Priestley duality for MV-algebras: A new perspective

Wesley Fussner

(joint work with Mai Gehrke, Sam van Gool, and Vincenzo Marra)

CNRS, France

Shanks Workshop on Ordered Algebras and Logic Nashville, TN, USA

7 March 2020

Outline

Priestley duality as usually presented.

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.
- Priestley duality via the canonical extension.

Outline

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.
- Priestley duality via the canonical extension.
- \bigcirc \ominus -algebras.

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.
- Priestley duality via the canonical extension.
- \bigcirc \ominus -algebras.
- § Priestley duality for \ominus -algebras by their canonical extensions.

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.
- O Priestley duality via the canonical extension.
- \bigcirc \ominus -algebras.
- **\bigcirc** Priestley duality for \ominus -algebras by their canonical extensions.
- Splitting of the operation ⊖ on duals to obtain a more expressive environment.

- Priestley duality as usually presented.
- ② Canonical extensions of bounded distributive lattices.
- S Priestley duality via the canonical extension.
- \bigcirc \ominus -algebras.
- **\bigcirc** Priestley duality for \ominus -algebras by their canonical extensions.
- Splitting of the operation ⊖ on duals to obtain a more expressive environment.
- Specializing this to MV-algebras.

Part I: Priestley duality and canonical extensions

Priestley spaces

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

• (X, τ) is compact, and

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

- (X, τ) is compact, and
- If or every x, y ∈ X with x ≤ y, there exists a clopen down-set U ⊆ X such that x ∉ U, y ∈ U.

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

- **(** X, τ **)** is compact, and
- If or every x, y ∈ X with x ≤ y, there exists a clopen down-set U ⊆ X such that x ∉ U, y ∈ U.

Generic example:

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

- (X, τ) is compact, and
- If or every x, y ∈ X with x ≤ y, there exists a clopen down-set U ⊆ X such that x ∉ U, y ∈ U.

Generic example: If $\mathbf{L} = (L, \land, \lor, 0, 1)$ is a bounded distributive lattice, then the set of prime ideals X(L) of L is a Priestley space ordered by inclusion.

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

- (X, τ) is compact, and
- If or every x, y ∈ X with x ≤ y, there exists a clopen down-set U ⊆ X such that x ∉ U, y ∈ U.

Generic example: If $\mathbf{L} = (L, \land, \lor, 0, 1)$ is a bounded distributive lattice, then the set of prime ideals X(L) of L is a Priestley space ordered by inclusion. The topology is generated by the clopen subbasis $\{\hat{a}, (\hat{a})^{c} : a \in L\}$

A *Priestley space* is an ordered topological space (X, \leq, τ) such that:

- (X, τ) is compact, and
- If or every x, y ∈ X with x ≤ y, there exists a clopen down-set U ⊆ X such that x ∉ U, y ∈ U.

Generic example: If $\mathbf{L} = (L, \land, \lor, 0, 1)$ is a bounded distributive lattice, then the set of prime ideals X(L) of L is a Priestley space ordered by inclusion. The topology is generated by the clopen subbasis $\{\hat{a}, (\hat{a})^{c} : a \in L\}$, where

$$\hat{a} = \{x \in X(L) : a \in x\}.$$

Priestley duality

Maps $h: \mathbf{L}_1 \to \mathbf{L}_2$ are sent to continuous isotone maps $X(\mathbf{L}_2) \to X(\mathbf{L}_1)$ given by $h \mapsto h^{-1}[-]$.

Maps $h: \mathbf{L}_1 \to \mathbf{L}_2$ are sent to continuous isotone maps $X(\mathbf{L}_2) \to X(\mathbf{L}_1)$ given by $h \mapsto h^{-1}[-]$.

The reverse functor takes a Priestley space to its bounded distributive lattice of clopen down-sets.

Maps $h: \mathbf{L}_1 \to \mathbf{L}_2$ are sent to continuous isotone maps $X(\mathbf{L}_2) \to X(\mathbf{L}_1)$ given by $h \mapsto h^{-1}[-]$.

The reverse functor takes a Priestley space to its bounded distributive lattice of clopen down-sets.

Residuated operations \cdot on BDLs can be captured by ternary relations that amount to the downward-closure (in X(L)) of their complex products

Maps $h: \mathbf{L}_1 \to \mathbf{L}_2$ are sent to continuous isotone maps $X(\mathbf{L}_2) \to X(\mathbf{L}_1)$ given by $h \mapsto h^{-1}[-]$.

