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The problem

Mundici’s book Advances Łukasiewicz calculus ends with a list of
eleven open problems.

Question (Problem n. 3)
Is the category of locally finite MV-algebras equivalent to an
equational class?

Answer
It depends!
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The complete answer

Answer
1. The category of locally finite MV-algebras is not equivalent

to any finitary variety.
2. More is true: the category of locally finite MV-algebras is

not equivalent to any finitely-sorted finitary quasi-variety.
3. The category of locally finite MV-algebras is equivalent to

an infinitary variety.
4. The category of locally finite MV-algebras is equivalent to a

countably-sorted finitary variety.
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Overview

To prove the result we use:
1. The duality between locally finite MV-algebras and the

category of multisets proved by Cignoli, Dubuc and
Mundici.

2. A characterisation of finitary quasi-varieties as co-complete
categories that have an abstractly finite, regular projective
regular generator.

3. A characterisation of infinitary quasi-varieties as
co-complete categories that have a regular projective
regular generator.

4. A characterisation of varieties (finitary or infinitary) as
quasi-varieties in which all internal equivalence relations
are effective.
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Historical remarks

The last three characterisations belong to a rich research stream
that started in the 60’s with the work of Bénabou, Diers, Isbell,
Lawvere, Linton, Wraith and then continued by Adámek,
Pedicchio, Rosicky, Vitale, Wood, and many others.

The characterisations above are essentially due to Isbell, but the
improved versions we use are due to Adámek. The work of
many others is implicitly used to come to further
simplifications.
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Locally finite MV-algebras

Recall that an algebra A is called locally finite if every finitely
generated subalgebra of A is finite.

Let MVlf be the category of locally finite MV-algebras with
MV-homomorphisms between them.
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Locally finite MV-algebras

Theorem
For every MV-algebra A the following conditions are
equivalent:

1. A is locally finite.
2. A is the direct limit (colimit) of a direct system
{(Ai, ιij) | i, j ∈ J, i ≤ j} of finite MV-algebras with injective
homomorphisms ιij : Ai → Aj.

3. For each prime ideal P of A, A/P is isomorphic to a
subalgebra of Q ∩ [0, 1].

4. For some Stone space Y, A is isomorphic to a separating
subalgebra of the MV-algebra CQ(Y) consisting of
functions of finite range.

Remark: MVlf ' ind-MVfinite

7/33



Cignoli-Dubuc-Mundici’s duality, explained

Recall that

BA ' ind-(BAfinite) ' ind-(Setfinite
op) ' (pro-(Setfinite))

op ' Stoneop.

MVlf ' ind-(MVfinite) ' ind-(MultiSetfinite
op) ' (pro-(MultiSetfinite))

op

' ?? op.

8/33



Supernatural numbers
Definition
A supernatural number is a function

ν : P −→ {0, 1, 2, . . . ,∞}.

The set of supernatural numbers forms a complete lattice under
point-wise order.

A supernatural number ν is said finite iff
I ∞ does not belong to the range of ν,
I ν(p) is not zero only for a finite number of p.

One-one corresp. n↔ νn between N>0 and finite elements of N .

E.g., ν12(p) =


2 if p = 2
1 if p = 3
0 otherwise.
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Supernatural numbers

The set N is equipped with the topology having as an open
basis

Un = {ν ∈ N | ν ≥ νn}, for n ∈ N>0.

A sub-basis for this topology is given by the sets

Up,m = {ν ∈ N | ν(p) > m}, for p ∈ P and m ∈ N.

The above-described topology coincides with the Scott
topology.
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Multisets

Definition
The category MS of multisets.
Objects: a multiset is a pair (X, ζ), where X is a Stone space,
and ζ : X → N is continuous. The map ζ is called the
denominator map.

Arrows: a continuous function f : (X, ζX)→ (Y, ζY) that
respects denominators i.e., for every x ∈ X,

ζX(x) ≥ ζY(f (x)).

