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Residuated La�ices

A (commutative) residuated la�ice is an algebraic structure
R = (R,∨,∧, ·, \, /, 1), such that
I (R,∨,∧) is a la�ice
I (R, ·, 1) is a (commutative) monoid
I For all x, y, z ∈ R

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y,

where ≤ is the induced la�ice order.

◦ (C)RL denotes the variety of (commutative) residuated la�ices.
◦ multiplication is order preserving:

x ≤ y =⇒ uxv ≤ uyv
◦ multiplication distributes of join:

x(y ∨ z) = xy ∨ xz & (y ∨ z)x = yx ∨ zx
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Residuated structures are the algebraic semantics of substructural
logics (i.e., axiomatic extension of the Full Lambek Calculus) FL.

Γ⇒ α ∆1, α,∆2 ⇒ Π

∆1,Γ,∆2 ⇒ Π
(cut)

α⇒ α (init) ⇒ 1
(1r)

Γ1, α, β,Γ2 ⇒ Π

Γ1, α · β,Γ2 ⇒ Π
(·l)

Γ⇒ α ∆⇒ β

Γ,∆⇒ α · β (·r)
Γ1,Γ2 ⇒ Π

Γ1, 1,Γ2 ⇒ Π
(1l)

Γ⇒ α ∆1, β,∆2 ⇒ Π

∆1,Γ, α\β,∆2 ⇒ Π
(\l)

Γ, α⇒ β

Γ⇒ α\β
(\r) Γ⇒

Γ⇒ 0
(0r)

Γ⇒ α ∆1, β,∆2 ⇒ Π

∆1, β/α,Γ,∆2 ⇒ Π
(/l)

Γ, α⇒ β

Γ⇒ β/α
(/r)

0⇒ (0l)

Γ1, α,Γ2 ⇒ Π Γ1, β,Γ2 ⇒ Π

Γ1, α ∨ β,Γ2 ⇒ Π
(∨l)

Γ⇒ β

Γ⇒ α ∨ β (∨r1)
Γ⇒ α

Γ⇒ α ∨ β (∨r2)

Γ1, β,Γ2 ⇒ Π

Γ1, α ∧ β,Γ2 ⇒ Π
(∧l1)

Γ1, α,Γ2 ⇒ Π

Γ1, α ∧ β,Γ2 ⇒ Π
(∧l2)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β (∧r)
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Structural rules have an algebraic meaning.

Γ, α, β,∆⇒ Π

Γ, β, α,∆⇒ Π
(e) ⇔ xy ≤ yx

Γ,∆⇒ Π

Γ, α,∆⇒ Π
(w) ⇔ x ≤ 1

Γ, α, α,∆⇒ Π

Γ, α,∆⇒ Π
(c) ⇔ x ≤ x2

We can use algebraic methods to answer questions about the logics.
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(�asi-) Equational Theory

A quasi-equation ξ is a universally-quantified formula

s1 = t1 & · · · & sn = tn =⇒ s0 = t0,

where s0, t0, s1, t1, . . . , sn, tn ∈ T (X) are terms.

For a variety V , its quasi-equational theory is the set of
quasi-equations that it satisfies.

{ξ : V |= ξ}.

The equational theory for V is the set of equations that it satisfies

{s = t : V |= s = t}
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The Word Problem

A presentation for a language L is a pair 〈X,E〉 where
I X is a set of generators, and
I E is a set of equations over T (X).

If both X and E are finite, we call the presentation 〈X,E〉 finite.
I We denote the conjunction of equations in E by &E.

We say V has an undecidable word problem if there exists a
finite presentation 〈X,E〉 such that there is no algorithm deciding
whether the q.e. (&E =⇒ s = t) holds in V having s, t ∈ T (X) as
inputs.
Or equivalently, there is a finitely presented algebra A ∈ V
generated by X such that the following set is undecidable:

{(s, t) ∈ T (X)2 : A |= s = t}.

I undecidable word problem⇒ undecidable q.e. theory.
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The Word Problem for Ordered Structures and their
Fragments

I Since RL has a la�ice reduct, x ≤ y ⇐⇒ x ∨ y = y.

I We take E to be a set of inequations, and will consider
quasi-inequations ξ

s1 ≤ t1 & · · · & sn ≤ tn =⇒ s0 ≤ t0

I We consider the Word Problem in particular fragments, where
the symbols occurring in the quasi-(in)equations are those
from the given fragment.

