On commutative (pseudo-) BCK-algebras

Jan Kühr

Joint work with Petr Ševčík

Jan Kühr On commutative (pseudo-) BCK-algebras

・ 同 ト ・ ヨ ト ・ ヨ ト

- BCK-algebras are the $\{\rightarrow, 1\}$ -subreducts of commutative integral residuated lattices.
- Pseudo-BCK-algebras or biresiduation algebras are the $\{\backslash, /, 1\}$ -subreducts of integral residuated lattices.
- Pseudo-ŁBCK-algebras or cone algebras are the {\, /, 1}-subreducts of integral GMV-algebras, i.e., integral residuated lattices satisfying (x/y)\x = y/(x\y).
- Commutative pseudo-BCK-algebras are pseudo-BCK-algebras satisfying $(x/y)\backslash x = y/(x\backslash y)$. Not BCK-algebras.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A pseudo-BCK-algebra or a biresiduation algebra is an algebra ${\bf A}=(A,\backslash,/,1)$ of type (2,0,0) satisfying the equations

$$\begin{split} \big((x \setminus z)/(y \setminus z)\big) \big/(x \setminus y) &= 1, \quad (y/x) \setminus \big((z/y) \setminus (z/x)\big) = 1, \\ 1 \setminus x &= x, \quad x/1 = x, \\ x \setminus 1 &= 1, \quad 1/x = 1, \end{split}$$

and the quasi-equation

$$x \backslash y = 1 \quad \& \quad y \backslash x = 1 \quad \Rightarrow \quad x = y.$$

A BCK-algebra is a pseudo-BCK-algebra satisfying $x \setminus y = y/x$. The underlying poset is defined by

$$x \leqslant y$$
 iff $x \setminus y = 1$ iff $y/x = 1$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

A commutative pseudo-BCK-algebra is a pseudo-BCK-algebra satisfying the equation

$$(x/y)\backslash x = y/(x\backslash y).$$

In this case the underlying poset is a join-semilattice where

$$x \lor y = (x/y) \backslash x = y/(x \backslash y).$$

A pseudo-ŁBCK-algebra (or a cone algebra) is a commutative pseudo-BCK-algebra satisfying the equation

$$(x \backslash y) \lor (y \backslash x) = 1.$$

(日) (日) (日)

The class of commutative pseudo-BCK-algebras is a variety – congruence distributive and 1-regular.

Interval algebras: In any commutative pseudo-BCK-algebra $\mathbf{A} = (A, \backslash, /, 1)$, all intervals $[a, 1] \subseteq A$ are subuniverses of \mathbf{A} . In fact, the pseudo-BCK-algebra $[\mathbf{a}, \mathbf{1}] = ([a, 1], \backslash, /, 1)$ is the $\{\backslash, /, 1\}$ -reduct of the bounded GMV-algebra $[\mathbf{a}, \mathbf{1}]^+ = ([a, 1], \lor, \land_a, \cdot_a, \backslash, /, a, 1)$, where

$$x \cdot_a y = ((a/y)/x) \setminus a = a/(y \setminus (x \setminus a)),$$

$$x \wedge_a y = ((a/x) \vee (a/y)) \setminus a = a/((x \setminus a) \vee (y \setminus a)),$$

for all $x, y \in [a, 1]$.

・吊り ・ヨリ・・ヨリー

The algebras C_n : For any integer $n \ge 2$, let

$$C_n = \left\{0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1\right\}.$$

The algebra $\mathbf{C}_n = (C_n, \rightarrow, 1)$ with

$$x \to y = \min\{1, 1 - x + y\}$$

is a linearly ordered &BCK-algebra. Up to isomorphism, C_n is the only *n*-element linearly ordered &BCK-algebra.

Komori (1978): The varieties of ŁBCK-algebras are

$$\mathcal{T} \subset \mathfrak{C}_2 \subset \cdots \subset \mathfrak{C}_n \subset \cdots \subset \bigvee_{n \geqslant 2} \mathfrak{C}_n,$$

where $\mathscr{C}_n = V(\mathbf{C}_n)$.