The reverse functor takes a Priestley space to its bounded distributive lattice of clopen down-sets.

Residuated operations \cdot on BDLs can be captured by ternary relations that amount to the downward-closure (in X(L)) of their complex products:

$$R(x, y, z) \iff x \subseteq \downarrow \{a \cdot b : a \in y, b \in z\}.$$

Meet- and join-irreducibles

Recall:

Recall:

Definition:

m is called *meet-irreducible* if *m* = *x* ∧ *y* implies *m* = *x* or *m* = *y*.

Recall:

- *m* is called *meet-irreducible* if *m* = *x* ∧ *y* implies *m* = *x* or *m* = *y*.
- *m* is called *completely meet-irreducible* if $m = \bigwedge S$ implies $m \in S$.

Recall:

- *m* is called *meet-irreducible* if *m* = x ∧ y implies *m* = x or *m* = y.
- *m* is called *completely meet-irreducible* if $m = \bigwedge S$ implies $m \in S$.
- *j* is called *join-irreducible* if $j = x \lor y$ implies j = x or j = y.

Recall:

- *m* is called *meet-irreducible* if *m* = x ∧ y implies *m* = x or *m* = y.
- *m* is called *completely meet-irreducible* if $m = \bigwedge S$ implies $m \in S$.
- *j* is called *join-irreducible* if $j = x \lor y$ implies j = x or j = y.
- *j* is called *completely join-irreducible* if $j = \bigvee S$ implies $j \in S$.

Duality and irreducible elements

Key antecedent of Priestley duality (Birkhoff 1937):

Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Not true in the infinite setting.

Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not have meet/join irreducibles at all...
Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not have meet/join irreducibles at all...

But some infinite distributive lattices *are* determined by their posets of meet-irreducibles

Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not have meet/join irreducibles at all...

But some infinite distributive lattices *are* determined by their posets of meet-irreducibles, namely the *doubly algebraic* ones.

Key antecedent of Priestley duality (Birkhoff 1937): Each finite distributive lattice is determined by its poset of meet-irreducibles (likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not have meet/join irreducibles at all...

But some infinite distributive lattices *are* determined by their posets of meet-irreducibles, namely the *doubly algebraic* ones.

Canonical extensions are a view of Priestley duality that exploits this.

Doubly algebraic distributive lattices

Doubly algebraic distributive lattices

Definition:

Let C is a complete lattice. We say:

• $x \in C$ is *compact* if whenever $x \leq \bigvee S$ there exists a finite $S' \subseteq S$ with $x \leq \bigvee S'$.

- $x \in C$ is *compact* if whenever $x \leq \bigvee S$ there exists a finite $S' \subseteq S$ with $x \leq \bigvee S'$.
- C is algebraic if for every x ∈ C there exists a set S ⊆ C of compact elements with x = V S.

- $x \in C$ is *compact* if whenever $x \leq \bigvee S$ there exists a finite $S' \subseteq S$ with $x \leq \bigvee S'$.
- C is algebraic if for every x ∈ C there exists a set S ⊆ C of compact elements with x = V S.
- C is dually algebraic if its opposite lattice is algebraic.

- $x \in C$ is *compact* if whenever $x \leq \bigvee S$ there exists a finite $S' \subseteq S$ with $x \leq \bigvee S'$.
- C is algebraic if for every x ∈ C there exists a set S ⊆ C of compact elements with x = V S.
- *C* is *dually algebraic* if its opposite lattice is algebraic.
- *C* is *doubly algebraic* if it is both algebraic and dually algebraic.

Let C is a complete lattice. We say:

- $x \in C$ is *compact* if whenever $x \leq \bigvee S$ there exists a finite $S' \subseteq S$ with $x \leq \bigvee S'$.
- C is algebraic if for every x ∈ C there exists a set S ⊆ C of compact elements with x = V S.
- C is dually algebraic if its opposite lattice is algebraic.
- *C* is *doubly algebraic* if it is both algebraic and dually algebraic.

Every doubly algebraic distributive lattice C is determined by its poset $M^{\infty}(C)$ of completely meet-irreducible elements.