{≤, ·, 1} : Ordered Monoid Fragment
{∨, ·, 1} : Idempotent Semiring (ISR) Fragment.
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Overview of Decidability Results

V Eq. Th. WP
RL FMP Und. {≤, ·, 1}
RL + x ≤ x2 Und. Und. {≤, ·, 1}
RL + x ≤ x2 ∨ 1 ? Und. {≤, ·, 1}
RL + xy ≤ yx ∨ xyx ? Und. {≤, ·, 1}
RL + yx ≤ xyx ∨ y ? ?

CRL FMP Und. {∨, ·, 1}
CRL + xm ≤ xn FMP FEP
CRL + x ≤ x2 ∨ x3 Und. Und. {∨, ·, 1}
CRL + x ≤ x2 ∨ x3 ∨ 1 ? Und. {∨, ·, 1}
CRL + x ≤ x2 ∨ 1 ? ?
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Encoding an Undecidable Problem

Complexity problems are usually given by Counter Machines.

k-Counter Machine
A k-CM is a tuple M = (Rk, Q, P, qf ) where,
I Rk = {r1, ..., rk} is a set of k-many registers that can store a

non-negative integer (tokens).
I Q is a finite set of states, with a designated final state qf .
I P is a finite set of instructions that indicate whether to,

given a certain state of the machine, increment,
decrement, or test whether a given register is empty
(zero-test), then transition to a new state.

As we will see, they can be encoded using a some string rewriting
system.
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I A configuration of M is a tuple indicating the state of the
machine and the contents of the registers, i.e.,

C ≈ 〈q;n1, n2, ..., nk〉

I We imagine a configuration being a box labeled by a state q
and containing tokens labeled by ri.

I We say a configuration C is accepted in M if there a
computation (sequence of instructions), that lead to the final
configuration

Cf ≈ 〈qf ; 0, 0, ..., 0〉.

I We denote the set of accepted configurations in M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is
undecidable.

Gavin St. John Fragments of residuated la�ices axiomatized by simple equations and decidability 10 / 28



I A configuration of M is a tuple indicating the state of the
machine and the contents of the registers, i.e.,

C ≈ 〈q;n1, n2, ..., nk〉

I We imagine a configuration being a box labeled by a state q
and containing tokens labeled by ri.

I We say a configuration C is accepted in M if there a
computation (sequence of instructions), that lead to the final
configuration

Cf ≈ 〈qf ; 0, 0, ..., 0〉.

I We denote the set of accepted configurations in M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is
undecidable.

Gavin St. John Fragments of residuated la�ices axiomatized by simple equations and decidability 10 / 28



I A configuration of M is a tuple indicating the state of the
machine and the contents of the registers, i.e.,

C ≈ 〈q;n1, n2, ..., nk〉

I We imagine a configuration being a box labeled by a state q
and containing tokens labeled by ri.

I We say a configuration C is accepted in M if there a
computation (sequence of instructions), that lead to the final
configuration

Cf ≈ 〈qf ; 0, 0, ..., 0〉.

I We denote the set of accepted configurations in M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is
undecidable.

Gavin St. John Fragments of residuated la�ices axiomatized by simple equations and decidability 10 / 28



I A configuration of M is a tuple indicating the state of the
machine and the contents of the registers, i.e.,

C ≈ 〈q;n1, n2, ..., nk〉

I We imagine a configuration being a box labeled by a state q
and containing tokens labeled by ri.

I We say a configuration C is accepted in M if there a
computation (sequence of instructions), that lead to the final
configuration

Cf ≈ 〈qf ; 0, 0, ..., 0〉.

I We denote the set of accepted configurations in M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is
undecidable.

Gavin St. John Fragments of residuated la�ices axiomatized by simple equations and decidability 10 / 28



I A configuration of M is a tuple indicating the state of the
machine and the contents of the registers, i.e.,

C ≈ 〈q;n1, n2, ..., nk〉

I We imagine a configuration being a box labeled by a state q
and containing tokens labeled by ri.

I We say a configuration C is accepted in M if there a
computation (sequence of instructions), that lead to the final
configuration

Cf ≈ 〈qf ; 0, 0, ..., 0〉.

I We denote the set of accepted configurations in M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is
undecidable.

