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BCK-algebras are the {→, 1}-subreducts of commutative
integral residuated lattices.
Pseudo-BCK-algebras or biresiduation algebras are the
{\, /, 1}-subreducts of integral residuated lattices.
Pseudo-ŁBCK-algebras or cone algebras are the
{\, /, 1}-subreducts of integral GMV-algebras, i.e., integral
residuated lattices satisfying (x/y)\x = y/(x\y).
Commutative pseudo-BCK-algebras are pseudo-BCK-algebras
satisfying (x/y)\x = y/(x\y). Not BCK-algebras.

Jan Kühr On commutative (pseudo-) BCK-algebras



A pseudo-BCK-algebra or a biresiduation algebra is an algebra
A = (A, \, /, 1) of type (2, 0, 0) satisfying the equations(

(x\z)/(y\z)
)/

(x\y) = 1, (y/x)
∖(

(z/y)\(z/x)
)
= 1,

1\x = x, x/1 = x,

x\1 = 1, 1/x = 1,

and the quasi-equation

x\y = 1 & y\x = 1 ⇒ x = y.

A BCK-algebra is a pseudo-BCK-algebra satisfying x\y = y/x.
The underlying poset is defined by

x 6 y iff x\y = 1 iff y/x = 1.
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A commutative pseudo-BCK-algebra is a pseudo-BCK-algebra
satisfying the equation

(x/y)\x = y/(x\y).

In this case the underlying poset is a join-semilattice where

x ∨ y = (x/y)\x = y/(x\y).

A pseudo-ŁBCK-algebra (or a cone algebra) is a commutative
pseudo-BCK-algebra satisfying the equation

(x\y) ∨ (y\x) = 1.

Jan Kühr On commutative (pseudo-) BCK-algebras



The class of commutative pseudo-BCK-algebras is a variety –
congruence distributive and 1-regular.

Interval algebras: In any commutative pseudo-BCK-algebra
A = (A, \, /, 1), all intervals [a, 1] ⊆ A are subuniverses of A.
In fact, the pseudo-BCK-algebra [a,1] = ([a, 1], \, /, 1) is the
{\, /, 1}-reduct of the bounded GMV-algebra
[a,1]+ = ([a, 1],∨,∧a, ·a, \, /, a, 1), where

x ·a y =
(
(a/y)/x

)∖
a = a

/(
y\(x\a)

)
,

x ∧a y =
(
(a/x) ∨ (a/y)

)∖
a = a

/(
(x\a) ∨ (y\a)

)
,

for all x, y ∈ [a, 1].
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The algebras Cn: For any integer n > 2, let

Cn =
{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
.

The algebra Cn = (Cn,→, 1) with

x→ y = min{1, 1− x+ y}

is a linearly ordered ŁBCK-algebra. Up to isomorphism, Cn is the
only n-element linearly ordered ŁBCK-algebra.

Komori (1978): The varieties of ŁBCK-algebras are

T⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂
∨
n>2

Cn,

where Cn = V(Cn).
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Kowalski (1995): The covers of C2 is the lattice of varieties of
BCK-algebras are C3 and V(H3), where H3 is ({0, 1/2, 1},→, 1)
with 1/2→ 0 = 0.
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The algebras Cn,κ: For any integer n > 3 and any cardinal κ > 1,
the bottom element in Cn is replaced with κ minimal elements.
In particular, we let Dn = Cn,2.

There are 2ℵ0 varieties of commutative BCK-algebras.

For any ∅ 6= N ⊆ {3, 4, 5, . . . }, let DN = V({Dn : n ∈ N}).
We know that Dm satisfies

xn → y = xn−1 → y iff m 6 n,
((x→ y)∨ (y → x))n−2 → y 6 (x→ y)∨ (y → x) iff m > n.

