
1 Introduction

1.1 The road to planar algebra

A planar algebra (abbreviated PA) is a way of combining entities of a certain kind
in a planar way to get an entity of the same kind. The operations on entitites are
indexed by Planar Tangles of which we draw an example below:

Fig. 1.1.1.

Input discs

Output disc

Strings

We will give the formal definition later - for the moment the idea is to insert the
entities in the inner "input" discs to produce another entity corresponding to the
outer "output" disc, and the result should only depend on the planar tangle up to
isotopy. One sees from the picture that the discs, both input and output, meet the
strings in a certain number of boundary points so there are discs of type n for all
n ∈ N∪{0}. The entities on which the tangle operates should thus also come with a
grading by n ∈ N∪{0}. The tangle above would take as inputs entities graded 0,2,3
and 5 and produce one of grading 4.

An entity of grading n will be called an “n-box”.
There were 4 initially rather different consderations leading to the definition of

a planar algebra. In each case the idea of planar algebra emerges not as a language
but as an effective calculus for computation and construction. This was always the
main reason for introdcuing the necessarily somewhat complicated formalism. I will
discuss all four motivations in turn.

• Motivation 1: The most obvious and elementary was knot theory.

Here is a diagram of a link:
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One might be interested in studying parts of the link in a “divide and conquer”
strategy. One would isolate them thus:

Inside each disc is what is called a “Conway tangle” [], for instance from the
above picture:

All diagrams are representations of three-dimensional things so are to be con-
sidered up to the Reidemeister moves:

1. Type I:

2. . Type II:

3. Type III:
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The ultimate decomposition of a link diagram will place all the crossings inside
discs thus:

If we now remove the strings from inside the discs, and add a somewhat spurious
disc enclosing everything we see exactly what we have called a planar tangle
(here with no boundary points on the output disc):

We see that any link can be obtained by inserting entities (Conway tangles)
into the input discs of a planar tangle. In the same way any Conway tangle
can be obtained by inserting Conway tangles into the input discs of a planar
tangle.

Thus Conway tangles form a planar algebra.

Several remarks are in order.

1. First note that in this Conway planar algebra all discs have an even
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number of boundary points. In the first versions of planar algebra this
was always the case so it was natural to divide everything by two, and
what we have called an n-box would be called an n

2 -box. In this paper
we will attempt to correct this historical “mistake” by using the actual
number of boundary points as the grading.

2. Note also that the concept of “gluing” tangles arises of necessity. The
tangles are glued into the input discs. Thus in general a planar algebra
will be a planar algebra over itself by gluing planar tangles into the input
discs of a bigger one. This is the main structural ingredient of planar
tangles.

3. Note further that the collection of entities to be inserted into tangles
only has the structure of a set in Conway tangles. But in almost all of
this paper these entities will form vector spaces thus justifying the word
“algebra”. Conwy himself did this with his tangles by introducing, for
a given number 2n of boundary points, the space Cn of formal linear
combinations of Conway tangles. He then took the quotient of the planar
(whose n-box space is Cn if n is even and 0 otherwise) by what he called
a skein relation. Namely he imposed:

=  (s−1/s)−

where s is a number. In planar algebra this result is achieved by taking the
quotient of the Cn by the ideal of the Conway planar algebra generated
by:

−  (s−1/s)−

The surprising result is that the quotient of C0 by this relation is one
dimensional, spanned by a single unknotted closed curve. Thus any link
in Cn is equal, mod the ideal, to a polynomial in s times a single unknotted
closed curve. This mulitple is the Alexander polynomial ([]) in some
canonical normalisation.

4. Note also that extra structure is required of a planar tangle to handle the
Conway skein relation, namely the strings need to be oriented. This is
one of many possible extra structures that we will consider adding to the
structure of the “vanilla” planar tangle of figure 1.1.1.

5. Finally, the reader will have noticed that there is an important ingredient
missing from tangles so far. There is a cyclic ambiguity for gluing at
each disc. To resolve this we need to specify a first boundary point at
each disc. For subtle reasons it is more natural to specify a first interval
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(between adjacent boundary points). We will do this by placing a $ sign
in the region adjacent to that marked interval, close to the interval. Thus
a complete version of the vanilla tangle 1.1.1 might be:

$

$

$

$$

Observe that the boundary disc also needs a marked interval but there is
no choice for a disc with no boundary points.

• Motivation 2. Subfactors.

A II1 factor M is an infinite dimensional unital Banach *-algebra with trivial
centre and a trace functional tr : M → C with the properties tr(ab) = tr(ba),
tr(1) = 1 and tr(a∗a) > 0 for a 6= 0. It is complete in the sense that the
Banach space unit ball is complete for the || − ||2 norm ||a||2 =

√
tr(a ∗ a).

A subfactor N ⊆ M is required to have the same identity as M . Given a
subfactor there is a "basic construction" [] that works as follows. First, use
the trace to complete M to the Hilbert space L2(M) using the inner product
〈a, b〉 = tr(b∗a). Then M acts on the left and right on L2(M), the right action
giving exactly the commutantM ′. Also the orthogonal projection from L2(M)
onto L2(N) sends M to N and is denoted eN . The von Neumann algebra
generated on L2(M) by the left action of M and eN is the basic construction,
denoted 〈M, eN 〉.
We have the following picture:

N

L (M)
2

M  

N

<M,e   >N N’

M’  

<M,e   >’
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The algebras on the left and right are mapped into each other by conjugation
by the * operation so the symmetry in the picture is more than just pictorial.

We say that N is of finite index in M if 〈M, eN 〉 is a II1 factor in which case
we define the index to be

[M : N ] = tr(eN )−1

It is not obvious with this definition but the index measures the size or "di-
mension" of M as a left (or right) N−module. Carrying out the construction
in finite dimensions would make this clear.

The basic construction is immediately useful. By reducing everything by the
projection 1 − eN it follows that the [M : N ] cannot be between 1 and 2 and
even that 2 is isolated in the set of possible index values. Thus one repeats the
basic construction to obtain an increasing tower of II1 factors thus:

M0 = N,M1 = M and Mi+1 = 〈Mi, eMi−1〉

Further defining ei = eMi−1 , the following relations hold:

1. e2
i = e∗i = ei

2. eiei±1ei = [M : N ]−1ei

3. eiej = ejei if |i− j| ≥ 2

The ei’s, together with the trace, can be used to show that the index of a
subfactor is either ≥ 4 or one of the numbers 4 cos2 π/n for some n = 3, 4, 5, · · · .
It was Kauffman in [] who supplied an amazing and very fruitful pictorial
representation of the ei’s thus:
For i = 1, 2, · · ·n− 1 let Ei be the following picture (where the numbers index
the end points of the strings):

n1
i+1........2 i ....

Pictures like this can be multiplied by vertical stacking. Taking E2
i we see:
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If we add to the rules of the game the possibility of removing simple closed
curves and multiplying by

√
[M : N ] each time, we see that

E2
i =

√
[M : N ]Ei

We leave the reader the pleasure of seeing in what sense relations 2 and 3 for
the e′is are true for the pictures.

Kauffman’s diagrammatics were hugely successful and solved in particular a
problem in not theory that had been open for well over a century! It was
natural to wonder if they could be applied to the whole basic construction
tower. In fact the tower itself is a little intimidating but it can be cut down to
size by considerning the "relative commutant" tower

M ′0 ∩Mi

which has the huge advantage that each algebra in the tower is finite dimen-
sional (and semisimple, over C hence just a direct sum of full matrix algebras).
The Ei pictures are already essentially planar tangles and we will show in this
paper that in fact the algebras M ′0 ∩Mn form the 2n-box spaces of a planar
algebra which is an invariant of the original subfactor N ⊆ M ! It is referred
to as the "standard invariant" and was discovered in different but equivalent
forms by Ocneanu [] and Popa []. Perhaps even more surprisingly we will give
two constructions which begin with a planar algebra of a certain type and pro-
duce a subfactor whose standard invariant is precisely the planar algebra used
to construct it.

• Motivation 3: Statistical mechanical lattice models in 2 dimensions.

The relations among the ei’s of the last section, and the Kauffman diagram-
matics, are now almost universally referred to as the "Temperley-Lieb" algebra.
This is because the algebraic relations were used in the paper [] to prove a math-
ematical equivalence between Lieb’s "Ice-type" model [] and the Q-state Potts
model. We will give in section 12.3 a planar algebraic version of Temperley-
Lieb equivalence which works on any planar graph, and which can be essentially
found in Chapter 12 of [].
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All the models we envisage here involve "spins" arranged on some kind of graph.
The most common kind of graph is a finite approximation to two dimensional
lattice such as the square lattice. The oldest such model is the Ising model
where the spins are {±1} ("spin up" and "spin down") and sit on the vertices
of the graph. They interact with their neighbours on the graph according to
an energy E(σ, σ′) where σ and σ′ are the spin states of the spins at either end
of the edge. It will be slightly easier to deal with the Ice type models which is
a "vertex model" where the spins sit on the edges of the lattice/graph which
is now supposed to be 4-valent. Given a state each vertex is then surrounded
by four spins so that the local energies are given by an E(σ1, σ2, σ3, σ4). A
state of the whole system is an assignment of ±1 to every edge of the graph.
According to Gibbs, at equilibrium these states are observed with a probability
proportional to e−E(state)/kT where T is the temperature and k is Boltzmann’s
constant. And energy is additive so that

E(state) =
∑

edges of the graph
E(σ1, σ2, σ3, σ4)

. Thus if we write w(σ1, σ2, σ3, σ4) = e−E(σ1,σ2,σ3,σ4)/kT then the normalisation
constant for the probability distribution of the states, called the partition
function Z is

Z =
∑
states

∏
vertices

w(σ1, σ2, σ3, σ4)

"Solving" a model on an infinite lattice means calculating the growth of Z as
the finite approximations tend to the whole lattice:

Finite approximation

Infinite lattice

We recognize, at least diagrammatically, the "divide and conquer" situation
we encountered with knots and Conway tangles. As before the finite approx-
imations to the lattice organise themselves as input discs to a planar tangle.
Indeed if we extend the notion of partition function to a graph Γ with bound-
ary inside a smooth disc (or rectangle) , then the boundary conditions (spin
up / spin down on the edges around the boundary)-call them ξ form the basis
of a vector space and the partition functions with these boundary conditions,
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which we write naturally as Zξ, combine to form a vector as the coefficients of
the basis vector ξ.

It is easy to check that sending the internal discs of a planar tangle to the vector
space of possible boundary conditions, and combining tangles by summing over
spins on edges, yields a planar algebra for which Z is the value assigned to a
graph thought of as a 0-box.

We will examine this planar algebra in more detail as the "tensor planar alge-
bra" in section 3.2. One useful feature of the planar algebra approach is that
any planar algebra over C with a positivity condition can be used to define
a statistical mechanical model in two dimensions. So any calculations such as
the Yang-Baxter equation and commuting transfer matrices as in section [] will
apply to all models at once.

• Motivation 4: Commuting squares

Commuting squares appear somewhat technical at first glance but they arise
naturally in the theory of subfactors and are in fact the most powerful tool
for the construction of new examples of subfactors. Conceptually they are
very easy. Recall that a finite dimensional complex *-algebra A with a trace
tr, tr(a∗a) > 0 for a 6= 0 is semisimple and gives a Hilbert space structure to
A via 〈a, b〉 = tr(b∗a).

A commuting square is a quadruple A0, A1, B0, B1 of such algebras together
with such a trace on B1, included in each other according to the following
scheme:

B B
10

0 1
A                 A

The commuting square condition on such a quadrilateral is that, viewed as
Hilbert spaces, A1 and B0 are orthogonal modulo their intersection which is
A0. There are many equivalent definitions.

The usefulness of commuting squares is seen when doing the basic construction.
The condition is the same as saying that the orthogonal projection of B1 onto
B0 sends A1 onto A0. This means that there is some compatibility between the
basic constructions for A0 ⊆ A1 and B0 ⊆ B1. Indeed with a mild but essential
non-degeneracy condition, when one forms 〈B1, eB0〉, the algebra generated by
A1 and B0 is isomorphic to 〈A1, eA0〉 via the obvious map sending eA0 to eB0 .
One may thus do a basic construction of inclusions to obtain:
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B B
10

0 1
A                 A

B
2

A
2

with B2 = 〈B1, eB0〉 and A2 = 〈A1, eA0〉.
Then everything in sight is a commuting square and may iterate the construc-
tion to obtain towers of finite dimensional unital algebras with traces thus:

....B B
10

0 1
A                 A

B
2

A
2

....

....

B

A

n

n
....

The two horizontal inclusions can then be completed to give a subfactor A∞ ⊆
B∞=N ⊆M which is of finite index easily calculable from the initial commut-
ing square.

We would like to calculate the centraliser tower for N ⊆ M . The infinite
dimensionality of N and M looks like it will cause problems since the elements
of the tower will be limits, but a remarkable result of Ocneanu [] asserts that in
fact the elements ofM ′0∩Mn actually live in finite dimensional approximations
and in fact the vector space M ′0 ∩Mk is actually the solution set of a finite set
of linear equations in finitely many variables.

Let us explain this system of equations in the case of a commuting square
intimately related to the vertex models of statistical mechanics. This means
considering a simple kind of commuting square where

B0 = Mn(C)⊗ 1 B1 = Mn(C)⊗Mn(C)

,
A0 = C A1 = uB0u

∗

where u is a unitary in B1. (Here Mn(C) means the n× n matrices.)

The commuting square condition is that u, an n2 × n2 matrix is biunitary, a
condition expressed in full by the two conditions
Unitarity:

n∑
i,j=1

ui,ja,bū
i,j
c,d = δa,cδb,d
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Biunitarity:
n∑

i,j=1

ub,ja,iū
j,d
i,c = δa,cδb,d

In the language of vertex models these conditions may be expressed diagram-
matically as follows:

Unitarity: u =*u

Biunitarity: u =*u

With the same conventions here are the equations for the M ′0 ∩Mk:

Unknowns: Two nk by nk matrices R and S (2k boxes in the planar algebra).
Equations: (exhibited here for k = 5)

Equation 1.1.2. =R S

where whenever we see a crossing between the strings we insert a u or a u∗

according to the conventions.

We will be careful about the detailed interpretation of these pictures later on
but the point at the moment is that, no matter what commuting square we
start with, the equations forM ′0∩Mk always looking the same, only the detailed
interpretation of the diagrams depending on the kind of commuting square.

This observation had two consequences. One is that the solution set of the
equations 1.1.2 exhibits planar algebra symmetry in that the space of solutions
forms a planar algebra so combining solutions in a planar way creates new
solutions. The full import of this statement has not yet been exploited but

11



even the simplest operations on solutions, such as rotational symmetry, have
proved fruitful. So much so that there was a time when it was possible to prove
significant facts about subfactors coming from a commuting square as above
and it was not until it was proven that any subfactor gives a planar algebra
that these results became universal.

Here is why solutions of the equations 1.1.2 form a planar algebra:
First, as an exercise, show that equation 1.1.2 is equivalent to all versions of
it with p strings at the top and q strings at the bottom (p+ q = 2k) provided
the orientations alternate around the disc.

Now consider the following pictures:

R

P
Q

R

P
Q

We have to show that the two pictures are equal in the planar algebra. But
the dotted line can be passed through the picture by successively applying
equations 1.1.2.

1.2 Relations with other structures.

• Kuperberg spiders. Somewhat before the 1999 arXiv preprint Kuperberg de-
fined what he called a "spider" ([]) which was essentially the same as what we
will do in our treatment of presentations of planar algebras by generators and
relations in []. From that point of view the only novelty of [] was the shad-
ing of the tangles (which came directly from subfactors) and the prevalence of
the diagrammatic rather than combinatorial approach as being fundamental.
Indeed we were reluctant to extend our planar algebra formalism beyond the
shaded case because of Kuperberg’s clear priority. But various developments
and the success of the axiomatization as planar algebras have led us to take
this step.

Kuperberg should be credited with the general notion.

• Operads A general theory of structures with multiple inputs and a single output
was developed by Peter May and called the theory of "operads". Our planar
algebras require inputs of different kinds (the N∪{0} grading above) so that the
kind of operad give by a planar algebra is a "colored" or "partial" operad. But
apart from that it is possible to adopt the definition of algebra over an operad as
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such and say that a planar algebra is just an algebra over the operad of planar
tangles. This point of view has been conceptually quite useful, especially in
understanding the role of the "Temperley-Lieb" Kauffman tangles as being
planar tangles with no inputs. See [].

• Tensor categories Planar tangles define a host of different structures which
we will exploit in this work. The most familiar is the one that makes the n-
box spaces into a category. The objects of the category are N ∪ {0} and the
morphisms are n-boxes themselves. Composition of morphisms is given by the
following tangle:

$

$

$

. Thus f ◦ g =

g

$

$

$

f

.

which shows how to compose a morphism from 3 to 2 with a morphism from 2
to 1 to get a morphism from 3 to 1. Associativity is "obvious" and will follow
rigorously from our formalism.

There is also a ”tensor product” operation on morphisms given by the following
tangle:

$ $$ Thus f ⊗ g = g$$ $ f

which shows how to take the tensor product of a morphism from 1 to 2 with a
morphism from 3 to 1 to get a morphism from 4 to 3.

The two operations ◦ and ⊗ satisfy the relations of a tensor category as a
consequence of planar algebra structure. Conversely one needs to add structure
to a tensor category to obtain a planar algebra. That structure is known as
”pivotal structure”.
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1.3 Exercises

1. Explore subfactors in finite dimensions: any such factor is isomorphic to the
n × n matrices for some n and the unique normalised trace is the sum of
the diagonal elements divided by n. It satisfies the positivity condition. Any
subfactor of Mn(C) is of the form Mk(C)⊗ 1 for some k dividing n. Show that
the basic construction for Mk(C) ⊗ 1 ⊆ Mn(C) yields Mnk(C) and that the
index [Mn(C) : Mk(C)⊗ 1] is equal to (nk )2.

2. In the Temperley-Lieb algebra TL2n on 1, e1, e2, e3, e4, · · · e2n−1, let
pn = e1e3e5 · · · e2n−1. Show both algebraically and diagrammatically that pn
is a minimal projection by showing that pnxpn = ϕ(x)pn for all x ∈ TL2n

for some linear functional ϕ. Interpret φ as a partition function in the Potts
model.

3. Show that any smooth closed curve in the plane is smoothly isotopic to a round
circle.

4. Let A0 ⊆ B0 ⊆ B1 be C ⊆ diagonal matrices ⊆ Mn(C). If U = ui,j be a
unitary n×n matrix. Show that setting A1 = uB0u

∗ gives a commuting square
iff

|ui,j | =
1√
n

for all i, j

. If the ui,j are real,
√
nU is by definition a Hadamard matrix. Show that if U

is a Hadamard matrix then either n = 2 or n is a multiple of 4.

2 The definition of a planar algebra.

By “smooth disc” we will mean the image of the closed unit ball under a C∞ diffeo-
morphism of R2. By “smooth curve” we will mean the image of the unit circle or a
closed interval under a C∞ diffeomorphism of R2.

2.1 Planar tangles

Definition 2.1.1. A (vanilla) planar tangle T consists of the following data:
i) A smooth disc DT ⊂ R2

ii) A certain finite set DT of disjoint smooth discs in the interior of DT

iii) A finite number of disjoint smooth curves in DT (called the strings S(T ) of
T )which do not meet the interiors of the D in DT . The boundary points of a string
of T (if it has any) lie in the boundaries of either DT or the discs in DT . The strings
meet the boundaries of the discs transversally if they meet them at all.
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The subset of R2 obtained by taking away from DT the strings of T and the
discs in DT is called the set subjacent to T and the connected components of the set
subjacent to T are called the regions of T .

The points at which a string meets a disc will be called the boundary points of
that disc. To each disc D of a planar tangle let nD be the number of boundary points
of D.

The boundary of a disc D of T consists of disjoint open curve segments together
with the boundary points of D. These open curve segments will be called [] (adjective)
the intervals of D (if D does not meet the strings of T , its whole boundary will be
the (only) interval of D).

For each disc D ∈ DT ∪ {DT } there will be chosen one of its intervals, called the
marked interval of D. The boundary points of D are then numbered 1, 2, · · ·nD in
clockwise order starting from the first one encountered after the marked interval.

If n
DT = n, T is called a (vanilla) “planar n-tangle”.

Here is a picture of a planar 4-tangle. We have drawn the discs as round circles to
clearly distinguish them from the strings of the tangle, and the marked intervals for
each disc have been indicated by placing a $ near them in the region whose boundary
they meet (a disc with one boundary interval needs no $):

$

$

$

$

If θ is a diffeomorphism of R2 and T is a planar tangle then θ(T ) is also a planar
tangle where the marked intervals of θ(T ) are the images under θ of those of T .

Under certain special circumstances tangles may be "glued". We will give a
somewhat tautological definition of gluing, basically assuming the tangles are already
glued. This pushes the burden of usefulness of the concept onto the diffeomorphism
invariance of the action of tangles in a planar algebra.

Definition 2.1.2. Let T and S and U be planar tangles. Suppose there is a smooth
closed curve C in the interior of U which is the boundary of an input disc D ∈ DT
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and is the boundary of the disc DS, such that the intersection of U with (C and
its exterior) is T and the intersection of U with (C and its interior) is S (and the
marked intervals of C coming from T and S are the same), then we say T is the
result of gluing S to T and we write:

U = T ◦ S.

Example 2.1.3. . The gluing of planar tangles T and S

The setup for gluing: $ $

$

$

$

$

$
The disc D

S

The disc D  =  D   
T oT S

The tangle S:

$

$

$

$

The tangle T :

$

$

$

$
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The result T ◦ S:
$

$

$

$

$

Note that the disk DS is not part of the glued tangle so that

DT◦S = DT and DT◦S = (DT \ {DS}) ∪DS .

Remark 2.1.4. More general notions.
The notion of planar tangle defined above could be altered/generalised in several

ways by adding structure, for instance:
i) The regions of the tangle could be labelled (“coloured").
ii) The strings of the tangle could be labelled.
iii) The strings of the tangle could be oriented.

Composition of tangles in all these cases would require also that the extra struc-
ture on the boundary of the disc DS as above be the same for both T and S. The
function nD should be modified so as to contain the information which the added
structure gives to the boundary. We will call this the boundary structure of D and
write it ∂TD or just ∂D if there is no ambiguity in T . This extra structure is part of
the tangle so tangles can only be composed if ∂T

DS = ∂DS
S with notation as above,

in which case the extra structure of T and S should define extra structure on T ◦ S.
All these notions would lead to systems that should be called planar algebras.

We will treat explicitly the cases of shaded and oriented planar tangles.

Definition 2.1.5. Shaded planar tangle. A planar tangle T will be called shaded if
its regions are shaded with two colours so that if the closures of two regions meet,
then they are shaded differently. The shading is part of the data of the tangle.
Note that for a planar tangle to admit a shading all its discs must meet an
even number 2n of strings, and discs will be of two kinds, + and − when the
distinguished interval meets the closure of an unshaded or shaded region respectively.
Since the shadings of the intervals on the boundary of a disc simply alternate, the
extra boundary data for the function ∂ is just a + or a −. Thus for a disc D of kind
± with nD = 2n we will write ∂(D) = (n,+) or v∂(D) = (n,−).

Definition 2.1.6. Oriented planar tangle. A planar tangle T will be called ori-
ented if all the strings of T are oriented. Then the boundary points of each disc
inherit orientations. So for each n we define Bn to be the set of all functions from
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{1, 2, ..., n} → {↑, ↓}. Then each disc D (with n boundary points) of T defines an
element ∂(D) ∈ BnD according to:

∂(D)(k) =↑ if the string meeting the kth boundary point of D exits D and ↓ other-
wise.

Remark 2.1.7. Observe that orientation-preserving diffeomorphisms of the plane
map shaded (oriented) tangles to shaded(oriented) tangles in the obvious way. It
is clear how orientation reversing diffeomorphisms should act on shaded tangles but
not entirely clear for oriented tangles.

Definition 2.1.8. If θ is an orientation-reversing diffeomorphism of the plane and
T is an oriented planar tangle with underlying unoriented tangle

◦
T , then θ(T ) is the

oriented tangle whose underlying non-oriented tangle is θ(
◦
T ) but whose strings are

oriented in the opposite way from their orientation as oriented images of the strings
of T .

2.2 Planar algebras.

For the definition of a planar algebra recall that if S is a set and Vs is a set for each
s ∈ S, the cartesian product "

s∈S
Vs is the set of functions f from S to

⋃
s∈S

Vs with

f(s) ∈ Vs ∀ s ∈ S.

Definition 2.2.1. If T is a planar tangle, then an element f of "
D∈D

VnD will be

called a labelling of T and T will be called a labelled tangle.

A natural notation for a labelling is to place f(D) in D for each D ∈ DT in D
thus: Thus if we are dealing with a shaded planar algebra and if x1 ∈ V1, x2 ∈ V5,
and x3 ∈ V3 then the following picture is a labelled tangle.

$

$

$

$

x

x

3x

1

2

Definition 2.2.2. Planar algebra.
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A (vanilla) planar algebra P will be a family Pn of vector spaces indexed by
N ∪ {0} together with multilinear maps

ZT : "
D ∈ DT

P∂(D) → P∂(DT )

for every planar tangle T with DT non-empty, satisfying the following two axioms.

1) If θ is an orientation preserving diffeomorphism of R2, then

Zθ(T )(f) = ZT (f ◦ θ).

2)(Naturality)
ZT◦S = ZT ◦ ZS

Where the right hand side of the equation is defined as follows: first recall that DT◦S
is (DT \ {DS}) ∪DS . Thus given a function f on DT◦S to the appropriate vector
spaces, we may define a function f̃ on DT by

f̃(D) =

{
f(D) if D 6= DS

ZS(f |DS
) if D = DS

then the formula ZT ◦ ZS(f) = ZT (f̃) defines the right hand side.

Thus in a planar algebra a tangle T labelled by vector spaces Vn determines

an element of VDT so the notation y =

$

$

$

$

x

x

3x

1

2 is just like the notation

"y = F (x1, x2, ..., xn)" for a function of several variables where the internal discs
correspond to the spaces in between the commas. (We also call the internal discs
"input discs".)

The definition of a planar algebra could then be phrased diagrammatically by
saying that labelled tangles are multilinear in their variables and:
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$

$

$

$

Q

PS

R
$

$

$

=

$

$

$

$

$

R

S P

Q

Lemma 2.2.3. Let T be the tangle with no strings DT = the unit circle and DT =
{A,B} where A = {(x, y)|(y + 1/2)2 + x2 ≤ 0.1} and B = {(x, y)|(y − 1/2)2 + x2 ≤
0.1}. If P is a planar algebra show that P0 becomes a commutative associative algebra
under the multiplication

ab = ZT (f) where f(A) = a and f(B) = b.

Proof. This is an important exercise in the definitions of naturality and diffeomor-
phism invariance.

Definition 2.2.4. (i) A sub planar algebra Q of a planar algebra P will be a family
Qn of subspaces of Pn such that ZT (f) ∈ Q∂(DT ) whenever f(D) ∈ Q∂(D) for all
D ∈ DT .
(ii) An ideal I of a planar algebra P will be a family In of subspaces of Pn such that
ZT (f) ∈ Q∂(DT ) whenever f(D) ∈ I∂(D) for some D ∈ DT .
(iii) A homomorphism θ : P → Q between planar algebras will be family θn : Pn →
Qn of linear maps such that θ(ZT (f)) = ZT (θ ◦ f). An isomorphism is a bijective
homomorphism.

Exercise 2.2.5. If I is an ideal in P , show that the quotient P/I with (P/I)n =
Pn/In may be endowed with a planar algebra structure in the obvious way. If θ :
P → Q is a homomorphism then kerθ is an ideal, image(θ) is a subalgebra of Q and
image(θ) ∼= P/kerθ.

Remark 2.2.6. It may on occasion be convenient to refer to a planar algebra as
above as an unoriented or vanilla planar algebra. Note that the boundary structures
∂(D) are just the number of boundary points in a vanilla planar algebra.

Definition 2.2.7. A shaded planar algebra will be a family Pn,± of vector spaces
indexed by

(
N∪{0}

)
×{+,−} together an action of shaded planar tangles as in 2.2.2

Definition 2.2.8. An oriented planar algebra will be a family Pα of vector spaces
where α ∈ Bn, for all n ≥ 0, together with an action of oriented planar tangles as in
2.2.2.
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The notions of isomorphism, automorphism, subalgebra and ideal of oriented and
shaded planar algebras are the obvious extensions of 2.2.4.

Remark 2.2.9. Is this really true? Observe that a planar algebra defines a shaded
planar algebra by setting Pn,± = P2n and considering shaded planar tangles just
as planar tangles by forgetting the shading. Similarly a planar algebra defines an
oriented planar algebra.

An oriented planar algebra also defines a shaded planar algebra by orienting the
strings of a shaded tangle as the boundary of the shaded regions which are oriented
as subsets of R2. The Pn,± are then Pα and Pα′ where for i = 1, 2, · · · 2n,

α(i) =

{
↑ if i is odd
↓ if i is even and α′(i) =

{
↓ if i is odd
↑ if i is even

This shaded planar algebra actually forms a sub-planar algbera of
−→
P .

Moreover a central -(see 2.6.6) shaded planar algebra defines an oriented one by
setting

−→
P 0 = P0,+ = P0,− and

−→
P β =


Pn,+ if β = α as above
Pn,− if β = α′ as above
0 otherwise.

Note that this procedure does not work if the shaded planar algebra is not a
central one as we cannot identify P0,+ and P0,−.

Definition 2.2.10.
A constant tangle is a planar n-tangle with no input discs,

a linear tangle is a planar n-tangle with one input disc and
a quadratic tangle is a planar n-tangle with two input discs.
And in general the degree of a planar tangle is the number of input discs.

Remark 2.2.11. A useful convention for shaded planar algebras. For a shaded
planar algebra all discs in all relevant tangles have an even number of boundary
points. Thus the strings at each disc can canonically be split into two equal sets and
the diagrams isotoped into ones where the discs are visually indistinguishable from
horizontal rectangles, with the strings meeting the edges of the rectangle orthogonally
and half attached to the top and half to the bottom directly below the strings at the
top. The distinguished boundary interval is the one containing the left edge of the
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rectangle.

Thus we replace
R

Q $

$

$

with
R

Q

There are many variations on the definition of planar tangles and planar algebra.
Since the action of a tangle depends only on the tangle up to isotopy/diffeomorphism
it is possible to use tangles defined up to isotopy. But then one must keep track of the
input discs and choose representatives and the definition of gluing must be done much
more carefully. We have chosen the definition we have given to avoid these problems
and because we foresee a more general structure where the action of a tangle is not
simply invariant under isotopy. For instance the angles made by the strings where
they meet the boundary disc could play a role. In fact there is already a relevant
toy version of non-invariance under diffeomorphisms which is rather important, and
that is for *-structure.

Definition 2.2.12. We will say that a planar algebra P over C(oriented or shaded
planar algebra) is a planar *-algebra if each Pn (Pα or Pn,±) possesses a conjugate
linear involution * so that if θ is an orientation reversing diffeomorphism of R2, then

Zθ(T )(f)∗ = ZT ((f ◦ θ)∗).

Note that any two orientation reversing diffeomorphisms differ by an orientation
preserving one so it would suffice to take any orientation-reversing θ in the above
definition.

2.3 Unital Planar algebras.

The mathematical structure which a planar algebra seems to most strongly resemble
is that of an algebra over an operad. According to [], given a monoidal symmetric
category with product ⊗ and unit object κ an operad C is a collection of objects
C(j) for j = 0, 1, 2, 3, ..., a unit map η : κ→ C(1) and product maps

γ : C(k)⊗ C(j1)⊗ C(j2)⊗ · · · ⊗ C(jk)→ C(

k∑
i=1

ji)

for k ≥ 1 and ji ≥ 0. Satisfying a bunch of axioms. The idea is that the elements of
C(k) will paramatrise k−ary operations on objects of the category so that an algebra
over an operad is an object A together with maps

θ : C(j)⊗Aj → A

that satisfy a bunch of axioms similar to those of γ.
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There are also representations of the symmetric group to keep track of which
input goes where.

Since we have an explicit operad-like object the detailed axioms of an operad
need not concern us, but it is of considerable interest to investigate the meaning
of operadic notions in our context. First we describe how the ingredients of May’s
definition line up with planar algbebras.

The planar tangles of course correspond to the elements of an operad. To get
the category stuff right we could easily linearise and consider linear combinations
of tangles with identical boundary disc structure. The underlying category would
then be vector spaces under tensor product with the unit object being the field itself.
The map γ in May’s definition corresponds to the gluing operation on tangles. In
the definition we have given of an operad all the internal discs would be glued at
once but May points out that one can also use individual ◦i operations to define
an operad. The main thing preventing the planar tangles from being an operad on
the nose is the fact that not any tangle can be glued into any other. This is rather
extreme in our definition of tangles as subsets of the plane but could be allevitated
a little by considering tangles up to isotopy. Even so one could only glue one tangle
into another if the numbers of intersections of the boundaries with the strings line
up and the marked intervals have the same shading. So we have what should be
(and no doubt is) called an example of a "partial operad". It is now clear how
the definition of an algebra over an operad corresponds to our definition of planar
algebra. The map θ in operad theory is nothing but the partition function ZT (once
we have linearised the multilinear maps to the tensor product).

So what do the various bits and pieces of operad theory correspond to? The
identity κ in May’s definition would be a linear map from the ground field to C(1).
But C(1) corresponds to linear tangles (one input disc) which we will treat later but
we already have a lot to say about discs with no input discs which correspond to
elements of C(0). So let us pass to the next notion which is that of a unital operad.
Here May makes the assumption that C(0) = κ. For our planar operad nothing like
this can be true.