Gavin St. John Fragments of residuated la�ices axiomatized by simple equations and decidability 10 / 28



Example: Meven

Meven = (R2, Qeven, Peven, qf ) where

Qeven = {q0, q1, q2, qf} & Peven = {p0, p1, p2, pf}

p0 : If in state q0 and register r1 is nonempty, remove a r1-token
and transition to q1.

p2 : If in state q0 and register r1 is empty, transition to state q2.

p1 : If in state q1 and register r1 is nonempty, remove a r1-token
and transition to q0.

pf : If in state q2 and register r2 is empty, transition to the final
state qf .
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Encoding in Ordered Monoids

I We will interpret configurations as terms in a monoid AM.

I We define a relation preorder ≤ on AM the encodes
computations in M.

I We will need ≤ to be compatible with multiplication, i.e., for all
x, y, u, v ∈ AM

x ≤ y =⇒ uxv ≤ uyv

How should we do this?
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The relation ≤M

Let Stpk = {S0, S1, ..., Sk}

I Increment ri
p : qSi ≤ q′riSi

I Decrement ri
p : qriSi ≤ q′Si

I Zero-test ri
p : Si−1qSi ≤ Si−1q

′Si

Let ≤M be the least compatible preorder generated by P and the
finite sets {qx ≤ xq : q ∈ Q & x ∈ Rk ∪ Stpk} and
{xq ≤ qx : q ∈ Q & x ∈ Rk ∪ Stpk}.
We o�en write ≤p to be compatible preorder generated by p:

s ≤p t
usv ≤p utv
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CMs in ordered monoids: Motivating example

The Meven machine

Let Meven = (R2, Qeven, Peven, qf ) be a 2-CM where
I Qeven = {q0, q1, q2, qf}
I Peven = {p0, p1, p2, pf}, where

p0 : q0r1S1 ≤ q1S1 p1 : q1r1S1 ≤ q0S1
p2 : S0q0S1 ≤ S0q2S1 pf : S1q2S2 ≤ S1qfS2

I Configuration: C = uqv, where q ∈ Q and uv = S0r
n
1S1r

m
2 S2.

q0S0r
2
1S1S2 ≤com S0r1q0r1S1S2 ≤p0 S0r1q1S1S2

≤p1 S0q0S1S2
≤p2 S0q2S1S2
≤com S0S1q2S2
≤pf S0S1qfS2
≤com qfS0S1S2 ∈ Acc(Meven)
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Admissibility

We are interested in whether the set Acc(M) is resilient to certain
inference rules corresponding to certain inequations.

I We are interested in whether the set Acc(M) is resilient to
certain inference rules corresponding to certain inequations.

E.g.,
I x ≤ x2 is admissible in M if

ux2v ∈ Acc(M) =⇒ uxv ∈ Acc(M).

I x ≤ x2 ∨ x4 is admissible in M if

ux2v, ux4v ∈ Acc(M) =⇒ uxv ∈ Acc(M).
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Meven and ε : x ≤ x2 ∨ x4

q0r
3
1

= q0r
2
1 ·

x︷︸︸︷
(r1) ≤ε q0r

2
1 · (

x2︷︸︸︷
r21 ∨

x4︷︸︸︷
r41 )

= q0r
4
1 ∨ q0r

6
1

∈ Acc(Meven)

I q0r
4
1, q0r

6
1 ∈ Acc(Meven) but q0r

3
1 6∈ Acc(Meven).
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Admissibility can be achieved by adapting the standard encoding in
a number of way.

E.g., representing n-many tokens in a register by φ(n), for some
(computable) function φ on N.
What about commutativity xy ≤ yx?
I Impossible for the standard encoding. Commutative ordered

monoids have a decidable word problem! [Mayr 1984]
I Possible by paying the price of adding ∨ to the signature.

[Lincoln, Mitchell, Scedrov, Shankar 1992]

And-branching Counter Machines

An ACM is a machine M = (Rk, Q, P, qf ) is a CM containing no
zero-test instruction but allows branching instructions

q ≤ q′ ∨ q′′.
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Acceptance and �asi-equations

Let M = (Rk, Q, P, qf ) be a counter machine.
I Let Pcom = P ∪ {qx = xq : q ∈ Q, x ∈ Rk ∪ Stpk}

I For a monoid term u, we define the quasi-equation accM(u) to
be

&Pcom =⇒ u ≤ Cf

where for CM’s Cf = qfS0S1 · · · Sk and ACM’s Cf = qf .