Canonical extensions

L is compact in C if whenever S, T ⊆ L and ∧ S ≤ ∨ T in C, there exists finite subsets S' ⊆ S and T' ⊆ T such that ∧ S' ≤ ∨ T'.

- L is compact in C if whenever S, T ⊆ L and ∧ S ≤ ∨ T in C, there exists finite subsets S' ⊆ S and T' ⊆ T such that ∧ S' ≤ ∨ T'.
- L is separating in C if whenever x, y ∈ C with x ≤ y, there exists a ∈ L with x ≤ a and y ≤ a.

- L is compact in C if whenever S, T ⊆ L and ∧ S ≤ ∨ T in C, there exists finite subsets S' ⊆ S and T' ⊆ T such that ∧ S' ≤ ∨ T'.
- L is separating in C if whenever x, y ∈ C with x ≤ y, there exists a ∈ L with x ≤ a and y ≤ a.

Definition:

The canonical extension of a bounded distributive lattice L is a doubly algebraic lattice L^{δ} that contains L as a compact, separating sublattice.

$\mathbb{Q}\cap [0,1]$

Priestley duality and canonical extensions

$$\hat{a} = \{x \in M^{\infty}(L^{\delta}) : a \not\leq x\}.$$

$$\hat{a} = \{x \in M^{\infty}(L^{\delta}) : a \not\leq x\}.$$

The sets $\hat{a}, (\hat{a})^{c}$ form a subbase for a topology τ on $M^{\infty}(L^{\delta})$.

$$\hat{a} = \{x \in M^{\infty}(L^{\delta}) : a \not\leq x\}.$$

The sets $\hat{a}, (\hat{a})^{c}$ form a subbase for a topology τ on $M^{\infty}(L^{\delta})$.

The structure $(M^{\infty}(L^{\delta}), \leq, \tau)$ is a Priestley space

$$\hat{a} = \{x \in M^{\infty}(L^{\delta}) : a \not\leq x\}.$$

The sets $\hat{a}, (\hat{a})^{c}$ form a subbase for a topology τ on $M^{\infty}(L^{\delta})$. The structure $(M^{\infty}(L^{\delta}), \leq, \tau)$ is a Priestley space And is isomorphic to the (usual) Priestley dual of L.

$$\hat{a} = \{x \in M^{\infty}(L^{\delta}) : a \not\leq x\}.$$

The sets $\hat{a}, (\hat{a})^{c}$ form a subbase for a topology τ on $M^{\infty}(L^{\delta})$. The structure $(M^{\infty}(L^{\delta}), \leq, \tau)$ is a Priestley space And is isomorphic to the (usual) Priestley dual of L.

And here the fact that the points in the dual space are idealized meet-irreducibles is much more explicit.

Just like you can work with filters instead of ideals, you could work with set of completely join-irreducibles $J^{\infty}(L^{\delta})$ of the canonical extension.

Just like you can work with filters instead of ideals, you could work with set of completely join-irreducibles $J^{\infty}(L^{\delta})$ of the canonical extension.

This is because there is a poset isomorphism $\kappa \colon J^\infty(\mathcal{C}) \to M^\infty(\mathcal{C})$ given by

Just like you can work with filters instead of ideals, you could work with set of completely join-irreducibles $J^{\infty}(L^{\delta})$ of the canonical extension.

This is because there is a poset isomorphism $\kappa \colon J^\infty(\mathcal{C}) \to M^\infty(\mathcal{C})$ given by

$$\kappa(a) = \bigvee (A - \uparrow a).$$

Just like you can work with filters instead of ideals, you could work with set of completely join-irreducibles $J^{\infty}(L^{\delta})$ of the canonical extension.

This is because there is a poset isomorphism $\kappa \colon J^{\infty}(C) \to M^{\infty}(C)$ given by

$$\kappa(a) = \bigvee (A - \uparrow a).$$

In fact, you can work with a generic dual space X of L and present it in many ways using the obvious Priestley space isomorphisms...

Just like you can work with filters instead of ideals, you could work with set of completely join-irreducibles $J^{\infty}(L^{\delta})$ of the canonical extension.