Here uk → v means u→ (· · · → (u→ v) . . . ).
Then . . . , whence Dm ∈ DN iff m ∈ N .
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A commutative pseudo-BCK-algebra A is a pseudo-ŁBCK-algebra
iff it satisfies the following condition, for all a, b, c ∈ A:

if a ∨ b 6 c and c\a = c\b, then a = b.

We say that (a, b, c) is a forbidden triple in A if

if a ∨ b 6 c, c\a = c\b and a 6= b.

In this case, a, b don’t have a common lower bound.
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We say that a commutative pseudo-BCK-algebra A is sectionally of
finite length if every interval [a, 1] is of finite length (as a lattice).

If a commutative pseudo-BCK-algebra A is sectionally of finite
length, then A is a BCK-algebra.

Let A be a commutative BCK-algebra that is not an ŁBCK-algebra
and let (a, b, c) be a forbidden triple in A. Then

a→ b = b→ a;
(a, b, z) is a forbidden triple iff z ∈ [a ∨ b, a→ b];
for every x ∈ [a, a∨ b] there is a unique y ∈ [b, a∨ b] such that
(x, y, z) is a forbidden triple for every z ∈ [a ∨ b, a→ b].

Jan Kühr On commutative (pseudo-) BCK-algebras



Let A be a commutative BCK-algebra sectionally of finite length.
Then A is not an ŁBCK-algebra if and only if A contains a
subalgebra isomorphic to Dn for some integer n > 3.

Suppose that A is not an ŁBCK-algebra; then it has a forbidden
triple, say (a, b, c). We may assume that the element a is maximal
in the sense that whenever (x, y, z) is a forbidden triple such that
x > a, then x = a. Then:

a, b are covered by a ∨ b and a→ b = b→ a is a coatom;
B = {a, b} ∪ [a ∨ b, 1] is a subuniverse of A;
a→ b = b→ a is the only coatom in [a ∨ b, 1];
[a ∨ b, 1] is a finite chain;
B ∼= Dn for some n > 3.
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The covers of the variety Cn,p (for n > 3, p > 1) in the lattice of
varieties of commutative BCK-algebras are the varieties:

Cn,p ∨ Cn+1,
Cn,p+1,
if n > 4, then Cn,p ∨ Dk for every k ∈ {3, . . . , n− 1}.

Every variety of commutative BCK-algebras that properly contains
Cn,p contains at least one of these covers.

Let K be a variety of commutative BCK-algebras such that
Cn,p ( K.

Case 1 – There is an ŁBCK-algebra in Si(K\ Cn,p):
If A ∈ Si(K\ Cn,p), then A is linearly ordered and |A| > n+ 1,
whence Cn+1 is isomorphic to a subalgebra of A, and so
Cn,p ∨ Cn+1 ⊆K.
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Case 2 – There is no ŁBCK-algebra in Si(K\ Cn,p):
If A ∈ Si(K\ Cn,p), then for every e ∈ A, the subalgebra [e,1] is a
linearly ordered ŁBCK-algebra and |[e, 1]| 6 n. Hence A is
sectionally of finite length and contains a subalgebra isomorphic to
Dm for some m 6 n.

Case 2a – Some algebra in Si(K\ Cn,p) has a subalgebra
isomorphic to Dm for some m < n: Then Cn,p ∨ Dm ⊆K.

Case 2b – No algebra in Si(K\ Cn,p) contains a subalgebra
isomorphic to Dm for m < n: If A ∈ Si(K\ Cn,p), then A has a
subalgebra B ∼= Dn with universe B = {a1, a2, d1, . . . , dn−2, 1}.
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For p = 1, Dn ∈ Si(K\ Cn) and so Cn,2 = Dn ⊆K.
For p > 2, Dn ∈ Cn,p and so B is a proper subalgebra of A:

b

b′

a1 a2

d1

dj−1

dj

dn−2

1

ba1 a2

d1

dn−2

1

It follows that A ∼= Cn,κ for some κ > p+ 1, whence Cn,p+1 ⊆K.
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The variety Cn,p (for n > 3, p > 2) is axiomatized, relative to
commutative BCK-algebras, by the equations

xn → y = xn−1 → y,(
(x→ y) ∨ (y → x)

)n−2 → y 6 (x→ y) ∨ (y → x),∨
06i 6=j6p

(xi → xj) = 1.