Lemma
If u is accepted in M then RL |= accM(u)

Completeness is achieved by constructing a counter-model using
the theory of residuated frames.
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Residuated frames

Definition
A residuated frame is a structure W = (W,W ′, N, ◦,,�, 1), s.t.
I (W, ◦, 1) is a monoid and W ′ is a set.
I N ⊆W ×W ′,
I  : W ×W ′ →W ′ and � : W ′ ×W →W ′ such that
I N is nuclear, i.e. for all u, v ∈W and w ∈W ′,

(u ◦ v) N w i� u N (w � v) i� v N (u  w).

℘(W )
.
�
/
℘(W ′) : X. = {y ∈W ′ : X N y}

Y / = {x ∈W : xN Y }

I (., /) is a Galois connection.
I The map X

γN7−−→ X./ is a closure operator on P(W ).
I N is nuclear i� γN is a nucleus.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN , \, /, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated la�ice.
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Completeness of Encoding

Let M = (Rk, Q, P, qf ) be a counter machine.
I WM = (Q ∪ Rk ∪ Stpk)∗

I W ′M = W ×W
I xN M (u, v) ⇐⇒ uxv ∈ Acc(M)

Theorem
WM is a residuated frame.

Proof.
xyN M (u, v) ⇐⇒ uxyv ∈ Acc(M) ⇐⇒ xN M (u, yv)

⇐⇒ yN M (ux, v)
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Let M = (Rk, Q, P, qf ) be a counter machine.

Theorem
For a variety V ⊆ RL, ifW+

M ∈ V then for all u

V |= accM(u) ⇐⇒ u ∈ Acc(M).

Corollary

If W+
M ∈ V , then the word problem for V in the {≤, ·, 1}-fragment is

at least as hard as acceptance in M. In particular, if M has an
undecidable set of accepted configurations, then the word problem for
V is undecidable.
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Linearization and Simple Equations

In RL:
I Every equation s = t over the signature {∨, ·, 1} can be wri�en

as the conjunction of basic (in)equations of the form

w ≤ v1 ∨ · · · ∨ vk,

where w, v1, ..., vk are monoid terms over a set of variables X .

I These basic equations can be linearized in a uniform way
producing an equivalent simple equation of the form

[R] : x1x2 · · ·xn ≤
∨
r∈R

r

where x1, ..., xn ∈ X and R ⊆ X∗.
(∀u)(∀v) u2v ≤ u3 ∨ uv

is equivalent to, via the substitution σ: u σ7−→ x ∨ y and v σ7−→ z,

(∀x)(∀y)(∀z) xyz ≤ x3 ∨ x2y ∨ xy2 ∨ y3 ∨ xz ∨ yz
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Simple Equations and Simple Rules

Any simple equation [R] corresponds to a simple structural rule
(R). For example

[R] : xy ≤ x2 ∨ y ⇐⇒
∆1,Γ,Γ,∆2 ⇒ Π ∆1,Ψ,∆2 ⇒ Π

∆1,Γ,Ψ,∆2 ⇒ Π
(R)

In general,

[R] : x1 · · ·xn ≤
∨
r∈R

r ⇐⇒
{∆1, r

FL(Γ1, . . . ,Γn),∆2 ⇒ Π}r∈R
∆1,Γ1, . . . ,Γn,∆2 ⇒ Π

(R)

Theorem [Galatos & Jipsen 2013]

Extensions of FL by simple rules enjoy cut-elimination.
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Simple equations and Residuated Frames

Lemma [Galatos & Jipsen 2013]

All simple equations ε are preserved by (−)+:

W |= (ε) i� W+ |= ε,

where for all x1, . . . , xn ∈W and w ∈W ′,

r1(x1, ..., xn)N w · · · rk(x1, ..., xn)N w

x1 ◦ · · · ◦ xnN w
(ε)

Admissibility in WM

WM |= (ε) is equivalently stated as

ur1(x1, ..., xn)v ∈ Acc(M) · · · urk(x1, ..., xn)v ∈ Acc(M)

u · x1 · · ·xn · v ∈ Acc(M)
(ε)
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Undecidable word problems

Theorem (Horčík 2015)

Let ε be a simple equation that “always contains a square as a
subword” on its RHS. Then RL + ε has an undecidable word
problem witnessed in its ordered monoid fragment.

Theorem (Galatos and S.)

Let ε be a spineless simple equation. Then RL + ε has an
undecidable word problem witnessed in its ordered monoid
fragment and CRL + ε has an undecidable word problem witnessed
in its idempotent semiring fragment.
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Thank you!
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