This is because there is a poset isomorphism $\kappa \colon J^\infty(\mathcal{C}) \to M^\infty(\mathcal{C})$ given by

$$\kappa(a) = \bigvee (A - \uparrow a).$$

In fact, you can work with a generic dual space X of L and present it in many ways using the obvious Priestley space isomorphisms...

$$\begin{split} I_{(-)} \colon X &\to \mathrm{PrIdl}(L), \\ F_{(-)} \colon X &\to \mathrm{PrFil}(L), \\ \mu \colon X &\to M^{\infty}(L^{\delta}), \\ \nu \colon X &\to J^{\infty}(L^{\delta}), \end{split}$$

Connecting the different presentations

Connecting the different presentations

These isomorphisms are connected via

$$I_{x} = L \cap \downarrow \mu(x),$$
$$\mu(x) = \bigvee I_{x},$$
$$F_{x} = L \cap \uparrow \nu(x),$$
$$\nu(x) = \bigwedge F_{x},$$
$$\kappa(\nu(x)) = \mu(x),$$
$$F_{x}^{c} = I_{x}.$$

Open and closed elements

A big advantage of the canonical extension: It is quite easy to see how to extend additional operations to duals because L is 'dense' in L^{δ} . A big advantage of the canonical extension: It is quite easy to see how to extend additional operations to duals because L is 'dense' in L^{δ} .

We call:
A big advantage of the canonical extension: It is quite easy to see how to extend additional operations to duals because L is 'dense' in L^{δ} .

We call:

• the \bigwedge -closure of L in L^{δ} the *closed* elements and denote them by K(L)

A big advantage of the canonical extension: It is quite easy to see how to extend additional operations to duals because L is 'dense' in L^{δ} .

We call:

- the \bigwedge -closure of L in L^{δ} the *closed* elements and denote them by K(L), and
- the \bigvee -closure of L in L^{δ} the *open* elements and denote them by O(L).

Extending additional operations

First, we extend unary maps $f\colon A\to B$ to maps between the canonical extensions $A^\delta\to B^\delta$

First, we extend unary maps $f: A \to B$ to maps between the canonical extensions $A^{\delta} \to B^{\delta}$

This extends unary operations (maps $f: A \rightarrow A$).

First, we extend unary maps $f: A \to B$ to maps between the canonical extensions $A^{\delta} \to B^{\delta}$

This extends unary operations (maps $f: A \rightarrow A$).

Operations of higher arity can be extended by using the fact that $(A \times B)^{\delta} \cong A^{\delta} \times B^{\delta}$.

There are two natural ways to extend a map $f: A \rightarrow B$ to the canonical extension.

There are two natural ways to extend a map $f: A \rightarrow B$ to the canonical extension.

For $p \in K(A^{\delta})$ and $u \in O(A^{\delta})$, set: $[p, u] = \{y \in A^{\delta} : p \le y \le u\}.$

There are two natural ways to extend a map $f: A \rightarrow B$ to the canonical extension.

For $p \in K(A^{\delta})$ and $u \in O(A^{\delta})$, set: $[p, u] = \{y \in A^{\delta} : p \le y \le u\}.$

Further:

There are two natural ways to extend a map $f: A \rightarrow B$ to the canonical extension.

For
$$p\in \mathcal{K}(\mathcal{A}^{\delta})$$
 and $u\in O(\mathcal{A}^{\delta})$, set: $[p,u]=\{y\in \mathcal{A}^{\delta}:p\leq y\leq u\}.$

Further:

$$f^{\sigma}(x) = \bigvee \left\{ \bigwedge f([p, u] \cap A) : p \in \mathcal{K}(A^{\delta}), u \in O(A^{\delta}), \text{ and } p \leq x \leq u
ight\}$$

There are two natural ways to extend a map $f: A \rightarrow B$ to the canonical extension.

For
$$p \in K(A^{\delta})$$
 and $u \in O(A^{\delta})$, set:
 $[p, u] = \{y \in A^{\delta} : p \le y \le u\}.$

$$f^{\sigma}(x) = \bigvee \left\{ \bigwedge f([p, u] \cap A) : p \in \mathcal{K}(A^{\delta}), u \in O(A^{\delta}), \text{ and } p \leq x \leq u
ight\}$$

and

$$f^{\pi}(x) = \bigwedge \left\{ \bigvee f([p,u] \cap A) : p \in K(A^{\delta}), u \in O(A^{\delta}), \text{ and } p \leq x \leq u
ight\}.$$

But $f^{\sigma} \neq f^{\pi}$ except in very special cases.