化晶体 化原体 化原体 一度

Kowalski (1995): The covers of \mathscr{C}_2 is the lattice of varieties of BCK-algebras are \mathscr{C}_3 and $V(\mathbf{H}_3)$, where \mathbf{H}_3 is $(\{0, 1/2, 1\}, \rightarrow, 1)$ with $1/2 \rightarrow 0 = 0$.

э

The algebras $\mathbf{C}_{n,\kappa}$: For any integer $n \ge 3$ and any cardinal $\kappa \ge 1$, the bottom element in \mathbf{C}_n is replaced with κ minimal elements. In particular, we let $\mathbf{D}_n = \mathbf{C}_{n,2}$.

There are 2^{\aleph_0} varieties of commutative BCK-algebras.

For any $\emptyset \neq N \subseteq \{3, 4, 5, ...\}$, let $\mathfrak{D}_N = V(\{\mathbf{D}_n : n \in N\})$. We know that \mathbf{D}_m satisfies

• $x^n \to y = x^{n-1} \to y$ iff $m \leq n$, • $((x \to y) \lor (y \to x))^{n-2} \to y \leq (x \to y) \lor (y \to x)$ iff $m \geq n$. Here $u^k \to v$ means $u \to (\dots \to (u \to v) \dots)$. Then ..., whence $\mathbf{D}_m \in \mathfrak{D}_N$ iff $m \in N$.

A commutative pseudo-BCK-algebra **A** is a pseudo-ŁBCK-algebra iff it satisfies the following condition, for all $a, b, c \in A$:

if
$$a \lor b \leqslant c$$
 and $c \backslash a = c \backslash b$, then $a = b$.

We say that (a, b, c) is a forbidden triple in A if

$$\text{if } a \lor b \leqslant c \text{, } c \backslash a = c \backslash b \text{ and } a \neq b.$$

In this case, a, b don't have a common lower bound.

b) A (B) A (B) A

We say that a commutative pseudo-BCK-algebra \mathbf{A} is sectionally of finite length if every interval [a, 1] is of finite length (as a lattice).

If a commutative pseudo-BCK-algebra ${\bf A}$ is sectionally of finite length, then ${\bf A}$ is a BCK-algebra.

Let A be a commutative BCK-algebra that is not an ŁBCK-algebra and let (a,b,c) be a forbidden triple in A. Then

•
$$a \rightarrow b = b \rightarrow a;$$

- (a, b, z) is a forbidden triple iff $z \in [a \lor b, a \to b]$;
- for every $x \in [a, a \lor b]$ there is a unique $y \in [b, a \lor b]$ such that (x, y, z) is a forbidden triple for every $z \in [a \lor b, a \to b]$.

(日) (日) (日)

Let A be a commutative BCK-algebra sectionally of finite length. Then A is *not* an ŁBCK-algebra if and only if A contains a subalgebra isomorphic to D_n for some integer $n \ge 3$.

Suppose that A is not an ŁBCK-algebra; then it has a forbidden triple, say (a, b, c). We may assume that the element a is maximal in the sense that whenever (x, y, z) is a forbidden triple such that $x \ge a$, then x = a. Then:

- a, b are covered by $a \lor b$ and $a \to b = b \to a$ is a coatom;
- $B = \{a, b\} \cup [a \lor b, 1]$ is a subuniverse of A;
- $a \rightarrow b = b \rightarrow a$ is the only coatom in $[a \lor b, 1]$;
- $[a \lor b, 1]$ is a finite chain;
- $\mathbf{B} \cong \mathbf{D}_n$ for some $n \ge 3$.

The covers of the variety $\mathscr{C}_{n,p}$ (for $n \ge 3$, $p \ge 1$) in the lattice of varieties of commutative BCK-algebras are the varieties:

•
$$\mathscr{C}_{n,p} \lor \mathscr{C}_{n+1}$$
 ,

• $\mathscr{C}_{n,p+1}$,

• if
$$n \ge 4$$
, then $\mathscr{C}_{n,p} \lor \mathfrak{D}_k$ for every $k \in \{3, \ldots, n-1\}$.