Theorem (Cignoli, Dubuc, Mundici 2004)
The category MVlf is equivalent to the category MSop.
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A characterisation of infinitary quasi-variety

Theorem
A (locally small) category C is equivalent to an infinitary
(single-sorted) quasi-variety of algebras

if, and only if,

C is co-complete and has a regular projective regular generator.

Remark
For multi-sorted theories, one replaces “regular generator”
with regular generating set of objects.
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Regularity
An arrow m : A→ B is regular monic if there exists a pair of
parallel arrows f , g : B→ C such that m is their equaliser, i.e.,

A B C

D

m
f

g

∀n
u

f ◦m = g ◦m

Dually, an arrow e : B→ C is regular epic if there exists a pair of
parallel arrows f , g : A→ B such that e is their co-equaliser, i.e.,

A B C
f

g

e
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Generators
In a co-complete category, a set G = {Gs | s ∈ S} of objects is
called a set of generators if for every object A, the canonical
quotient ∑

s∈S

∑
homC(Gs,A)

Gs → A is epic.

A set G is regularly generating if for every object A, the
canonical quotient∑

s∈S

∑
homC(Gs,A)

Gs → A is regular epic.

An object G is a regular generator if for every object A, the
canonical arrow ∑

homC(G,A)

G→ A is regular epic.
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Examples

Example
In the category Set, finite sets form a set of generators.

Example
If V is a variety, finitely presented algebras form a set of
generators.

Example
If V is a variety, FV(1) is a generator.
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Regular projective objects

Definition
An object P is called regular projective if for any arrow
f : P→ B and every regular epic arrow g : A� B, the arrow f
factors through g, i.e., there exists h such that the following
diagram commutes.

A

BP

g

f

h
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A characterisation of infinitary quasi-variety

Theorem
A (locally small) category C is equivalent to an infinitary
quasi-variety of algebras

if, and only if,

C is co-complete and has a regular projective regular generator.

To use this theorem we will see that MS is a complete category
having a regular co-generating regular injective object.
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The category MS

We start with an observation which will simplifies calculations
in MS.

Theorem
The forgetful functor U : MS→ Stone is topological.

Corollary

The forgetful functor U : MS→ Stone has both a left and a right
adjoint both of which are full embeddings.

Corollary
The category of multisets is complete and co-complete.

18/33



The category MS

Corollary

Let f : X → Y be an arrow in MS.

1. f is epic if, and only if, it is surjective.

2. f is monic if, and only if, it is injective.

3. f is regular monic if, and only if, it is injective and for every
x ∈ X, we have ζ(x) = ζ(f (x)). [preserves denominators]

4. f is an iso if, and only if, f is bijective and, for every x ∈ X,
we have ζ(x) = ζ(f (x)).
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The multisets 2 and Dn

For any n ∈ N>0 let

Dn := ({0, 1}, ζn)

where the topology is discrete and

ζn(0) := ν1 and ζn(1) := νn.

Set 2 := D1, notice that ζ2(0) = ζ2(1) = ν1.
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Co-genereting sets in MS

Lemma

A set of objects K in MS is co-generating if, and only if, there
exists G ∈ K that has at least two distinct points of denominator
ν1.

Sketch.
(⇒) The canonical arrow f : 2→

∏
G∈G

∏
hom(2,G) G is monic.

Therefore, there exists G ∈ G and t ∈ hom(2,G) which is monic.

(⇐) Suppose there exists G ∈ K with at least two distinct points
of denominator ν1. Then, there is a monic arrow t : 2→ G. But
the discrete two-points space is a co-generator in Stone, hence 2
is a co-generator in MS. Since t : 2→ G is monic, G is a
co-generator, as well.
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Regular co-genereting sets in MS

Lemma

A set of objects K in MS is regular co-generating if, and only if,
for every p ∈ P and k ∈ N there exists G ∈ K that has at least
one point of denominator ν1 and one point of denominator νpk .

