Kauffman’s diagrammatics for the
Temperley-LIeb algebra.
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Appendix B

Proof of the KMS condition.

Theorem B.0.2. Let φ be a faithful normal state on a von Neumann algebra
M . Then the modular group σφt is the unique one parameter automorphism
group of M which satisfies the KMS condition for φ.

Proof. Perform the GNS construction with canonical cyclic and separating
vector Ω and modular operators S = J∆1/2. Recall that f(∆)Ω = Ω for any
function of ∆ with f(1) = 1. In particular φ(σφt (x) = 〈(∆itx∆−itΩ,Ω〉 so σφt
preserves φ.

Now let us check the rest of the KMS condition. We have

φ(σφt (x)y) = 〈∆−ityΩ, x∗Ω〉

and

φ(yσφt (x)) = 〈yσφt (x)Ω,Ω〉
= 〈J∆1/2σφt (x∗)Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2∆itx∗Ω〉
= 〈∆1/2−ityΩ,∆1/2x∗Ω〉

So let ξ = yΩ, η = x∗Ω and let pn be the spectral projection for ∆ for
the interval [1/n, n] so that pn tends strongly to 1 and ∆±1 are bounded on
pnHφ. The functions

Fn(z) = 〈∆−izpnξ, η〉

are then entire and

|Fn(t)− φ(σφt (x)y)| = |〈∆−it(1− pn)ξ, η〉| ≤ ||(1− pn)ξ|| ||η||
|Fn(t+ i)− φ(yσφt (x))| = |〈∆1/2−it(1− pn)ξ,∆1/2η〉| ≤ ||(1− pn)∆1/2ξ|| ||∆1/2η||.
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Hence the Fn are bounded and continuous on the strip {z : 0 < =mz < 1}
and converge uniformly on its boundary. By the Phragmen-Lindelof theorem
we are done.

Now let us prove uniqueness of the modular group with the KMS condi-
tion.

Let αt be another continous one-parameter automorphism group satisfy-
ing KMS for φ. The fact that αt preserves φ means we can define a strongly
continous one-parameter unitary group t 7→ ut by utxΩ = αt(x)Ω. By Stone’s
theorem it is of the form t 7→ Dit for some non-singular positive self-adjoint
operator A. The goal is to prove that D = ∆. As a first step we construct a
dense set of analytic vectors in MΩ by Fourier transform. Let A be the set
of all operators of the form ∫ ∞

−∞
f̂(t)αt(x)dx

for all C∞ functions f of compact support on R. The integral converges
strongly so

f(log(D))xΩ =

∫ ∞
−∞

f̂(t)Dit(xΩ)dx

is in AΩ. Thus the spectral projections of D are in the strong closure of A
and AΩ is dense. Moreover z 7→ DzxΩ is analytic for x ∈ A since xΩ is
in the spectral subspace of A for a bounded interval. Also AΩ is invariant
under Dz by the functional calculus. To compare with φ define, for x and y
in A, the entire function

F1(z) = 〈D−izyΩ, x∗Ω〉.
Let F be the function, analytic inside the strip and continuous and bounded
on it, guaranteed for x and y by the KMS condition. Then if we define G(z)
for −1 ≤ =mz ≤ 1 by

G(z) =


F (z)− F1(z) if =mz ≥ 0;

F (z)− F1(z) if =mz ≤ 0.

Since F and F1 agree on the real line G is analytic for −1 < =mz < 1, hencecheck typesetting

equal to 0, and since both F and F1 are continous on the strip, φ(yσt(x)) =
F (t+ i) = F1(t+ i) = 〈D1−ityΩ, x∗Ω〉. In particular putting t = 0 we get

〈DyΩ, x∗Ω〉 = φ(yx)

= 〈xΩ, y∗Ω〉
= 〈J∆1/2x∗Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2x∗Ω〉
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So ∆1/2yΩ is in the domain of ∆1/2 and ∆yΩ = DyΩ.

Thus D and ∆ agree on AΩ. But multiplication by the function ez + 1 is
a linear isomorphism of C∞c so by functional calculus (D+1)AΩ = AΩ which
is thus dense. Since D + 1 is invertible by spectral theory, any (ξ, (D + 1)ξ)
in the graph of D+1 can be approximated by (AnΩ, (D+1)AnΩ). Thus D is
essentially self-adjoint on AΩ, and both ∆ and D are self-adjoint extensions
of the restriction of D to this domain. Thus D = ∆.
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