Every variety of commutative BCK-algebras that properly contains $\mathscr{C}_{n,p}$ contains at least one of these covers.

Let \mathcal{K} be a variety of commutative BCK-algebras such that $\mathscr{C}_{n,p} \subsetneq \mathcal{K}$.

Case 1 – There is an ŁBCK-algebra in $\mathrm{Si}(\mathscr{K} \setminus \mathscr{C}_{n,p})$: If $\mathbf{A} \in \mathrm{Si}(\mathscr{K} \setminus \mathscr{C}_{n,p})$, then \mathbf{A} is linearly ordered and $|A| \ge n + 1$, whence \mathbf{C}_{n+1} is isomorphic to a subalgebra of \mathbf{A} , and so $\mathscr{C}_{n,p} \vee \mathscr{C}_{n+1} \subseteq \mathscr{K}$.

・ロッ ・雪ッ ・ヨッ

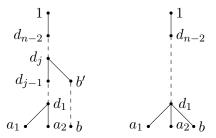
Case 2 – There is no ŁBCK-algebra in Si($\mathscr{K} \setminus \mathscr{C}_{n,p}$): If $\mathbf{A} \in Si(\mathscr{K} \setminus \mathscr{C}_{n,p})$, then for every $e \in A$, the subalgebra $[\mathbf{e}, \mathbf{1}]$ is a linearly ordered ŁBCK-algebra and $|[e, 1]| \leq n$. Hence \mathbf{A} is sectionally of finite length and contains a subalgebra isomorphic to \mathbf{D}_m for some $m \leq n$.

Case 2a – Some algebra in $\operatorname{Si}(\mathscr{K} \setminus \mathscr{C}_{n,p})$ has a subalgebra isomorphic to \mathbf{D}_m for some m < n: Then $\mathscr{C}_{n,p} \vee \mathfrak{D}_m \subseteq \mathscr{K}$.

Case 2b – No algebra in $\operatorname{Si}(\mathcal{K} \setminus \mathcal{C}_{n,p})$ contains a subalgebra isomorphic to \mathbf{D}_m for m < n: If $\mathbf{A} \in \operatorname{Si}(\mathcal{K} \setminus \mathcal{C}_{n,p})$, then \mathbf{A} has a subalgebra $\mathbf{B} \cong \mathbf{D}_n$ with universe $B = \{a_1, a_2, d_1, \ldots, d_{n-2}, 1\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For p = 1, $\mathbf{D}_n \in \mathrm{Si}(\mathcal{K} \setminus \mathcal{C}_n)$ and so $\mathcal{C}_{n,2} = \mathfrak{D}_n \subseteq \mathcal{K}$. For $p \ge 2$, $\mathbf{D}_n \in \mathcal{C}_{n,p}$ and so **B** is a proper subalgebra of **A**:



It follows that $\mathbf{A} \cong \mathbf{C}_{n,\kappa}$ for some $\kappa \ge p+1$, whence $\mathscr{C}_{n,p+1} \subseteq \mathscr{K}$.

伺い イヨト イヨト

The variety $\mathscr{C}_{n,p}$ (for $n \ge 3$, $p \ge 2$) is axiomatized, relative to commutative BCK-algebras, by the equations

$$x^{n} \to y = x^{n-1} \to y,$$

$$((x \to y) \lor (y \to x))^{n-2} \to y \leqslant (x \to y) \lor (y \to x),$$

$$\bigvee_{0 \leqslant i \neq j \leqslant p} (x_{i} \to x_{j}) = 1.$$

Here $u^k \to v$ means $u \to (\dots \to (u \to v)\dots)$.

(日本) (日本) (日本)

A (normal) filter in a commutative pseudo-BCK-algebra A is $F \subseteq A$ such that:

- $1 \in F$;
- if $x, x \setminus y \in F$, then $y \in F$;

• if $x \in F$, then $\lambda_y(x) = (x \setminus y) \setminus y, \rho_y(x) = y/(y/x) \in F$.

The map $\theta \mapsto [1]_{\theta}$ is an isomorphism $\mathbf{Con}(\mathbf{A}) \cong \mathbf{Fi}(\mathbf{A})$.