Definition 2.3.1. Let Ť0
n be the set of all planar n-tangles T (unoriented, oriented,

shaded) with DT = ∅, and Ť0 =
⋃
n
Ť0
n.

Here is a picture of an element of T0
6:
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The set Ť0 has a lot of structure.
Just what might correpsond to May’s identity axiom is unclear but we would

surely be unwise to try to eliminate the richness of these input-free tangles.
Looking at the role of the identity for algebras over operads, the first thing we

encounter in [] is that of a unital algebra over an operad. This involves extending the
action of the operad to C(0). The only thing that makes sense for a unital operad is
to suppose that there is a map from κ = C0 to the algebra A satisfying the obvious
axioms extending those of θ. In particular if κ is a field and algebras over the unital
operad Ass whose algebras are precisely the associative algebras, unital algebras over
the operad are unital associative algebras in the usual sense. For planar tangles the
unital structure has been enriched by all TL diagrams so we see that the notion of a
unital planar algebra will be correspondingly enriched.

Definition 2.3.2. We say the planar algebra P is unital if for each S ∈ Ť0
n there is

an element Z(S) ∈ P∂(DT ) such that
(i) If θ is an orientation preserving diffeomorphism of R2 then

Z(θ(S)) = Z(S)

(ii) (naturality)
ZT ◦ S = ZT ◦ ZS

where ZT ◦ ZS(f) is defined to be ZT (f̃) with

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS

[]diagrammatically:
Thus in a unital planar algebra the isotopy class of every such picture defines

an element of the planar algebra. For a unital planar algebra to be a *-planar
algebra we require that its involution * be such that if θ is an orientation reversing
diffeomorphism then

Z(θ(S)) = Z(S)∗

Thus for instance :[]
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Definition 2.3.3. Let T0
n be the set of all isotopy classes of planar n-tangles T

(unoriented, oriented, shaded) with DT = ∅, and T0 =
⋃
n
T0
n.

The set of all such diagrams is infinite because of the presence of an arbitrary

number of closed strings. But there are exactly
1

n+ 1

(
2n

n

)
connected such diagrams

in T0
2n (and none in T0

2n+1). So if we want P0 to be as close as possible to a unital
algebra over the operad of planar 0− tangles we would require that {Z(S)|S ∈ T0

0}
be all linearly dependent.

Definition 2.3.4.
(i) The connected elements of T 0

2n will be called the Temperley-Lieb diagrams or TL
diagrams for short. Their images in a unital planar algebra will be called the TL
elements.
(ii) O will denote the unique connected element of T0

0 with one string.
(iii) Ω will denote the unique element of T0

0 with a single closed string.

We will often leave out the output disc for a 0-tangle.

Proposition 2.3.5. Let P be a planar algebra and suppose that Z(Ω) = δZ(O) for
some scalar δ. Then all the {Z(S)|S ∈ T0

0} are linearly dependent.

Proof. This follows immediately by using naturality to remove the closed strings of
S one at a time.

Remark 2.3.6. The proof actually shows that if a planar tangle T contains k closed
strings which are contractible in DT \

⋃
D∈DT

D, ZT is the same as δkZŤ where Ť is T

from which those k closed strings have been removed.

Definition 2.3.7. A planar algebra satisfying Z(Ω) = δZ(O) for some scalar δ will
be called a reduced (temporary terminology) planar algebra with (loop) parameter δ

Remark 2.3.8. Note that reduced oriented planar algebras will require two δ’s, one
for each orientation of the closed string in Ω and reduced shaded planar algebras will
require two δ’s according to the shading (δ+ for a closed string enclosing a shaded
region and δ− for the other shading). However we have the following:

Lemma 2.3.9. If P is a shaded reduced planar with non-zero loop parameters δ0
+

and δ0
− we may alter the action of planar tangles on P by scalars (multiplicatively)

to obtain a new planar algebra with δ+ = δ− =
√
δ0

+δ
0
−.

Proof. Define a function ν(T ) on shaded planar tangles as follows. Construct a (not
necessarily connected) TL tangle from T by "smoothing" all the internal discs, that is
smoothly joining the string meeting boundary point j to the string meeting boundary
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point 2n−j+1 for j = 1, 2, · · ·n. Orient the strings so that shaded regions are always
on the left. Let k+ be the number of closed positively oriented strings and k− be the
number of closed negatively oriented strings. Now throw away “through” strings that
connect the first n boundary points (of DT ) to the last n boundary points. Form
closed loops with the remaining strings and the part of the boundary of DT joining
their ends. Let `+ be the number of positively oriented such loops and `− be the
number of negatively oriented ones.Then set ν(T ) = 2(k+ − k−) + `+ − `−. ν(T ) is
obviously an isotopy invariant of T . I further claim that ν(T ◦S) = ν(T )+ν(S). This
is readily seen by isotoping T to the “boxes” form of 2.2.11. For then ν(T ) is nothing

but
1

2π

∫
strings of T

dθ where dθ is the change of angle form. This is manifestly

additive under gluing. With these properties it is clear that renormalising Z by
ZrT = rν(T )ZT (for any invertible r in the ground field) defines a planar algebra
structure with the same vector spaces as P , which is reduced if P is. The effect on
the loop parameters is to change δ+ to rδ+ and δ− to r−1δ−. Choosing r =

√
δ−
δ+

gives the conclusion.

Thus each Pn in a unital planar algebra will contain a quotient of the vector space
of linear combinations of TL diagrams. This quotient can be strict - consider the
trivial planar algebra or for a (much) more interesting example the spin model planar
algebra of 3.9 when n = 2 and n = 3. The dimension growth of these algebras is as
2n/2 and 3n/2 respectively whereas the growth of the Catalan numbers is something
like 2n so there are linear dependences between the various Temperley-Lieb diagrams.
These are very interesting relations.

2.4 Algebra structure

The word “algebra” in the name “planar algebra” initially arose because each P2n

came with an algebra structure. Although part of the idea of planar algebra is to
de-emphasise this particular algebra structure, it remains sufficiently important that
we want to treat it immediately.

Proposition 2.4.1. If P is a planar algebra then any labelled tangle isotopic to the
one drawn below defines an associative algebra structure on P2n for each n ≥ 0.

ab =

$

$

$ a

b
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If P is unital, so is P2n for every n, the identity being given by $ .

If P is a planar *-algebra then each P2n is also.

Proof. These follow simply from the definitions. See also 2.2.3

Remark 2.4.2. Whenever we refer to P2n as an algebra this is the structure we
mean.

If P is a shaded planar algebra the above tangle defines algebra structures on
both Pn,+ and Pn,−. When we write Pn for a shaded planar algebra we will mean
Pn,+.

The oriented case is more interesting. If the above tangle is to define an algebra
structure on Pα then α, thought of as a word on ↑ and ↓, must be of the form ww∗

where w∗ is w read backwards and with the arrows reversed. If we refer to Pα as
an algebra it is this structure we will mean. We warn the reader that the algebra
structure of Pα will depend on α even for a fixed number of boundary points.

Definition 2.4.3. We will call a planar *-algebra P a C∗ planar algebra if each
P2n has a norm making it into a C∗-algebra.

Note that the norm in a C∗-algebra is purely algebraic via the spectrum of a∗a
so the above norm, if it exists, is unique and is not extra structure on P .

2.5 More operadic considerations.

(i) May’s definition in [] requires an operad to have an "identity". This is a map
from κ to C(1) for which the image ι of 1 acts by the identity on operad elements.
In the axioms for an algebra over an operad ι is also required to act by the identity.
There is a very natural analogue of ι in the planar operad and that is the element:

ιn =

$

$

In a planar algebra there is no particular reason why these elements should act
by the identity. For instance in zero planar algebras it does not. On the other hand
we can take the subspaces ιn(Pn) and observed that they form a planar algebra on
which ιn is the identity. Hence the following.
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Definition 2.5.1. A planar algebra P will be called nondegenerate if Zιn is the
identity map for all n ≥ 0.

The notationally and perhaps psychologically useful thing about a nondegenerate

planar algebra is that R and R

$

$

mean the same thing.

(ii) If one considers planar tangles with only closed strings, i.e. no disc has
boundary points, one is very close to an operad, on the nose. If, instead of our
concrete tangles where the input discs label themselves, we choose isotopy classes of
tangles with labelled internal discs, and define gluing in the obvious way, we obtain a
non-Σ operad in the sense of []. We have seen that a unital algebra over this operad
is a commutative associative unital algebra A. The extra structure imposed by the
closed loops is a linear map L : A→ A defined by the formula below.

L(x) = x

Closed contractible loops may be removed provided we multiply by L(1). A and
L completely define the action of planar tangles and conversely any such A and L
can be used to construct an algebra over this operad. It is not entirely clear that
any algebra over this operad can be extended to a planar algebra.

Note the subtle difference here between the oriented and shaded versions of this
structure. The shaded version will have two algebras A+ and A− for the two shadings
and L will be a map between them (the operad will still be partial), whereas in the
oriented case there is one algebra A but two maps L according to the orientations
on the string in the above figure.

(iii) One of the uses of the unital structure in [] is to provide "augmentations".
Given and element of Cj , and the identification of C0 with κ, the structural map γ
for an operad gives a map from each C(j) (∼= C(j)⊗ C0 ⊗ C0 ⊗ · · · ⊗ C0) to κ.

It is not so clear how one should augment planar tangles. Any input discs with
no boundary points can be augmented as for operads but what should one do with
a disc with lots of boundary points. I propose the following definition:

Definition 2.5.2. If T is a planar n-tangle define the augmentation ε(T ) to be
the linear combination of constant n-tangles obtained by summing over all ways of
inserting Temperley-Lieb diagrams into the internal discs of T .
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Thus for instance ε( ) = + .

2.6 Measured planar algebras.

Definition 2.6.1. A planar algebra P with boundary data BP will be called measured
if there is a non-zero linear function ω : Pα → C (called the measure) for each
α ∈ BP

0 , which is compatible with the gluing in the obvious way.

omega

Definition 2.6.2. If P is a measured planar algebra (resp. *-planar algebra) we
define the canonical bilinear form (, ) (resp. the inner product 〈, 〉) on each Pn to be:

(x, y) = ω(

$

x y

$

) resp. 〈x, y〉 = ω( y*x

$ $

).

We would have obtained different bilinear and sesquilinear forms by different
placement of the $’s above. The next condition eliminates that possibility.

Definition 2.6.3. A measured planar algebra is called spherical if the multilinear
function ω ◦ZT defined for every T with no strings connected to DT depends only on
the isotopy class of T on the 2-sphere compactification of R2.

Definition 2.6.4. A measured planar *-algebra (over R or C) will be called positive
definite if the inner product above is positive definite.

Proposition 2.6.5. A positive definite measured planar algebra (or a measured pla-
nar algebra with non-degenerate canonical bilinear form) is nondegenerate.

Proof. An element in the kernel of ιn is necessarily orthogonal to everything for (, )
and 〈, 〉.

A planar algebra may possess a canonical measure.

Definition 2.6.6. A planar algebra P will be called a central planar algebra if
dimPα = 1 for each α ∈ B0.

Proposition 2.6.7. A unital central planar algebra is a measured planar algebra in
a unique way.

Proof. There is a unique way to identify labelled 0-tangles with the scalars compat-
ible with the gluing.
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2.7 Summary

There have been an unfortunately large number of adjectives to be applied to the
term planar algebra. For the convenience of the reader we list them all here.

1. Vanilla 2.2.6

2. Oriented 2.2.8

3. Shaded 2.2.7

4. Star 2.2.12

5. C∗ 2.4.1

6. Unital 2.3.2

7. Reduced 2.3.7

8. Measured 2.6

9. Nondegenerate 2.5.1

10. Central 2.6.6

11. Positive definite 2.6.4

12. Spherical 2.6.3

13. Finite dimensional if Pα is finite dimensional for every α.

Putting most of these together we get the kinds of planar algebras we are most
interested in:

Definition 2.7.1.

1. A positive planar algebra is a positive definite unital finite dimensional pla-
nar *-algebra (automatically C∗).

2. A subfactor planar algebra is a central spherical positive shaded planar algebra.

3. A correpsondence planar algebra is a positive oriented planar algebra.

If we drop the sphericality condition from a subfactor planar algebra we will
refer to a “non-spherical” planar algebra. Observe that loop parameters are positive
in positive planar algebras.
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2.8 Remarks on higher genus.

One may ask if a planar algebra admits an extension to an operad consisting of
surfaces with boundary of genus larger than zero. There is a simple way to do this
in the spirit of []Kevin. Given a planar algebra P such a smooth surface σ with
given finite sets of boundary points on each boundary component one defines the
vector space V̌Σ to be the vector space spanned by isotopy classes of configurations
of strings and input discs labelled by elements of P lying in the interior of Σ. Then
VΣ is the quotient of V̌Σ by all relations in P , applied in any disc inside Σ. The
operadic formalism is not necessarily the best way to handle gluing as we need to
consider gluing together two discs on the same surface, but it is easy to set things
up in this smooth context. Each kind of planar algebra will require different kinds
of configurations (oriented, shaded...) on the surface.

We are forced to consider this notion even in genus zero when we consider the
annular category below (10.1). The trouble is of course that VΣ will not be a finite
dimensional vector space in general even when P is finite dimensional. A significant
exception to this will be when P is finite depth as defined in 6.6. In this case the
planar algebra will yield what is called a topological quantum field theory ([],[]) but
we do not want to develop this aspect here.

3 Examples

3.1 The trivial examples.

(i) The zero planar algebras.
If one chooses Pn to be arbitrary vector spaces and one sets all the maps ZT to be
zero one obtains a derisory planar algebra.

Perhaps the only thing to say about them is that they can obviously be made
unital and any unital planar algebra for which Z(Ω) = 0 is a zero planar algebra.
(ii) The trivial planar algebra.
If F is the ground field and we set Pn = F for all n, and ZT to be the product map
then we get a planar algebra. It is furthermore untial and reduced if we define the
images of all the TL tangles to be 1 ∈ F , and the loop parameter δ is equal to 1.
The oriented and shaded versions are obvious.

This planar algebra is of little interest though it will furnish us with a subfactor
planar algebra-2.7.1.

3.2 Tensors-P⊗

We will give unoriented, oriented and shaded versions.

(i) The unoriented case.
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Suppose we have a finite dimensional vector space V with a basis v1, v2, ..., vk.
Then elements of the tensor powers ⊗nV can be concretely represented by arrays of
numbers Ri1,i2,...,in which are the coefficients of the elementary basis tensors vi1 ⊗
vi2 ⊗ · · · ⊗ vin .

In order to define a planar algebra we need to give vector spaces Pn and the
action of planar tangles. For the tensor planar algebra, P⊗n will be ⊗nV .

To define the multilinear map of a planar n-tangle T we may suppose that a tensor
has been assigned to every D ∈ DT . Then we have to create an element of ⊗nV .
This means assigning a number Ri1,i2,··· ,in to every n-tuple of integers between 1 and
k. To do this, we begin to define a function from the strings of T to {1, 2, · · · , k} by
assigning the indices i1, i2, ..., in to the boundary points of DT .

If the ath. and bth. boundary points are connected by a string of T and ia 6= ib
then we set Ri1,i2,··· ,in = 0

So we can suppose the assignment of indices can be extended from the points
on the boundary disc to the strings meeting those points. Call a "state" σ of T
any extension of this function to all the strings of T . Then each σ assigns, for each
D ∈ DT , indices to the nD boundary points of D. Thus for each such disc there is
a number RDσ given by the tensor that is allotted to D.

We now define
Ri1,i2,··· ,in =

∑
σ

∏
D∈DT

RDσ

This R obviously depends multilinearly on the tensors assigned to each D ∈ D
and it is a simple matter to check the gluing axiom. Diffeomorphism invariance is
obvious. Thus we have a planar algebra P⊗.

P⊗ becomes a planar *-algebra under the operation of complex conjugation and
reversing the order of the indices of tensors. It is also a central planar algebra and
the canonical sesquilinear form is positive definite.

One might wonder why we are only allowing planar systems of contractions for
tensors. It was Penrose ([]) who invented a diagrammatic notation for tensor con-
tractions which allowed for arbitrary pairings of the indices. We contend that the
planar restriction is significant as there are important examples of sub planar alge-
bras of P⊗ that are not closed under all contraction systems. Also just the problem
of determining the dimensions of a sub planar algebra of P⊗ (given generators of it)
is undecidable whereas if one allows arbitrary contractions it is probably algorith-
mically possible (there is a closely related family of planar algebras where the same
problem is algorithmically decidable).

Observe that this planar algebra can immediately be extended to a unital reduced
one by using the convention that an empty product is equal to 1. Note also that
the loop parameter of this planar algebra is k, the dimension of the auxiliary vector
space V . This is because if we are given a closed string then it is not connected
to the outside boundary so we must sum over the k possible index values for that
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string, all other index values being held fixed.
We see immediately a shortcoming of the unoriented tangles-the only obvious

symmetry group of the algebra is the permutation group of the basis vectors, and
the idea of covariant and contravariant indices is absent.

(ii) The oriented version.

Again V is a finite dimensional vector space of dimension k. In order to give an
oriented planar algebra we must assign a vector space to every α ∈ Bn for every n.
That is simple enough:

Pα =
n
⊗
i=1

V α(i)

where V ↑ is V and V ↓ = the dual V † of V .
A multilinear map from "

D ∈ DT

P∂(D) is the same thing as a vector in P∂(DT )⊗

( ⊗
D∈DT

P∂(D))
†. This may be written as a tensor product of V ’s and V †’s over the set

of all boundary points of discs in T . The tangle gives a pairing between all these
boundary points with V always paired with V †. So we may rearrange the the tensor
product as

⊗
non-closed strings of T

(V ⊗ V †).

But there is a canonical element of V ⊗ V † so taking the tensor product of it over
the non-closed strings of T we get a multilinear map from "

D ∈ DT

P∂(D) to P∂(DT ).

ZT is just this map times k`, ` being the number of closed strings in T .
Note how this definition works for tangles without input discs as well so that this

planar algebra is a reduced unital one.
If V is a Hiilbert space then there is a conjugate-linear isomorphsims between V

and V † which allows us to make
−→
P ⊗ into a planar *-algebra in the obvious way. The

resulting 〈, 〉 is positive definite so we get a correspondence planar algebra.
Diffeomorphism invariance and naturality are easy, and if one chose a basis of

V and the dual basis for V † one would obtain explicit formulae just like in the
unoriented case.

Remark 3.2.1. Observe that the group GL(k) acts in a canonical way on
−→
P ⊗. This

means that for every subgroup of GL(k) there is a planar algebra for which Pα is the
invariant tensors in the tensor power of V and V † defined by α.

(iii) The shaded version. As we have observed in 2.2.9, an oriented planar algebra
defines a shaded one.If V is a Hilbert space then we get a subfactor planar algebra.
There is a far more interesting way to make tensors into a shaded planar algebra
defined below in 3.9
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3.3 The Temperley-Lieb planar algebra P TL.

(i) Unoriented version.
The vector space P TL2n+1 is zero and P TL2n+1 is the vector space of formal linear combi-
nations of connected TL diagrams with 2n boundary points. The loop parameter δ
may be assigned arbitrarily so there is one TL planar algebra for each δ. The action
of planar tangles is obvious, just insert the TL diagrams into the internal discs, lining
up the distinguished intervals. Then remove any closed loops that are formed one at
a time, each time multiplying by δ. This construction would be hard to miss from
the operadic standpoint as C0 is always an algebra over the operad C.

P TL also extends to a unital planar algebra (in the obvious way). Moreover the
maps defining the unital structure of any planar algebra endow it with a quotient of
P TL as a planar subalgebra.

(ii) Oriented version.

The strings of a connected TL diagram D may be oriented to give a diagram
−→
D .

If
−→
D has 2n boundary points there is an element α−→

D
∈ B2n given by the orientation

of the boundary points. The vector space P TLα is the set of formal linear combinations
of such tangles (and is zero for B2n+1). Oriented planar tangles act in the obvious
way, with closed strings being removed with a multiplicative factor of δ± according
to their orientation. It is clear that this oriented planar algebra is reduced and is
unital in the obvious way.

Note that for α ∈ B2n, dimP TLα (i.e. the number of oriented connect TL dia-
grams) is no longer simply the Catalan number. It is a complicated function of α
for which we will soon give an "explicit" formula.

Proposition 3.3.1. dimP TLα = 0 ⇐⇒ |α−1(↑)| 6= |α−1(↓)|.

Proof. The only non-obvious thing to prove is that if |α−1(↑)| = |α−1(↓)| then there
is an oriented TL diagram having α as its boundary data. This follows by induction-
if not all boundary arrows are the same there must be a pair of consecutive boundary
points which have different orientations. These two points can be connected by an
oriented edge. The remainder of the diagram can be completed induction.

Now if α ∈ B2n we define a word on the letters X an Y as follows:
Let

fα(i) =

{
X if i is odd and α =↑ or i is even and α(i) =↓
Y if i is odd and α =↓ or i is even and α(i) =↑

Now let wα be the word whose ith. letter is fα(i).
Recall the Voiculescu trace trV of [] on the algebra of non-commutative polyno-

mials in X and Y which, on a monomial, is the number of planar pairings between
the letters of the word, where X must be paired with X and Y with Y .
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Proposition 3.3.2. dimP TLα = trV (wα).

Proof. wα was designed so that a pairing contributing to the Voiculescu trace is the
same thing as an oriented TL diagram.

3) Shaded version.

Do ei’s []

Exercise 3.3.3. 1. For oriented TL, show that the maximum dimension of P TL2n

is the Catalan number which is achieved only if the boundary orientations al-
ternate.

2. Calculate the determinant of the 5x5 inner product matrix for P TL6 . When is
this sesquilinear form positive definite/semi-definite?

3. dim TL shaded

3.4 Van Kampen diagrams and P Γ.

Let Γ be a (countable discrete) group with a finite generating set Gen. Let V be the
vector space having Gen as a basis. We will construct a planar subalgebra of the−→
P ⊗ built on V . Functions from {1, 2, · · · , n} to Gen give tensors in

−→
P ⊗α by choosing

g ∈ Gen to be a basis element for V for ↑ and the dual basis element for ↓. The
space PΓ

α is the vector subspace of
−→
P ⊗α spanned by all tensors Rf , f being a function

from {1, 2, · · · , n} to Gen such that
n∏
i=1
f(i)α(i) = 1 where g↑ = g and g↓ = g−1.

We leave it as an exercise to show that the PΓ
α form a planar subalgebra of

−→
P ⊗.

As a planar *-subalgebra of
−→
P ⊗, PΓ is a correspondence planar algebra.[]?? Check

* property.
In fact these diagrams are well used in combinatorial group theory. If words wi

on generators α are given then each wi defines an n-box in
−→
P ⊗α and it is not hard

to show that the planar algebra generated by these wi is in fact PΓ
α where Γ is the

group presented by α and the wi.
Note that the 1-box space consists of (linear combinations of) all ways of writing

the identity so the group is trivial iff

dim(PΓ
α,1) = |α|

in which case dim(PΓ
α,n) = |α|n for all n. The obvious consequence for planar algebra

theory is that the question of deciding whether dim(Pn) = 1 for a planar subalge-
bra of another planar algebra, generated by an explicit finite family of n-boxes, is
undecidable.
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The natural subfactor planar algebra defined by the induced shaded planar al-
gebra consists of all words of even length in the generators such that the product of
the letters in the word, with alternating exponents ±1, is equal to the identity.

3.5 Ice

This planar algebra is implicit in Lieb’s ice-type model.[] It is an oriented planar
algebra. For α ∈ Bn we let P Iceα be the vector space whose basis is the set of all
functions ι : {1, 2, · · · , n} → {±1} such that

∑n
i=1(−1)α(i)ι(i) = 0. Clearly P Icen = 0

for n odd and
dim(P Ice2r ) =

(
2r

r

)
.

(Here (−1)↑ = 0, (−1)↓ = 1.)
For every real number λ we now define a structure of a reduced central unital

planar algebra P Ice(= P Ice,λ) with P Iceα defined above.
So suppose T is an oriented planar n-tangle with n even and we are given a

function ι from the boundary points of DT to {±1}, and an element R(D) ∈ P Ice∂(D)

for every D ∈ DT . As for P⊗, we have to come up with a number Rι so that
ZT (R) =

∑
ιRιι. Define a state σ of T to be any extension of ι to the strings of T

(so there are no states if two boundary points of DT are connected by a string of
T and ι is different on those boundary points). A state induces for each D ∈ DT a
function σD from its boundary points to {±1} so we can talk about R(D)σD . We
then let

Rι =
∑
σ

∏
D∈DT

R(D)σDf(σ)

where f(σ) is calculated in a similar way to 2.3.9: first isotope T so that all discs
are horizontal rectangles with their distinguished intervals to the left, and all strings
meet all rectangles at right angles, half at the top and half at the bottom. Then
define

f(σ) = λ
∫
S(T ) σdθ

where dθ is the angle 1-form on R2 normalised so that the integral over a positively
oriented circle is equal to 1.

Note that we do not really use the real numbers in the definition since once the
tangle is in its standard form the contribution of each string to the integral is at
worst a half integer.

Isotopy invariance of ZT as defined is not quite obvious because of the fac-
tors f(σ), indeed the formula would not be isotopy invariant without the condition∑n

i=1(−1)α(i)ι(i) = 0. But, as explained in []burnsthesis, any two planar isotopies
of a tangle into the required form can be supposed to produce the same result, up
to rotations of the internal rectangles by 2π. For each state σ it is clear that the
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rotations do not affect f(σ). Thus ZT is isotopy invariant. The naturality of ZT
follows from the obvious additivity of f(σ) under gluing of tangles.

The unital structure on P Ice is clear. Once a TL tangle T with boundary function
α) is isotoped so that the outside disc is a rectangle and the strings meet the boundary
orthogonally one defines

Z(T )ι =
∑
σ

f(σ)

with σ and ι defined exactly as above.
The reduced property for P Ice is obvious with δ+ = δ− = λ+ λ−1.
Note that for λ = 1 this planar algebra structure is exactly what would be defined

by using a basis in the oriented version
−→
P ⊗ for a two dimensional auxiliary vector

space V .

Definition 3.5.1. Let α± ∈ B2 be defined by α+(1) =↑, α+(2) =↓ , α1(1) =↓ and
α−(2) =↑. Then define u± ∈ P Iceα± by

u±i,j =

{
1 if i = −j
0 otherwise

These elements u± are obviously in P Ice and allow us to change the orientation
of a string. Observe the relation:

−

u
+

u

=

We can now define Temperley-Lieb like elements in P ice:

Definition 3.5.2. Let E ∈ P Iceα be the element

$

u+

u−

where α ∈ B4 is defined by the picture.

Note that with this choice of α, P Ice is an algebra as in 2.4.1.

Proposition 3.5.3. For this algebra structure E2 = δE.

The reason for insisting on the relation
∑n

i=1(−1)α(i)ι(i) = 0 in the definition
of P Ice was to ensure invariance under all planar isotopies. But we could easily
define operads based on planar tangles with horizontal rectangles instead of discs
and “rigid” planar algebras where we only require invariance of Z under isotopies
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during which the horizontal rectangles stay horizontal rectangles. Then one could
proceed exactly as in the definition of the basis dependent version of P⊗ except that
in the definition of ZT , the contribution of each state would be multiplied by a factor
f(σ) = λ

∫
S(T ) σdθ.

Note that the multiplication tangle of 2.4.1 works just as well in rigid planar
algebras to give each P2n and algebra structure. Applying this to P Ice we see that
each time α is such that P Iceα is an algebra, it is in fact a subalgebra of the 2n × 2n

matrices. We record here the matrix for E in the obvious basis:

E =


0 0 0 0
0 λ−1 1 0
0 1 λ 0
0 0 0 0


[]Do Kauffman diagrams, Jones braid group rep and polynomial.

Let us agree that for any oriented planar algebra P , Pn will be Pα where α :
{1, 2 · · · , 2n} → {↑, ↓} is α(i) =↑ for 1 ≤ i ≤ n and α(i) =↓ for n + 1 ≤ i ≤ 2n.
Observe that Pn is a unital algebra unitally embedded in Pn+1 via the appropriately
oriented tangles id⊗ 1 and 1⊗ id of 10.2.2.

Definition 3.5.4. For any X in P2 as above inductively define X1 = E and Xn+1 =
(1⊗ id)(X).

All the Xn can be considered as elements of the same algebra.

Proposition 3.5.5. We have
(i) E2

n = δEn
(ii) EnEn±1En = En
(iii) EnEm = EmEn if |m− n| > 1

These are the famous Temperley Lieb relations of [],[],[]. Given any element
X ∈ P Ice2 as above, Xn makes sense using the

Definition 3.5.6. Let g = E − λ1.

Lemma 3.5.7. We have the braid relations
(i) gngn+1gn = gn+1gngn+1

(ii) gngm = gmgn if |m− n| > 1
together with the (Hecke) relation
(iii) gn − g−1

n = (λ−1 − λ)1.

Lemma 3.5.8. If we define R(x) = exg − e−xg−1 then

Rn(x)Rn+1(x+ y)Rn(y) = Rn+1(y)Rn(x+ y)Rn+1(x)
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Proof. This is an exercise, using only the relations of the previous lemma. There
are 8 terms on each side of the relation. 6 of these are equal using just the braid
relations. Using (iii) and the braid relation, the others reduce to g2

n − g−2
n on one

side and g2
n+1 − g

−2
n+1 on the other. But squaring (iii) shows that both of these are

the same multiple of the identity.

Let us now write out the matrices for g and R(θ) explicitly. From the definition
of g and the matrix for E we have

g =


−λ 0 0 0
0 λ−1 − λ 1 0
0 1 0 0
0 0 0 −λ

 and g−1 =


−λ−1 0 0 0

0 0 1 0
0 1 λ− λ−1 0
0 0 0 −λ−1


From which we get immediately up to a global factor of 2, with e−φ = λ,

R(θ) =


sinh(φ− θ) 0 0 0

0 eθ sinhφ sinh θ 0
0 sinh θ eθ sinhφ 0
0 0 0 sinh(φ− θ)


In section 12 we will see that the entries of R(θ) supply the Boltzmann weights for
a statistical mechanical model called the "Ice-type" model. We see that provided
φ ≥ θ ≥ 0 these Boltzmann weights are positive and so make physical sense.

3.6 The Motzkin planar algebra

We describe only the unoriented version, the modifications necessary for the other
versions are now obvious. By definition PMotz

n is the vector space spanned by iso-
topy classes of connected planar n-tangles with no closed strings and and all input
discs having exactly one boundary point. By connectedness any input disc must be
connected to the boundary disc by a string so PMotz

n is finite dimensional. Here is a
picture of an element in PMotz

5 where we have shrunk the input discs down to dots:

$

We will call such a tangle a "Motzkin diagram". Counting the Motzkin diagrams
is similar to counting TL diagrams. Note that the 1-discs and their strings could
be shrunk to the boundary points and one obtains the standard objects counted
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by the Motzkin numbers-see []. The first few Motzkin numbers (and therefore the
dimensions of the PMotz

n ) are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835.

If we write an for the nth. Motzkin number (with a0 = 1) then it is obvious that

an+2 = an+1 +

n∑
j=0

ajan−j

so that the generating function
∞∑
n=0

anz
n satisfies

z2A2 + (z − 1)A+ 1 = 0.

Solving the quadratic gives explicit expressions for an as sums of products of binomial
coefficients.

The planar algebra structure on the Motzkin algebra is defined exactly as for
TL. Besides closed strings one inevitably encouters strings ended by dots. These are
handled like closed strings by removal with another multiplicative constant. But in
fact we may as well assume that this constant is 1, by multiplying each basis element
by a constant depending on its number of dots.

Exercise: In the oriented version of Motzkin, interpret the dimensions of the Pα
as a Voiculescu-type trace.

3.7 Knots and links.

The planar algebra we are about to define was implicitly present in Conway’s paper
[]. We do the oriented and unoriented definitions together.

For each even n let PConwayn (resp.
−→
P Conway
α ) be the vector space of formal linear

combinations of (3-dimensional) isotopy classes of link diagrams (resp. oriented link
diagrams) with the 2nth. roots of unity as boundary points and the interval on the
unit circle preceding 1 in clockwise order as the distinguished boundary interval.
By three dimensional isotopy class we mean that two link diagrams are identified if
they can be obtained one from another by the three Reidemeister moves and planar
isotopy.

The action of planar tangles on the vector spaces PConwayn is just as in TL, with-
out removal of closed strings, by gluing in tangles using an appropriate orientation
preserving diffeomorphism of the unit disc to the relevant disc in the planar tangle.
[]MAKE THIS MORE EXPLICIT FOR TL. The unital structure is obvious.

Proposition 3.7.1. The algebra PConway0 (resp.
−→
P Conway

0 ) is the polynomial algebra
with one generator for each non-split link (resp. oriented link) in R3.
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Note that this planar algebra is non-degenerate but not reduced. Each Pn is
infinite dimensional even as a module over P0. Conway’s "linear skein theory" for−→
P Conway
α was to take the quotient of this planar algebra by the ideal generated by

the element:

z
_

−

(where z is either an indeterminate or a fixed element of the field according to
context).

Conway showed that the quotient
−→
P Alexander of this planar algebra satisfies

dim
−→
P Alexander

0 = 2 and that if the oriented link L is considered as an element

of
−→
P Alexander

0 then it is equal to ∆L(
√
t − 1√

t
) times the the tangle O (with either

orientation) where ∆L is the Alexander polynomial of L and z =
√
t− 1√

t
.