The proof idea is similar to the one of the previous lemma.
Additionally, we use here that the elements νpk are the
completely join irreducible members of N .
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Injective multisets

Lemma
Let (X, ζ) be a multiset and suppose that the following
conditions hold.

1. The set X is finite.
2. For every x ∈ X, ζ(x) is finite.
3. There exists an element in X with denominator ν1.

Then (X, ζ) is regular injective in MS.

Corollary
For every n ∈ N>0, Dn is regular injective.
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MVlf is a quasi-variety of algebras

Corollary
The category MVlf is equivalent to an infinitary quasi-variety
of algebras.

Proof.
Let

M := 2×
∏

p∈P,k∈N
Dpk .

Since the product of regular injective objects is again regular
injective,M is a regular injective. Notice thatM has two points
of denominator ν1 and one point of denominator νn for every
n ∈ N>0. So, MS is a regular co-generator.
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Abstractly finiteness

Definition
An object G is called abstractly finite if every arrow from G to a
co-power of G factors through a finite sub-co-power.

Lemma (Pedicchio and Vitale 2000)
If G is an abstractly finite, regular projective, regular generator,
then G is finitely generated. Vice versa, if G is finitely generated
and has copowers, then G is abstractly finite.
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A characterisation of finitary quasi-varieties

Theorem
A (locally small) category C is equivalent to an finitary
quasi-variety of algebras

if, and only if,

C is co-complete and has a abstractly finite, regular projective
regular generator.
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MVlf is not a finitary quasi-variety

Lemma
Finitely co-generated multisets are finite.

Theorem
The category MVlf is not equivalent to any finitary quasi-variety
of algebras.

Proof.
A regular co-generating multiset must be infinite because it
needs points of any possible denominator.
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Internal equivalence relations
Let A be an object of C. An (internal) equivalence relation on A
is a subobject 〈p0, p1〉 : R� A× A satisfying:

reflexivity there exists an arrow d : A→ R in C such that the
following diagram commutes;

A R

A× A
〈1A,1A〉

∃d

〈p0,p1〉

symmetry there exists an arrow s : R→ R in C such that the
following diagram commutes;

R R

A× A

∃s

〈p1,p0〉 〈p0,p1〉
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Effective equivalence relations

transitivity if the left-hand diagram below is a pullback
square in C, then there is an arrow t : P→ R such
that the right-hand diagram commutes.

P R

R A

π1

π0
y

p0

p1

P R

A× A
〈p0◦π0,p1◦π1〉

∃t

〈p0,p1〉
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Effective equivalence relations
Definition

An equivalence relation 〈p0, p1〉 : R� A× A is effective if there
exists an arrow q : A→ S such that 〈p0, p1〉 : R� A× A is the
kernel pair of q.

R A

A S

p1

p0
y

q

q

If C has co-equalisers, then an equivalence relation in C is
effective if, and only if, it is the kernel pair of its co-equaliser.

For varieties of algebras, every equivalence relation is effective
and they coincide with congruences.
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A characterisation of infinitary varieties

Theorem
A (locally small) category C is equivalent to an infinitary
variety of algebras

if, and only if,

1. C is equivalent to an infinitary quasi-variety of algebras,
2. all (internal) equivalence relations in C are effective.
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Dual equivalence relations

To prove that in MVlf every equivalence relation is effective, we
work again in the dual with co-relations, i.e., quotients.

They can be seen as pairs (∼, µ), such that

1. ∼ is a Stone equivalence relation on X,

2. µ : X → N is a continuous function such that µ ≤ ζ and,

3. for all x, y ∈ X, if x ∼ y, then µ(x) = µ(y).
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Reflexive co-relations

Theorem
MVlf is a Mal’cev category, i.e., every reflexive relation is an
effective equivalence relation.

Theorem
MVlf is equivalent to an infinitary variety of algebras (with arity
at most ℵ0).

Thank you!
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