Let \mathcal{U}, \mathcal{V} be varieties of commutative pseudo-BCK-algebras. The Maltsev product $\mathcal{U} \circ \mathcal{V}$ is the class of those commutative pseudo-BCK-algebras \mathbf{A} which have a filter $F \in \operatorname{Fi}(\mathbf{A})$ such that $\mathbf{F} \in \mathcal{U}$ and $\mathbf{A}/F \in \mathcal{V}$.

 $\mathscr{C}_n \circ \mathscr{C}_n = \mathscr{C}_n$ for every $n \ge 1$, and $\mathscr{C}_{n,p} \circ \mathscr{C}_{n,p} = \mathscr{C}_{n,p}$ for every $n \ge 3, p \ge 2$.

The varieties of commutative (pseudo-) BCK-algebras form a non-commutative po-monoid.

・ロト ・四ト ・ヨト ・ヨト

э

Let A be a commutative pseudo-BCK-algebra. We say that an element $a \in A$ is idempotent if

$$a \backslash (a \backslash x) = a \backslash x$$
 for all $x \in A$,

or equivalently,

$$a \lor (a \setminus x) = 1$$
 for all $x \in A$.

The idempotent elements of A form a subalgebra of A, I(A). Moreover, $I(A)\in \mathfrak{C}_2.$

We say that a commutative pseudo-BCK-algebra A has enough idempotents if $A = \bigcup_{a \in I(\mathbf{A})} [a, 1]$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

For any $a \in A$, both [a, 1] and $a^{\perp} = \{x \in A : a \lor x = 1\}$ are subuniverses of **A**.

If $a \in I(\mathbf{A})$, then

- $a \backslash x = x/a$ for all $x \in A$,
- the map $h_a: x \mapsto (a \setminus x, a \lor x)$ is an embedding of A into $\mathbf{a}^{\perp} \times [\mathbf{a}, \mathbf{1}].$

We call $a \in I(\mathbf{A})$ central if h_a is an isomorphism.

The central elements of A form a subalgebra of I(A), C(A).

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

Suppose that a commutative pseudo-BCK-algebra ${\bf A}$ has enough idempotents and let

$$\mathbf{M} = \prod_{e \in I(\mathbf{A})} [\mathbf{e}, \mathbf{1}] \dots$$
pseudo-ŁBCK-algebra,

 $\mathbf{M}^+ = \prod_{e \in I(\mathbf{A})} \left[\mathbf{e}, \mathbf{1}
ight]^+ \dots$ bounded GMV-algebra.

- The map $f \colon x \mapsto (x \lor e)_{e \in I(\mathbf{A})}$ is an embedding of \mathbf{A} into \mathbf{M} .
- A is pseudo-ŁBCK-algebra.
- For every $x \in A$, $x \in I(\mathbf{A})$ iff $f(x) \in I(\mathbf{M})$.

・吊り ・ヨリ・・ヨリー

Let's identify A with the subalgebra $f[\mathbf{A}]$ of M, which is the reduct of $\mathbf{M}^+.$ Let

$$L = \{a_1 \wedge \dots \wedge a_n \colon a_i \in A\}.$$

Then $(L, \cdot, \backslash, /, 1)$ is a subalgebra of the GMV-algebra $(M, \cdot, \backslash, /, 1)$. In addition, the pseudo-ŁBCK-algebra $(L, \backslash, /, 1)$ has enough idempotents and A is an up-set in L.