It was observed in [] that the Jones polynomial can be defined by changing
the coefficients slightly in the Alexander polynomial skein relation above and in
[],[] it was shown that arbitrary coefficents may be used to obtain what is now
called the HOMFLYPT polynomial. it is worth observing that the Alexander skein
relation implies that the Alexander polynomial of a split link is zero so that although−→
P Alexander is not strictly speaking reduced it does have the property that it is almost
so, with loop parameter zero, since O2 = 0 so that any closed string may be removed
and the tangle multiplied by zero, provided there is something else to the tangle.
For the Jones and many other such invariants one my further quotient by a relation
to make the planar algebra reduced.

Kauffman observed in [] that if one leaves out the first Reidemeister move one
obtains a theory which works also in the unoriented case, obtaining a version of the
Jones polynomial called the Kauffman bracket ([]) and a two variable polynomial
invariant of oriented links called the Kauffman polynomial.

3.8 The BMW algebra

The BMW (for Birman, Wenzl, Murakami- see [],[]) planar algebra is a shaded planar
algebra coming from the Kauffman 2-variable polynomial in knot theory. Indeed the
partition function on the 0-box space is precisely the Kauffman polynomial.

More precisely we consider the shaded planar algebra PKauffman whose n-box
space is the space of linear combinations of shaded tangle diagrams modulo planar
isotopy and the type II and III Reidemeister moves (what is known as regular iso-
topy). Here is a a tangle diagram representing an element of PKauffman3 :
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$

Given two complex numbers a and x, PKauf(a,x) is the quotient planar algebra
of PKauffman by the ideal generated by the following elements:

$ − $ − x
(

$ − $

)

$ − a $

− a− a−1 − x
x

and

− a− a−1 − x
x

Note that relations for different shadings can be obtained by applying an annular
rotation tangle.

If we writeR+ = $ , R− = $ , E = $ and id= $

and consider PKauff2,+ as an algebra as usual then R− = R−1
+ and the relations

become R+−R− = x(E− id) and R+E = aE which were a major part of the purely
algebraic defining relations found in [] and [].

Kauffman’s result from [] is equivalent to the statement that dim(P 0
± = 1 so

that any Kauffman tangle is equal modulo the relations above to some power of
a−a−1−x

x times a polynomial in x and a±1. This polynomial is not an invariant of
usual link equivalence but can be made so by orienting the link and normalising by
the "writhe"-see [].
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3.9 Spin models

Spin models only exist for shaded planar algebras.
As for vertex models we take an auxiliary Q-dimensional vector space V with

basis S = {s}. The vector spaces for P spin are:
P0,+= the ground field, P0,− = V and Pn,± = ⊗nV (recall that for shaded planar
algebras “n′’ means half the number of boundary points for a disc). The action of
the operad is defined as follows:
Observe first the the shaded intervals of an n-disc can be numbered 1, 2, · · · , n so that
we can identity basis elements of ⊗nV and functions ψ from the shaded boundary
intervals of an n-disc to S. As for vertex models, given a shaded planar tangle n-
tangle T and a function f from DT to the appropriate tensor powers of V , we will
give the coefficients Rs1,s2,··· ,snof ZT (f) in this basis of functions.

If two shaded intervals i and j of DT are part of the boundary of some shaded
region of T , and si 6= sj, put Rs1,s2,··· ,sn = 0.

Otherwise we may extend the function i 7→ si from the shaded intervals of DT

to all the shaded regions meeting the shaded intervals of DT . Call a “state” σ of T
any extension of this function to all the shaded regions of T . Then each σ assigns,
for each D ∈ D, indices to the shaded boundary intervals of D. Thus for each such
disc there is a number RDσ given by the tensor that f assigns to D.

We now define
Rs1,s2,··· ,sn =

∑
σ

∏
D∈DT

RDσ

This R obviously depends multilinearly on the tensors assigned to each D ∈ D
and it is a simple matter to check the gluing axiom. Diffeomorphism invariance is
obvious. Thus we have a planar algebra P spin. Below is a picture of a state on a
shaded planar tangle T where S = {1, 2, 3}.

$

$
$

$

1

3

2

2

1

We see that P spin is reduced with loop parameters δ+ = Q (closed string around
a shaded region) and δ− = 1 (closed string around an unshaded region).

Remark 3.9.1. Sometimes it is advantageous to change the values of δ so that P spin

becomes spherical. This is possible by 2.3.9. We will call the resulting plana algebra
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PSpin. The only difference between P spin and PSpin is in the action of the tangles
which differ by the combinatorial multiplicative factor of 2.3.9

The spin planar algebra is not a central planar algebra. It is however a measured
planar algebra with µ assigning 1/3 to each of the minimal projections in P spin0,−

Also P spin is clearly acted upon by any group of permutations of the set S of
spins. If this action is transitive the fixed points are a central planar algebra.

Definition 3.9.2. If G acts transitively on S as above with point stabiliser H, we
call PG,H the planar algebra of fixed points for the action on P spin. The special case
when G is finite and |H| = 1 will be called the group planar algebra PG.

This gives interesting examples. It was shown by Izumi ([]) that under favourable
circumstances, for instance if the action is primitive, that G and H can be recovered
from PG,H .

A central planar *-subalgebra of P spin (such as those coming from transitive
group actions) defines an association scheme. To see this in detail we will use the
following:

Proposition 3.9.3. If P is a central planar subalgebra of P spin then dimP1,+ = 1 =
dimP1,−.

Proof. There is a unique connected annular tangle which maps P spin1,+ to P0,− which
is the identity when both these spaces are identified with V . So if P0,− is one
dimensional, so is P1,+.

Exercise 3.9.4. If P is a central planar subalgebra of P spin then the identity of P1,+

is a minimal projection for comultiplication.

Now to see how to get an association scheme, observe that P2,− is an abelian
C∗-algebra which is thus spanned by its minimal projections. Each such projection
corresponds to a subset of {1, 2, · · · , Q}. From the above exercise the identity of
P2,+ is such a minimal projection. This, and the closure of P2,+ under multiplication,
comultiplication and * are precisely the conditions of an association scheme ([]). The
algebra P2,+ is called the Bose-Mesner algebra of the association scheme. It would
be interesting to find obstructions that prevent an association scheme from coming
thus from a spin model planar algebra.

Exercise 3.9.5. Show that if Pi,j is a minimal projection in P2,− then |{j : Pi,j = 1}|
is independent of j.

This fact is true for an association scheme. Note that it implies dimP2,+ ≤ Q.
Given a group action as above one may consider another planar algebra which is

the one generated by the association scheme (i.e. generated by P2,+). ln general this
is different from the fixed points under G. A case where they are the same is for the
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dihedral group on a set with five elements (see []). They are different for Jaeger’s
Higman-Sims model ([],[]) — although the dimensions of the two planar algebras
agree for a while, they have different asymptotic growth rates, one being that of the
commutant of Sp(4) on (C4)⊗k and the other being 100k.

Here is an interesting example for a doubly transitive group. It connects with Ex-
ample [] and gives a new kind of “spin model" for link invariants from links projected
with only triple point singularities.

The alternating group G = A4 is doubly transitive on the set {1, 2, 3, 4} with
point stabiliser H but there are two orbits on the set of ordered triples (a, b, c)
of distinct elements according to whether 1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d (with
{a, b, c, d} = {1, 2, 3, 4}) is an even or odd permutation. Let e ∈ PG,H3,+ be the
characteristic function of the even orbit. Define a mapping from the free shaded

planar algebra on the generator (the position of the $ is immaterial) to

PG,H by sending to e − 1
2 . To prove that this map passes to the

quotient PH (the planar algebra of []) with parameters t = i = x( 1,–1 in ` − m
variables) it would suffice to show that twice the value of the homfly polynomial of
the link obtained from the free planar algebra above is the partition function in P spin

(with Q = 4) given by filling the discs in the free planar algebra with e− 1
2 .

We give a sample calculation below which illustrates all the considerations. Note
that, for t = i = x, the value of a single circle in the homfly skein is 2.

#

d

c

c

c

a

d

Smoothing all the 3-boxes leads to a single negatively oriented circle so we must

divide the final partition function by 2. Replacing the 3-boxes by e − 1
2 we

look for spin states, i.e. functions from the shaded regions to {1, 2, 3, 4} for which
each 3-box yields a non-zero contribution to the partition function. Around each
3-box this means that either the three spin values are in the even orbit under A4, or
they are all the same. The first case contributes +1 to the product over boxes, the
second case contributes –1 (not −1

2 because of the maxima and minima in the box).
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If the box labeled (†) is surrounded by the same spin value, all the spin states must
be the same for a nonzero contribution to Z. This gives a factor 4× (−1)5. On the
other hand, if the spins at (†) are as in Figure 2.8.3 with (a, b, c) in the even orbit,
the other spin choices are forced (where {a, b, c, d} = {1, 2, 3, 4}), for a contribution
of –1. The orbit is of size 12 so the partition function is 1

2(−12 − 4) = −8. For
this link the value of the homfly polynomial PL(1,−1) is –4. The factor of 2 is
accounted for by the fact that our partition function is 2 on the unknot. Thus our
answer is correct. Note how few spin patterns actually contributed to Z!

If we wanted to use non-alternating 3-boxes we could simply use the homfly
skein relation to modify the 3-box. For instance

e−
2

−− = −  1
+=

In general by [LM], PL(1,−1) is (−1)c−1(−2)
1
2
d where c is the number of components

of L and d is the dimension of the first homology group (with Z/2Z coefficients) of
the triple branched cover of S3, branched over L. It would be reassuring to be able
to see directly why our formula gives this value. This would also prove directly that

the map 7→ e− 1
2 passes to the homfly quotient. Our derivation

of this is a little indirect — one may show that the planar subalgebras [] and PG,H

are the same by showing they arise as centralizer towers from the same subfactor

(constructed in []). Thus there must be a 3-box corresponding to: and we

obtained the explicit expression for it by solving an obvious set of equations.
As far as we know, this is the first genuine “3-spin interaction" statistical me-

chanical model for a link invariant. Of course one may produce 3-spin interaction
models by taking a 2-spin one and summing over the internal spin σ in the picture

1

23

σ

σ σ

σ

but that is of little interest. One may check quite easily that the above model
does not factorize in this way.

3.10 Fuss Catalan.

This planar algebra was discovered by Bisch and the author in their explorations
of intermediate subfactors. We will first give the original definition as a shaded
planar algebra then show it can be extended to a coloured planar algebra (with
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three colours).

Definition 3.10.1. A (positive) Fuss Catalan basis tangle will be the planar isotopy
class of a planar 4n TL tangle whose boundary points are labelled by a and b, in
clockwise order starting from the first one after $ in the sequence abbaabbaa....bba
in such a way that strings only connect boundary points with the same label (so that
the labelling extends to the strings themselves). A negative basis tangle is the same
except that the $ lies between two b’s.

A positive Fuss-Catalan basis tangle
$

(red=a, blue=b)

To define the operad action, take a shaded tangle T and add to each string a red
one which is a close parallel in the unshaded region to obtain FC(T ) thus:

T =

$

$

$

FC(T ) =

$

$

$

The action of T is now clear - take appropriately isotoped Fuss Catalan basis
tangles and glue them into the input discs of FC(T ). Any closed strings are removed
counting a multiplicative factor of δa for an a loop and δb for a b string.

Thus we obtain a shaded planar algebra PFC which is unital nondegenerate,
reduced, central with loop parameter δaδb, spherical and may be given *-structure
in the obvious way. The dimension of PFCn,± is the second Fuss-Catalan number

1

2n+ 1

(
3n

n

)
.

It is a subfactor planar algebra for δa, δb ≥ 2. This follows from []. If δa =
2 cosπ/m or ≥ 2 and δb = 2 cosπ/n or ≥ 2 the kernel of the canonical inner
product 2.6.2 is an ideal and the quotient is a subfactor planar algebra. A subfactor
N ⊆ M has PFC as a sub planar algebra of its canonical planar algebra 9.0.1 iff it
has an intermediate subfactor N ⊆ P ⊆M . The shadings of a shaded planar algebra
are naturally by N andM so in this case it is natural to consider the coloured planar
algebra over tangles whose regions are coloured N , P and M , the restrictions on the
colouring (corresponding to the shading conditions) being that N and M can only
be adjacent to P and P cannot be adjacent to itself.

Exercise 3.10.2. There is a bijection between Fuss-Catalan basis tangles and con-
nected planar tangles with no input discs, whose boundary interval colouring pattern
is NPMPMPNP....MP , coloured by N,P and M with the above adjacency rules.
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We will see the virtue of this picture when we analyse the algebra structure of
PFC .

The above idea has been noticed by many people, it was Dylan Thurston who
first explained it to the author.

3.11 Quantum groups.

3.12 The planar algebra of a graph.

Let Γ be a locally finite graph (unoriented) with edges {e} and vertices {v}.
Given a function µ : {v} → C with µ(v) 6= 0 ∀v we will construct a vanilla

planar algebra PΓ.We will then show that this graph planar algebra has various de-
sirable properties depending on µ, for instance if µ is an eigenvector for the adjacency
matrix of Λ with eigenvalue δ then PΓ is reduced with loop parameter δ.

This graph planar algebra is a bit tricky to define and the case where Γ is infinite
is not yet fully understood. But PΓ is of huge importance in the theory as the
most interesting planar algebras are sub-planar algebras of PΓ for some (highly non-
unique) Γ. See [][][].

Definition 3.12.1. If T is a planar tangle, a state σ of T will be a function

σ : { regions of T}
∐
{ strings of T} → { vertices of Γ}

∐
{ edges of Γ}

(sending regions to vertices and strings to edges) such that if R1 and R2 are two
regions both having a string S as part of their boundary, then σ(S) is an edge of Γ
connecting σ(R1) and σ(R2).

Note that every state σ of T induces a pointed (i.e. there is a starting vertex)
loop `TD(σ) (or just `D(σ) if there is no ambiguity about T ) on Γ as a function from
the intervals I1, I2, · · · and boundary points of p1, p2, · · · , in clockwise order, of each
disc D of Γ as follows.

Each Ii meets the closure of a unique region ri and each pi meets a unique string
si of T . Then `TD(Ii) = σ(ri) and `TD(pi) = σ(si).

Here is an example giving a state on a tangle and the loops `D(σ):

Example 3.12.2. The graph Γ:

f

1

4
a

b

c d

3
e

2

where we have labelled the vertices with numbers, the edges with letters.
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The tangle T with a state σ :

$

$

$$

$

2

1

3

4

c

d
b

b

ab 1

α

β

χ

γ

ε

b 

f

where we have labelled the discs with Greek letters.

The loops: `α = 3b2b31c3, `β = 2b3b2, `χ = 2a1a2b3b2f2, `γ = 2f2, `ε = 3b2b3.

Now let µ : {v} → C be any function such that µ(v) 6= 0 ∀v.

Definition 3.12.3. Given a state σ on a planar tangle T we define the rotation
Rot(σ) as follows:
First double all the strings so that every region r of T determines an orientation
around its entire boundary. (Doubling is particularly relevant if a string is part of
the boundary of the same region on both sides.) So each r has as its boundary a
union of oriented closed piecewise smooth curves. Let Rot(r) be the rotation number
of the boundary of r. Then we set

Rot(σ) =
∏

regions r of T
µ
Rot(r)
σ(r)

Definition 3.12.4. [] Unitality for functions of finite support? Arbitrary functions
seems a bit big. ` infty a problem because of growth of µ?

With notation as above, the n-box space PΓ
n is the vector space C[[Ln]] of all

functions on the set Ln of pointed loops of length n on Γ.

Planar tangles act as follows. Let T be a planar tangle with discs {DT }∪DT and
regions RT and a function f : DT →

∐
n P

Γ
n , D 7→ fD with fD ∈ PΓ

nD
(see 2.1.1). If

η is a loop in Ln
DT , let µ(η) =

∏
intervals I of DT

µ(η(I))−1

Then set

ZT (f)(η) =
∑

states σ of T
with `

DT (σ)=η

µ(η)Rot(σ)
∏

D∈DT

f(`D(σ))

Note that the sum in the definition of ZT is finite since we have fixed η on ∂DT ,
and Γ is locally finite.
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Theorem 3.12.5. Definition 3.12.4 makes PΓ into a non-degenerate unital vanilla
planar algebra.

Proof. • non-degeneracy This is easy-the Rot factor and the µ(η) factor cancel
in the calculation of Zιn . (See (i) of 2.5.)

• Isotopy invariance

This is trivial. Diffeomorphisms act on states in the obvious way. The term∏
D∈DT

f(`D(σ)) is purely combinatorial as is µ(η), and the rotation number
of a closed piecewise smooth curve is isotopy invariant.

• Naturality

Suppose U, T and S are tangles with U = T ◦ S. Recall that DS is then a disc
of T . Viewing the boundary of DS as a closed curve C inside U with marked
points and intervals, we see that any state of U determines two states, σ1 on
T and σ2 on S which induce the same loop ` on the boundary of DS . Given a
loop `0 on DT = DU we can thus enumerate the states σ of U with `U

DU = `0
as ⋃

`

{(σ1, σ2)|`TDT (σ1) = `0 and `TDS (σ1) = ` = `SDS (σ2)}

So that once the discs of S and T have been labelled we see that the sums for
ZT (ZS) and ZT◦S have all the same terms indexed by σ as above, the only
difference being the contributions of µ. The closure of each region rU of U
meets ∂DS in a certain number I1, I2, · · · Ik of intervals which are all boundary
intervals of DS both as a disc in T and as a disc in S.

At this point things get interesting because the regions of S and T can combine
in complicated ways to give regions of U (see figure below for a relatively simple
situation). Given a region rU of U , we will call rS and rT the union of the
regions of S and T that are subsets of rU and call them multiregions.

A more local definition of the termRot(
−→
∂r) is

1

2π

∫
−→
∂r
dθ where dθ is the pullback

of the angle form on the circle by the map from
−→
∂r to the unit circle given

by a unit tangent vector in the direction of the orientation. This is not quite
correct since ∂r is only piecewise smooth, the angle making jumps at the points
where strings meet the boundaries of discs of the tangle. One must add these
angle jumps to the integral to obtain Rot(

−→
∂r). The same formula is true for

multiregions.

The following diagram shows the situation:
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T

S
D

S

S

region r

r

r

the tangle S

rest of tangle T

2

1
I

I

The region rU :
Urest of tangle U region r

We have only shown the doubled string for strings that have the same region
on on both sides.
Observe that Rot(rU ) = 0.
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S
multiregion r

2

II1

α
β

1
1 α

2

2

β

T
multiregion r

rest of tangle T

2

I1

I

Observe that rU is the union of a multiregion rS of S, a multiregion rT of T
and the intervals I1, I2, · · · Ik (k = 2 in the picture).

In evaluating the labelled tangle ZS the Rot(
−−→
∂rS) is, for every state coming

from a state of U :

1

2π

∫
dθ over all strings and boundary intervals of

−−→
∂rS except I1, I2, · · · Ik

plus
1

2π

k∑
i=1

∫
Ii

dθ
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plus
k∑
i=1

(αi + βi)

where αi and βi are the angles between the strings of S and the interval Ii as
indicated in the diagram.

Similarly in evaluating ZT (ZS) the Rot(
−−→
∂rT ) is:

A =
1

2π

∫
dθ over all strings and boundary intervals of

−−→
∂rT except I1, I2, · · · Ik

plus
k∑
i=1

1

2π

∫
Ii

dθ

plus
k∑
i=1

(γi + εi)

where γi and εi are the angles between the strings of T and the interval Ii as
indicated in the diagram.

So altogether in evaluating ZT (ZS) the total Rot contribution is A + B + C
where:
A =

1

2π

∫
dθ over all strings and boundary intervals of

−−→
∂rS∪

−−→
∂rT except I1, I2, · · · Ik.

B =
k∑
i=1

1

2π

∫
Ii as part of S

dθ+
k∑
i=1

1

2π

∫
Ii as part of T

dθ

C =
k∑
i=1

(αi + βi + γi + εi)

Now the strings and boundary intervals in A are, up to a finite set of points,
the strings and intervals of U so A is precisely Rot(rU ). Moreover the intervals
Ii receive the opposite orientations from T and T so B = 0.

Finally for each i, αi+βi+γi+ εi = 2π so the term C exactly cancels the term
µ(η) coming from ZS .

• unitality

Observe simply that the definition of ZT makes perfect sense for a tangle
with no input discs provided we adopt the standard convention that an empty
product is equal to 1. Thus every TL tangle defines an element of PΓ and the
compatibility with gluing is exactly the same as above.

Note that as soon as Γ is infinite the TL elements do not define finitely sup-
ported functions on loops. So if one were to define the planar algebra of a graph
with only finitely supported functions the resulting planar algebra would not
be unital.
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Proposition 3.12.6. Define the involution ∗ on PΓ
n by

f∗(`) = f(`∗)

where ` is a loop on Γ of length n and `∗ is the loop read backwards. This involution
makes PΓ into a planar *-algebra.

Proof. This is easy.

Proposition 3.12.7. If Γ is finite and µ(v) > 0 ∀v then PΓ becomes a C∗-planar
algebra.

Proof. A loop ` of length 2n is always a concatenation of pq∗ where p and q are paths
of equal length with the same initial and final vertices and q∗ is q read backwards.
We will let ep,q be the characteristic function of this loop, an element of PΓ

2n. The
ep,q are a basis of PΓ

2n.
From the definition of the product tangle we see that

ep,qer,s = δq,rκ(q)ep,s

where κ(q) =
∏
v w(v) where v runs over all the vertices of q except the first and

last. Now set Ep,q = 1√
κ(p)κ(q)

ep,q. Then

Ep,qEr,s = δq,rEr, s

E∗p,q = Eq,p

so that PΓ
2n is a direct sum of matrix algebras indexed by pairs (v, w) of vertices on

the graph of size equal to the number of paths on Γ of length n from v to w.

Proposition 3.12.8. Let Λ = (λv,w) be the adjacency matrix of Γ and suppose µv
is an eigenvector for Λ, i.e. ∑

w

λv,wµw = δµv

with µv > 0 for all vertices v, and some δ.

Then PΓ is a reduced planar algebra with loop parameter δ.
Moreover the involution ∗ on each matrix algebra is the conjugate transpose using

the basis Ep,q. Note that if µv were not always positive the last statement would not
be true.
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. this proof is problematic because it assumes unitality.
Since we have shown that PΓ is a planar algebra, by isolating a contractible

closed string inside a circle we need only show that

= δ in PΓ
0 . Fixing the vertex v of Γ of a state outside the

closed string, we see that the rotation factor in the definition of Z is always 1 so that
Z of the left hand figure is

µ(v)−1
∑
w

λ(v, w)µw

but this is just δ since µ is an eigenvector of the adjacency matrix of Γ with eigenvalue
δ.

Notes 3.12.9.

1. Oriented graphs, oriented planar algebras.

This establishes the graph planar algebra in the vanilla setting. If Γ is an
oriented graph one may use the same definitions as above to obtain a vanilla
graph planar algebra with PΓ

n being the set of loops on Γ of length n. In fact
the definition for an unoriented graph can be though of as the one for the
oriented graph obtained by doubling all the edges with edges in each direction.
For oriented graphs the planar algebras will seem rather unfamiliar to those
used to subfactors and correspondences. For instance loops cannot in general
be reversed so it will not be possible to impose a *-structure as we have done.
Thus positivity is also absent and the algebra structures will not be semisimple.

One may form an oriented graph planar algebra from an oriented graph. If a
state σ satisifies σ(r1) = v and σ(r2) = w for regions r1 and r2 with oriented
string s in between, with r1 on the left and r2 on the right, then the edge σ(s)
must go from v to w.

The Cayley graph of a group gives an interesting example of this. Given a
presentation of Γ 〈< g1, g2, · · · |r1, r2 · · · 〉 where the relations ri are words on
the generators gi and their inverses, the vertices of the Cayley graph are the
elements γ ∈ Γ with an edge from γ to giγ and another from γ to g−1

i γ.

Loops ` on the Cayley graph corresponding to the boundary of an oriented
tangle then consist of an initial element γ followed by a sequence p` of gi’s
or their inverses, according to the orientation, whose product is the identity.
We see that the planar algebra of van Kampen diagrams embeds as a planar
subalgebra of the Cayley graph of the group presentation: given a function f
on loops on generators whose product, according to orientation,is the identity
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(i.e. an element of the van Kampen planar algebra) one defines the function f̃
on loops on the Cayley graph by f̃(`) = f(p`) as above.

2. Bipartite graphs.

Of considerable interest is the case of shaded planar algebras. If Γ is a bipar-
tite graph, Γ = Γ+

∐
Γ−, one may define PΓ as above (3.12.4).Then define the

shaded planar algebra by setting PΓ
n,+ to be the subspace of PΓ

n spanned by
loops beginning in Γ+. Similarly PΓ

n,− is the subspace of PΓ
n consisting of loops

beginning in Γ−. Using the partition function of PΓ gives a shaded planar
algebra structure on PΓ

n,+.

This is the "planar algebra of a bipartite graph" of [], defined here without
needing to arrange a labelled planar tangle in any particular way in order to
calculate its partition function.

3. Positivity. As soon as Γ (supposed finite here) has more than one vertex,
dim(PΓ

0 ) > 1 so closed labelled tangles have no canonical value. But we may
choose a measure ω as in 2.6, which, like µ can be idenitified with a function
on the vertices or Γ, so that PΓ possesses a sesquilinear form 〈, 〉.

Proposition 3.12.10. If ω and µ are positive for all vertices of Γ then 〈, 〉 is
positive definite.

Proof. Evaluation of the tangle giving 〈, 〉 shows that the loops themselves are
an orthogonal basis for PΓ

n , and under the hypotheses each loop is of positive
length.

4. Unitality.

If Γ is finite it is obvious that our formula for ZT makes sense for Temperley-
Lieb tangles by saying that an empty product is equal to 1, so that PΓ is
unital. If on the other hand Γ is infinite then each TL tangle would have
infinite support so PΓ as we have defined it is not unital. If we changed from
functions on loops with finite support to arbitrary functions in the definition
we would regain unitality but this does not seem sensible. If the function µ is
bounded we could consider `∞ functions on loops but this is not the case for
many µ of interest.

Graph planar algebras should not be underestimated. Although they are
of no particular interest by themselves, they are one of the most powerful tools for
constructing subfactor planar algebras. This is for two reasons. One is positivity.
As we have seen a graph planar algebra is positive definite and reduced if we use the
Perron Frobenius eigenvector for the rotation term. This means that any planar *-
subalgebra will be reduced and positive definite so we can look for elements of
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the graph planar algebra which generate planar subalgebras whose 0-box and 1-box
spaces are one dimensional. We will then have (by later constructions []) subfactors
and systems of bimodules over II1 factors.

The second reason is that this construction method is doomed to success-any
finite depth planar algebra comes with a graph and it embeds in its graph planar
algebra! [](And possibly other graph planar algebras, a situation which is now un-
derstood and exploited in [].

3.13 “Exotic” planar algebras.

The theory of subfactors has given rise to examples of (subfactor) planar algebras
that appear to be unrelated to any group-like construction. The first of these were
discovered by Haagerup and Haagerup Asaeda in []. The squares of the loop param-
eters of these planar algebras are 5+

√
13

2 and 5+
√

17
2 and they have the smallest loop

parameters of any []rational subfactor planar algebra above 2.
Izumi gave a very powerful construction of the Haagerup subfactor using Cuntz

algebras which has generalised to give many more examples. Emily Peters gave
a construction of the Haagerup using the method outlined at the end of the last
subsection-by looking for it in graph planar algebras. This method has not yet
succeeded for the Asaeda Haagerup but it was a tour de force in the paper [] by
Bigelow, Morrison, Peters and Snyder to construct a cousin of the Haagerup, the
extended Haagerup by the method of graph planar algebras.

4 Presentations of planar algebras

4.1 The free planar algebra on a set of generators-vanilla version.

If S is a set with S =
∐
nSn (or a disjoint union of sets according to boundary

conditions in more general planar algebras) we define PS, the free planar algebra on
S as follows.

For each n let L(S)n be the set of all planar isotopy classes of labelled planar
tangles. Let Fn = F[L(S)n] be the vector space of formal linear combinations of
elements of L(S)n.

Proposition 4.1.1. The vector spaces Fn form a planar algebra.

Proof. The action of a planar tangle on Fn is clear by mulitilinearity on the basis
L(S)n. Given appropriate elements of L(S)n to insert into discs of T , just isotope
their boundary discs so they become the input discs of T , with the strings meeting
smoothly. Then just erase the boundaries of the input discs of T to obtain a labelled
tangle. Isotopy invariance and naturality are obvious.

57



4.2 Planar skein theory

4.3 Knot skein theory

4.4 The exchange relation

4.5 Yang Baxter skein relations

4.6 Jellyfish

5 Operations on planar algebras.

5.1 Cabling

5.2 Direct sum

5.3 Tensor product

5.4 Stitching

5.5 Free product

5.6 Free stitching

(Schroder paths?)

5.7 duality

6 Algebra structures.

Certain tangles define associative multiplications on planar algebras. We have not
yet been able to list all such structures and the problem is a bit open-ended as the
multiplications may not be defined on all elements etc. But in this section we record
the main algebras we have investigated.

6.1 Inductive limit algebra.

Proposition 6.1.1. Both id⊗ 1 and 1⊗ id (of 10.2.2) define unital algebra homo-
morphisms from P2n to P2n+2 and (id⊗ 1)(1⊗ id) = (1⊗ id)(id⊗ 1).

Proof. Simple pictures.

Definition 6.1.2. We call P∞ the inductive limit algebra for the maps id ⊗ 1 and
Pr,∞ for the subalgebra which is the image of (1⊗ id)r.

Theorem 6.1.3. Let P be a unital nondegenerate reduced planar algebra with δ a
non-zero scalar. Then the centraliser ZP∞ (Pr,∞) of Pr,∞ in P∞ is P2r.
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Proof. A simple diagram shows that P2r ⊆ ZP∞ (Pr,∞).
Now suppose that x ∈ P∞ commutes with Pr,∞. Then x must be in Pm for

some m. If m ≤ r then x ∈ Pr and there is nothing to prove. So suppose x ∈ Pm
with m > r. We will show that this implies x ∈ Pm−1 so that iterating, x in
fact belongs to Pr. To see this consider id ⊗ 1(x) which is of course the same

element in P∞ as x. Since m > r, the element E = $ with m − 1 vertical

strings (illustrated with m = 5), is in Pr,∞ so we must have xE = $$ x =

$ $ x = Ex. Surrounding both these pictures by an obvious annular tangle

we get x = δ $ $ x . Thus x ∈ Pm−1 as claimed.

Corollary 6.1.4. If P is as in the previous theorem then P∞ is a central algebra iff
P is a central planar algebra.

It is clear what P∞,± means in the shaded case-note that 1⊗ id goes from Pn,± to
Pn+1,∓ and defines an algebra embedding. The above theorem is true for both P∞,±
but care is needed with the corollary. The oriented case is more exciting. There will
be inductive limit algebras as above for every infinite sequence of ↑’s and ↓’s.

6.2 Comultiplication.

Proposition 6.2.1. If P is a planar algebra then any labelled tangle isotopic to the
one drawn below (for n = 4)defines an associative algebra structure on P4n for each
n ≥ 0.

a ◦ b = $ $ $a b
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If P is unital, so is (P4n, ◦) for every n, the identity being given by $ .

The corresponding definitions for the shaded and oriented cases are clear though
note that in the oriented case comultiplication, just like multiplication, can only be
defined on certain Pα’s.

Proposition 6.2.2. The map ρn gives an isomorphism between P4n and (P4n, ◦) in
the unoriented case. In the shaded case it gives an isomorphism between P2n,+ and
(P2n,−, ◦).

Exercise 6.2.3. What does ρn do in the oriented case? When do multiplication and
comultiplication coexist?

Proof. In fact we could have defined a ◦ b as ρ−n(ρn(a)ρn(b)), the pull back of mul-
tiplication

Remark 6.2.4. Note that this does not mean that Pn,+ and Pn,− are isomorphic!
For a counterexample one may take the PG of 3.9.2 when G is not abelian:

Exercise 6.2.5. Show that PG2,+ ∼= CG and PG2,− ∼= `∞(G).

Exercise 6.2.6. For a subfactor planar algebra (or more generally for a central
planar algebra for which the canonical bilinear form is non-degenerate) there is a
canonical isomorphism between P2 and its dual. Show that comultiplication as defined
above can be dualised to obtain what is normally called a comultiplication on P2,
i.e. a map from P2 to P2 ⊗ P2 satisfing the dual of associativity. Show that this
comultiplication is an algebra homomorphism for PG. Find an example where it is
not.

6.3 The Markov trace

If P is a measured planar algebra we may define a map Tr : P2n → F by the following
diagram:

Tr(x) = µ( $ x ) where we have as usual suppressed the outsideboundary disc

when there are no strings meeting it.

Proposition 6.3.1. Tr(ab) = Tr(ba) = (a, b) so if P is unital, Tr(x) = (x, 1), and
in the planar *-algebra case 〈x, y〉 = tr(xy∗).

Definition 6.3.2. If A ⊆ B are finite dimensional algebras and φ : B → F is a linear
function for which the bilinear forms [a, b] 7→ φ(ab) on B and A are nondegenerate,
then the unique map EA : B → A for which φ(EA(b)a) = φ(ba) for all b ∈ B, a ∈ A
is called the conditional expectation from B to A. (Similarly for sesquilinear forms
and *-algebras.)
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Proposition 6.3.3. If P is a central spherical planar algebra with nondegenerate
canonical bilinear form and δ 6= 0, then if B = P2n and A = (1 ⊗ id)(P2n−2) or
A = (id⊗1)(P2n−2) then A,B and Tr satisfy the hypothesis of the previous definition

and EA is the linear tangle 1
δ

$ $ in the first case and 1
δ

$ $ in

the second.