Here uk → v means u→ (· · · → (u→ v) . . . ).
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A (normal) filter in a commutative pseudo-BCK-algebra A is
F ⊆ A such that:

1 ∈ F ;
if x, x\y ∈ F , then y ∈ F ;
if x ∈ F , then λy(x) = (x\y)\y, ρy(x) = y/(y/x) ∈ F .

The map θ 7→ [1]θ is an isomorphism Con(A) ∼= Fi(A).

Let U, V be varieties of commutative pseudo-BCK-algebras. The
Maltsev product U◦ V is the class of those commutative
pseudo-BCK-algebras A which have a filter F ∈ Fi(A) such that
F ∈ U and A/F ∈ V.

Cn ◦ Cn = Cn for every n > 1, and Cn,p ◦ Cn,p = Cn,p for every
n > 3, p > 2.

The varieties of commutative (pseudo-) BCK-algebras form a
non-commutative po-monoid.
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Let A be a commutative pseudo-BCK-algebra. We say that an
element a ∈ A is idempotent if

a\(a\x) = a\x for all x ∈ A,

or equivalently,

a ∨ (a\x) = 1 for all x ∈ A.

The idempotent elements of A form a subalgebra of A, I(A).
Moreover, I(A) ∈ C2.

We say that a commutative pseudo-BCK-algebra A has enough
idempotents if A =

⋃
a∈I(A)[a, 1].
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For any a ∈ A, both [a, 1] and a⊥ = {x ∈ A : a ∨ x = 1} are
subuniverses of A.

If a ∈ I(A), then
a\x = x/a for all x ∈ A,
the map ha : x 7→ (a\x, a ∨ x) is an embedding of A into
a⊥ × [a,1].

We call a ∈ I(A) central if ha is an isomorphism.

The central elements of A form a subalgebra of I(A), C(A).
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Suppose that a commutative pseudo-BCK-algebra A has enough
idempotents and let

M =
∏
e∈I(A) [e,1] . . . pseudo-ŁBCK-algebra,

M+ =
∏
e∈I(A) [e,1]

+ . . . bounded GMV-algebra.

The map f : x 7→ (x ∨ e)e∈I(A) is an embedding of A into M.
A is pseudo-ŁBCK-algebra.
For every x ∈ A, x ∈ I(A) iff f(x) ∈ I(M).
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Let’s identify A with the subalgebra f [A] of M, which is the
reduct of M+. Let

L = {a1 ∧ · · · ∧ an : ai ∈ A}.

Then (L, ·, \, /, 1) is a subalgebra of the GMV-algebra
(M, ·, \, /, 1). In addition, the pseudo-ŁBCK-algebra (L, \, /, 1) has
enough idempotents and A is an up-set in L.

1 If 0 ∈ L, then L = (L, ·, \, /, 0, 1) is a subalgebra of the
bounded GMV-algebra M+. Let

KA = L×C+
2 .

Clearly, fA : x 7→ (f(x), 1) is an embedding of A into
K−A = L− ×C2.
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2 If 0 /∈ L, let

L∼ = {x∼ : x ∈ L} and L− = {x− : x ∈ L}

where x∼ = x\0 and x− = 0/x are the negations in M+.
Then L∼ = L−, L ∩ L∼ = ∅ and

KA = (L ∪ L∼, ·, \, /, 0, 1)

is a subalgebra of the bounded GMV-algebra M+.
Moreover, A and L are up-sets in L ∪ L∼.
The natural embedding fA of A into K−A = (L ∪ L∼, \, /, 1)
is f .
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Let A be a pseudo-ŁBCK-algebra with enough idempotents. Let
KA and fA be as before. Then:

A is a subalgebra of K−A and it is a union of filters of KA;
I(A) ⊆ I(KA);
for any bounded GMV-algebra B and any {\, /, 1}-homo-
morphism h : A→ B with the property that h[I(A)] ⊆ I(B)
there exists a unique {·, \, /, 0, 1}-homomorphism ĥ : KA → B
such that ĥ ◦ fA = h.