• If $0 \in L$, then $\mathbf{L} = (L, \cdot, \backslash, /, 0, 1)$ is a subalgebra of the bounded GMV-algebra \mathbf{M}^+ . Let

$$\mathbf{K}_{\mathbf{A}} = \mathbf{L} \times \mathbf{C}_2^+.$$

Clearly, $f_{\mathbf{A}} : x \mapsto (f(x), 1)$ is an embedding of \mathbf{A} into $\mathbf{K}_{\mathbf{A}}^- = \mathbf{L}^- \times \mathbf{C}_2$.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

2 If $0 \notin L$, let

$$L^{\sim} = \{x^{\sim} \colon x \in L\} \quad \text{and} \quad L^{-} = \{x^{-} \colon x \in L\}$$

where $x^{\sim} = x \setminus 0$ and $x^{-} = 0/x$ are the negations in \mathbf{M}^+ . Then $L^{\sim} = L^-$, $L \cap L^{\sim} = \emptyset$ and

$$\mathbf{K}_{\mathbf{A}} = (L \cup L^{\sim}, \cdot, \backslash, /, 0, 1)$$

is a subalgebra of the bounded GMV-algebra \mathbf{M}^+ . Moreover, A and L are up-sets in $L \cup L^\sim$. The natural embedding $f_{\mathbf{A}}$ of \mathbf{A} into $\mathbf{K}_{\mathbf{A}}^- = (L \cup L^\sim, \backslash, /, 1)$ is f.

化晶体 化原体 化原体 一度

Let A be a pseudo-ŁBCK-algebra with enough idempotents. Let K_A and f_A be as before. Then:

- $\bullet~{\bf A}$ is a subalgebra of ${\bf K}_{\bf A}^-$ and it is a union of filters of ${\bf K}_{\bf A};$
- $I(\mathbf{A}) \subseteq I(\mathbf{K}_{\mathbf{A}});$
- for any bounded GMV-algebra **B** and any $\{\backslash, /, 1\}$ -homomorphism $h: A \to B$ with the property that $h[I(\mathbf{A})] \subseteq I(\mathbf{B})$ there exists a unique $\{\cdot, \backslash, /, 0, 1\}$ -homomorphism $\hat{h}: K_{\mathbf{A}} \to B$ such that $\hat{h} \circ f_{\mathbf{A}} = h$.

(日本)

- Let bGMV be the category of bounded GMV-algebras with homomorphisms.
- Let pLBCK_{ei} be the category of pseudo-ŁBCK-algebras with enough idempotents with homomorphisms that preserve idempotents.

The forgetful functor $U: \mathbb{bGMV} \to \mathbb{pLBCK}_{ei}$ is adjoint; its co-adjoint $F: \mathbb{pLBCK}_{ei} \to \mathbb{bGMV}$ is given as follows:

・ 同 ト ・ ヨ ト ・ ヨ ト

- For any $\mathbf{A} \in \mathbb{PLBCK}_{ei}$, $F(\mathbf{A}) \in \mathbb{bGMV}$ is the bounded GMV-algebra $\mathbf{K}_{\mathbf{A}}$ constructed above.
- For any morphism $\mathbf{A} \xrightarrow{h} \mathbf{A}'$ in \mathbb{pLBCK}_{ei} , the morphism $F(\mathbf{A} \xrightarrow{h} \mathbf{A}')$ in \mathbb{bGMV} is the morphism $\mathbf{K}_{\mathbf{A}} \xrightarrow{F(h)} \mathbf{K}_{\mathbf{A}'}$ which is given by

$$\begin{array}{cccc} \mathbf{A} & \stackrel{f_{\mathbf{A}}}{\longrightarrow} & \mathbf{K}_{\mathbf{A}}^{-} & & \mathbf{K}_{\mathbf{A}} \\ h & & & \downarrow \hat{g} & & \downarrow F(h) = \hat{g} \\ \mathbf{A}' & \stackrel{f_{\mathbf{A}'}}{\longrightarrow} & \mathbf{K}_{\mathbf{A}'}^{-} & & \mathbf{K}_{\mathbf{A}'} \end{array}$$

where g is $f_{\mathbf{A}'} \circ h$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let A and B be commutative pseudo-BCK-algebras satisfying condition \mathcal{P} . If $\mathbf{A} \cong \mathbf{a}^{\perp}$ for some $a \in C(\mathbf{B})$ and $\mathbf{B} \cong \mathbf{b}^{\perp}$ for some $b \in C(\mathbf{A})$, then $\mathbf{A} \cong \mathbf{B}$. Equivalently, if $\mathbf{A} \cong \mathbf{B} \times \mathbf{C}$ and $\mathbf{B} \cong \mathbf{A} \times \mathbf{D}$ where \mathbf{C}, \mathbf{D} are bounded, then $\mathbf{A} \cong \mathbf{B}$.