Proof. Just draw the pictures for Tr(Ea(b)a) etc.

Corollary 6.3.4. If we write P1,n−1,1 for (id⊗ 1)(1⊗ id)(P2n+2) then the following
algebras form a commuting square in the sense of []:

(id⊗ 1)(P2n) ⊂ P2n+2

∪ ∪
P1,n−1,1 ⊂ (1⊗ id)(P2n)

Remark 6.3.5. For a positive planar algebra the Markov trace may be renormalised
as tr = δ−nTr on Pn,±. Then we get a positive definite trace on P∞. One may
perform the GNS constuction [] since left multiplication operators are bounded by
finite dimensionality. The resulting von Neumann algebra will be called MP . MP

may or may not be a factor even when P is central. Since 1 ⊗ id preserves tr it
extends to MP and we will call the resulting von Neumann subalgebra NP . The
commuting square property above shows that the inclusion NP ⊆ MP is proper
unless dimPα = 1∀α. MP will always be hyperfinite in the sense of [].

6.4 The inductive limit structure of the P2n, Bratteli diagrams.

We are most interested in cases where P2n is semisimple, and to simplify the pre-
sentation we will assume it is a direct sum of matrix algebras over F. Any unital
inclusion A ⊆ B of such algebras is completely given by a simple matrix ΛBA which
describes the inclusion map on K0 or alternatively how the minimal idempotents of
P2n decompose as sums of minimal idempotents of P2n+2. Thus for instance if we
were considering the inclusion of group algebras CS2 ⊆ CS3 (for symmetric groups)

we would find the matrix:
(

1 1 0
0 1 1

)
. This is most conveniently represented by a

bipartite graph whose vertices are the matrix algebra summands, remembered by
their size, and the number of edges between vertices is the entry of the matrix for
the inculsion. Thus in the above example we would get:

1          1

1          2         1
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For towers of inclusions of algebras one just stacks graphs as above to obtain
what is called the Bratteli diagram ([]) for the inductive limit algebra. The unital
property of the inclusions is reflected in the propery of the Bratteli diagram that the
number at each vertex is the sum of the numbers connected to it on the next row.

In general it is quite difficult to calculate the algebra structure of P2n but it is
known in most cases simply because they occurred first as inductive limit algebras
and then the algebra structure was observed to extend to that of a planar algebra.
Planar algebra structure is most useful when the identity structure is richest, i.e. for
shaded and vanilla planar algebras. When this is not available the algebra structure
can be known from outside the theory.

Example 6.4.1. The Hecke algebra.
The term Hecke algebra here refers to the algebras one would get as the Hecke

algebras of double cosets for group/subroup pairs when the group is GL(n) over a
finite field and the subgroup is that of upper triangular matrices. For fixed n, if q is
the order of the field, this algebra has presentation on generators gi, i = 1, 2, · · ·n−1
(see [])
g2
i = (q − 1)gi + q
gigi+1gi = gi+1gigi+1

gigj = gjgi if |i− j| > 1.
This algebra can be obtained from knot theory. Indeed PHomflypt is up to a

change of variables the quotient of
−→
P Conway by the first relation above where g is

a positive crossing in
−→
P Conway
↑,↑,↓,↓ . So PHomflyptα (with α(i) =↑ for i = 1, 2, · · ·n and

↓ for i = n + 1, · · · 2n) is the same algebra as the Hecke algebra with n as above.
A deformation argument allows one to obtain the structure of the Hecke algebra for
generic values of q, since for q = 1 the algebra is semisimple for each n the structure
is that of the of the group algebra CSn. The Bratteli diagram for this algebra is
well known to be the Young lattice whose vertices are Young diagrams connected by
the induction-restriction rule for representations of the symmetric group, see []. For
special values of q degenerations occur and quantum invariant theory sees the Young
lattice as the large N limit of the algebra tower PUq(slN )

α . For different choices of α
the Bratteli diagrams will be different but may always be calculated using the tensor
powers of the N dimensional representation of slN and its dual, and a deformation
argument. This will not work as easily for knot invariants obtained from higher
dimensional representations and I know of no general recipe for calculating these
algebra structures even for the adjoint representation of sln where the corresponding
knot theory planar algebra does not generated the invariants for the tensor powers.
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6.5 The Temperley Lieb algebra

A unital planar algebra P contains by definition a planar subalgebra spanned by TL
diagrams. We will call it the TL subalgebra of P . If P is nondegenerate, its TL
subalgebra depends only on δ. So the term “TL planar algebra” has two meanings,
one the planar algebra defined in 3.3 and the other its quotient by the kernel of the
canonical bilinear form which is the same as the one we have just defined.

In this section we will always be referring to the nondegenerate version of TL.
We will determine the inductive limit algebra structure in the shaded version

(which also determines the vanilla version and the oriented version with alternating
boundary orientations). We will write TLn for the algebra P TLn (shaded).

Exercise 6.5.1. TLn is generated as an algebra by {Ei, i = 1, 2, .., n − 1} where

Ei = (1 ⊗ id)i−1(E1), E1 being the tangle $ where the shading is implicit.

Show that the Ei satisfy the relations
(i) E2

i = δEi and E∗i = Ei in the planar *-algebra case.
(ii) EiEi±1Ei = Ei
(iii) EiEj = EjEi if |i− j| ≥ 2.

Suppose δ is such that P TL is a positive definite planar algebra, we will deter-
mine the Bratteli diagram for TLn and the possible values of δ. This argument is
well known so we limit ourselves to a sketch. We will rely heavily on the “basic
construction” where for simplicity we limit ourselves to multimatrix algebras.

Definition 6.5.2. If A ⊆ B is a unital inclusion of multimatrix algebras, A =
⊕ni=1Mki , B = ⊕mi=1Mli with m×n inculsion matrix ΛBA and a trace tr on B which is
nondegenerate on both A and B then the basic construction < B, eA > is the algebra
of linear transformations on B generated by B (acting by left multiplication) and the
conditional expectation eA (see 6.3.2).

Given a multimatrix algebra A, index its simple summands by i from 1 to k and
choose a minimal idempotent pi in the ith. simple summand. We will use −→n A to
be the vector whose ith component is dim(piA) and if tr is a trace on A we will use−→
trA to denote the vector whose ith component is tr(pi). Thus if A ⊆ B is a unital
inclusion of multimatrix algebras with inclusion matrix ΛBA and tr is a normalised
trace on B (tr(1) = 1) then

〈−→n B,
−→
trB〉 = 1, ΛBA

−→n A = −→n B and (ΛBA)t
−→
trB =

−→
trA

Theorem 6.5.3. The basic construction < B, eA > is equal to the algebra End−A(B)
of all right A-linear maps on B and
(i) < B, eA > is a multimatrix algebra and if p is a minimal idempotent in A then
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peA is a minimal idempotent of < B, eA >, canonically defining a bijection between
the set of simple summands of A and those of < B, eA >.
(ii) Λ<B,eA>B is the transpose of ΛBA.
(iii) eAbeA = eA(b)eA for b ∈ B
(iv) For b ∈ B, b ∈ A ⇐⇒ beA = eAb
(v) The map B ⊗A B →< B, eA > defined by x ⊗ y 7→ xeAy is a B − B bimodule
isomorphism.
(vi) If C is any unital algebra generated by B and an idempotent e with ebe = eA(b)e
for b ∈ B then xeAy 7→ xey is an algebra homomorphism onto a 2-sided ideal of C.
(vii) ZA ∩ ZB is the scalar multiples of the identity iff the bipartite graph defined by
ΛBA is connected. (viii) If ΛBA is connected then the the trace tr on B extends to a
trace tr on < B, eA > with tr(beA) = τtr(b)∀b ∈ B iff −→t rB is an eigenvector for
(ΛBA)tΛBA with eigenvalue τ−1.

Proof. See [],[].

Thus for instance in the example A = CS2 ⊆ CS3 = B as above, the Bratteli
diagram for A ⊆ B ⊆< B, eA >, for any suitably nondegenerate trace, is

3          3

1          1

1          2         1

Theorem 6.5.4. Suppose P is a positive definite planar algebra. Then either δ =
2 cosπ/n for some integer n ≥ 3 or δ > 2. Moreover if δ > 2 the tower of algebras
defined by the inductive limit TL planar subalgebra of P has the following Bratteli
diagram:

.......

2          1

1

1

1 1

2          3           1

5          4           1

5           9          5           1

14         14         6          1

where the kth row (starting with k = 0) gives the sizes of the matrix summands of the
algebra TLk. There are [n+1

2 ] such summands and if we number them with i starting
from 0 from right to left, they are then the numbers tk,i =

(
k
i

)
−
(
k
i−1

)
, and the trace
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of a minimal projection in the corresponding summand is Tk−2i+1(δ)δ−k, Tk being
the Tchebychev polynomial defined by Tk = qk−q−k

q−q−1 with δ = q − q−1.
If δ = 2 cosπ/n the Bratteli diagram is obtained from the one above by eliminat-

ing the last matrix summand of TLn−2 and all those vertically below it, and adjusting
the sizes of the matrix summands to account for unitality of the inclusions. Thus for
δ = 4, 5 and 6 we obtain the following Bratteli diagrams:

.......

1

1

1 1

2          2

4

4          4

2

.......

2          1

1

1

1 1

2          3           

5          3

5           8

13         8

.......

2          1

1

1

1 1

2          3           1

5          4           

5           9          4

14         13

Proof. (sketch). One proceeds indcutively. First suppose δ > 2. Verifying the
relationship between TL0 and TL1 is trivial. Now suppose we know the inclusion
matrix for TLn ⊆ TLn+1, together with the weights giving the normalised Markov
trace tr as a weighted sum of traces. On TLn this may be thought of as a vector −→t n
whose indices are the central summands of TLn, thus ranging from 0 to [n+1

2 ] and if
−−→
dimn is the vector whose entries are the sizes of matrix algebras, the condition

〈−→t n,
−−→
dimn〉 = 1

expresses precisely the normalisation tr(1) = 1.And of course dimTLn = ||
−−→
dimn||2.

By (vi) of 6.5.3 we know there is an algebra homomorphism φ from < TLn+1, eTLn >
to a 2-sided ideal of TLn+2 where as e we take en+1 of 8.4.6 and use a diagram
to obtain the condition of (vi) from 6.3.3. We claim that φ is injective. Since
< TLn+1, eTLn > is multimatrix, it suffices to check that φ(q) 6= 0 for some element
q in each matrix summand of < TLn+1, eTLn >. Thus by 6.5.3, it suffices to show
that φ(peTLn) 6= 0 for any minimal projection p ∈ TLn. But the Markov trace of
such an element is equal to δ−2tr(p) which is non-zero by induction (the Tchebychev
polynomials are never zero for δ ≥ 2).

But now binomial identities show that the sizes of the matrix algebras in φ(<
TLn+1, eTLn >) are as required and the sum of their squares is equal to 1

n+3

(
2n+4
n+2

)
−1.

Thus the ideal φ(< TLn+1, eTLn >) is of codimension at most 1 in TLn+2. A further
binomial identity shows that the sum of the traces of the central projections in
φ(< TLn+1, eTLn >) is equal to 1 − Tn+3(δ)δ−n−2. But Tn+3(δ) > 0 for all n for
δ ≥ 2. This exhibits TLn+2 with its subalgebra TLn+1 and trace −→t n+2 as required.
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Now suppose δ < 2. The method so far shows that the Bratteli diagram for
TL0 ⊆ TL1 ⊆ · · · ⊆ TLn+2 is identical to that for δ ≥ 2 as long as Tk(δ) > 0 for
k ≤ n + 3. Clearly if Tk(δ) > 0 for k ≤ n + 2 but Tn+3(δ) < 0 then the planar
algebra cannot be positive definite. It is easy to check that this rules out any value
of δ lying between the values 2 cosπ/r and 2 cosπ/(r + 1), for r = 3, 4, 5, · · · .

But if δ = 2 cosπ/r then Tk(δ) > 0 for k < r and Tr(δ) = 0. So there is no
contradiction but we conclude that the map φ is actually onto TLr−1! The relations
between the trace vector and the inclusion matrices show that the same is true for
all subsequent basic constructions in the TL tower and we are done.

Explicit formulae for the dimensions of the simple summands for δ = 2 cosπ/r
are available-[].

Remark 6.5.5. Note that the existence of a positive definite planar algebra, and
hence a positive definite TL quotient, for δ = 2 cosπ/n follows from 3.12.4 using the
An−1 Coxeter graph.

Remark 6.5.6. The above method of proof actually proves a lot more. For any
field, provided δ is not a zero of any of the Tchebychev polynomials T2, · · · , Tn+1 it
shows that TLn is in fact multimatrix and has a Bratteli diagram equal to the first
one in 6.5.4 up to the nth row.

Remark 6.5.7. The whole planar algebra structure was not used in the proof.
In fact we determined the structure of the C∗∗-algebra generated by e1, e2, e3, · · · en
satisfying the familiar relations e2

i = ei = e∗i , eiei±1ei = δ−2ei, eiej = ejei for |i−j| ≥
2 possessing a positive normalised trace tr such that

tr(wen+1) = δ−2trw where w is a word on e1, e2, · · · , en.

Remark 6.5.8. It is obvious that the ideal I in TLn+2 given by the basic construc-
tion is in fact the linear span of all non-empty words on the e′is. In the C∗-algebra
above this defines a canonical minimal, central projection fn+1 for which fn+1I = 0.
This is known as the Jones-Wenzl idempotent-see [],[].

Exercise 6.5.9. For δ ≥ 2 we have e1e3e5 · · · e2r−1Pke1e3e5 · · · e2r−1
∼= Pk−2r so that

the rank of e1e3e5 · · · e2r−1 in the ith component of Pk is the same as the dimension
of the (i− r)th component of Pk−r, or tk−r,i−r =

(
k−r
i−r
)
−
(
k−r
i−r−1

)
. Adapt this also to

the case δ = 2 cosπ/n.

6.6 Principal graphs.

If P is a positive definite shaded planar algebra, the method of proof of theorem
6.5.4 gives a particular structure to the Bratteli diagram of the Pn. Indeed if Λ

Pn+1

Pn

is known together with their trace vectors −→t n and −→t n+1 defined by the Markov
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trace, the basic construction embeds via φ as an ideal [](show why, a picture needed)
in Pn+2 exactly as for TL except of course that it is not necessarily of codimension
1.

Let us write en for ePn−1 ∈ Pn+1. Two cases arise:
Case (i) φ is surjective.
This happens if the traces of the minimal central projections in φ(< Pn+1, en+1 >)

add up to 1. But the traces of minimal projections in φ(< Pn+1, en+1 >) are just
δ−2 times their values on the corresponding minimal projections in Pn so −→t n is a
positive eigenvector of Λ

Pn+1

Pn
(Λ

Pn+1

Pn
)t. This implies that the trace vector of Pn+1 is

a positive eigenvector of Λ
Pn+2

Pn+1
(Λ

Pn+2

Pn+1
)t so that the homomorphism φ is surjective at

all subsequent levels in the tower.
When this case arises we say that P is “finite depth” and the depth is defined to

be smallest value of n+ 1 for which the homomorphism φ is surjective.
Case (ii) φ(< Pn+1, en+1 >) is a proper ideal in Pn+2.
Then the Bratteli diagram for Pn+1 ⊆ Pn+2 contains two parts, the first being

the basic construction part and the second being “new stuff”. By semisimplicity the
new stuff is canonically a direct summand of Pn+2. We will denote this summand
by Kn+2 (for n = 0, 1, 2, · · · ). Thus Pn+2 = φ(< Pn+1, en+1 >)⊕Kn+2.

Lemma 6.6.1. φ(< Pn, en >)Kn+2 = 0.

Proof. Since Pn+2 is an ideal It suffices to show that Kn+2en = 0. But en is a
multiple of enen+1en and certainly Ken+1 = 0.

We thus see that the Bratteli diagram for Pn ⊆ Pn+1 ⊆ Pn+2 must look as below:

n+2

2          1

2          3           2      1

5          8         3      1   

n   n

n+1   n+1

K
<P   ,e  >

<P     ,e       >

n+1

K

Definition 6.6.2. The bipartite graph underlying that part of the Bratelli diagram
connecting < Pn, en > to < Pn+1, en+1 > is unaltered by Kn+1 and Kn+2 and so
converges as n → ∞ to a bipartite graph called the Principal graph ΓP of P .The
principal graph of the dual planar algebra to P is called the dual principal graph Γ̂P
of P .

Obviously to say that P is of finite depth is the same as saying that ΓP is finite.

Exercise 6.6.3. Show that P is of finite depth iff Γ̂P is finite.
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If P is a subfactor planar algebra ΓP is actually a pointed bipartite graph as
the single vertex corresponding to P0,+ is canonical-we will call that vertex *. If
dimP0,+ > 0 the principal graph wiil be a disjoint union of pointed graphs.

Now suppose P is a subfactor planar algebra with principal graph Γ. Let Π be
the adjacency matrix of Γ and −→v be the function from the vertices of Γ defined by−→
t p = δdtr(p) where p is a minimal projection representing the vertex in Pd where d
is the distance from p to * on Γ.

Proposition 6.6.4. −→t is an eigenvector for Π with eigenvalue δ.

Proof. When passing from Pn to Pn+1 we see that if p is a minimal projection in Pn
of distance d from * onΓ, its trace in Pn+1 is the sum of δ2 times the traces of all
minimal projections (with multiplicities) of distance d− 1 connected to p on Γ and
the sum of the traces of projections of distance d+ 1. Multiplying by δd+1 gives the
answer.

We will give an interpretation of the principal graphs in terms of fusion algebras
in []. This will make the previous result somewhat clearer.

We end this subsection by giving the principal graphs for the planar algebra
subalgebras we have defined in section 3.
(0) Zero planar algebras have zero principal graph....
(i) The trivial planar algebra is a subfactor planar algebra whose principal graph
consists of two vertices joined by a single edge. It is self-dual.
(ii) The tensor planar algebra in its shaded version is a subfactor planar algebra whose
principal graph consits of two vertices joined by as many edges as the dimension of
the auxiliary vector space.

Of much more interest are the planar subalgebras given by the fixed points for
the action of a closed subgroup G of the unitary group of the auxiliary vector space
V . They are subfactor planar algebras. Their principal graphs may be obtained as
follows. Start with two disjoint copies of the set of all irreducible representations of
G. If π is in one copy and ρ is in the other, connect π and ρ by as many edges as there
are copies of ρ in π⊗ V (which is equal to the number of copies of π in ρ⊗ V̄ . Then
the principal graph is the connected component of the trivial representation in one
of the disjoint sets of irreducible representations. See []. We leave it as an exercise
to show that if G is irreducible on V then the principal graph contains only one of
the two copies of π for every irreducible representation π. For instance if G = SU(2)
one obtains the same principal graph, with traces, as TL with loop parameter equal
to 2. For a finite subgroup of SU(2) one obtains the extended simply laced Coxeter
graphs. For the maximal torus in SU(2) one obtains the Coxeter graph A∞,∞- see
[].

(iii)The subfactor version of ΓPTL was calculated above. If δ ≥ 2 it is the graph
A∞:
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......*

Whereas for δ = 2 cosπ/n it is An−1 (with n− 1 vertices-A6 depicted):

*

Both these are self dual.
(iv) In the shaded version of the van Kampen planar algebra for a group G with

generators Gen (containing the identity), the principal graph consists of G
∐
G with

an edge between g in the first copy and h in the second copy iff there is an a ∈ Gen
with ga = h. This is a bipartite version of the Cayley graph of G.

(v) For P Ice in its shaded version the principal graph is A∞,∞:

.....*.....

This is the same as the principal graph for the maximal torus in SU(2) of (iii)
(but the weights of the trace vary with δ). If the auxiliary vector space were more
than two-dimensional one would no longer label its basis by them by ↑ and ↓ and
the function “ (−1)↑, (−1)↓” could be replaced by any “weight” function. Then the
principal graph for the planar algebra would be the same as that for the fixed points
of P⊗ under the action of diagonal unitaries with as many different entries as there
are different values of the weight function. This is the setup for the quantum group
planar algebras where the weight function is given by half the sum of the positive
roots. See []Sawin.

(vi) The principal graph for the Motzkin algebra is as below:

.......

*

As for TL, this is actually the principal graph for the “generic” Motzkin algebra.
If we write δ = 2 + q + q−1 then generic means q ∈ R+. The subfactor condition is
that q = eπi/n at which values we get subfactor planar algebra quotients similar to
TL.

(vii) If we take the shaded planar algebra version of the HOMFLYPT planar
algebra there are values of the 2 parameters for which we obtain subfactor planar
algebras. Generically the principal graph is the graph whose vertices are ordered
pairs of Young diagrams, the first with k boxes and the second with k − 1 boxes
when k is odd and both with k boxes when k is even. One pair is connected to
another if it can be obtained by adding or subtracting a single box in just one of the
two Young diagrams. Thus the principal graph begins:
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But there is a significant difference in what we mean by generic here compared to
TL and Motzkin. For this principal graph cannot have a positive eigenvector since
the number of loops based at * on this diagram is n! so a subfactor planar algebra
structure would contradict 6.7.1 below. There are however many truncations of this
principal graph corresponding first to the invariants of V ⊗V̄ ⊗V ⊗V̄ ... for fixed finite
dimensional V , and further truncations of these corresponding to quantum groups
at roots of unity.

Interestingly the Markov trace on the Hecke algebra (which is PHOMFLY PT with
orientations “in at the bottom and out at the top”) is actually positive definite for a
large subset of the parameter values for which there is a C∗-algebra structure. Thus
shaded planar algebras are special with respect to growth and positivity.

(viii) The principal graph for the BMW planar algebra (generically) is precisely
the Young lattice of Young diagrams, two diagrams being connected if they differ by
a single box. The sense of generic is as for (vii) and there are numerous truncations
which do admit a positive eigenvector.

(ix) A subfactor planar subalgebra P of PSpin will have the peculiarity that P2,−
is commutative which gives the dual principal graph a special form. We do not know
if there is a (real) Hadamard matrix which gives an infinite depth subfactor though
for complex ones this happens even for Q = 4.

But the most studied such P are the “group-subgroup” planar algebras PG,H . In
this case the vertices of the principal graph are irreducible representations of H and
G and there are n edges between the representation π of G and ρ of H if π|H contains
ρ with multiplicity n. (The principal graph consists of the connected component of
the trivial representation of H in all such pairs.)

(x) The generic principal graph for Fuss Catalan is the Fibonacci graph:

(xiii) The Haagerup subfactor has principal and dual principal graph as below:
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*

*

for more exotic principal graphs see [].

6.7 Generating functions.

If P is a finite dimensional vanilla planar algebra we define the formal power series

ΦP (z) =
∞∑
n=0

dimPnz
n

For a finite dimensional shaded planar algebra there it is not clear how to handle
the two potentially different values P0,± but in the central case they both equal to
1 so the above definition is unambiguous and of course Φ is the same for the shaded
planar algebra and its dual.

Lemma 6.7.1. If P is a subfactor planar algebra ΦP has radius of convergence at
least as big as 1

δ2
.

Proof. This is a simple consequence of the existence of a positive eigenvector −→t for
the adjacency matrix of the principal graph (we suppose t∗ = 1). For if −→v denotes
the function on Γ which is 1 at * and zero elsewhere, we have dimPn = ||Πn−→v ||2 =
〈Π2n−→v ,−→v 〉 ≤ 〈Π2n−→t ,−→v 〉 = δ2n〈−→t ,−→v 〉 = δ2n.

Theorem 6.7.2. A subfactor planar algebra P is of finite depth iff ΦP is a rational
function.

This follows from a more general result about counting loops on arbitrary graphs.
It is presumably well known to experts but we know it from Feng Xu whose proof
we present.

Theorem 6.7.3. Let Γ be a locally finite (unoriented) connected graph with vertices
V , and ∗ ∈ V . Let cn be the number of loops of length n, based at ∗ on Γ. Then the
generating function

ΦΓ(z) =
∞∑
n=0

cnz
n

is rational iff Γ is finite.
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Proof. Note first that there is a bound V on the valence of the vertices of Γ. For
if x is a vertex of valence v at distance d from ∗ then c2d+2n > vn by taking loops
that go directly to x then go back and forth between x and its neighbours. But
then lim sup(c

1
k
k ) ≥ v

1
2 and since v can be arbitrarily large, ΦΓ(z) has zero radius of

convergence.
This means that the adjacency matrix A of Γ defines a bounded self-adjoint

operator on `2(V ). (For w ∈ V number its neighbours w1, w2, ..., wv(w) for v(w) ≤
V. Thinking of vertices as a basis for `2(V ) define Ti(w) = A(w,wi)wi for i =
1, 2, ..., v(w). Then Ti is manifestly bounded and A =

∑V
i=1 Ti.)

Moreover if ξ is the basis element ∗ of `2(V ) then the number of loops on Γ based
at ∗ of length n is 〈Anξ, ξ〉. So Φ(z) is basically the resolvent:

Φ(z) = 〈 1

1−Az
ξ, ξ〉

which converges for z < 1
||A|| .

If Γ is finite the rationality of Φ follows by diagonalizing A. So suppose Γ is
infinite. Then a little thought shows that the subspace of `2(V ) spanned by the Anξ
is infinite dimensional. So the conclusion will follow from the following lemma:

Lemma 6.7.4. Let A be a bounded selfadjoint operator on a Hilbert space and ξ
a vector such that Φ(z) = 〈 1

1−Az ξ, ξ〉 is rational. Then the subspace spanned by
{Anξ|n ≥ 1} is finite dimensional.

Proof. To use standard spectral theory we use f(z) = 1
zΦ(1

z ) which is the resolvent
〈 1
z−Aξ, ξ〉 which is of course rational iff Φ is, and its residue and order at the pole
w are the residue and order of Φ at the pole 1

w . The poles of f cannot be in the
resolvent of A so must be in the spectrum of A, hence real. Moreover the poles must
be simple since by the spectral theorem there is a measure µ on σ(A) so that for any
z in the resolvent

|f(z)| = |
∫
λ∈σ(A)

1

z − λ
dµ(λ)| ≤ 1

|Imz|
µ(σ(A))

and if a pole were multiple, |f(z)| would grow too fast near that pole as Imz → 0.
Suppose we were able to show that the residues αi of the k poles λi of f are all

positive. Then

Φ(z) = P (z) +

k∑
i=1

αi
1− zλi

for some polynomial P (z). Hence for n > degP we have

cn =
∑
i

αiλ
n
i .
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Now define a linear map L : span({Anξ|n > degP} → Ck) by

L(Anξ) =
k∑
i=1

√
αiλ

n
i ηi

for some orthonormal basis ηi of Ck. That L extends linearly to a well-defined
isometry it suffices to show that

〈Amξ, Anξ〉 = 〈L(Amξ), L(Anξ)〉

for m,n > degP . But the left hand side is 〈Am+nξ, ξ〉 which is cm+n by the con-
struction of A and the right hand side is

∑
i αiλ

m+n
i which is also cm+n.

So all that remains to be shown is positivity of the residues. Let λ0 be a pole of
f and let z = λ0 + iε for ε > 0 be in the resolvent near λ0. Then for small ε, f(z)

behaves like
α

iε
. On the other hand∫
λ∈σ(A)

1

iε− (λ− λ0)
dµ(λ) =

∫
λ∈σ(A)

−iε− (λ− λ0)

ε2 − (λ− λ0)2
dµ(λ)

which has negative imaginary part. So α must be positive.

This establishes the theorem.

6.8 Graded algebras.

There are many graded algebras defined by a planar algebra. We begin with the
simplest.

Definition 6.8.1. If P is a planar algebras we call Gr(P ) the N∪{0}-graded algebra
whose degree n graded component is Pn and with multiplication ∧ : Pm×Pn → Pm+n

defined by:

a ∧ b = b

$

$ $a (here m = 3 and n = 4)

x 7→ x∗ makes Gr(P ) into a *-algbera if P is a planar *-algebra.

Thus
∞
⊕
n=0

Pn becomes an associative algebra Gr(P ) which is unital if P is, the

identity being given by Ω.

Remark 6.8.2. This algebra has a curious commutativity property- a picture shows
that a ∧ b = ρdeg(a)(b ∧ a)
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Example 6.8.3. Gr(P⊗) is the algebra of non-commuting polynomials in as many
variables as the dimension of the auxiliary vector space V , or in other words the
tensor algebra of V .

If P is shaded, there are two graded algebras according to the shading, to be
unambiguous we call Gr(P ) the one for which the regions containing the $’s are
unshaded. The oriented case is more interesting as one must grade the algebra by
the semigroup of all words ↑ and ↓. In the case of

−→
P ⊗, and the subsemigroup of words

on just ↑, one obtains the tensor algebra of V and if one takes the fixed point planar
algebra for some group in GL(V ) one obtains thus the algebra of (non-commutative)
invariants of G.

For each k we can make {Pn+2k|n = 0, 1, 2, · · · } into a graded algebra (Gr(P ) =
Gr0(P )) with the multiplication ∧k : Pm+2k × Pn+2k → Pm+n+2k defined by (illus-
trated with m = 3, n = 4, k = 2):

a ∧k b =
$

$

a b

$

Thus for each k we have an associative algebra Grk(P ) =
∞
⊕
n=0

Pn+2k which is

unital if P is, the identity being the same as that of the algebra P2k (see 2.4.2)

Proposition 6.8.4. The map 1 ⊗ id defines an algebra homomorphism of Grk(P )
into Grk+1(P ).

Proof. Just draw the picture.

Observe that the degree zero component of Grk(P ) is nothing but the algebra
P2k. Observe also that Grk(P ) is a *-algebra if P is a planar *-algebra.

Theorem 6.8.5. Let P be a unital nondegenerate reduced planar algebra with δ 6=
1, 0. Then the centraliser ZGrk(P )(Gr(P )) is P2k.

Proof. Suppose x ∈ Grk(P ) commutes with Gr(P ). We may suppose x ∈ Grk(P )n
for some n. There are two cases:
(i) n = 2r > 0. Call ∪ the TL basis element with one string (which is in Gr(P )

hence Grk(P )). Then x∪r =

  $

  $

x = ∪rx =
  $

  $

x (illustrated

with k = 2 and r = 3). Capping off the cups on one of these figures one gets
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x = δ−r

  $

  $

x . Now taking the commutator with d =

  $

∈ Gr(P )

one gets
  $

  $

x =
  $

  $

x . Now cap off with d∪r to obtain

(δr+2 − δr)
  $

  $

x = 0. So either
  $

  $

x = 0 in which case x = 0 or

δ = 1, a contradiction.
(ii) n = 2r + 1. Proceeding as in (i) with ∪r one obtains (illustrated with r = 2)

x = δ−r
  $

  $

x . Taking the commutator with ∪ once again and capping off the

cup we get x = δx and argue as before.

Corollary 6.8.6. Let P be as in the previous theorem, then Gr(P ) is a central
algebra iff P is a central planar algebra.

Remark 6.8.7. For a subfactor planar algebra the Voiculescu trace on Gr(P ) is
defined by the augmentation. In [] it is shown to be positive definite and one may
perform the GNS constuction [] since left multiplication operators are bounded ([])
The resulting von Neumann algebra will be called NP . One may define traces on
each Grk(P ) by augmenting a partial Markov trace as in []. Since 1 ⊗ id preserves
these traces these traces one obtains and embedding of NP inside MP , the GNS
closure of Gr1(P ). By orthogonality one can show that the inclusion NP ⊆ MP is
proper iff δ > 1. These considerations apply without centrality of P but of course
MP will not be a factor if P is not central-its centre will be P0,+. Unlike MP will
only be hyperfinite if δ = 1 ([]).

6.9 Fusion algebras.

Here is another way of describing the algebra structure of a subfactor planar algebra
P (with Pn = Pn,+ as usual). For each n the quotient algebra Pn/Pn−1en−1Pn−1

is a multimatrix algebra so choose for each matrix algebra summand a minimal
projection. Let F+ be the set of all chosen projections with Fn,+ being the ones in
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Pn. The elements of F+ are then the vertices of the principal graph and for each k,

Pk = ⊕
j≤k,j=k mod 2

( ⊕
p∈Fj

PkpPk )

is the decomposition of Pk into a direct sum of matrix algebras.
It is clear that any element of Pn is a linear combination of elements of the form

Fig. 6.9.1.

y

p

x

where p is an element in Fk for k ≤ n. (Here n = 7 and k = 3.)
Similar considerations apply to the dual of P or equivalently the algebras Pn,−

so we may choose sets F− and Fn,− ⊆ Pn,−. Put F = F+ ∪ F−.

Definition 6.9.2. With notation as above the fusion algebra of P is the graded
algebra algebra whose basis is F with multiplication defined as follows: if p ∈ Fn,±
and q ∈ Fm,ε then

p⊗ q = qp

is a projection in Pn+m,ε where ε and ε are defined by ± and the parities of m and
n in the obvious way, and the corresponding shadings are implicit in the diagram.
Then p ⊗ q may be written as a sum Σ of mutually orthogonal projections as 6.9.1
and we define

p� q =
∑
r

nrp,qr

where nrp,q is the number of times p occurs in the sum Σ.

This definition makes the space of formal linear combinations of elements of F
into an associative *-algebra where the * operation is rotation by π.
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7 II1 factors, subfactors, correspondences and planar al-
gebras.