A K−A KA

B− B

h

fA

ĥ ĥ
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Let bGMV be the category of bounded GMV-algebras with
homomorphisms.
Let pLBCKei be the category of pseudo-ŁBCK-algebras with
enough idempotents with homomorphisms that preserve
idempotents.

The forgetful functor U : bGMV → pLBCKei is adjoint; its
co-adjoint F : pLBCKei → bGMV is given as follows:
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For any A ∈ pLBCKei, F (A) ∈ bGMV is the bounded
GMV-algebra KA constructed above.

For any morphism A
h−→ A′ in pLBCKei, the morphism

F (A
h−→ A′) in bGMV is the morphism KA

F (h)−−−→ KA′ which
is given by

A K−A KA

A′ K−A′ KA′

fA

h ĝ F (h)= ĝ

fA′

where g is fA′ ◦ h.
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Let A and B be commutative pseudo-BCK-algebras satisfying
condition P. If A ∼= a⊥ for some a ∈ C(B) and B ∼= b⊥ for some
b ∈ C(A), then A ∼= B. Equivalently, if A ∼= B×C and
B ∼= A×D where C,D are bounded, then A ∼= B.

The condition P can be:
1 the algebra is orthogonally σ-complete, i.e., if {xi : i ∈ I} is a

countable subset s.t. xi ∨ xj = 1 for all i 6= j, then∧
{xi : i ∈ I} exists;

2 if {ai : i ∈ I} is a countable set of central elements s.t.
ai ∨ aj = 1 for all i 6= j, then

∧
{xi : i ∈ I ∪ {0}} exists for

every subset {xi : i ∈ I ∪ {0}} s.t. (i) xi > ai for all i ∈ I and
(ii) x0 ∨ ai = 1 for all i ∈ I.

The latter condition is weaker and entails that whenever
{ai : i ∈ I} is a countable set of central elements s.t. ai ∨ aj = 1
for all i 6= j, then a =

∧
{ai : i ∈ I} exists and is central, and the

algebra is isomorphic to a⊥ ×
∏
i∈I [ai ,1].
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Let A be a commutative pseudo-BCK-algebra satisfying P. Let
a1, a2 ∈ C(A), a1 > a2. If A ∼= a⊥2 , then A ∼= a⊥1 .

Let Xi = a⊥i for i = 1, 2; then X1 ⊇ X2. Let f be an isomorphism
A ∼= X2 = a⊥2 . Let Xn = f [Xn−2] for each n > 3. We get

X1 ⊇ X2 ⊇ X3 ⊇ . . . ;
A ∼= X2

∼= X4
∼= . . . and X1

∼= X3
∼= . . . ;

Xk−1 ∼= Xk × [bk ,1], where the elements b1 = a1, b2, b3, . . .
form an orthogonal sequence of central elements;
[b1,1] ∼= [b3,1] ∼= . . . and [b2,1] ∼= [b4,1] ∼= . . . ;
b =

∧
k>1 bk ∈ C(A) and c =

∧
k>2 bk ∈ C(X1);

A ∼= b⊥×
∏
k>1 [bk ,1] ∼= b⊥× [b1,1]× [b2,1]× [b1,1]× . . . ;

X1
∼= (X1 ∩ c⊥)×

∏
k>2 [bk ,1] ∼=

(X1 ∩ c⊥)× [b2,1]× [b1,1]× [b2,1]× . . . ;
b⊥ = X1 ∩ c⊥, hence A ∼= X1.
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Thank you!
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