The condition \mathcal{P} can be:

- the algebra is orthogonally σ -complete, i.e., if $\{x_i : i \in I\}$ is a countable subset s.t. $x_i \lor x_j = 1$ for all $i \neq j$, then $\bigwedge \{x_i : i \in I\}$ exists;
- if {a_i: i ∈ I} is a countable set of central elements s.t.
 a_i ∨ a_j = 1 for all i ≠ j, then ∧{x_i: i ∈ I ∪ {0}} exists for every subset {x_i: i ∈ I ∪ {0}} s.t. (i) x_i ≥ a_i for all i ∈ I and (ii) x₀ ∨ a_i = 1 for all i ∈ I.

The latter condition is weaker and entails that whenever $\{a_i: i \in I\}$ is a countable set of central elements s.t. $a_i \lor a_j = 1$ for all $i \neq j$, then $a = \bigwedge \{a_i: i \in I\}$ exists and is central, and the algebra is isomorphic to $\mathbf{a}^{\perp} \times \prod_{i \in I} [\mathbf{a}_i, \mathbf{1}]$.

Let A be a commutative pseudo-BCK-algebra satisfying \mathscr{P} . Let $a_1, a_2 \in C(\mathbf{A}), a_1 \ge a_2$. If $\mathbf{A} \cong \mathbf{a}_2^{\perp}$, then $\mathbf{A} \cong \mathbf{a}_1^{\perp}$.

Let $X_i = a_i^{\perp}$ for i = 1, 2; then $X_1 \supseteq X_2$. Let f be an isomorphism $\mathbf{A} \cong \mathbf{X}_2 = \mathbf{a}_2^{\perp}$. Let $X_n = f[X_{n-2}]$ for each $n \ge 3$. We get

•
$$X_1 \supseteq X_2 \supseteq X_3 \supseteq \ldots;$$

- $\mathbf{A} \cong \mathbf{X}_2 \cong \mathbf{X}_4 \cong \dots$ and $\mathbf{X}_1 \cong \mathbf{X}_3 \cong \dots$;
- $\mathbf{X}_{k-1} \cong \mathbf{X}_k \times [\mathbf{b}_k, \mathbf{1}]$, where the elements $b_1 = a_1, b_2, b_3, \dots$ form an orthogonal sequence of central elements;

•
$$[\mathbf{b}_1, \mathbf{1}] \cong [\mathbf{b}_3, \mathbf{1}] \cong \dots$$
 and $[\mathbf{b}_2, \mathbf{1}] \cong [\mathbf{b}_4, \mathbf{1}] \cong \dots$;

•
$$b = \bigwedge_{k \ge 1} b_k \in C(\mathbf{A})$$
 and $c = \bigwedge_{k \ge 2} b_k \in C(\mathbf{X}_1)$;

• $\mathbf{A} \cong \mathbf{b}^{\perp} \times \prod_{k \geqslant 1} [\mathbf{b}_k, \mathbf{1}] \cong \mathbf{b}^{\perp} \times [\mathbf{b}_1, \mathbf{1}] \times [\mathbf{b}_2, \mathbf{1}] \times [\mathbf{b}_1, \mathbf{1}] \times \dots;$

•
$$\mathbf{X}_1 \cong (\mathbf{X}_1 \cap \mathbf{c}^{\perp}) \times \prod_{k \ge 2} [\mathbf{b}_k, \mathbf{1}] \cong (\mathbf{X}_1 \cap \mathbf{c}^{\perp}) \times [\mathbf{b}_2, \mathbf{1}] \times [\mathbf{b}_1, \mathbf{1}] \times [\mathbf{b}_2, \mathbf{1}] \times \dots;$$

• $\mathbf{b}^{\perp} = \mathbf{X}_1 \cap \mathbf{c}^{\perp}$, hence $\mathbf{A} \cong \mathbf{X}_1$.

Thank you!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