7.1 Generalities on subfactors and correspondences.

A finite factor M is a unital C∗-algebra with trivial centre and a trace functional
tr : M → C with the properties tr(ab) = tr(ba), tr(1) = 1 and tr(a∗a) > 0 for a 6= 0.
It is complete in the sense that the Banach space unit ball is complete for the || − ||2
norm ||a||2 =

√
tr(a∗a). The n × n matrices Mn(C) obviously form a finite factor

but it is the infinite dimensional case that has interesting new features.
Finite factors are simple as algebras.[] The ”factor” factor refers to the fact that

the algebra has trivial centre.
An infinite dimensional finite factor will be called a Type II1 factor.
One may use the trace to completeM to the Hilbert space L2(M) using the inner

product 〈a, b〉 = tr(b∗a). Then M acts faithfully on L2(M) by left multiplication by
bounded operators. It may be shown that M on L2(M) is closed in the topology of
pointwise convergence so thatM is a von Neumann algebra, i.e. a unital *-subalgebra
of the algebra B(H) (of all bounded operators on H) which is closed in the topology
of pointwise convergence (the "strong" topology). Any von Neumann algebra with
trivial centre is called a factor.

The easiest example of a II1 factor is the group von Neumann algebra. If Γ is a
discrete group we define vN(Γ) to be the strong closure of the algebra generated by
left translations on `2(Γ) (the left regular representation). This is known to be a II1
factor iff all non-identity conjugacy classes of Γ are infinite in which case we say Γ

is "icc". Elements of vN(Γ) may be written as sums
∑
γ∈Γ

cγλγ where cγ are complex

numbers and g 7→ λγ is the left regular representation. Of particular interest to us
will be the icc groups Fn for n ≥ 2 (the free groups) and PSL2(Z) which is the
free product of a cyclic group of order 2 with one of order 3. Each Fn occurs as a
subgroup of finite index of PSL2(Z) .

Another example is the hyperfinite type II1 factor R which is characterised by
finite dimensional approximation in the sense that, for any finite set x1, x2, · · · in
R and any ε > 0 there is a finite dimensional *-subalgebra A of R and a finite set
a1, a2, · · · in A with ||ai − xi||2 < ε for all i.

This factor R may be obtained from the infinite tensor product ⊗∞M2(C) which
is a C∗ algebra under the usual matrix norm, has a trace tr as the infinite tensor
product of the normalised matrix trace. The “GNS” construction can then be used
to complete it to a II1 factor by letting it act by left multiplication on itself, viewed
as a prehilbert space under 〈a, b〉 = tr(b∗a). The strong closure of this algebra gives
R. Or one may obtain it as vN(Γ) where Γ is the infinite symmetric group of finitely
supported permutations of N.

Of great interest in mathematical physics is that R is also a natural completion
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of the “CAR” algebra of an infinite dimensional Hilbert space H, that is to say
the complex unital star algebra on generators a(f) for every f ∈ H with relations
f 7→ a(f) is linear and

a(f)a(g)∗ + a(g)∗a(f) = 〈g, f〉id

a(f)a(g) + a(g)a(f) = 0

There is a natural trace on this algebra which gives R under completion using the
GNS construction. Let us mention four important concepts for a concrete finite von
Neumann algebra M with trace tr on H:

If the finite factor M acts on a separable Hilbert space H it is known that it
acts as a von Neumann algebra, i.e. its image in the algebra B(H) is closed in the
topology of pointwise convergence. A II1 factor M is simple so that any action is
faithful and M may be defined from an operator algebra on any Hilbert space. We
will say that such a II1 factor is a concrete II1 factor.

1. The commutant M ′ of M which is the von Neumann subalgebra

M ′ = {x ∈ B(H)|xm = mx ∀m ∈M}.

Note that this definition of commutant A′ makes sense and gives a von Neu-
mann algebra for any *-closed subset A of B(H).

2. A vector ξ ∈ H is called cyclic for M if Mξ is dense in H.

3. A vector ξ ∈ H is called separating forM if mξ = 0 for m ∈M implies x = 0.

4. A vector ξ ∈ H is called a trace vector for M if 〈mξ, ξ〉 = tr(m) for m ∈M .

The following are standard facts.

1. M = M ′′.

2. A vector ξ is cyclic for M iff it is separating for M ′.

3. A trace vector is separating.

4. The identity of M is a cyclic and separating trace vector in L2(M) and any
cyclic and separating vector in H yields in the obvious way a unitary equiva-
lence between the M -modules H and L2(M).

Given finite factors M and N , a correspondence (or bimodule) from M to N
is a Hilbert space H with commuting left and right actions of M and N respectively.

A subfactor N ⊆ M is required to have the same identity as M . L2(M) then
becomes an N−N ,M−N ,M−M and an N−M correspondence. Given a subfactor
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there is a "basic construction" [] that produces a canonical extension of M . Note
that the map J(x) = x∗ extends to a conjugate linear isometry of L2(M) and the
right action of M on L2(M) is ξx = Jx ∗Jξ. Orthogonal projection eN from L2(M)
to the closed subspace L2(N) actually sendsM to N and is known as the conditional
expectation.

7.2 The von Neumann dimension.

Let M be a finite factor .We will assign a positive real number, or ∞ which we
will call dimM (H) to any (separable) Hilbert space on which M acts as a unital
*-algbera. It will completely characterise the Hilbert space as an M -module up to
unitary equivalence.

We will now assume basic facts about type II∞ factors, traces on them and
comparison of projections in a factor. See [].

Proposition 7.2.1. If H is any Hilbert space on which M acts then there is an
M -linear isometry

u : H → ⊕∞n=1L
2(M)

Proof. M acts diagonally on the direct sum H⊕ (⊕∞n=1L
2(M)). The commutant M ′

contains the two projections p = 1 ⊕ 0 and q = 0 ⊕ 1. Since the commutant is a
II∞ factor and q is certainly infinite, we obtain a partial isometry u ∈M ′ such that
u∗u = p and uu∗ = q. Identifying H with the image of p, we have our u.

Note that if v is any other M -linear isometry as above then vv∗ is equivalent in
M ′ to v∗v. Note also that, on ⊕∞n=1L

2(M), the commutant M ′ admits a canoncially
normalised trace trL2 such that the trace of any projection onto one of the L2(M)’s
is equal to 1.

Definition 7.2.2. With notation as above

dimM (H) = trL2(uu∗).

Notes 7.2.3. 1. Observe that if M is the scalars C then this definition gives
exactly the usual definition of the dimension dimH of a separable Hilbert

space. If M is the n× n matrices we obtain
dimH
n

.

2. With this philosophy one may canonically normalize the trace on M ′ by defin-
ing

TrM ′(a) = trL2(uau∗)

Exercise 7.2.4. Show that TrM ′ is dimM (H) times the normalised trace on
M ′. Further if a : H → K and b : K → H is a bounded linear map between
Hilbert spaces over M then

TrM ′(ab) = TrM ′(ba)
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3. Our definition is not the same as that of Murray and von Neumann in [] where
it was called the "coupling constant" and measured the relative mobility of
M and M ′ as follows. Take any non-zero ξ ∈ H and consider the two closed
subspaces Mξ and M ′ξ of H with orthogonal projections p and q respectively.
’Clearly p ∈M ′ and q ∈M so we may form the ration trM (q)

trM′ (p)
. This was shown

in [] to be independent of ξ. With this fact one may easily show it is equal to
our dimM (H).

7.3 Elementary properties of dimM H

Theorem 7.3.1. With notation as above,

(i) dimM (H) <∞ iff M ′ is a II1 factor .
(ii) dimM (H) = dimM (K) iff M on H and M on K are unitarily equivalent (=
spatially isomorphic).
(iii) If Hi are (countably many) M -modules,

dimM (⊕iHi) =
∑
i

dimM Hi.

(iv) dimM (L2(M)q) = tr(q) for any projection q ∈M .
(v) If p is a projection in M , dimpMp(pH) = trM (p)−1 dimM (H).

For the next two properties we suppose M ′ is finite, hence a II1 factor with trace
trM ′.

(vi) If p is a projection in M ′, dimMp(pH) = trM ′(p) dimM H.
(vii) (dimM H)(dimM ′ H) = 1.

(viii) There is a cyclic vector for M iff dimMH ≤ 1.

(ix) There is a separating vector, indeed a trace vector, for M iff dimMH ≥ 1.

Proof. Using an M -linear isometry u we see that M on H is unitarily equivalent to
M on uu∗L2(M)⊗ `2(N). This makes (i) and (ii) obvious.

To see (iii), chooseM -linear isometries ui from Hi to L2(M)⊗`2(N) and compose
them with isometries so that their ranges are all orthogonal. Adding we get an M -
linear isometry u with uu∗ =

∑
uiu
∗
i . Taking the trace we are done.

For (iv), choose a unit vector ξ ∈ `2(N) and define u(v) = v ⊗ ξ. Then uu∗ is
JqJ ⊗ e where e is a rank one projection.

(v) Let us first prove the relation in the case H = L2(M)q where q is a projection
in M with q ≤ p.

Then pxpΩ 7→ p(xΩ)p is a unitary from L2(pMp) to pL2(M)p which intertwines
the left and right actions of pMp. Hence pMp on pL2(M)q is unitarily equivalent
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to pMp on L2(pMp)q. So by (iv), dimpMp(pH) = trpMp(q) = trM (p)−1trM (q) =
trM (p)−1 dimM H.

Now if H is arbitrary, it is of the form e(L2(M)⊗ `2(N)) for e ∈ (M ⊗ 1)′. But
e is the orthogonal sum of projections all equivalent to ones as in (iv) with q ≤ p.

(vi) We may suppose H = e(L2(M) ⊗ `2(N)) so M ′ = e(JMJ ⊗ B(`2(N))e and
p defines the isometry in the definition of dimM (pH). But p is a projection less
than e in a II∞ factor so by uniqueness of the trace, dimM (pH) = tr(M⊗1)′(p) =
tr(M⊗1)′(p)/tr(M⊗1)′(e) dimM (H) = trM ′(p) dimM (H).

(vii) Observe that, on L2(M), dimM (H) dimM ′(H) = 1 so by (v) and (vi) the
result is true for M -modules of the form L2(M)p. Also if one forms K = ⊕ki=1H
then dimM⊗1(K) = k dimH and dim(M⊗1)′ K = k−1 dimM ′ by (v). But any H can
be obtained from L2(M) as ⊕ki=1L

2(M)p for suitable k and p.
(viii) and (ix) Follow by pulling back the properties from L2(M)⊗ `2(N).

Example 7.3.2. If Γ0 < Γ are icc groups, vN(Γ0) acts on `2(Γ). And if γ ∈ Γ the
unitary ρ(γ) of the right regular representation gives a vN(Γ0)-linear unitary between
`2(Γ0) and `2(Γ0γ

−1). Hence by the coset decomposition, dimvN(Γ0)(`
2(Γ)) = [Γ :

Γ0].

Proposition 7.3.3. Let Γ be an icc discrete group and γ 7→ vγ be a unitary group
representation on H. Suppose there is a projection q on H such that

vγqv
−1
γ ⊥ q ∀γ ∈ Γ, γ 6= id, and

∑
γ

vγqv
−1
γ = 1

then there is a Γ-linear unitary U : H → `2(Γ) ⊗ qH with UvγU−1 = λγ ⊗ id for
γ ∈ Γ.

Proof. Choose an orthonormal basis {ηi|i = 1, 2, 3, · · · } of qH. Then by the two
conditions of the proposition {vγηi|γ ∈ Γ, i = 1, 2, 3, · · · } is an orthonormal basis
for H. Defining U by U(vγηi) = εγ ⊗ ηi gives the desired unitary where εγ is the
characteristic function of {γ} in `2(Γ).

Remark 7.3.4. Note that the above considerations, and the next corollary, apply
equally well if γ 7→ vγ is only a projective unitary representation, i.e. vγvγ′ =
ω(γ, γ′)vγγ′ for some circle valued 2-cocycle ω on Γ. One may form the twisted group
algebra vNω(Γ) generated on `2(Γ) by unitaries λωγ acting by λωγ (εν) = ω(γ, ν)εγν
(so group multiplication is "twisted" by a cocyle) which is still a II1 factor if Γ is icc
(and even quite often if it is not icc).

Corollary 7.3.5. Suppose Γ, v, q and U are as in proposition 7.3.3. Then the action
of Γ on H makes it into a vN(Γ)-module and if p is a projection on H commuting
with vγ for all γ then

dimvN(Γ)H = TrB(H)(pqp) = TrB(H)(qpq)
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where TrB(H) is the usual trace (sum of the diagonal elements for a positive operator)
on B(H).

Proof. The commutant M ′ of vN(Γ) on `2(Γ)⊗ pH is the tensor product of vN(Γ)′

and B(pH) and the correctly normalised trace on it is the tensor product of the trace
on vN(Γ)′ (on `2(Γ)) and the usual trace on B(pH). Thus since εid is a trace vector
for for vN(Γ)′, for x ≥ 0 ∈M ′,

TrM ′(x) =
∑
i

〈x(εid ⊗ ηi), εid ⊗ ηi〉

= TrB(`2(Γ)⊗pH)(exe)

where e is orthogonal projection onto ε⊗ pH.
Now Up is a vN(Γ)-linear isometry from H to `2(Γ)⊗ pH so that

dimvN(Γ)pH = TrB(`2(Γ)⊗pH)(eUpU
∗e)

But UeU∗ = p so that
dimvN(Γ)pH = TrB(H)(qpq).

A commonly encountered situation in which the hypotheses of 7.3.3 are satisfied
is when Γ acts as deck transformations for a covering space π : M → N between
manifolds. Then if Γ preserves a measure and D is a fundamental domain, 7.3.3
applies to the Hilbert space H = L2(M) together with the projection q onto L2(D).
This is the setup for Atiyah’s L2 index theorem []. We will use it in slightly modified
form where the natural measure is not preserved.

7.4 Fuchsian groups and L2 holomorphic functions on H.

A Fuchsian group Γ is by definition a discrete finite covolume subgroup of PSL2(R).If
Σ is a compact Riemann surface of genus ≥ 2, its universal covering space is the upper
half plane H (as a complex manifold). PSL2(R) is the group of complex automor-
phisms of H so π1Σ is a cocompact Fuchsian group. It is also icc. The unit disc D is
holomorphically the same as H under the Cayley transform C : H→ D:

C(z) =
z − i
z + i

, C−1(w) =
w + 1

i(w − 1)

And the action g(z) =
az + b

cz + d
for g =

(
a b
c d

)
in PSL2(R) becomes, after

conjugation by C, w 7→. The action of PSL2(R) on H preserves the measure dµ0 =
dxdy

y2
which is the measure from a hyperbolic metric of constant curvature −1. On

D the measure becomes dν0 = 4
dxdy

(1− |w|2)2
.
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Proposition 7.4.1. For g as above Im(g(z)) =
Im(z)

|cz + d|2

If Γ is an icc Fuchsian group it has a fundamental domain which means that
L2(H, dµ0) satisfies the hypotheses of 7.3.3 so that Γ generates a II1 factor with II∞
commutant on L2(H, dµ0).

For each real s > 1 we define the measure dµs = ys−2dxdy on H. dµs is not
invariant under PSL2(R) but we have, for any L1 function F ,∫

H
F (z)Im(z)s

dxdy

y2
=

∫
H
F (g(z))Im(g(z))s

dxdy

y2
=

∫
H
F (g(z))

ys

|cz + d|2s
dxdy

y2

so that, choosing a branch of (cz + d)s for each g,

(π̌s(g
−1)f)(z) =

1

(cz + d)s
f(g(z))

defines a unitary operator on L2(H, dµs), preserving holomorphic functions.
Now if we consider the function j : SL2(R)×H→ C defined by j(g, z) = cz+ d,

it is easy to check the cocycle condition

j(gh, z) = j(g, h(z))j(h, z)

so that if s is equal to a positive integer p, the map g 7→ π̌p(g) defines a unitary
representation of SL2(R) which preserves holomorphic functions.

If p is even, π̌(−id) is the identity so that π̌ passes to PSL2(R) . If p is odd,
π̌(−id) = −id so π̌ is only a projective representation. When restricted to Γ the
relevant cohomology obstruction may vanish (this is the case for PSL2(Z) ) so one
may still get an honest representation of Γ.

If s is not an integer the cocycle condition for j does not imply a cocycle condition
for j−p so one only obtains a projective representation for π̌. It can be considered a
unitary representation of the universal cover of PSL2(R) .

Proposition 7.4.2. If f ∈ L2(H, dνs) then f 7→ f̌ where f̌(z) =
( 2

z + i

)s
f
(z − i
z + i

)
defines a unitary from L2(D, dνs) to L2(H, dµs) which intertwines the two projective
representations of PSL2(R) .

Proof. This can be proved by extending the action on functions from SL(2,R) to
SL(2,C) and conjugating by the Cayley transform. Unitarity can be checked directly.

Definition 7.4.3. Let Ps be orthogonal projection from L2(H, dµs) onto the closed
subspace spanned by functions which are holomorphic. This subspace is the "weighted
Bergman space” A2

α with α = s− 2. We will use the notation indifferently for func-
tions on D or H. The projective representation πs of PSL2(R) is defined to be the
restriction of π̌ to A2

s−2.
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Remark 7.4.4. These Hilbert spaces of analytic functions are "reproducing kernel"
Hilbert spaces. The parameter in the literature is usually α = s − 2. This means
that for each z ∈ H there is a εz ∈ A2

s−2 such that

〈εz, f〉 = f(z)

This follows from the continuity of point evaluation-we will deduce explicit formulae
for εz later.

As noted, if s is an even positive integer we get an honest unitary representation
of PSL2(R) , but not for s odd.

Proposition 7.4.5. If p is a positive even integer and Γ is icc, the representation
πp of Γ extends to a representation of vN(Γ) and

dimvN(Γ)Hp = TrB(Hp)(pqp)

where q is orthogonal projection onto L2(F ), F being a fundamental domain for Γ
on H (or D for Hp).

Proof. The hypotheses of 7.3.5 are satisfied.

We thus need an orthonormal basis of A2
s−2.

Proposition 7.4.6.

• Let en(w) =

√
s− 1

4π

√
s(s+ 1)....(s+ n− 1)

n!
wn for w ∈ D. Then en is an

orthonormal basis for A2
s−2.

• Let fn(z) =

√
s− 1

4π

√
s(s+ 1)....(s+ n− 1)

n!

( 2

z + i

)s(z − i
z + i

)n
for z ∈ H.

Then fn is an orthonormal basis for A2
s−2.

Proof. It is trivial that 〈en, em〉 = 0 for n 6= m, so we only need to calculate, writing
w = u+ iv,

||wn||2 =

∫
D
|w|2n(1− |w|2)s−24dudv = 4

∫ 2π

0

∫ 1

0
r2n(1− r2)s−2rdrdθ

Putting t = r2 we get

4π

∫ 1

0
tn(1− t)s−2dt = β(n+ 1, s− 1) = 4π

Γ(n+ 1)Γ(s− 1)

Γ(n+ s)

Expanding the Γ functions we get the result for en and the result for fn follows from
7.4.2
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Exercise 7.4.7. Check that the representations πs are irreducible. (Hint: do a
Fourier decompostion with respect to the rotation subgroup of PSL2(R) then use Lie
algebra.)

Let Γ be an icc Fuchsian group with fundamental domain F . We have seen
that πs restricted to Γ defines a projective unitary representation of the II1 factor
M = vNω(Γ) where ω is the 2-cocycle with values in the circle which comes from
the chosen branch of zs on H.

Theorem 7.4.8. With notation as above

dimM (A2
s−2) =

s− 1

4π
(hyperbolic area of F )

Proof. We will do the calculation in the D model. By 7.3.5 we have to calculate
∞∑
n=0

∫
F
|en(w)|2(1− |w|2)s−24dudv =

s− 1

4π

∞∑
n=0

∫
F

s(s+ 1)....(s+ n− 1)

n!
r2n4dudv

Everything in sight is positive so it is clear that one can commute summing and inte-

gration. We have (1−r2)−s =
∞∑
n=0

s(s+ 1)...(s+ n− 1)

n!
r2n so we get dimM (A2

s−2) =

s− 1

4π

∫
F

dudv

v2
so we get

dimM (A2
s−2) =

s− 1

4π
covolume(Γ)

as required.

Notes 7.4.9. Special cases.

1. Γ =PSL2(Z) . Here the covolume(=hyperbolic area of fundamental domain)
is, by Gauss-Bonnet or direct integration over F , equal to π/3. So we have,
for s > 1,

dimvN(PSL2Z)A
2
s−2 =

s− 1

12
.

2. If Σ is a compact Riemann surface of genus g > 1 with hyperbolic metric, its
area is 4π(g − 1) so

dimvN(π1(Σ))A
2
s−2 = (s− 1)(g − 1).

Why might these von Neumann dimension formulae actually lead to non-trivial
results? The fact that equality of traces in a factor implies equivalence of projections
is an ergodic theoretic result ultimately relying on patching together lots of little
projections. There are some instances of results using it which are nontrivial. Let
us discuss the author’s favourite (due to Kaplansky). In fact it does not even use
factoriality!
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Theorem 7.4.10. Let Γ be a discrete group and F a field of characteristic zero. Let
FΓ be the group algebra. Then if ab = 1 ⇐⇒ ba = 1 in FΓ.

Proof. Since the relations ab = 1 and ba = 1 only involve finitely many scalars we
may embed F in C and work in CΓ which embeds into vN(Γ).

So the result follows from ab = 1 ⇐⇒ ba = 1 in a finite von Neumann algebra
M with trace tr. Let M act on some H.

Suppose ab = 1. Then for any ξ ∈ H, ba(bξ) = bξ so since ba is bounded it suffices
to show that the range of b is dense. But if b = u|b| is the polar decomposition of b
then u is a partial isometrey from the orthogonal complement of the kernel of b to
the closure of the image of b. But u∗u = 1 since ker(b) = 0 (since ab = 1). So the
trace of uu∗ is one which means uu∗ = 1 so the image of b is dense.

For convenience we introduce the following definition which appears to be well
accepted.

Definition 7.4.11. If π is a (projective unitary) representation of a group Γ on a
Hilbert space H then

1. A (non-zero) vector ξ ∈ H is called a wandering vector for π if

〈ξ, π(γ)(ξ)〉 = 0 for all γ 6= 1 in Γ

2. A subspace V ⊆ H is called a wandering subspace if

π(γ)(V ) ⊥ V for all γ 6= 1 in Γ

Note that any nonzero element of a wandering subspace is a wandering vector
and orthogonal vectors in a wandering subspace produce wandering vectors with
orthogonal orbits.

Here are a couple of consequences for the existence of certain L2 holomorphic
functions. By the above discussion there is no a priori reason why the functions
whose existence is proved should be easy to write down.

• Let Γ =PSL2(Z) and πs be our unitary representation of Γ on A2
s−2 for s > 1.

Then there is a wandering vector for πs iff s ≥ 13.

This is very easy to see. A wandering vector (of length 1) is a trace vector for
the II1 factor M . Such a vector exists in H iff dimM (H) ≥ 1 by the elementary
properties of von Neumann dimension.

Furthermore for π1(Σ) there is always such a vector.
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• (Inspired by conversations with C. McMullen.)Let Γ =PSL2(Z) and s > 1. If
s > 13 then for every z ∈ H there is a holomorphic f ∈ L2(H, ys−2dxdy) with

f(γ(z)) = 0 for all γ ∈ Γ.

This is less obvious than the previous result but it may be easier to exhibit an
example of such a function. Especially since von Neumann dimension alone in
this case does not allow us to conclude that the result is iff, so there may be
such functions for all s. Here is the argument:

If s > 13, by von Neumann dimension we know that the reproducing kernel
vector εz (see remark 7.4.4) cannot be cyclic for PSL2(Z) . Hence there is a
non-zero f with 〈πs(γ)(εz), f〉 = 0 for all γ which means f(γ(z)) = 0 for all γ.

The obvious way to get a function vanishing at points is to use the Blaschke
product. One would consider the product (as a function of w):∏

γ∈Γ

|γ(z)|
γ(z)

w − γ(z)

γ(z)w − 1

But convergence of the product is equivalent to∑
γ∈Γ

1− |γ(z)| <∞.

Let us argue that in fact this sum diverges. By []Milnor/Schwarz(?) the number
of points γ(z) in a ball of (Euclidean) radius r centered at the origin grows like
the hyperbolic area of that ball which is

8π

∫ r

0

t

(1− t2)2
dt

so in a small annulus of width ∆r there are of the order of
r

(1− r2)2
, each of

which is at distance about (1 − r) from the boundary. Thus the sum over γ
above is controlled by the integral∫ 1

0

r(1− r)
(1− r2)2

dr

which has a singularity 1
1−r near 1 so diverges.

It is well know (Szego) that if a function is in the Hardy space H2(D) then
the Blaschke product over its zero set converges. Thus the functions we have
produced are in (weighted) Bergmann space but not in Hardy space.

At this point let us derive the formula for the reproducing kernel.
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For f ∈ A2
s−2, f =

∑
n〈f, ηn〉ηn, or f(z) = 4

∑
n

∫
D f(w)ηn(w)ηn(z)(1 −

|w|2)s−2dudv. Interchanging integration and summation and doing the sum
as before we see that

f(z) =
s− 1

4π

∫
D
f(w)(1− w̄z)−s4(1− |w|2)s−2dudv

Thus
εw(z) =

s− 1

4π
(1− w̄z)−s

Note that the same calculation gives us the formula for orthogonal projection
P onto holomorphic functions: A2

s−2.

Proposition 7.4.12. For f ∈ L2(D, dνs),

P (f)(z) =
s− 1

4π

∫
D

(1− w̄z)−sf(w)4(1− |w|2)s−2dudv

7.5 The commutant and cusp forms.

First let us restrict to the case Γ =PSL2(Z) . A cusp form of weight p is a function
f : H→ C which is holomorphic and satisfies

f(γ(z)) = (cz + d)pf(z)

which means that f(z+ 1) = f(z) so that we may write f as a function of q = e2πiz.
The cusp condition is then that

f(z) =
∞∑
n=1

anq
n

The first thing to observe is that

|f(z)| ≤ (Constant)(Imz)−p/2.

To see this note that |f(z)|Im(z)p/2 is invariant under the action of PSL2(Z) .
(Follows from modularity of f and proposition 7.4.1. But since f(z) = qg(z) with g
having a finite limit as q → 0, |f(z)|Im(z)p/2 is bounded on a fundamental domain,
hence everywhere.

Now let Γ be an arbitrary Fuchsian group and say a cusp form of weight p is a
holomorphic function f : H → C such that f(γ(z)) = (cz + d)pf(z) and |f(z)| ≤
(Constant)(Imz)−p/2.

For each γ ∈ Γ and each s, 0 < s ≤ 1, choose a branch of (cz+ d)s and extend to
(cz + d)r for all r ∈ R by (cz + d)r+n = (cz + d)r(cz + d)n for n ∈ Z. This defines

unitaries unambiguously by (π̌s(γ
−1)f)(z) =

1

(cz + d)s
f(γ(z)). We have noted that

π̌s is a projective unitary representation of Γ which generates a II1 factor .
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Proposition 7.5.1. If f is a cusp form of weight p let Mf : L2(H, ys−2dxdy) →
L2(H, ys+p−2dxdy) be the operator of multiplication by f . Then Mf is a bounded
linear operator intertwining the actions of π̌s+p(γ) and π̌s(γ) , and preserving the
subspace of holomorphic functions. Also M∗f (ξ)(z) = Im(z)pf(z)ξ(z)

Proof. Boundedness: For ξ ∈ L2(H, ys−2dxdy), using the above bound on |f(z)|,

||Mfξ||2 =

∫
H
|f(z)|2|ξ(z)|2ys+p−2dxdy ≤ (Constant)

∫
H
|ξ(z)|2ys−2dxdy.

Also

π̌s+p(γ
−1)(Mfξ)(z) =

1

(cz + d)s+p
f(γ(z))ξ(γ(z)) =

(cz + d)p

(cz + d)s+p
f(z)ξ(γ(z))

= Mf (π̌s(γ
−1)ξ)(z).

And finally

〈Mfξ, η〉 =

∫
H
f(z)ξ(z)η(z)ys+p−2dxdy =

∫
H
ξ(z)f(z)η(z)Im(z)pys−2dxdy

which is the formula for M∗f .

Definition 7.5.2. We define Tf : Hs → Hs+p to be PMf , P being the projection
onto holomorphic functions (i.e. Tf is the restriction of Mf to Hs).

What makes the theory complicated, and interesting, is that T ∗f is not just a
multiplication operator, because of the need to project onto holomorphic functions.
But since we have the formula for P we can write down T ∗f .

Proposition 7.5.3. If f is a cusp form of weight p,

T ∗f ξ(z) =
s− 1

4π

∫
D

(1− w̄z)−sf(w)ξ(w)4(1− |w|2)s−2dudv

The intertwining property of Tf means that, for f, g cusp forms of weight p, T ∗f T
g

commutes with the (projective) action of Γ on A2
s−2. The commutant of Γ on A2

s−2

is a II1 factor M by von Neumann dimension. We can thus take the trace.

Proposition 7.5.4. Using the natural trace TrM on M as the commutant of a II1
factor , with notation as above,

TrM (T ∗f Tg) = []
s− 1

4π

∫
F
f(w)g(w)(1− |z|2)p−24dudv
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Proof. We apply the formula TrM (T ∗f Tg) = TraceM (TgT
∗
f ) =

TraceB(L2(D,dνs))(QMgPM
∗
fQ) = TraceB(L2(D,dνs))(PM

∗
fQMgP ) =∑

n

〈QMgηn, QMfηn〉 =
∑
n

∫
F
f(w)g(w)|ηn(w)|2dνs+p

=
s− 1

4π

∫
F

(1− |w|2)−sf(w)g(w)dνs+p =
s− 1

4π

∫
F
f(w)g(w)(1− |z|2)p−24dudv

The integral in the above formula is well known in analytic number theory and
Riemann surfaces as the Petersson inner product of cusp forms. There are many
approaches to calculating it.

It is natural to ask if the operators of the form T ∗f Tg generate the commutant
of PSL2(Z) on Hs. This has been shown by Radulescu in []. In fact he shows a
much stronger result, namely that the vector space spanned by the T ∗f Tg is actually
dense in the L2 norm of the commutant. Here are some more consequences of von
Neumann dimension related to cusp forms. Their statements of course do not involve
von Neumann algebras.

• There is a vector ξ ∈ A2
s−2 such that 〈Tfξ, Tgξ〉 is the Petersson inner product

iff s ≤ 13. Moreover for s = 13 this property is equivalent to 〈ξ, πs(γ)(ξ)〉 = 0
for γ 6= id.

This is clear-ifM is the commutant PSL2(Z) ’ then dimM (A2
s−2) ≥ 1 for s ≤ 13

so there is a trace vector, and on the other hand by Radulescu’s (strong) result,
the property “ 〈Tfξ, Tgξ〉 is the Petersson inner product” implies that ξ is a
trace vector for M . And on L2(M) a vector is a trace vector for M iff it is one
for M ′.

An explicit vector ξ for s = 13 is highly desirable as it would allow one to im-
plement the antiisomorphism of M and vN(PSL2(Z) ) which, by Voiculescu’s
theory, has a random matrix model. The vector ξ is a holomorphic version
of the characteristic function χF of a fundamental domain (but note that the
projection onto holomorphic functions of χF does not give a suitable ξ.

• Cusp forms also give us explicit functions in Bergman spaces vanishing on
orbits under Γ. Indeed if f is a cusp form of weight p vanishing at z ∈ H, and
ξ ∈ A2

s−2 then by 9.1.4, Tfξ is in Hs+p and vanishes at Γ(z). For Γ =PSL2(Z)

this shows that there are elements of A2
s−2 vanishing at Γ(eiπ/3) provided s >

17. This is because the Eisenstein series G2 is a modular form of weight 4
vanishing at eiπ/3 so that ∆G2 is a cusp form of weight 16 vanishing at eiπ/3.
Elements of A2

s−2 for s > 1 may be multiplied by G2∆ to give the required
Bergman space functions.

L. Rolen and I. Wagner have improved this method to get elements of A2
s−2

vanishing on Γ(z) for any s > 13: Begin with the modular function j(z) and
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choose any w ∈ H. Then j(z) − w is a holomorphic function that vanishes
exactly on the PSL2(Z) orbit of a z0 with j(z0) = w. Now multiply by ∆(z)
to obtain a modular form vanishing on the same set. Then choose a branch of
η(z)r for r real, small and positive. Then the product f(z) = (j(z)−w)∆η(z)r

satisifies |f(γ(z)|Im(z)12+r/2 = |f(z)|. Since (j(z)−w)∆(z) has a limit as q →
0 and |η(q))| tends to zero exponentially fast as Imz grows, |f(γ(z)|Im(z)12+r/2

is bounded on a fundamental domain and hence

|f(z)| ≤ (constant)Im(z)−(12+r/2)

Thus as before, multiplication by f defines a bounded operator from Aα to
Aα+12+r/2. Choosing s close to 1 and r close to zero we see that there is
an element of A2

s−2 whose zero set is exactly the orbit PSL2(Z) (z0) for any
s > 13.

In view of theorem 7.5.6 below, we speculate that there are no non-zero ele-
ments of A2

s−2 vanishing on an orbit of PSL2(Z) for any s < 13, but we have
no guess for s = 13.

• The following applies to any Fuchsian group Γ.

Proposition 7.5.5. For any cusp form f of weight p there is an element
ξ ∈ Hs+p with 〈fη, ξ〉 = 0 for all η ∈ A2

s−2.

Proof. This is simply because the von Neumann dimension of Hs+p is bigger
than that of Hs so the closure of the image of Hs under multiplication by f
cannot be larger than that of Hs+p.

In fact since Tf is injective we know the von Neumann dimension of its image
so the vector space of all ξ as above is a PSL2(Z) -module of von Neumann
dimension p. Explicit examples of such ξ may be obtained as εz where the cusp
form f vanishes on z. As in the previous discussion these explicit examples do
not cover all values predicted simply by von Neumann dimension.

Theorem 7.5.6. Let Γ be a left orderable Fuchsian group and Γ(z) be an orbit in
H. Then
(i)If s < 1 +

4π

covolume(Γ)
there is no non-zero function in A2

s−2 vanishing on Γ(z).

(ii)If s > 1 +
4π

covolume(Γ)
there is a non-zero function in A2

s−2 vanishing on Γ(z).

Proof. (i) It is more convenient to work in the disc model than the upper half plane.
First note that, by the transivity of SU(1, 1) we may suppose that z = 0 (if f vanishes
on Γ(z) then πs(α)(f) vanishes on αΓα−1(α(z)) so an element of A2

s−2 vanishes on
the orbit of 0 for a Fuchsian group).
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Now choose a left ordering < of Γ and define the closed subspaces V and W of
A2
s−2 to be

V = {ξ|ξ(γ(0)) = 0 for γ ≤ id}

and
W = {ξ|ξ(γ(0)) = 0 for γ < id}

The hypothesis of the theorem assures us that W and V are non-zero. Choose ξ ∈ V
and let k be the order of its zero at 0. Write

ξ =
∞∑
n=k

cnen

where en(z) =

√
s− 1

4π

√
s(s+ 1)....(s+ n− 1)

n!
zn are the orthonormal basis con-

structed in 7.4.6. We know that cn is square summable. The limit of the sequence

an =

√
s(s+ 1)....(s+ n+ k − 1)

s(s+ 1)....(s+ n− 1)

n!

(n+ k)!

is 1 so an is bounded. The holomorphic function z−kξ(z) has Taylor series

∞∑
n=0

cn+kz
−ken+k(z) =

∞∑
n=0

ancn+ken(z)

Thus z−kξ(z) ∈ A2
s−2, it vanishes on Γ(0) \ {0} but is nonzero at 0.

Thus V is strictly contained in W . We will now show that the orthogonal com-
plement V ⊥ ∩W of V in W is a wandering subspace for Γ.

For suppose ξ ∈ V ⊥ ∩W . Then for γ < id and any other λ ≤ id,

γλ ≤ γid = γ < id

so
πs+p−2(γ−1)ξ(λ(0)) = 0

which means that πs+p−2(γ−1)ξ ∈ V and thus

〈πs+p−2(γ−1)ξ, ξ〉 = 0

which also means
〈πs+p−2(γ)ξ, ξ〉 = 0

But any nonzero wandering vector for Γ is a trace vector for the von Neumann
algebra it generates. Our von Neumann dimension calculation 7.4.8 shows that such
a trace vector cannot exist for these values of s.
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(ii) (Holds for any Fuchsian group-they are all icc by [] e.g.Akemann) Let εz be
the reproducing kernel vector for z so that 〈εz, ξ〉 = ξ(z) for all ξ ∈ A2

s−2. Then the
von Neumann dimension of the closure of vN(Γ)εz is at most 1. But by condition
(ii) and 7.4.8, the von Neumann dimension of A2

s−2 is greater than 1. So there is a
ξ ∈ A2

s−2 orthogonal to πs(γ)εz for every γ. This ξ vanishes on Γ(z).

Remark 7.5.7.

1. We suspect that the the previous result holds without the condition that Γ be
left orderable.

2. von Neumann dimension is a blunt tool. We cannot conclude that the zero sets
of the functions in part (ii) are exactly the Γ orbits. We have seen that modular
forms can be used in special cases to control the exact zero set.

3. The value s = 1 +
4π

covolume(Γ)
is not covered by the theorem. There is a

wandering vector in this case but it might not come from the vanishing of a
Bergman space function. The modular form method seems to (just) fail in this
case also.

4. For a general Fuchsian group Γ, ZΓ = {s|∃z ∈ H, ∃ξ ∈ A2
s−2 with ξ(Γ(z)) = 0}

is an unbounded interval which may or may not contain its infiimum. The
infimum of ZΓ could be called the critical value. We have said that we suspect
the critical value is always 1 + 4π

covolume(Γ) which is 13 for PSL2(Z) . It is
true however by our argument that if Γ has finite covolume, its critical value
is strictly greater than 1. This is because Γ has an orderable subgroup of finite
index ([]).

We have not yet mentioned the rather obvious question of the TfT ∗g . The first
thing to note is that, for a given s, only a finite dimensional space of cusp forms f
and g is available. This is because the weight of g must be less than s− 1 for T ∗g to
be non-zero. The question of whether the TfT ∗g generate the commutant of Γ then
only makes sense for s sufficently large.

What is interesting is that, by Radulescu’s result above, we can always write

Equation 7.5.8.
TfT

∗
g =

∑
i

ciT
∗
fi
Tgi

with convergence in the || − ||2 norm. One could even make the ci well defined
by orthogonalising the T ∗fiTgi . This would require knowledge of the numbers

TrvN(Γ)′(T
∗
f TgT

∗
hTk)

93



for which an integral formula can readily be written down. It is an integral over
F × H where F is a fundamental domain, in the same spirit as the Petersson inner
product.

Once known it is clear that 7.5.8 determines, together with the Petersson inner
product and the algebra structure on cusp forms, the entire structure of the commu-
tant of Γ on the A2

s−2. We only need to know how to express T ∗f ThT
∗
kTl in terms of

the T ∗T ’s and this is clear from 7.5.8.

7.6 A more explicit trace vector.

We saw above that for Γ acting on A2
s−2 there is, simply because of von Neumann

dimension, a wandering vector for Γ but we guess it might be hard to actually exhibit
one. We will now see that, at least for some Γ and s sufficiently large, we can show
the existence of a wandering vector without appealing to von Neumann algebras at
all. We will not keep track of the size of s.

Let Γ be a free subgroup of PSL2(Z) of finite index with identity id. Then it is
known that Γ admits a total order < which is left invariant, i.e. x < y =⇒ gx < gy.
So any γ is either ≤ id or ≥ id.

Let f be a cusp form of weight p with a simple zero at 0 (in the disc model), and
hence simple zeros at all points in the orbit of 0.. Define the close subspaces V and
W of A2

p+s−2 to be
V = {ξ|ξ(γ(0)) = 0 for γ ≤ id}

and
W = {ξ|ξ(γ(0)) = 0 for γ < id}

Clearly MfA
2
s−2 ⊆ V ⊆ W . But if ξ ∈ A2

p+s−2 has a simple zero at 0 then
1

z
ξ is

non-zero at zero and is still in A2
p+s−2. Thus V is strictly contained in W .

Proposition 7.6.1. The orthogonal complement V ⊥∩W of V in W is a wandering
subspace for Γ.

Proof. Suppose ξ ∈ V ⊥ ∩W . Then for γ < id and any other λ ≤ id,

γλ ≤ γid = γ < id

so
πs+p−2(γ−1)ξ(λ(0)) = 0

which means that πs+p−2(γ−1)ξ ∈ V and thus

〈πs+p−2(γ−1)ξ, ξ〉 = 0

which also means
〈πs+p−2(γ)ξ, ξ〉 = 0
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8 Subfactors.

8.1 Warmup. Finite Groups.

Let G be a finite group with an outer action α on the II1 factor M . Let N = MG

be the fixed point algebra. We continue the notational conventions from chapter ??
on the crossed product.

A covariant representation of (M,α) is an action of M on some Hilbert space H
together with a unitary representation vg on H with vgxv∗g = αg(x) for g ∈ G and
x ∈M .

Proposition 8.1.1. For finite groups the crossed product is universal for covariant
unitary representations. In fact any covariant representation of (M,α) extends to
an isomorphism from M oG onto {M, {vg}}′′ by sending ug to vg.

Proof. Define π : M o G → {M, {vg}}′′ by π(
∑

g agug) =
∑

g agvg. π is obviously
ultraweakly continuous so its image is a von Neumann algebra. But that image
contains M and the vg. And a II1 factor is simple.

A canonical way to obtain a covariant representation is to extend the action
of G on M to L2(M). We call these unitaries wg. We see that, for finite groups
only, another model for the crossed product is the von Neumann algebra on L(M)
generated by M and the wg.

Exercise 8.1.2. dimM M oG = |G|.

Proposition 8.1.3. The extension to L2(M) of the conditional expectation EN :
M → N is eN = 1

|G|
∑

g wg.

Proof. Obvious.

Theorem 8.1.4.
JN ′J = {M ∪ {wg}}′′ = {M ∪ {eN}}′′

Proof. Clearly J commutes with the wg and eN so the assertion is the same as
N ′ = {M ′ ∪ {wg}}′′ = {M ′ ∪ {eN}}′′. Both M ′ and the wg’s are in N ′ so it suffices
to prove that N ′ ⊆ {M ′ ∪ {eN}}′′ or equivalently {M ′ ∪ {eN}}′ ⊆ N which follows
from the assertion:

x ∈M and [x, eN ] = 0 =⇒ x ∈ N.

For this just evaluate xeN and eNx on the identity inside L2(M).

Remark 8.1.5. There is actually quite a bit of content here. How you would write
an individual wg for instance as an element of {M ∪ {eN}}′′?
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Corollary 8.1.6. If G is a finite group acting by outer automorphisms on a II1
factor M then MG is a subfactor with trivial centraliser, dimMG(L2(M)) = |G| and
(MG)′ ∩M oG = CG.

Proof. N is the commutant of a II1 factor inside a II1 factor , hence a II1 factor .
And N ′ ∩M = (M ′)′ ∩ {M ′ ∪ {vg}}′′ which is the scalars by 8.1.1 and ??. For the
dimension calculation note that by ?? we obtain M ⊆ M o G from any covariant
representation. In particular we can start with the crossed product on its own L2

space and reduce by a projection of trace |G|−1 in its commutant. Thus by the
formulae governing the behaviour of dimM , dim{M,{wg}}′′ L

2(M) = |G|−1 and the
result follows from 8.1.4. The last assertion is a trivial caclulation.

There is a Galois theory.

Proposition 8.1.7. If G is a finite group acting by outer automorphisms on a II1
factor M then any von Neumann algebra P with M ⊆ P ⊆ M o G is of the form
M oH for some subgroup H < G.

Proof. This follows easily from the assertion:
∑

g∈G agug ∈ P , then ag 6= 0 =⇒
ug ∈ P . This can be proved by induction on n = |{g such that ag 6= 0}|.

If n = 1 we have aug ∈ P with a 6= 0. But {a ∈M |aug ∈ P} is a two sided ideal
in M . By the algebraic simplicity of a II1 factor we are done.

We’ll prove it for n = 2 and leave the rest to the reader. Suppose aug + buh ∈ P
with a 6= 0, b 6= 0. Then by the same ideal argument we get z = ug − xuh ∈ P for
some x ∈M If x = 0 then ug ∈ P so aug ∈ P and we are reduced to the case n = 1.

So suppose x 6= 0. For v ∈M , we have vug− vxuh ∈ P and multiplying z on the
right by g−1(v) we see that vug−xhg−1(v) ∈ P also, so (vx−xhg−1(v))uh ∈ P . But
since hg−1 is outer, there must be a v for which vx − xhg−1(v) 6= 0. This reduces
the assertion to the case n = 1.

Note: in fact we proved that anyM−M -bimodule contained inMoG is a direct
sum of the bimodules Mug.

Corollary 8.1.8. The H 7→ MH establishes an order reversing bijection between
{subfactors P |MG ⊆ P ⊆ G} and subgroups H < G.

Proof. Realising the crossed product on L2(M) using the canonical implementation,
we know that the commutant of M ′ oH is MH .

Exercise 8.1.9.

1. Show that if α is an automorphism of M which is the indentity on MG then
α = g for some g.
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2. Show that the condition that G be outer is necessary for the Galois correspon-
dence.

Remark 8.1.10. We now have a useful family of subfactors- we can takeMG ⊆MH

or, “dually", whatever that means, M oH ⊆M oG. The coset decomposition of G
over H shows that the von Neumann dimension of L2(M oG) overM oH is [G : H]
and thus also the dimension of MH over MG is [G : H]. These subfactors exhibit
many interesting properties and are a good testing ground for conjectures since they
are fairly easy to work with.

Abelian groups have special properties which make them somewhat “easier”.

Exercise 8.1.11. If α is an outer action of the finite group G on the II1 factor M
and ξ : G→ T is a one dimensional character, show there is a unitary u ∈M with

αg(u) = ξ(g)u ∀g ∈ G

.
Hint: try a 2x2 matrix argument, changing the action α ⊗ 1 by Advg, vg being the
unitary

The group Ĝ of all 1-dimensional characters ξ : G → T acts on M o G via the
formula

α̂ξ(
∑
g

agug) =
∑
g

ξ(g)agug

This is called the dual action.

Exercise 8.1.12. Show that the dual action (even for infinite groups G) is outer.

If G is abelian one may form the crossed product

(M oα G) oα̂ Ĝ

Exercise 8.1.13. Show that if G is finite, the second dual action of G on (M oα

G) oα̂ Ĝ is conjugate to the "stabilised" action

α⊗Ad`g

on M ⊗ B(L2(G)) (where `g is the left regular representation).

The result of the previous exercise remains true for locally compact abelian groups
and motivates an alternative definition of the crossed product as the fixed points for
the stabilised action.

97



8.2 Index.

Inspired by the above remark 8.1.10 we make the following:

Definition 8.2.1. If N ⊆ M are II1 factors, the index [M : N ] of N in M is the
real number dimN L

2(M).

Exercise 8.2.2. Show that [M : N ] = 1 implies N = M .

Proposition 8.2.3. (i) If M acts on H so that dimN H <∞ then

[M : N ] =
dimN H
dimM H

.

(ii) If [M : N ] <∞ and p is a projection in N ′∩M then set [M : N ]p = [pMp : pN ],
then

[M : N ]p = trN ′(p)trM (p)[M : N ].

(for any action of M on H for which N ′is a II1 factor .)
(iii) If {p} is a partition of unity in N ′ ∩M then

[M : N ] =
∑
p

[M : N ]p
trM (p)

.

(iv) If N ⊆ P ⊆M are II1 factor s then

[M : N ] = [M : P ][P : Q].

(v) If M acts on H such that dimN H <∞ then

[M : N ] = [N ′ : M ′]

Proof. (i) Certainly M ′ (on H) is a II1 factor since N ′ is and taking the direct sum
of finitely many copies of H will not change the ratio dimN H

dimM H . So we may assume
dimM H ≥ 1 which means there is a projection p in M ′ with pH ∼= L2(M) as an M
module. But the trace of this p in N ′ is the same as the trace in M ′ by uniqueness
of the trace. Hence by the properties of the von Neumann dimension, dimN H

dimM H does
not change under reduction by this p.
(ii) This follows immediately from (i) and properties of the von Neumann dimension.
(iii) Just sum [M :N ]p

trM (p) over p.
(iv) The only case of interest is when [M : N ] < ∞. Then the result follows
immediately from (i).
(v) Immediate from (i).

Corollary 8.2.4. If N ′ ∩M 6= Cid then [M : N ] ≥ 4.
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Definition 8.2.5. We call a subfactor irreducible if N ′ ∩M = Cid.

Definition 8.2.6. A subfactor N ⊆M is called locally trivial
if [M : N ]p = 1 for any minimal projection in N ′ ∩M .

Exercise 8.2.7. Show that dim(N ′ ∩M) ≤ [M : N ].

Here is a list of what might be called the "classical" subfactors- ones whose ex-
istence owes nothing to the dedicated development of subfactor theory.

Example 8.2.8. The trivial subfactors.
If M is a II1 factor , so is M ⊗Mk(C) for any integer k > 0. We can embed M

in M ⊗Mk(C) by x 7→ x ⊗ 1. It is clear that L2(M ⊗Mk(C)) is the direct sum of
k2 copies of L2(M) so [M ⊗Mk(C) : M ] = k2.

Example 8.2.9. Continuously varying index.
Choose a projection of trace d in the hyperfinite II1 factor R. Then pRp and (1 −
p)R(1 − p) are isomorphic by hyperfiniteness so choose a von Neumann algebra
isomorphism θ : pRp → (1 − p)R(1 − p). Let M be R and N be the subalgebra
{x + θ(x)|x ∈ pRp}. It is clear that pMp = Np and (1 − p)M(1 − p) so by lemma
8.2.3,

[M : N ] =
1

d
+

1

1− d
.

As d varies between 0 and 1, this index takes all real values ≥ 4.

Observe though that N ′ ∩M contains p so the subfactor is reducible. The set of
index values for irreducible subfactors of R is not understood though for other II1
factor s it may be the interval [4,∞]

Example 8.2.10. Making the trivial non-trivial.

Definition 8.2.11. An action of a compact group on a factor M is called minimal
if (MG)′ ∩M = Cid.

If G has a minimal action α on M and ρ is an irreducible unitary representation
of G on Ck we may take the action α ⊗ Adρ on M ⊗Mk(C). One then defines the
"Wassermann subfactor"

(M ⊗ 1)G ⊆ (M ⊗Mk(C))G.

The point is that the commutant of (M⊗1)G inM⊗Mk(C) is already justMk(C) by
minimality of the action. So the fixed points are indeed factors and the Wassermann
subfactor is irreducible.
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Already for finite groups this provides lots of examples. If G is infinite there is
a simple way to construct minimal actions. Just take a finite dimensional unitary
representation ρ and consider ⊗∞1 Adρ on R. The group S∞ is contained in the
fixed points via its (inner) action permuting the tensor product factors. Moreover
if we choose an orthonormal basis {xi|i = 1, 2, ...k2} for Mk(C) with x1 = 1, an
orthonormal basis of R is formed by tensors ⊗∞j=1xi(j) indexed by functions i : N→
{1, 2, · · · , k2} with i(j) = 1 for sufficiently large j. The action of S∞ on this basis
has only one finite orbit-that of the identity. So the only fixed points on in L2(R)
are the scalar multiplies of the identity.

Example 8.2.12. Finitely generated discrete groups.
This example shows that finite index subfactors can be infinite objects in disguise.
Let Γ = 〈γ1, γ2 · · · γk〉 be a finitely generated discrete group. We have seen that Γ
can act in lots of ways, in particular outer, on II1 factor s. Choose any action on M
and for each x in M define the matrix d(x) = xi,j over M by

xi,j =

{
0 if i 6= j

γi(x) if i = j

Then consider the subfactor

D(M) = {d(x)|x ∈M} ⊆M ⊗Mk(C).

This subfactor is locally trivial so its index is k2 and one may think of it as a "twisted"
version of the trivial subfactor of index k2.

Exercise 8.2.13. Show that dim(D(M)′ ∩ M ⊗ Mk(C)) = k iff γ−1
i γj is outer

whenever i 6= j.

In fact one may easily extract the image of Γ modulo inner automorphisms from
the subfactor D(M).

We now want to consider an entirely arbitrary subfactor. For this the following
"basic construction" is important. We have already seen its usefulness for finite
group actions.

Proposition 8.2.14. Let N ⊆ M be a II1 factor s acting on L2(M) and let eN be
the extension to L2 of the trace-preserving conditional EN expectation onto N . Then

JN ′J = (JNJ)′ = {M, eN}”.

Proof. Already done in 8.1.4.

Definition 8.2.15. The von Neumann algebra 〈M, eN 〉 = {M, eN}” of the previous
result is said to be the "basic construction" for N ⊆M .
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Here are the most important facts about the basic construction. It will be con-
venient from now on to use τ for [M : N ]−1. Since 〈M, eN 〉 is a II1 factor its trace
is unique and its restriction to M is the trace of M . So we just use tr for it.

Proposition 8.2.16.
(i) For x ∈M, [x, eN ] = 0 iff x ∈ N .
(ii) eNxeN = EN (x)eN for x ∈M .
(iii) [M : N ] <∞ iff 〈M, eN 〉 is a II1 factor , in which case

[〈M, eN 〉 : M ] = [M : N ].

(iv) M +MeNM is a weakly dense *-subalgebra of 〈M, eN 〉.
(v) eN 〈M, eN 〉eN = NeN
(vi) tr(eN ) = [M : N ]−1

(vii) For x ∈M , tr(eNx) = τtr(x) (or EM (eN ) = τid).

Proof. (i) was done in 8.1.4.
(ii) is a consequence of the bimodule property of EN on the dense subspace M of
L2(M).
(iii) is immediate from proposition 8.2.14.
(iv) Closure of M + MeNM under multiplication follows from (ii). It contains M
and eN hence is dense.
(v) Follows immediately from (ii) and (iv).
(vi) Follows from (v) and the behaviour of the coupling constant under reduction by
projections-note that eN (L2(M)) = L2(N).
(vii) tr(xeN ) = tr(eNxeN ) = tr(eNxeN ) = tr(EN (x)eN ) = τ(EN (x) where we
deduce the last equality from uniqueness of the trace on the II1 factor N . Since the
conditional expectation preserves the trace, we are done.

From now on we will use τ for [M : N ]−1.

Corollary 8.2.17. There is no subfactor N ⊆M with 1 < [M : N ] < 2.

Proof. By the uniqueness of the trace we see that trN ′(eN ) = τ . Thus trN ′(1−eN ) =
1− τ . Hence [(1− eN )〈M, eN 〉(1− eN ) : N(1− eN )] = (1− τ)2(1/τ)2 which is less
than 1 if 1/2 < τ < 1.

8.3 Pimsner Popa basis.

Given a finite index subfactor N ⊆ M , the existence of a kind of “basis” for M as
a left (or right) N -module will be crucial to constructing a planar algebra. For the
rest of this section we suppose [M : N ] <∞.

Proposition 8.3.1. For each x ∈< M, em > there is a y ∈M with xe = ye.
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Proof. The formula xe = 1
τEM (xe)e is immediate for elements in the dense subalge-

braM+MeNM (using 8.2.16). The continuity of the conditional expectation means
that the formula holds for all < M, eN >.

Corollary 8.3.2. The identity of < M, eN > is in MenM .

Proof. By adding equivalent orthogonal projections there are partial isometries ui ∈<
M, eN > such that

∑n
i=1 uieNu

∗
i = 1 and thus elements vi ofM such that

∑n
i=1 vieNv

∗
i =

1.

Corollary 8.3.3. < M, eN >= MeNM .

Proof. For aeNb

8.4 The tower of II1 factor s and the ei’s.

We begin with a warmup towards the tower.
If [M : N ] < ∞ we may do the basic construction for M ⊆ 〈M, eN 〉. In the II1

factor 〈〈M, eN 〉, eM 〉 we have the two projections eM and eN .

Proposition 8.4.1.

eMeNeM = τeM and eNeMeN = τeN

.

Proof. For the first relation we must show that EM (eN ) = τid. But this is just
another way of saying (vii) of 8.2.16.
To prove the second relation, by (iv) of 8.2.16 it suffices to apply each side to elements
of the form x + yeNz ∈ L2(〈M, eN 〉) for x, y, z ∈ M . To do this note that eN acts
by left multiplication.

Corollary 8.4.2. If [M : N ] 6= 1 then

eM ∨ eN =
1

1− τ
(eN + eM − eMeN − eNeM )

Proof. The relations show that eN and eM generate a 4-dimensional non-commutative
algebra. By our analysis of two projections its identity must be a multiple of
(eM−eN )2. The normalisation constant can be obtained by evaluating the trace.

Note that the special case eN ∨ eM = 1 (which is equivalent to τ = 1/2 or index
2) means that eN and eM satisfy an algebraic relation.

Exercise 8.4.3. Use this relation to prove that, in index two, 〈〈M, eN 〉, eM 〉 is the
crossed product of 〈M, eN 〉 by an outer action of Z/2Z. Use duality to deduce Gold-
man’s theorem ([]): a subfactor of index 2 is the fixed point algebra for an outer Z/2Z
action.
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Let φ be the golden ratio 1+
√

5
2 .

Corollary 8.4.4. There is no subfactor N ⊆M with 2 < [M : N ] < φ2.

Proof. We see that eN and eM are equivalent in the algebra they generate so their
traces are equal wherever they are. Thus tr〈〈M,eN 〉,eM 〉(eN∨M ) = trN ′(eN∨M ) = 2τ
and

[(1− eN ∨ eM )〈〈M, eN 〉, eM 〉(1− eN ∨ eM ) : (1− eN ∨ eM )N ] = (1− 2τ)2τ−3

This is less than 1 if φ−2 < τ < 1/2.

If we did yet another basic construction in the same way and calculated the trace
of the supremum of the three conditional expectations we would conclude that there
is no subfactor with index between φ2 and 3. But it is high time to systematise the
process.

Definition 8.4.5. Let N ⊆M be a subfactor of finite index τ−1. Set M0 = N,M1 =
M and define inductively the tower of II1 factor s

Mi+1 = 〈Mi, eMi−1〉.

Set ei = eMi−1 for i = 1, 2, 3, · · · .

Proposition 8.4.6. The ei’s enjoy the following properties.
(i) e2

i = e∗i = ei
(ii) eiej = ejei if |i− j| ≥ 2
(iii) eiei±1ei = τei
(iv) tr(wei+1) = τtr(w) for any word w on {e1, e2, · · · ei}.

Proof. These are all trivial consequences of the 8.2.16 and 8.4.2. Note that the trace
in (iv) is unambiguous by uniqueness of the trace on a II1 factor .

The relations of proposition 8.4.6 were discovered, albeit in a slightly disguised
form, in statistical mechanics in [], and were presented in almost the above form in
[] although property (iv) does not appear. With a beautiful insight they were given
a diagrammatic form in []. They are now universally known, in whatever form, as
the Temperley-Lieb relations or the Temperley-Lieb algebra. We present Kauffman’s
diagrammatics in the appendix ??.

There is a lot of interesting combinatorics going with the Temperley-Lieb algebra
but we want to get directly to the results on index for subfactors. Here are some
exercises to familiarise the reader with these relations.

Exercise 8.4.7. Any word w on e1, e2, · · · en which is reduced in the obvious sense
with respect to the relations 8.4.6 contains en (and e1) at most once.
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Exercise 8.4.8. The dimension of the algebra generated by 1 and e1, e2, · · · en is at
most

1

n+ 2

(
2n+ 2

n+ 1

)
(This exercise is the first hint that there might be some connection between

subfactors and random matrices-see 9.3.19.)

8.5 Index restrictions

It is clear from the restrictions we have obtained so far that we should be interested
in the trace of the sup of the first n ei’s.

Definition 8.5.1. Let Pn(τ) be the polynomials defined by P0 = 1, P1 = 1 and

Pn+1 = Pn − τPn−1

Thus P2 = 1−τ = tr(1−e1), P3 = 1−2τ = tr(1−e1∨e2) and P4(τ) = 1−3τ+τ2.

Exercise 8.5.2. Define q by τ−1/2 = q + q−1. Show that Pn(τ) is essentially the

"quantum integer" [n+ 1]q =
qn+1 − q−n−1

q − q−1
, to be precise

Pn(τ) =
[n+ 1]q
([2]q)n

Definition 8.5.3. Put f0 = 1 and for each n = 1, 2, 3, · · · let

fn = 1− e1 ∨ e2 ∨ · · · ∨ en

.

Note that the fn are decreasing.

Theorem 8.5.4. If fn 6= 0 then

tr(fn+1) = Pn+2(τ)

Proof. Observe that the assertion is true for n = 0. Now suppose it is true up to
n. For convenience set sn = 1 − fn = e1 ∨ e2 ∨ e3 · · · ∨ en. We want to calculate
tr(sn ∨ en+1) and we know tr(sn) and tr(en). So it suffices to calculate tr(sn ∧
en+1). To do this note that en+1snen+1 = EMn(sn)en+1 by 8.2.16, and EMn(sn) is
in the algebra generated by {1, e1, e2, · · · en−1} by 8.4.7 and (iv) of 8.4.6. But by
the bimodule property for a condional expectation eiEMn(sn) = EMn(sn)ei = ei for
i ≤ n−1. So snEMn(sn) is the identity for the algebra generated by {e1, e2, · · · en−1}
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and EMn(sn−1) = sn−1 + (1 − sn−1)EMn(sn). However 1 − sn−1 is a minimal and
central projection in this algebra so

EMn(sn) = sn + λ(1− sn)

for some constant λ. Obviously 0 ≤ λ ≤ 1 because conditional expectations do not
increase norms. But if λ were equal to 1, we would have EMn(sn) = 1 which implies
sn = 1, i.e. fn = 0 by faithfulness of the conditional expectation. Thus λ < 1 and
taking the limit as k →∞ of (en+1snen+1)k,

en+1 ∧ sn = en+1sn−1

Taking the trace we see that tr(en+1 ∧ sn) = τtr(sn−1).
Finally tr(sn+1) = tr(sn) + τ − τtr(sn−1) and tr(fn+1) = tr(fn)− τtr(fn−1). By

induction and the definition of the Pn we are through.

The formula of the next theorem is due to Wenzl in [] which contains complete
information about families of projections on Hilbert space satisfying (i),(i) and (i)

Theorem 8.5.5. If fn 6= 0 then

fn+1 = fn −
Pn(τ)

Pn+1(τ)
fnen+1fn

Proof. It is easy to check for n = 1 and n = 2 for good measure.
So suppose fn 6= 0. Then by the previous result Pn+1(τ) 6= 0 and we may consider

the element x = fn −
Pn(τ)

Pn+1(τ)
fnen+1fn. Obviously eix = 0 = xei for i ≤ n and

en+1x = en+1fn − Pn(τ)
Pn+1(τ)EMn(fn)en+1fn. By induction and the definition of Pn,

EMn(fn) =
Pn+1(τ)

Pn(τ)
fn−1

Since the fn are decreasing we get en+1x = 0 = xen+1 which means x is a (possibly
zero) multiple of fn+1. But the trace of x is Pn+2(τ) so we are done by the previous
theorem.

Theorem 8.5.6. Let N ⊆ M be II1 factor s. Then if [M : N ] < 4 it is 4 cos2 π/n
for some n = 3, 4, 5, . . . .

Proof. Observe that Pn(0) = 1 for all n. If we put q = eiθ in 8.5.2 we see that
τ−1 = 4 cos2 θ and

Pn−1(τ) =
sinnθ

2n−1 sin θ(cos θ)n−1
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This is zero for q a 2nth. root of unity (except q = 1) and the one with largest cosine
is θ = π/n. Thus the smallest real zero of Pn is 1

4 cos2 π/(n+1)
. Moreover π/(n+ 1) <

π/n < 2π/(n+1). So Pn+1(τ) < 0 between 1
4 cos2 π/(n+1)

and 1
4 cos2 π/n

while Pk(τ) > 0

for k ≤ n and τ in the same interval. Thus if τ is strictly between 1
4 cos2 π/(n+1)

and 1
4 cos2 π/n

we conclude that fn > 0 and tr(fn+1) < 0 which is impossible.

9 The planar algebra of a finite index subfactor.

Definition 9.0.1. The canonical planar algebra of a subfactor N ⊆M is the planar
algebra. with Pn,+ = H0

N−N (⊗nNM), Pn,− = H0
M−M (⊗n+1

N M) endowed with the
action of shaded tangles defined above.

9.1 Von Neumann algebra version of the graded algebra.

Subsection 6.8 shows how to obtain in a purely algebraic way, a planar algebra as
the centralisers for a tower of algebras constructed from a central subalgebra of a
central algebra. In this subsection we will show hot to actually obtain II1 factors
using an orthogonalisation suggested by Kevin Walker []. Rather than produce the
centraliser tower as in [] we will construct a family of correspondences (bimodules).
To simplify we will restrict the construction to the TL planar algebra, but for all
values of the parameter δ, not just the discrete series. So let P = P TL.

Remark 9.1.1. It will be especially useful to draw pictures with rectangles (with $
always at the left) rather than circles in planar tangles and the composition S ◦ T of
such tangles will be vertical stacking whenever that the number of boundary points at
the top of S equals the number of boundary points at the bottom of T .

To do the analysis it is crucial to have orthogonality. So we are going to modify
the multiplication in subsection 6.8 to an isomorphic one. We will explain exactly
why later on. This multiplication was first explained to the author by Roland Bacher
and its magical properties were pointed out by Kevin Walker.

Let Gr(P) be the graded vector space ⊕n≥0Pn equipped with the prehilbert space
inner product <,> making it an orthogonal direct sum and for which, within Pn,

< x, y >= y*x

$ $

, the usual inner product in a planar algebra.

Definition 9.1.2. An element of Pn will be said to have degree n. For a and b in

106



Gr(P) of degrees m and n respectively and i ≤ min(m,n) we put

a ?
i
b =

$

$ $a b

i

If a ∈ Pm and b ∈ Pn we define their product to be

a ? b =

min(m,n)∑
i=0

a ?
i
b

The trace tr on Gr(P) is defined by tr(⊕nan) = a0 and (⊕nan)∗ = ⊕na∗n.

It is easy to check that (GrP), ?,∗ ) is an associative unital *-algebra with the
identity being the empty zero-box. It is also a pre-Hilbert space under 〈a, b〉 =
tr(b∗a). We will use L2(GrP) to denote its completion.

The main thing is to obtain boundedness of left and right multiplication. To help
with this we make the following:

Definition 9.1.3. For each a ∈ Pm and r ≤ m the map `r(a) : GrP → GrP is
defined, for b of degree n, by

`r(a)(b) =

{
0 if m < r

a ?
r
b otherwise

Obviously a? b =
∑n

r=0 `r(a)(b). The following simple result is fundamental - see
[],[].

Lemma 9.1.4. For a ∈ Pm and k ≥ 0 there is a constant K such that for all b ∈ Pn
and all n ≥ 0 we have

||`k(a)(b)||2 ≤ K||y||

so that `k(a) defines a bounded operator on Gr(P ).

Proof. Clearly we may suppose that n >> m which simplifies the number of pictures
to be considered. So if b ∈ Pn we must estimate < ab, ab > which, after a little
isotopy, is the following tangle:
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m−i

*

i

n−i

i

a

b

a

b

*

We recognise 〈(a∗a⊗ 1)(b), b〉 (see 10.2.2) where a is considered as a linear map
from Pi to Pm−i. But x 7→ x⊗ 1 is a unital isomorphism from the finite dimensional
C∗ algebra P2i so that the spectrum of a∗a ⊗ 1, and hence its norm is the same as
that of a∗a which is independent of n.

So that 〈(a∗a ⊗ 1)(b), b〉 ≤ ||a∗a ⊗ 1||〈b, b〉 (Cauchy Schwarz) which is equal to
||a∗a||〈b, b〉

Theorem 9.1.5. Let a ∈ Gr(P). Then the map La : Gr(P) → Gr(P), defined by
La(ξ) = a ? ξ is bounded for the prehilbert space structure.

Proof. We may suppose a ∈ Pm for some n. Then La =
∑m

r=0 `r(a) so the result
follows from the previous lemma.

Definition 9.1.6. Let vN(GrP ) be the von Neumann algebra generated by the left
action of GrP on L2(GrP ). (Clearly L2(Gr(P )) = L2(vN(Gr(P )).)

9.2 Isomorphism of Gr(P ) and Gr(P)

In section 6.8 we introduced another graded *-algebra with a trace called Gr(P ).

Definition 9.2.1. If P is a unital planar algebra we define the augmentation tan-
gle

∑
TL2n ∈ Pn for every n as the sum over all elements of TL with 2n boundary

points. We further define, for m + n even, m ≥ n, the planar algebra element∑
TLm,n to be the sum of all TLm+n elements with no strings connecting the first

n boundary points in clockwise order from $ to themselves.

Thus for instance
∑
TL2n ∈ P6 =

$

+
$

+
$

+
$

+
$

where there is no need to indicate the position of $ since it is rotationally sym-
metric.
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The TL elements in the sum
∑
TLm,n are conveniently represented in rectangles

with $ on the left, n points on the bottom and n points on the top.

Thus for instance
∑
TL4,2 =

$ + $ + $

We can now define the isomorphism from Gr(P ) to Gr(P).

Definition 9.2.2. Let a = ⊕∞m=0am be in Gr(P ). Then define Φ(a)(a) = ⊕nΦ(am) ∈
Gr(P) where

Φ(am) =
m
⊕

n=0,n≡m (mod 2)
am ◦ (

∑
TLm,n)

(See remark 9.1.1 for the meaning of ◦.)
Thus for instance if a ∈ P4,

Φ(a) =
a

⊕
4,2

a

ΣΤL

⊕
4,0

a

ΣΤL

Note that (assuming dimP0 = 1 ) the Voiculescu trace on Gr(P ) may be viewed
as

TrV (a) = a ◦
∑

TLn,0 for a ∈ Pn.

and the trace tr on Gr(P) is defined by

tr(⊕nan) = a0

Theorem 9.2.3. The map Φ is a bijection with

1. Φ(ab) = Φ(a) ? Φ(b)

2. Φ(a∗) = Φ(a)∗

3. tr(Φ(a)) = TrV (a)

Proof. Bijectivity follows from the graded structure. The second and third items are
obvious so we need only show item 1. We may suppose a ∈ Pp and b ∈ Pq.

Consider first Φ(a) ?Φ(b). It consists of a sum over i and n ≤ m,n ≡ m (mod 2)
and all TL tangles A ∈ TLp,i+j and B ∈ TLq,i+k with i strings connecting A to B,
with p+ q = m and j + k = n as below:
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b

i
k

A B

p q

a

j

On the other hand TL tangles T occurring in the sum in the definition of Φ(ab)
may be organised by the number i of strings connecting a to b. These strings may
then be pushed to the top of T , and all strings connecting a to a and b to b may be
moved close to a and b respectively. So that we see exactly the term in the picture
above for some well-defined tangles A ∈ TLp,i+j and B ∈ TLq,i+k with p+ q = n.

This establishes equality (up to isotopy) of all the terms in the sum for Φ(a)?Φ(b)
with all the terms in the sum for Φ(ab).

This means we can pull back the positivity and boundedness results to Gr(P )
with the Voiculescu trace.

The first main consequence of this construction is the following.

Theorem 9.2.4. If the loop parameter δ of the positive definite finite dimensional
planar algebra P is > 2 then vN(Gr(P )) is a II1 factor .

Proof. We let ∪ be the unique TL element in the 2-box space of P . We will first show
that ∪ generates a maximal abelian sub-von Neumann algebra A of vN(Gr(P )). For
this we exhibit a decomposition of L2(Gr(P )) as an A−A bimodule.

9.3 Full Fock space and random matrices

Definition 9.3.1. If H is a real or complex Hilbert space the full Fock space T (H)
is the Hilbert space direct sum ⊕∞n=0 ⊗n H. By definition ⊗0H is one dimensional,
spanned by the "vacuum" vector Ω.

Even when H is real one complexifies T (H) so that it is a complex Hilbert space.
For each n and f ∈ H the operator `(f) : ⊗nH → ⊗n+1H given by

`(f)(ξ1 ⊗ ξ2 · · · ξn) = f ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn

is clearly bounded by ||f || so extends to an operator we will call `(f) on all of full
Fock space.
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Exercise 9.3.2. (i) Show that

`(f)∗(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = 〈ξ1, f〉ξ2 ⊗ ξ3 · · · ξn,

`(f)∗(ξ) = 〈ξ, f〉Ω for ξ ∈ ⊗1H,

and `(f)∗Ω = 0.

(ii) Show that
`(f)∗`(g) = 〈g, f〉

Proposition 9.3.3. The action of the `(f) and `(f)∗ on full Fock space is irreducible.

Proof. It suffices to show that any non-zero vector in T (H) is cyclic. The vacuum
vector Ω is obviously cyclic. Note that the linear span of the images of the `(f)`(f)∗

is the orthogonal complement Ω⊥. The projection onto Ω⊥ is thus in {`(f), `(f)∗}′′.
If ξ is any vector we are thus done if 〈ξ,Ω〉 6= 0. Otherwise 〈ξ, f1 ⊗ f2 · · · fn〉 must
be non-zero for some fi ∈ H. But then 〈`(f1)`(f2) · · · `(fn)Ω, ξ〉 6= 0 and the vector
(`(f1)`(f2) · · · `(fn))∗ξ, which can be reached from ξ, projects non-trivially onto the
vacuum and is thus cyclic.

One may also consider the right creation operators r(ξ) defined by

r(f)(ξ1 ⊗ ξ2 · · · ξn) = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn ⊗ f.

They satisy the same relations as the `(f) and almost commute with them. To be
precise

9.3.4.
`(f)r(g) = r(g)`(f)

and
`(f)r(g)∗ − r(g)∗`(f) = −〈f, g〉pΩ

where pΩ is projection onto the one dimensional subspace spanned by the vacuum.
The r(f)’s and r(f)∗’s act just as irreducibly as the `’s.

Definition 9.3.5. Given the complex Hilbert space H, let the extended Cuntz algebra
of H, C(H), be the unital ∗-algebra with generators `(f) for each f ∈ H subject to
the following relations:
(i) The map f 7→ `(f) is linear.
(ii) `(f)∗`(g) = 〈g, f〉 ∀f, g ∈ H.

The `(f) defined on full Fock space show that this algebra is non-trivial.

Exercise 9.3.6. Show that the representation of C(H) on full Fock space is faithful.
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Remark 9.3.7. Hint:C(H) is spanned by products of the form

`(f1)`(f2) · · · `(fm)`(g1)∗`(g2)∗ · · · `(gn)∗

and 1. Given a linear combination of such, choose an orthonormal basis for the f ’s
and g’s involved and thus make them all orthonormal. Given a term in the sum for
an element in the kernel of the map, pick it out by applying appropriate `(f)’s to the
vacuum, then `(f)∗’s to conclude that its coefficient is zero.

This means that there is a C∗-norm on C(H) so we may consider it as a C∗

algebra.

Exercise 9.3.8. If ξ1, ξ2, ..., ξn are orthogonal unit vectors then `(ξi) are isometries
with orthogonal ranges, and the projection

n∑
i=1

`(ξi)`(ξi)
∗

depends only on the space spanned by ξ1, ξ2, ...., ξn.

IfH is finite dimensional and ξi is an orthonormal basis we see that the projection
p = 1−

∑n
i=1 `(ξi)`(ξi)

∗ doesn’t depend on anything. We may take the quotient C∗

algebra by the two sided ideal generated by this projection. This quotient is THE
Cuntz algebra discovered by Cuntz in []. Note that in the representation on full Fock
space p is the projection onto the vacuum that we used to prove irreducibility.

The case dimH = 1 is already interesting. The full Fock space is `2(N) and if ξ is
a unit vector, `(ξ) is the unilateral shift. C(H) in this case is known as the Toeplitz
algebra and there is an exact sequence 0 → k(`2(N)) 7→ C(H) 7→ C(S1) where
k(`2(N)) is the ideal generated by 1− `(ξ)`(ξ)∗ which is the compact operators.

If dimH > 1 it is known that the Cuntz algebra is simple ([]).
We refer to [] for a development of the notion of quasi-free states on the extended

Cuntz algebra. Most important is of course the vacuum state φ = ωΩ. It is obvious
that C(H) is spanned by products of the form `(f1)`(f2) · · · `(fm)`(g1)∗ · · · `(gn)∗ and
the vacuum expectation value of this word is 0 unless m = n = 0.

Given a subspace V of H, C(V ) is naturally included in C(H).

Definition 9.3.9. Let `(V )′′ be the von Neumann algebra generated by C(V ) on
T (H).

Proposition 9.3.10. Let x ∈ `(V )′′ be such that φ(x) = 0. Then there is a sequence
xi with ||xi|| ≤ ||x|| of linear combinations of products of the form

`(f1)`(f2) · · · `(fm)`(g1)∗ · · · `(gn)∗

(with m or n different from zero) such that xi tends strongly to x.
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Proof. Use Kaplansky density to get xi’s in C(V ) then subtract φ(xi) times the
identity. Since φ is continuous the correction tends to zero.

Lemma 9.3.11. The state φ has the following "freeness" property:
let V1 and V2 be orthogonal subspaces of H and suppose x1x2 · · ·xn is a product in
`(H)′′ such that
(i) φ(xi) = 0 ∀i
(ii) Each xi is in `(V1)′′ or `(V2)′′ and xi ∈ `(V1)′′ ⇐⇒ xi±1 ∈ `(V2)′′, then

φ(x1x2 · · ·xn) = 0

.

Proof. Applying the previous proposition we can work in the C(V )’s where the result
is obvious from orthogonality.

Observe that the result works just as well for any family of mutually orthogonal
subspaces and appropriate words. Note that the "free" terminology comes from
vN(Fn) where the algebras generated by the generators of Fn have this property
with φ replaced by the trace (by essentially the same reasoning).

Definition 9.3.12. If A is a complex unital *-algebra with a state φ, two unital
*-subalgebras A1 and A2 will be called φ-free if
φ(x1x2 · · ·xn) = 0 whenever x1x2 · · ·xn is a product in A such that
(i) φ(xi) = 0 ∀i
(ii) Each xi is in A1 or A2 and xi ∈ A1 ⇐⇒ xi±1 ∈ A2.

The analogue of the Clifford algebra generators would be c(f) = `(f) + `(f)∗.
Taking commutators reveals nothing interesting but considering C(H) on full Fock
space where we have the right creation operators and we may form d(f) = r(f) +
r(f)∗.

Proposition 9.3.13. [c(f), d(f)] = (〈g, f〉 − 〈f, g〉)pΩ

Proof. See 9.3.4

We see that c(f) and d(f) commute if 〈f, g〉 is real.

Definition 9.3.14. A real subspace of H on which 〈, 〉 is real will be called isotropic
A real structure on H is one of the following equivalent notinons.
(i) An antilinear involution σ on H.
(ii) An isotropic subspace V of H with H = V + iV .

The subspace V is the fixed points for the involution σ.

Definition 9.3.15. If V is an isotropic subspace of H, call c(V ) the von Neumann
algebra generated by the c(f) for f ∈ V on T (H).
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Lemma 9.3.16. If V is an isotropic subspace of H then φ is a trace on c(V ).

Proof. By continuity it suffices to show that φ(wc(f)) = φ(c(f)w) for all f ∈ V any
word w on the c(g)’s. But

〈wc(f)Ω,Ω〉 = 〈wf,Ω〉 (1)
= 〈wd(f)Ω,Ω〉 (2)
= 〈d(f)wΩ,Ω〉 (3)
= 〈wΩ, d(f)Ω〉 (4)
= 〈wΩ, c(f)Ω〉 (5)
= 〈c(f)wΩ,Ω〉 (6)

We will write tr for the restriction of φ to c(V ).

Lemma 9.3.17. If V is a real structure on H, Ω is cyclic and separating for c(V ).

Proof. By symmetry with the d(f)’s it suffices to prove that Ω is cyclic for c(V ).
By induction on n suppose c(V )Ω contains ⊕ni=0 ⊗i H. Then for v ∈ ⊗nH, c(f)v =
f ⊗ v+x with x ∈ ⊗n−1H. Hence c(V )ω contains f ⊗ (⊗nH) and since H = V + iV
we are done.

We see that c(V ) is a finite von Neumann algebra in standard form on T (H). We
will see that for dimh > 1 it is a II1 factor by showing it is isomorphic to vN(Fn)
where n = dimH, but let us begin by understanding the one dimensional case. Any
unit vector ξ spans a real structure and `(ξ) is unitarily equivalent to the unilateral
shift so that c(ξ) is given by the matrix

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 · · ·
· · ·


Lemma 9.3.18. c(ξ) has no eigenvalues.

Proof. If the eigenvalue were λ then it would have to be real. Let the eigenvector
be (xn) with n ≥ 0. λ = 0 is easily excluded so xn+1 = λxn − xn−1 for n ≥ 1 and
x1 = λx0. Thus xn = Aσn + Bσ−n with both A and B different from 0. So (xn) is
not square summable.

Although this lemma is enough to obtain our II1 factor result, let us complete
the spectral analysis of c(ξ) by obtaining the moments, i.e. the traces or vacuum
expectation values of c(ξ)n for n ≥ 0. Our method will be a bit long-winded but
adapted to further calculations.
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Lemma 9.3.19. We have

tr(c(ξ)n) =

{
0 if n is odd

1
m+1

(
2m
m

)
if n = 2m

Proof. Let x = c(ξ). Then we want to calculate

〈(x+ x∗)(x+ x∗) · · · (x+ x∗)Ω,Ω〉.

That this is zero for odd n is obvious, so put n = 2m. Expand the product into 2n

terms, each a word on x and x∗. We want to enumerate those which give a non-zero
contribution to trace. There must be as many x’s as x∗’s and the word must end in
x. We proceed to reduce the word by the following algorighm: the last occurrence
of x∗ is followed by an x so use x∗x = 1 to eliminate the pair. The new word must
also end in x so continue until only 〈Ω,Ω〉 remains. We may record the sequence of
eliminations of (x∗, x) pairs by pairing them as indicated below for a typical word:

x∗ x x x∗ x x∗ x x.
The diagram above the word is known as a Temperley-Lieb diagram or non-

crossing pairing or planar pairing. It consists of m smooth non-intersecting arcs
joining the letters in the word. Thus for every such picture up to isotopy there
is a contribution of 1 to the trace. It remains only to count such Temperley-Lieb
diagrams. Let tn be the number of such diagrams, with t0 set equal to 1. Then by
considering the letter to which the first letter of the word is connected, it is obvious
that

tn+1 =
n∑
j=0

tjtn−j for n ≥ 0.

Multiplying both sides by zn+1 and summing over n we get

Φ(z)− 1 = zΦ(z)2

where Φ(z) =
∑∞

n=0 is the generating function for the tn. So

Φ(z) =
1−
√

1− 4z

2z

and if we expand using the binomial formula we get the answer.

Corollary 9.3.20. For −2 ≤ x ≤ 2 let dµ = 1
2π

√
4− x2dx. Then there is a trace

preserving isomorphism of c(ξ)′′ onto L∞([−2, 2], dµ) sending c(ξ) onto the operator
of multiplication by x.
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Proof. By?? it suffices to prove that

1

2π

∫ 2

−2
xn
√

4− x2dx =

{
0 if n is odd

1
m+1

(
2m
m

)
if n = 2m

We leave this as an exercise.

Now return to showing that c(V )′′ ∼= vN(Fn) for n = dimH. We will do this
when n = 2, leaving the general case as a straightforward generalisation. So let H
be a two dimensional complex vector space with real structure V and let V1 and V2

be the subspaces of V spanned by orthonormal vectors f1 and f2 respectively. Then
by lemma 9.3.11 we see that c(V ) is generated by two abelian subalgebras c(V1) and
c(V2) with the property that tr(x1x2 · · ·xn) = 0 whenever tr(xi) = 0 ∀i and the
xi are in c(V1) or c(V2) depending only on i mod 2. But then if w = x1x2 · · ·xn is
any such product without imposing tr(xi) = 0 we may in a universal way calculate
the trace of w by writing xi = (xi − tr(xi)) + tr(xi). The result depends only on
the traces of the xi. So if M is any other finite von Neumann algebra with faithful
normal trace tr generated by two abelian subalgebras A1 and A2 having the same
property, we can construct an isomorphism between M and c(V ) as soon as we are
given tr-preserving isomorphisms from A1 to c(V1), and A2 to c(V2) respectively.

Let us record this more formally.

Theorem 9.3.21. Let (A,A1, A2, φ) and (B,B1, B2, ψ) be algebras and states as in
definition 9.3.12, with A1 and A2 free with respect to φ and B1 and B2 free with
respect to ψ. Suppose θi are unital *-isomorphisms from Ai to Bi for i = 1, 2, taking
φ to ψ. Then there is a unique *-isomorphism from the algebra generated by A1 and
A2 onto the algebra generated by B1 and B2 extending θ1 and θ2.

Proof. By faithfulness it suffices to show that

φ(y1y2 · · · yn) = ψ(θ(y1)θ(y2) · · · θ(yn))

whenever each yi is in either A1 or A2 and θ is θ1 or θ2 accordingly. We will prove this
assertion by induction on n. We may clearly assume successive yi’s belong to different
Ai’s since otherwise we can reduce the length of the word using the properties of
the θi and apply the inductive hypothesis. But then write xi = yi − φ(yi) so that
yi = φ(yi)+xi. Expanding (φ(y1)+x1)(φ(y2)+x2) · · · (φ(yn)+xn) we see x1x2 · · ·xn
plus a linear combination of words of length less than n with coefficients the same
as those expanding (ψ(θ(y1)) + θ(x1))(ψ(θ(y2)) + θ(x2)) · · · (ψ(θ(yn)) + θ(xn)) in the
same way. The freeness condition and the inductive hypothesis imply the desired
equality.

Corollary 9.3.22. Let H be a Hilbert space of dimension n with complex structure
V . Then c(V )′′ ∼= vN(Fn).
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Proof. If Fn is free on generators ai and xi is an orthonormal basis in V for H, then
by 9.3.20,both {uai}′′ and c(Rxi) are L∞ of a standard atomless probability space
so there are trace preserving isomorphisms between them. We are done by ?? and
the previous theorem (with 2 replaced by n).

We can generalise 9.3.19 immediately to dimH > 1 as follows.

Proposition 9.3.23. Let f1, f2, ..., fk be vectors in H. Then

〈c(f1)c(f2)...c(fk)Ω,Ω〉 =
∑ ∏

i,σ(i)

〈fi, fσ(i)〉

where the sum is over all planar pairings σ of (1, 2, 3, · · · , k), with i < σ(i).

Proof. The same argument as in 9.3.19 applies.

Remark 9.3.24. We may form the *-algebra C〈X1, X2, · · ·Xn〉 of polynomials in
n non-commuting self-adjoint variables. The previous work may be considered as
defining a trace on this algebra by sending Xi to c(ξi) for an orthonormal basis {ξi}
of V .

Thus the trace of a word x1x2x3 · · ·xk, where each of the xi is one of the Xi is
the number of Temperley Lieb diagrams as below for which xj = xj if they are joined
by a curve in the diagram:

x∗1 x2 x3 x∗4 x5 x∗6 x7 x8.
We call this trace the Voiculescu trace on C〈X1, X2, · · ·Xn〉. An explicit formula

like that of 9.3.19 is not so clear and it can be difficult to work with a scalar product
for which the words are not orthogonal. This can be corrected by using the obvious
orthonormal basis of Fock space as tensor products of the ξi. Multiplication in this
basis is more complicated but not much more so:

Exercise 9.3.25. Define multiplication on C〈X1, X2, · · ·Xn〉 as follows:
Let x1x2 · · ·xp and y1y2...yq be words on X1, X2, · · ·Xn. Then

x1x2 · · ·xp ? y1y2...yq =

min(p,q)∑
i=0

δxp,y1δxp−1,y2 · · · δxp−i+1,yix1x2 · · ·xp−iyi+1yi+2 · · · yq
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Thus for instance

X2
1X2X3 ? X3X2X1X2 = X2

1X2X
2
3X2X1X2 +X2

1X
2
2X1X2 +X3

1X2 +X1X2

Show that C〈X1, X2, · · ·Xn〉, ? is isomorphic to C〈X1, X2, · · ·Xn〉 with the usual mul-
tiplication and that the Voiculescu trace is transported to a trace whose inner product
makes the monomialis in the Xi orthogonal.

9.4 Planar aglebra version of Voiculescu’s free Gaussian functor.

It is possible to construct directly from any planar algebra a "Fock space" and imitate
the construction of the previous

Definition 9.4.1. The Fock space is the Hilbert space orthogonal direct sum

F(P ) = ⊕nPn

(in the case of a shaded planar algebra there will be two such Fock spaces for each
shading). F (P ) will denote the dense subspace of finite sums.

Definition 9.4.2. For p, q ∈ N ∪ {0} let Ap,q be disjoint copies of Pp+q. Define the
multiplication a.b for a ∈ Ap,q and b ∈ Ar,s by the following formula:

If q ≤ r, a.b = r−q

a

b

q

s

p

∈ Ap+r−q,s. If r ≤ q, a.b =

s

a

b

r q−r

p

∈ Ap,s+q−r

(In the shaded case p+ q must be even though individually p and q can be both
odd.) It is useful to think of the q bottom strings as “annihilation strings” and the
p top ones as “creation strings”.

Lemma 9.4.3. The multiplication a.b above makes A = ⊕p,qAp,q into an associative
unital *-algebra with * defined by the * operation of the planar *-algebra but sending
Ap,q to Aq,p.

Proof. This is not quite obvious from the pictures because of the various cases q ≤ r
etc. But the verification of the cases is not difficult, neither is the antiautomorphism
property of *. The identity ofA is the identity element of the commutative subalgebra
A0,0.
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Now for each a ∈ Ap,q define the operator `(a) on F(P ) by:

(for x ∈ Pn = An,0) `(a)(x) =

{
0 if q > n

a.x if q ≤ n

Lemma 9.4.4. The map φ : A→ `(a) defines an injective *-algebra homomorphism
from A to a *-subalgebra of bounded operators on F(P ).

Proof. Boundedness of `(a) follows from 9.1.4. The homomorphism property is im-
mediate on identifying F (P ) with the quotient of A by the left ideal ⊕

p>0,q≥0
Pp,q.

Injectivity is an easy exercise in picking off terms.

Lemma 9.4.5. If pn = n ∈ An,n then 1 − `(pn) is orthogonal projection onto

the finite dimensional subspace ⊕i≤nPi of F(P ).

Remark 9.4.6. Let us explain how, when P is the (unshaded) tensor planar alge-
bra the above construction is Voiculescu’s "free Gaussian functor" in finite dimen-
sions(see []) . The free Gaussian functor starts with a real Hilbert space R. In our
case the real structure is given by the *-planar algebra structure so let us work over
the reals, then complexify. The Fock space on R is as in 9.3.1, and we have operators
`(f) and `(f)∗ on T (R) which extend in the obvious way to f ∈ ⊗kR. The n-box
space of P⊗ is ⊗nH so we may define, for integers p, q ≥ 0 with p + q = n, vector
space isomorphisms `p,q from P⊗n to bounded linear operators on T (R) by

`p,q(f ⊗ g) = `(f)`(g)∗

Thus the algebra generated by the `(f) and `(g)∗ for f, g ∈ R is the same as that
defined by our φ in 9.4.4.

The main difference between the tensor case and that of a general planar algebra
is that annihilation and creation are not decoupled-the algebra A is not generated
by pure annihilation and pure creation (A0,q and A(p, 0)) operators. Thus the 1−pn
for n > 1 are not in the ideal generated by 1 − p1 so to obtain the analogue of the
Cuntz algebra we need to quotient by more than just 1−p1 (which is

∑
i SiS

∗
i in the

Cuntz picture).

Proposition 9.4.7. The representation φ defined above is irreducible.

Proof. This is particularly easy since by the previous lemma one may pick of the
first n components of a vector in F(P ).
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Note that there is also an action of Aopp by right multiplication. It cannot
commute with φ of course but it does up to finite rank operators.

We now explore the generalisation of the algebra generated by the real parts of
the isometries in the free Gaussian functor.

Definition 9.4.8. For each x ∈ Pn define Ψ(x) in A by Ψ(x) = ⊕
p+q=n

x ∈ ⊕
p+q=n

Ap,q.

The multiplication a ? b on ⊕nPn was defined in [].

Lemma 9.4.9. The map Ψ : ⊕nPn → A is a *-algebra homomorphism onto the
linear span of all the Ψ(x) which thus form a subalgebra of A.

Proof. The *-algebra property is not difficult. If a ∈ Pm and b ∈ Pn there are
(m+ 1)(m+ 1) terms when we expand either Ψ(a ? b) or Ψ(a)Ψ(b) (this is the same
identity as in tensoring irreducbile represenations of SU2)). One can check that they
are the same diagrams.

Definition 9.4.10. We call V (P ) the *-algebra {Ψ(x)|x ∈ ⊕nPn}.

Remark 9.4.11. For a ∈ Pm and b ∈ Pn ⊂ F(P ) we recognise φ(Ψ(a) as a ? b for
the algebra structure defined in 9.1.2.

Lemma 9.4.12. The vacuum vector Ω is a cyclic and separating trace vector for the
action defined by φ of V (P ) on F(P ).

Proof. The tracial and cyclicity properties are simple. Moreover the trace defined
by Ω is precisely the trace on V (P ) transported from the graded algebra Gr(P ) by
Ψ. Thus Ω is separating.

The above theorem means there is a conjugation J by the usual machinery. By
definition it is the conjugate-linear isometry J : F(P )→ F(P ) by J(x) = x∗ for each
x ∈ Pn.

It is noteworthy that J.J has a diagrammatic meaning for all `(a), not just those
a in V (P ). Indeed if we define

r(x) = J`(x∗)J.

Then a picture of the action of r(a) for a ∈ Ap,q on x ∈ Pk for k ≥ q (for
k < q, r(a)(x) = 0) is:

k−q q

p

a

x

$
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Note that we have indicated the distinguished interval for the disc containing a
with a $ as it does not follow our convention.

It is important to note that `(a) does not commute with r(b) in general though
they do when applied to any x ∈ Pn for n > deg(a) + deg(b). Thus the C∗-algebras
generated by the `(a) and r(b) do commute in the Calkin algebra of F(P )).

However if we define π(a) = r(a) then π is just as faithful and irreducible as φ,
but

[π(V (P )), φ(V (P ))] = 0

. This follows from remark 9.4.11 and the associativity of Gr(P ).

Remark 9.4.13. Consider as in 9.4.6 the special case where P is the tensor planar
*-algebra (unshaded) on a finite dimensional vector space V. Then we form the real
(finite dimensional) Hilbert space RR of self-adjoint elements of V . We saw that our
Fock space above is exactly the full Fock space in [],[] of the free Gaussian functor.
Moreover our algebra V (P ) is the same as the algebra generated by the `(f) + `(f)∗

for f ∈ HR. To see this note first that, by a picture,φ(Ψ(f)) = `(f) + `(f∗)∗ for
all f ∈ V so that for f ∈ R, `(f) + `(f)∗ is the same as Ψ(f) and Ω is cyclic and
separating for both algebras.

[] add

The following observation is surely well known to experts.

Corollary 9.4.14. The algebra in the free Gaussian functor generated by the `(f) +
`(f)∗ is linear spanned by “cycled creation operators”, i.e. ones of the form

n∑
k=0

 k∏
i=0

`(fi)
∗

n∏
j=k+1

`(fj)


9.5 Large Random Matrices.

We would like to show how the Voiculescu trace arises in the study of large random
matrices. For this we will use the Wick/Isserlis theorem concerning jointly Gaussian
random variables. A complex (centred) Gaussian random variable is a sum A+ iB of
two independent identically distributed real centred Gaussian random variables. The
variance of A+ iB is E(A2) +E(B2), and E((A+ iB)2) = 0. Suppose Z1, Z2 · · ·Zn
are complex centred jointly Gaussian random variables with E(ZiZj) = aij .

Theorem 9.5.1.
E(Z1Z2 · · ·Zn) =

∑
σ

∏
i<σ(i)

aiσ(i)

where the sum is over all pairings σ of {1, 2, · · ·n}.

121



Now let X = Xij be a self-adjoint N ×N random matrix. This means that the
Xij are jointly Gaussian complex random variables with

Xij = Xji for i 6= j and Xiiis real,

and all other matrix entries are independent. Suppose E(|Xij |2) = d.We want to
consider E(Trace(Xk)). Writing this out in full we get∑

i1,i2,···ik

E(Xi1i2Xi2i3Xi3i4 · · ·Xiki1).

The individual terms in this sum can each be expanded using Wick’s formula. In
the figure below we have represented a typical term in the expansion, each black dot
being an occurrence of X and the pairing is indicated by curves outside the circle.
We have used a circle rather than a straight line segment to emphasize the cyclic
aspect of the trace.
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Because of the independence of the Gaussians we will only get a non-zero con-
dition when k is even and the indices at one end of the pairing are the same as at
the other end, but in the opposite order. In order to get a non-zero contribution, In
the figure above this forces i1 = i4, i4 = i6, i6 = i3, i3 = i2 and i7 = i1. So in fact
there are only 3 freely varying indices, i1, i5 and i8 each of which gives a contribution
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to the total sum of d3. We represent each such contribution below where we have
thickened the curves defining the pairing into (flat) ribbons. Observe that the indices
i1, i5 and i8 extend to the boundary components of the surface obtained by gluing
the ribbons to a central disc. There are N3 ways to assign the indices and once
assigned, each term contributes dk/2. So the total contribution of all terms with the
given pairing is N3dk/2.
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Now consider a general pairing and proceed in the same way. If we glue in (abstract)
discs along the boundary components we get an orientable surface whose Euler char-
acteristic is “V-E+F" which in general will be 1 − k/2 + F where F is the number
of discs glued in, i.e. the number of freely varying indices for the given pairing. If g
is the genus of the surface, we have 2− 2g = F + 1− k/2 which gives

F = k/2 + 1− 2g.

So the total contribution of all terms with the given pairing is NFdk/2. We see that
if d = 1√

N
then this contribution will be N1−2g so that 1

NE(Trace(Xk)) will tend,
as N → ∞, to the number of pairings with g = 0. But if the pairing is planar,
obviously g = 0 and if g = 0 we know from the classification of surfaces that we get
a 2-sphere, from which it is clear that the partition is planar! Hence we have shown:

lim
N→∞

1

N
E(Trace(Xk)) =

{
0 if k is odd

1
m+1

(
2m
m

)
if k = 2m

The above argument works equally well with n randomN×N matricesX1, X2, · · ·Xn
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each of which has entries with covariance as above and for which entries in different
random matrices are independent. We see we have proved the following:

Theorem 9.5.2. If w is a word on the random matrices X1, X2, · · ·Xn as above
then limN→∞

1
NE(Trace(w)) exists and is equal to the Voiculescu trace of the same

word viewed as an element of C〈X1, X2, · · ·Xn〉.

This result, together with 9.3.22 gave Voiculescu a remarkable new insight into
the vN(Fn) and he was able to prove some spectacular isomorphisms between them
-[].

9.6 Revisiting the examples from the subfactor point of view.

10 Linear tangles

This section is concerned with planar tangles having a single input disc so logically
it should come before the section on algebra structures. But in fact we will forced
to make a new construction going beyond planar algebras so in some sense it is
more “advanced”. Also our analysis of the action of annular categories will involve a
detailed knowledge of the inductive limit algebra structure of a planar algebra.

10.1 Annular categories.

Given a (vanilla for the purposes of a general discussion) planar algebra P , consider
the set of planar tangles consisiting of a single unlabelled input disc and all other
input discs labelled by elements of P . It is natural to arrange such a tangle in an
annulus as below, where the single unlabelled input disc is the inner circle of the
annulus:

$

A
Q

C

D

$

$

$

$

$

such a tangle T obviously defines a map from Pm to Pn (m = 7 and n = 5 in the
picture) so this linear map could be taken as the meaning of T . But if P is contained
in a bigger planar algebra Q then T will define a linear map from Qm to Qn which,
off Pm, may have little to do with its action on P . Moreover if P is well understood
(e.g. P TL) the action of T may give crucial information about the more complicated
algebra Q. Thus we are forced to consider the tangle T as a more abstract object
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not actually belonging to P . On the other hand it should be defined by P alone. For
this reason we make the following definition (in the vanilla case, leaving the more
general cases as exercises).

Definition 10.1.1. If A is the annulus {z ∈ C|1 ≤ |z| ≤ 2} with finite sets P and
Q of marked points on the inside and outside circles respectively, and P is a planar
algebra , we define an annular tangle to be a planar tangle having the unit circle as
one of its internal discs, the outer circle of A as its outside disc with boundary points
P and Q respectively, and all other discs labelled by elements of P (of appropriate
degrees). Two such tangles will be considered equal if they differ by smooth isotopies
of the annulus which are the identity on its boundary.

Let V̌P,Q be the vector space of all formal linear combinations of annular tangles.
Now suppose that D is a disc lying entirely in the interior of the anulus (and

thus contractible in the interior of the annulus) and that L1, L2, · · ·Lk are planar
tangles with DLi = D and the r boundary points of DLi are the same as those of
DLj for all i and j. Suppose further that the internal discs of the Li are labelled with
elements of P so that ZLi makes sense as an element of Pr and that

∑
i λiZLi = 0

for some scalars λi. Then if Ti are annular tangles whose underlying planar tangles
are isotopic to S ◦ Li and whose lablels are those of Li on the discs in Li and are
independent of i for the other discs in S, we say∑

λiTi is a disc relation in V̌m,n.

Definition 10.1.2. The vector space VP,Q (V P
P,Q if we need to specity P ) is the

quotient of V̌P,Q by the vector subspace spanned by all disc relations.

The vector spaces VP,Q form a linear category whose objects are the finite subsets
of points on the circle and whose morphisms are VP,Q. Composition of morphisms
is defined first on the level of isotopy classes of labelled annular tangles by rescaling
one annulus so its inner circle is {z ∈ C|zz̄ = 4}. Composability of morphisms means
that the boundary points line up so after smoothing the strings at these boundary
points one gets a tangle in a larger annulus which is then rescaled to A. This is all
clearly compatible with isotopies, linearity and disc relations.

The objects of this category can be brought down to size.

Definition 10.1.3. The Affine category of P is the subcategory of the one just
defined by setting P to be the set of mth roots of unity and Q to be 2 times the nth.
roots of unity. So there is just one object for each integer m and we write Vm,n for
the morphisms VP,Q.

The group Z×Z acts on each Vm,n by rotating the inside and outside boundaries
separately. If αp,q is the operation of rotating the inside boundary by 2πp

m and the
outside boundary by 2πq

n then we have:
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(i) αm,n = id
(ii) If T1 and T2 are composable annular tangles then αa,b(T1) ◦ αc,d(T2) =

Definition 10.1.4. The Annular category of P is the quotient category category
obtained as

10.2 The affine and annular TL categories.

Definition 10.2.1. The rotation will be the element of AnnTLn,n for n > 0 defined by
the following linear tangle:

$

$

The meaning of ρ in the oriented case is obvious. For shaded planar algebras it
is a pair of maps from Pn,± to Pn,∓ given by the figure 10.2.1 with the two possible
shadings.

Definition 10.2.2. The id⊗ 1 and 1⊗ id from Pn to Pn+2 will be the maps defined
as follows:

(id⊗1)(x) = x$ $ (1⊗ id)(x) = x$ $ It will be con-

venient to use the notation x ⊗ 1 for (id ⊗ 1)(x) even in the case where there are
more than one strings to the right of x so that id⊗1 goes from Pn to Pn+2k for some
k.

In the oriented case there are two versions of both id⊗ 1 and 1⊗ id according to
the orientation of the string going from the outside boundary to itself. In the shaded
case id⊗ 1 goes from Pn,± to Pn+1,± and 1⊗ id goes from Pn,± to Pn+1,∓.

11 Connections.

11.1 Bi-invertibles and Bi-unitaries

A bi-invertitble is an element of P4 in a given (unital) planar algebra P that satisfies
relations akin to the type II Reidemeister moves.
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Definition 11.1.1. Let P be a unital vanilla finite dimensional planar algebra. An
element u ∈ P4 will be called bi-invertible if

uρ(u) = 1 in the algebra P4

(2.4.2) In a planar *-algebra the bi-invertible u will be called bi-unitary if it is unitary.

Remark 11.1.2. We adopt the diagrammatic convention that a double point should

be replaced by
$

u and the rest of the red string should become blue as well.

Bi-invertibility is thus equivalent to the following identity in P4:

$

=

$

and since uρ(u) = 1 is equivalent to ρ(u)u = 1 this in turn is equivalent to:

$

=

$

(The position of the $’s is immaterial as long as it is the same on both sides of
the equations.)

Example 11.1.3. The bi-invertible par excellence is the crossing in knot theory. If

we consider the element $ in PConway2 . A single picture shows that this

element is biinvertible.

Example 11.1.4. In general we may choose an invertible (unitary in the * case)
element of P1

Example 11.1.5. In P⊗ the simplest example is the permutation tensor:

Ri,j,k,l =

{
1 if i = k and j = l
0 otherwise
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This can be elaborated by choosing permuations πi for each i and setting

Ri,j,k,l =

{
1 if j = l and i = πl(k)
0 otherwise

(If the tensor indices are a finite group, ρg is conjugation by g and we map PConway

to P⊗ by sending a positive crossing to this R and a negative one to its inverse, the
element of P0 defined by a link is the number of homomorphisms of the fundamental
group of the link complement to the group.)

And further if we can find permuations πi and ρj with ρ2
k = 1 and πρk(l) = πl

Ri,j,k,l =

{
1 if i = πl(k) and j = ρk(l)
0 otherwise

(see [],[])

Exercise 11.1.6. Show that the only bi-invertibles in P TL are A $ +A−1 $

where A2 + A−2 = −δ. This is biunitary iff |A| = 1 and P TL is a subfactor pla-
nar algebra. Thus planar algebras may admit no bi-unitaries but any unital planar
algebra has bi-invertibles.

One use of a bi-invertible is to define an endomorphism of the algebra P∞ into
itself.

Definition 11.1.7. If u ∈ P2 is bi-invertible, define the map ψu : P2n → P2n+2 by
the following annular tangle:

$ $

Proposition 11.1.8. ψ defines a unital algebra embedding of P2n into P2n+2 which
is compatible with the inclusions Pk ⊆ Pk+1 and so defines an endomorphism of P∞.
If u is biunitary then ψ is a *-algebra embedding/endomorphism.

Proof. Just draw the pictures and use the bi-invertible property.

Biinvertibles and biunitaries are intimately related with “commuting squares” or
“orthogonal pairs” ([]) of algebras.
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Proposition 11.1.9. Suppose P is central, finite dimensional, with nondegenerate
canonical bilinear form, and δ 6= 0 Fix n and put C = P2n+2, A = (id⊗ 1)(P2n) and
B = ψu(P2n). Then the bilinear form defined by tr is nondegenerate on B and A∩B
and EAEB = EBEA = EA∩B.

Proof. Non-degeneracy of tr on B follows from the fact that ψ preserves the Markov
trace. Consider the following map from P2n+2 to itself:

E = 1
δ

$ $ To show that E is the conditional expectation onto

B one needs to show that tr(E(x)ψ(b)) = tr(xψ(b))∀x ∈ C and b ∈ P2n. But the left

hand side of this equation is 1
δ

$

$ x

b

and the right hand side is
$

$ x

b

. After

a little isotopy and moves as in 11.1.2 we see that these two numbers are equal. To
complete the proof is a matter of composing the annular tangles for EA and EB in
both orders. Non-degeneracy on A ∩B is immediate.

So A,B,C and A ∩B forming a commuting square.

Corollary 11.1.10. The map on P∞ defined by E above gives a conditional expec-
tation from P∞ onto ψ(P∞).

We see that 11.1.9 Allows us to control the inclusion ψ(P∞) ⊆ P∞. In particular
it is proper. In the von Neumann algebra case this will be particularly useful. But
of more interest is the situation concerning ψ(P2n) (= B) and (1⊗ id)(P2n)( = D).

Proposition 11.1.11. Identifiying P2n with ψ(P2n) using ψ, the “angle operator”
EBEDEB is given by the following diagram:

1

δ2
$ $

(And of course if we identify D with P2n using 1⊗ id we get the same picture for
EDEBED with the orientations reversed.)

129



11.2 Flatness.

Definition 11.2.1. Suppose we are given a planar algebra P and a bi-invertible
element u in P4. An element R ∈ Pn is said to be flat for u if there is a Q ∈ Pn so
that the following holds in Pn+2:

R$$
=

$

Q$

Remark 11.2.2. Note that if n is even this is equivalent to saying that ψu(R) ∈
(1⊗ id)(R)

Proposition 11.2.3. R ∈ Pn is flat iff for any integer p, 0 ≤ p ≤ n there is a
Q ∈ Pn with

$

R$
=

$

Q$

where the red string crosses p strings in the picture containing R.

Proof. Just surround the flatness picture by an appropriate annular tangle and use
11.1.2 to obtain the pictures above.

Lemma 11.2.4. If P is a positive planar algebra, an element is flat iff it is a fixed
vector for the angle operator (11.1.11).

Proof. The angle operator is indeed the angle operator for the two subspaces D
and B. The eigenspace with eigenvalue 1 is precisely the intersection of the two
subspaces.

We see that the union of the eigenvalues of the angle operator as n varies forms
the pure point spectrum of the angle operator ([]) between the two von Neumann
subalgebras ψ(MP ) and NP of 6.3.5. This is very interesting in light of [] where
it is proved that the intersection of finite index subfactors is of finite index iff the
spectrum of the angle operator is finite. But the intersection of ψ(MP ) and NP

is just the closure of the flat elements so the multiplicity of the eigenvalue 1 of the
angle operator actually influences the number of its eigenvalues.

Perhaps the main interest in biinvertibles and their flat elements is the following:

Theorem 11.2.5. If P is a unital vanilla finite dimensional planar algebra and
u ∈ P4 is bi-invertible, then the flat elements for u form a planar subalgebra of P
which is unital if P is and a planar *-subalgebra if P is a planar *-algebra and u is
biunitary.
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Proof. We have to show that any planar tangle labelled with flat elements is again
flat. This is not hard-draw the diagram of the left hand side of flatness. The red
string can then be moved through the labelled tangle to the bottom, passing through
any blue strings by 11.1.2 and any labelled discs by 11.2.3. Unitality follows from
11.1.2 and the *-algebra property follows from applying an orientation reversing
diffeomorphism to the picture in 11.2.1 and using ρ(u) = u∗.

Definition 11.2.6. If u is a biinvertible or biunitary in P we call P u the planar
subalgebra (sub *-algebra) of flat elements for u.

11.3 The shaded case, Hadamard matrices.

Consider now the case of shaded (not necessarily spherical) unital reduced planar

algebras. There are two possible shadings for the picture . So we define

in this case a biinvertible to be a pair u, v of elements in P2,+ such that uv = 1

and ρ(u)ρ−1(v) = δ+
δ−

1 (in P2,−). Now we adopt the convention that is

to be replaced by
$

u and is to be replaced by
$

w (with

w = ρ−1(v)). For u to be biunitary (when P is a planar *-algebra) means that u
itself is unitary. This is equivalent to ρ(u) being a multiple of a unitary in P2,−.

With these conventions all the definitions and results of this section apply in the
shaded case.

Proposition 11.3.1. Choose invertibles (resp. unitaries) x, y ∈ P1,+ and define

w(x, y) = x y .

Then if u is biinvertible (resp. biunitary), so are uw(x, y) and wu(x, y).

Proof. This follows immediately from pictures.

We see that the set of biinvertibles (resp. biunitaries) is a union of double cosets
for the subgroup of invertibles (unitatries) of the form w(x, y) above. Changing u
by w’s is called a gauge transformation.

Of considerable interest is the case of P spin. In this case a biunitary element is
precisely the same as a unitary matrix ui,j with |ui,j | = 1√

Q
∀i, j = 1, 2, · · ·Q. If
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the field is R this is precisely the same notion as a Hadamard matrix -[] (after multi-
plication by

√
Q). In the complex case such matrices are called complex Hadamard

matrices.
Note that the biunitarity condition translated into diagrams is just:

$

=

$

and $ = 1
Q

$

with both orientations allowed on the red line.
An element R of P2,+ is flat in this case if there is a S ∈ P2,− such that

$

$ R
= $

$

S

This is a version of what is known as the “star-triangle” equation. Written out
in algebraic notation it becomes, according to our conventions,∑

a

ua,iua,jRk,a = uk,juk,iSi,j ∀i, j, k = 1, 2, · · ·Q

These equations apply no matter how the action of tangles in P spin is normalised.
See 2.3.9. The only effect of changing the values of δ on closed loops will be to change
the S corresponding to a given R by a scalar.

Elements of TL are always flat. Let us record in detail the flatness relation for
TL elements in PSpin2,+ . It also applies to any biinvertible in a spherical shaded planar
algebra. (see 3.9.1).

Definition 11.3.2. For an invertible scalar A let

R(A) =

$

+A $ ∈ PSpin

Proposition 11.3.3. The star triangle equation is satisfied for

R = R(A) and S = AR(
1

A
)

.

Proof. This is easy to check from the star triangle equation and biinvertibility.
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Hadamard matrices have been intensively studied. Apart from an obvious exam-
ple when Q = 2, they only exist for Q a multiple of 4. For information on Hadamard
matrices see [].

Gauge transformations alter a complex Hadamard matrix by multiplying rows
and columns by scalars of modulus one (±1 in the real case). This, together with
permutations of the rows and columns, gives what is called Hadamard equivalence
of (generalized) Hadamard matrices. Row and column permutations produce equiv-
alent P u’s so any information about u obtained from P u alone will be invariant
under Hadamard equivalence. (The endomorphism ψu of 11.1.7 itself contains more
information than just P u.)

Proposition 11.3.4. If u is a complex Hadamard matrix, P u is central. Moreover,
dimP u1 = 1, and P u2,+ and P u2,− are abelian.

Proof. We have dimP0,+ = 1. Here is the equation for flatness of x ∈ P1,+.

x = y .

If the bottom shaded region is assigned a spin a, and the top region a spin b, the
left-hand side gives ub,axa and the right-hand side gives ub,ayb, so xa is independent
of a, and dim P u1,+ = 1. It follows that dimP0,+ = 1.

P u2,+ is abelian because P2,− obviously is and ρ3ψ defines an antiisomorphism
between P u2,+ and P u2,−.

So a complex Hadamard matrix u yields a subfactor planar algebra. In fact the
corresponding subfactor was the starting point of the theory of planar algebras, as the
equations for P u are those for the relative commutants of a spin model commuting
square given in []. We now determine P u2,± for a complex Hadamard matrix u.

Definition 11.3.5. Given a Q × Q complex Hadamard matrix ua,b we define the
Q2 ×Q2 profile matrix Prof(u) by

Prof(u)c,da,b =
∑
x

ux,aux,bux,cux,d.

The profile matrix is used in the theory of Hadamard matrices. We will see that it
determines P u.

Definition 11.3.6. Given the Q2 × Q2 matrix Prof(u), define the directed graph
Gu on Q2 vertices by (a, b)→ (c, d) iff Prof(u)c,da,b 6= 0.

The isomorphism class of Gu is an invariant of Hadamard equivalence.
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Theorem 11.3.7. If u is a Q × Q generalized Hadamard matrix thought of as a
biunitary for the spin planar algebra P = P spin, then the minimal projections of the
abelian C∗-algebra P u2,+ are in bijection with the connected components of the graph

Gu. Moreover the (normalized) trace of such a projection is
n

Q2
where n is the size

of the connected component, which is necessarily a multiple of Q.

Proof. For matrices Ra,b, Sa,b, the flatness equations of the star-triangle equations
above amount to saying that, for each (i, j), the vector v(i,j) whose xth component
is ux,jux,i is an eigenvector of the matrix R with eigenvalue Si,j . The profile matrix
is just the matrix of inner products of these eigenvectors, 〈v(d,c), v(a,b)〉. The v(i,j)

span the space since, for fixed i, the biunitary equations show that the v(i,j) are
orthogonal. So let p be a nonzero proection in P u2,+. For each (i, j) either pv(i,j) = 0
or pv(i,j) = v(i,j). If pv(i,j) = v(i,j) and there is an edge between (i, j) and (k, `) on
GU then pv(k,`) = v(k,`). Hence the image of p is spanned by the v(i,j)’s with (i, j)
in a union of connected components of Gu. The orthogonal projection pC onto the
linear span of v(i,j)’s with (i, j) in a connected component C is in P u2,+ since all the
v(i,j)’s are eigenvectors for this projection. Such a pC is clearly minimal.

If the matrix R is a minimal projection, Sa,b is either 1 or 0 depending on whether
(a, b) is in the connected component or not. Consider the picture below where the
shadings are implicit using R ∈ P u2,+ and S ∈ P u2,−.

R = S

Applying Reidemeister type II moves and summing we obtain the assertion about
the trace. (It is a multiple of 1/Q since x is a Q×Q matrix.)

If G is a finite abelian group and g 7→ ĝ is an isomorphism of G with its dual
Ĝ (=Hom(G,C∗)), we obtain a generalized Hadamard matrix u, with Q = |G|, by
setting uh, g = 1√

Q
ĥ(g). We call this a standard generalized Hadamard matrix. It

is Hadamard if G = (Z/2Z)n for some n.

Exercise 11.3.8. Show that if u is standard P u is exactly the planar algebra PG of
3.9.2. In particular dim(P uk±) = Qk.

Exercise 11.3.9. Show that if dimP u2,± = 2 then u is gauge equivalent to a standard
complex Hadamard matrix.

(Hint. Being Abelian, P u2,+ is `∞(X) with |X| = Q. Use comultipilcation to
define a group structure on X.)

We have, together with R. Bacher, P. de la Harpe, and M.G.V. Bogle performed
many computer calculations. So far we have not found a generalized Hadamard
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matrix u for which dim(P u2,±) = 2 but dim(P u3,±) > 5. The five 16 × 16 Hadamard
matrices have dimP u2,± = 16,8,5,3 and 3, and are completely distinguished by the
trace. There are group-like symmetries in all cases corresponding to the presence of
normalizer in the subfactor picture. Burstein in [] has completely determined the
structure of P u in the case dimP u2,± = 8. The Hadamard matrix itself decomposes
as a twisted tensor product []

Haagerup has shown how to construct many interesting examples and given a
complete classification for Q = 5. In the circulant case he has shown there are only
finitely many examples for fixed prime Q (see [ ]).

Perhaps somewhat surprisingly, the presence of a lot of symmetry in u can cause
P u2,± to be small! The kind of biunitary described in the following result is quite
common — the Paley type Hadamard matrices give an example.

Proposition 11.3.10. Suppose Q − 1 is prime and let u be a Q × Q complex
Hadamard matrix with the following two properties (the first of which is always true
up to gauge equivalence):

(i) There is an index ∗ with ua,∗ = u∗,a = 1 for all a.

(ii) The group Z/(Q − 1)Z acts transitively on the spins other than ∗,
and uga,gb = ua,b for all g ∈ Z/(Q− 1)Z.

Then dim(P u2,±) = 2 or u is gauge equivalent to a standard matrix.

Proof. The nature of the star triangle equations makes it clear that Z/(Q− 1)Z acts
by automorphisms on P u2,+, obviously fixing the projection e which is the matrix
Ra,b = 1/Q. Thus the action preserves (1−e)P u2,+(1−e). Since (Q−1) is prime there
are only two possibilities: either the action is non-trivial and dim(P u2,+) = Q so P u

is standard, or every solution of the star triangle equations is fixed by Z/(Q− 1)Z.
In the latter case let Ra,b, Sa,b be a solution of the star triangle equations. Then
putting c = ∗ we obtain

∑
d ud,aud,bR∗,d = Sb,a, so Sb,a is determined by the two

numbers R∗,∗ and R∗,d, d 6= ∗. So by 2.11.7 we are done.

We would like to make the following two open problems about matrices quite
explicit. Both concern a generalized Hadamard matrix u.

(i) Is the calculation of dimP uk,± feasible in the polynomial time as a
function of k?

(ii) Is there a u for which dimP uk,± = 1
k+1

(
2k
k

)
? (i.e., P u is just the shaded

Temperley-Lieb algebra).
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12 2D Statistitical mechanical models.

12.1 Generalities

If we consider the following tangle:

$
$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

Given R ∈ P⊗4 we consider the value of this tangle T with all the inputs being
R. We have

ZT =
∑
σ

∏
D∈DT

Ri,j,k,l

Where σ runs over all functions from the strings of the tangle to the set {1, 2, · · · k}
and i, j, k, l are the values of σ on the four strings surrounding D. Obviously some-
thing needs to be done about the boundary but let us ignore that for the moment.

If all the Ri,j,k,l are non-negative they can be written exp(−E(i,j,k,l)
kT ) and we

recognise the partition function for what is called a “vertex model” on a square
lattice in two dimensional equilibrium classical statistical mechanics. The discs in
DT are to be thought of as “atoms” interacting with their neighbours on the lattice
with the possible states of each atom being given by the quadruple (i, j, k, l). Then
E(i, j, k, l) is the energy of the atom in that state. What we do with the boundary
will change the answer but since all the terms are positive, not by much and certainly
not enough to affect the growth rate of ZT as the lattice gets larger and larger in
size. It is this growth rate, 1

|DT | log(ZT ) that is one of the main objects of study,
called the free energy-see [].

But we see that our planar algebra formalism allows us to consider ZT when
R is any element of any planar algebra in the space corresponding to 4 boundary
points. If we consider the graph planar algebras of [] we get the so-called IRF models
(interaction round a face). We will not in general expect convergence of the growth
rate of ZT without some kind of positivity assumption on R.

Of particular interest are the spin models. We suppose 12.1 is shaded so that
the top left hand region is unshaded. Then the shaded regions form a square lattice
that is rotated by π/4 with the shaded regions being the vertices of this ("semidual")
lattice and the internal discs of 12.1 being the edges. The partition function would
then be
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ZT =
∑
σ

∏
D∈DT

Ri,j

where now σ is a way of assigning a spin in {1, 2, · · · , Q} to the shaded regions which
are now the "atoms". And i and j are the two spin values assigned by the state to
the two atoms in the shaded regions around D. The R matrices in the disc give the
Boltzmann weights of the interaction between two neighbouring atoms in their spin
states given by σ (so we need the Ri,j to be positive, or at least non-negative, for
all values of (i, j)). This was the setup for the original Ising model which is the case
Q = 2. (We consider here the case without an external magnetic field. One can be
applied by inserting 2-discs diagonally between the discs of 12.1.

Any choice of positive numbers Ri,j defines a model and many choices have been
looked at. [] [] If the set of spin values has no structure then one can only allow Ri,j
to depend on whether i = j or not. It is easy to see that any such R is realised by a
TL element of P spin2,+ so we are led to consider

R =

$

+A $ and

This is the most general form since just multiplying R by a consant will have a simple
effect on the partition function which will only change the free energy by an additive
scalar.

This choice of R is known as the (isotropic) Potts model which we will investigate
below.

12.2 Kramers-Wannier duality.

Before Onsager solved the square lattice Ising model in [], the critical temperature
was located by a simple argument which supposed the existence and uniqueness of
the critical temperature. We give a planar algebra version of the argument which
applies in greater generality and reposes on our concept of biinvertible element. The
argument will have two components-first using a biinvertible element to identify the
partition function on a planar graph with that of the dual graph, and the second
identifying the graph and the dual graph for certain lattices.

As a preliminary we explain the medial (four-valent) graph for planar graphs. If
T is a shaded planar 0-tangle with input discs all having four boundary points, one
may form the planar graph GT whose vertices are the shaded regions and whose edges
are the input discs of T (each of which is connects a pair of (not necessarily distinct)
regions. We sat that the four-valent planar graph obtained from T by shrinking all
the internal discs to points is the medial graph for GT .

Exercise 12.2.1. Show that for any (finite) planar graph G there is a 0-tangle T
with GT = G. Show that the unshaded regions of GT define the planar dual of G.

137



We include a picture showing a planar graph together with its medial graph.

Now suppose we are given a measured shaded planar algebra (P, µ) and an ele-
ment R ∈ P2,+. Then we may define labelled planar 0-tangle given any planar graph
G by inserting R into the input discs of the tangle T with G = GT . We say that R
defines a statistical mechanical model on G whose partition functionZG,R is µ(ZT ).

Proposition 12.2.2. If (P, µ) is spherical and reduced with invertible loop param-
eter. Suppose R is flat with respect to some biinvertible, satisfying the star triangle
equation with S and Ĝ is the planar dual of G then ZG,R = ZĜ,S.

Proof. Form the planar tangle T giving the medial graph. ZG,R is µ of the element
of P0,+ obtained by putting R in all the internal discs of T . Now introduce a small
closed string outside all the strings o T . This simply multiplies ZG,R by the loop
parameter. Now the string can be passed right through the labelled tangle, producing
the same tangle with the shading reversed, with all internal discs labelled by S, by
flatness. By sphericality the closed string may be removed and we see precisely the
picture for ZĜ,S .

We can now undertake the discussion that will give the critical temperature for
the Ising model. Let G be a large square lattice with N2 vertices and some way of
closing the lattice on the boundary. Then apart from the boundary of G and Ĝ, Ĝ
is also a large square lattice, of the same size. If P is realised as a concrete planar
algebra (e.g. P spin) and all the elements of R and S are positive in some basis, it is
to be expected that what happens at the boundary will have a negligible effect on
the partition function. It is also expected that limN→∞

1
N2 logZG,R will exist and

define a function called the free energy per site of the system, F (R). It should not
depend on boundary conditions so that we expect, by 12.2.2, F (R) = F (S). But if
we are in the isotropic Potts model with R = R(A) then S(A) = AR( 1

A) by 11.3.3
so that ZG,R(A) = (A)N

2
ZĜ,R( 1

A
) and

12.2.3. F (R(A)) = log(A) + F (R( 1
A)).

The assertions about the existence of F and the independence on boundary con-
ditions are quite reasonable and no doubt proved in considerable generality in the
mathematical physics literature. But now comes the interesting part. Criticality is
supposed to correspond to some kind of singularity in F (R(A)) but by the equation
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above, if a singularity occurs at some value of A it also occurs at 1
A . So if we make

the (big) assumption that there is a unique critical point (phase transition), it must
occur when A2 = 1.

We now only have to connect the parameter A with the physical parameters
in the Potts model and we have the critical temperature, assuming it exists and is
unique.. In P spin the entries of the matrix R are the Boltzmann weights for the
interactions between neighbouring spins and of course in the Potts model they only
depend on whether the two spins are the same or not. A global change in the base
energy will affect the free energy simply by a constant so we may assume E(σ, σ′) to
be any fixed quantity if if σ 6= σ′. Now we have to be careful since in order to apply
12.2.2 we need to use the spherical version PSpin. This has no effect on the meaning

of the tangle $ but

$

acts by
√
Q times it’s action in the asymmetric

version of P spin. This means that the tangle R(A) represents Boltmann weights of
A +

√
Q on the diagonal and

√
Q off the diagonal. These are all positive provided

A > − 1√
Q
. In []Baxter it is supposed that the two Boltzmann weights are inverse to

one another with the case σ = σ′ being eK . This means that A√
Q

= e2K − 1 and the
equation for cricicality is

e2K = 1 +
√
Q.

In the Ising case, Q = 2 and we obtain K = log (1+
√

2)
2 in accordance with [].

The functional equation 12.2.3 relates F (R(A)) to F (R(A−1)). Since A is related
to K by A√

Q
= e2K − 1, if K is positive, K → 0 is the same as A→ 0 and K →∞

is the same as A → ∞. But K = −E
kBT so that the functional equation relates

high temperature behaviour in the ferromagnetic case E < 0 to high temperature
behaviour.

One may extend this example in many ways. First of all, structure on the graph
may allow a natural assignment of different R matrices to different interactions.
For a rectangular lattice In the above this could mean a value of A for horizontal
interactions ( A√

Q
= e2K − 1) and a value B for vertical ( B√

Q
= e2L − 1). If F (A,B)

is the resulting rectangular lattice free energy, the extension of 12.2.2 and the above
argument give immediately the functional equation

F (A,B) = log(AB) + F (
1

B
,

1

A
)

from which we see that if singularities occur on one side of the line AB = 1 then
they occur on the other side as well, which gives the "self-dual" or "critical" Potts
model equation

(e2K − 1)(e2L−1) = Q

first obtained by Potts [].
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Another extension of the argument is to non-TL solutions of the star-triangle
equation. For instance one could take the solutions we know for complex Hadamard
matrices. We would like to use elements of P u2,+ as Boltzmann weights for a sta-
tistical mechanical model and isolate a critical or at least “self-dual” variety. But
the Boltzmann weights must be positive for the model to make physical sense so we
require both the R and S entries in the star triangle equation to be positive. We
know all solutions for S from the proof of 11.3.7. They are simply functions that are
constant on the connected components of the graph Gu, and all the entries in the
matrix will be positive is the same as saying S is a positive function. So to determine
the variety of all positive solutions we need to find all such S(a, b) for which∑

i,j

Si,j ūa,iua,jub,iūb,j > 0 ∀a, b

The solution space is at least two dimensional since it contains the Temperley Lieb
solutions which give the Potts model but we can easily see that there is more. If we
rewrite the star-triangle relation so that the side of the equation with a summation
involves S, we see that the entries R(a, b) are in fact the eigenvalues of S(a, b) so as
soon as S(a, b) is positive definite as a matrix, the numbers R(a, b) will be positive.
On the other hand the diagonal {(a, a)} is a connected component of Gu so we
may ensure positivity by diagonal dominance. As soon as the diagonal entries are
large enough compared to the other entries the matrix is positive. To determine the
dimension of the space of physically relevant value one thus only needs to know the
action of ρ2 on the set of mininal projections in P2,− or in other words on the vertices
of the graph Gu. The exact nature of the space might be difficult to determine. One
case is easy to complete and that is the case where u is the Fourier transform matrix
for a finite abelian group. If G is such a group (of order Q) and we choose an
isomorphism g 7→ ĝ from G to Ĝ then we can define ug,h = 1√

Q
ĝ(h). Flat elements

are then given by any matrix Rg,h = R(g − h) and the corresponding S matrix is
obtained from the Fourier transform of R(g). The rotation acts by sending g to g−1

so the dimension of the space of flat matrices with positive Boltzmann weights is easy
in terms of the number of involutions in G. For instance if G is Z/5Z the dimension
is three-R must be of the form

R(n) =


r0 if n = 0
r1 if n = 1 or 4
r2 if n = 2 or 3

And in fact the space of all R with all Boltzmann weights positive is the inter-
section of the positive cone in R3 with {(r0, r1, r2)|r0 +r1 cos 2π/5+r2 cos 4π/5 > 0}
. CONTINUE

Another way to generalise this duality result is to use R-matrices in n-box spaces
for n > 2. The most obvious candidate is to use TL elements and get a 3-spin inter-
action Potts model on a triangular lattice. Here is a picture of the lattice, ignoring
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boundary conditions:

This was analysed in detail in [](Baxter Temperley Ashley, Proc. R. Soc. Lond.
A 16 January 1978 vol. 358 no. 1695 535-559). We illustrate in the simple isotropic
case where R is invariant under ρ2 so there is no need to specify the position of
the $’s. The geometry of the lattice could be used to accomodate an arbitrary TL
element.

The internal discs are all to be filled with the same element R of TL.After nor-
malising the energy as in the previous case we can assume

R(A,B) =
$

+A $ +B{

$

+ $ +
$

}

Choosing any biinvertible in PSpin it is clear that R(A,B) satisfies the flatness
condition

$

$ R

= $

$

S

with S(A,B) = AR( 1
A ,

B
A ). So repeating the argument of 12.2.2 and the discus-

sion of Kramers-Wannier duality we expect the following functional equation:

F (A,B) = logA+ F (
1

A
,
B

A
)

where F (A,B) is the free energy per site of the large limit of the triangular lattice
above where all the circles are labelled with R = R(A,B). So that the self-dual and
supposedly “crtitical” situation is just A = 1.

Relating the values of A and B to the Boltzmann weights is a bit more interesting.
There are 3 Potts configurations:
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(i) All three σ (in the shaded regions) distinct: call the Boltzmann weight w3.
(ii) All three σ equal: call the Boltzmann weight w1.
(iii) Two of the σ’s equal and the other one different: call the Boltzmann weight w2.

These give the equations:

w3 =
√
Q

w2 =
√
Q+B

w1 =
√
Q+ 3B +

A√
Q

(The factors or
√
Q are because of the action of tangles in PSpin as opposed to P spin.)

We can zero out the energy as before by dividing by w3 and setting w2
w3

= eK and
w1
w3

= eL to obtain the equation for self-duality:

eL = 3eK +
1

Q
− 2.

Note that in the ferromagnetic case L > 0,K > 0 there is a physical value of L
for every K and in the antiferromagnetic case there is a physical pair (K,L)provided
|K| is small enough.

12.3 Temperley Lieb equivalence

If we consider a planar graph G with its medial graph as in 12.2.1 we have shown
how to define a Potts model on it. We can also define an “Ice-type” model on it as
follows. Orient the strings (edges of the medial graph) at each vertex of the medial
graph so that two edges bounding the same shaded region are ingoing and the other
two are outgoing. This orientation may or may not extend to the strings. If it does
not, simply insert u+ or u− somewhere on that string. Blow up the crossings so that
they are discs into which elements of P Ice2 may be inserted. Putting R(θ) into each
disc we obtain a labelled 0-tangle in P Ice0 . Here is what would be obtained for the
tangle of 12.2.1:

R

R

R
R

R

where we have suppressed the u± between the two arrows on two of the strings for
clarity.
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If we replace each R by xE + y1 then we get a sum over 2k terms, where k is the
number of vertices of the medial graph. Each term contributes a power of x and y
and a factor δr where r is the number of closed loops formed. (A closed loop must
contain an even number of u± which all cancel.) But if we used PSpin on the original

graph and used x $ +y

$

we would get exactly the same sum. This is

an abstract version of Temperley-Lieb equivalence as in [],[].

12.4 The transfer matrix.

12.5 The Yang-Baxter equation.

12.6 Commuting transfer matrices.
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