But $f^{\sigma} \neq f^{\pi}$ except in very special cases.

When $f^{\sigma} = f^{\pi}$ we say that f is *smooth* (and write f^{δ}).

But $f^{\sigma} \neq f^{\pi}$ except in very special cases.

When $f^{\sigma} = f^{\pi}$ we say that f is *smooth* (and write f^{δ}).

The fact that the non-lattice operations of MV-algebras aren't smooth is fundamental to the difficulty of MV.

The duals of homomorphisms

 $I \mapsto f^{-1}[I].$

 $I \mapsto f^{-1}[I].$

If $f: A \rightarrow B$ is a lattice homomorphism, then f is smooth.

 $I \mapsto f^{-1}[I].$

If $f: A \rightarrow B$ is a lattice homomorphism, then f is smooth.

And there exists a unique map $f^{\delta \sharp} \colon B^{\delta} \to A^{\delta}$ such that

$$I \mapsto f^{-1}[I].$$

If $f: A \rightarrow B$ is a lattice homomorphism, then f is smooth.

And there exists a unique map $f^{\delta \sharp} \colon B^{\delta} \to A^{\delta}$ such that

$$f^{\delta}(x) \leq y \iff x \leq f^{\delta \sharp}(y).$$

$$I \mapsto f^{-1}[I].$$

If $f: A \rightarrow B$ is a lattice homomorphism, then f is smooth.

And there exists a unique map $f^{\delta \sharp} \colon B^{\delta} \to A^{\delta}$ such that

$$f^{\delta}(x) \leq y \iff x \leq f^{\delta \sharp}(y).$$

We call the restriction of $f^{\delta \sharp}$ to $M^{\infty}(B^{\delta})$ the *dual* of *f*.

Part II: MV-algebras, \ominus -algebras, and the duality

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

($A, \oplus, 0$ **)** is a commutative monoid,

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

($A, \oplus, 0$ **)** is a commutative monoid,

2
$$\neg \neg x = x$$
 for all $x \in A$,

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

($A, \oplus, 0$ **)** is a commutative monoid,

$$2 \neg \neg x = x for all x \in A,$$

3)
$$x \oplus 1 = 1$$
 for all $x \in A$, where $1 := \neg 0$, and

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

• $(A, \oplus, 0)$ is a commutative monoid,

$$2 \neg \neg x = x for all x \in A,$$

3)
$$x \oplus 1 = 1$$
 for all $x \in A$, where $1 := \neg 0$, and

Definition:

An *MV-algebra* is an algebraic structure $(A, \oplus, 0, \neg)$ such that:

• $(A, \oplus, 0)$ is a commutative monoid,

2
$$\neg \neg x = x$$
 for all $x \in A$,

3
$$x \oplus 1 = 1$$
 for all $x \in A$, where $1 := \neg 0$, and

The last condition is often called (MV6).

The consequences of (MV6)

(MV6) gives MV-algebras most of their nice algebraic properties.

(MV6) gives MV-algebras most of their nice algebraic properties. In particular, the terms

$$x \lor y := \neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$$

define the join operation \lor of a lattice, so MV-algebras are lattice-ordered.
(MV6) gives MV-algebras most of their nice algebraic properties. In particular, the terms

$$x \lor y := \neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$$

define the join operation \lor of a lattice, so MV-algebras are lattice-ordered.

If we set $x \ominus y = \neg(\neg x \oplus y)$, we also obtain an operation that satisfies the (co-)residuation law

$$x \leq y \oplus z \iff x \oplus z \leq y.$$

(MV6) and duality theory

MV-algebras have proven notoriously resistant to a useful duality-theoretic treatment.

MV-algebras have proven notoriously resistant to a useful duality-theoretic treatment.

Gehrke and Priestley showed that the characteristic identity (MV6) is not canonical.

MV-algebras have proven notoriously resistant to a useful duality-theoretic treatment.

Gehrke and Priestley showed that the characteristic identity (MV6) is not canonical.

This fact is behind a lot of the complexity. For example, Cabrer and Cignoli gave a duality for many algebras in the vicinity but could only find complicated second-order conditions that dualize (MV6).

\ominus -algebras

We will actually work with algebras that model the $\mathsf{MV}\ominus$ without $\oplus.$

\ominus -algebras

We will actually work with algebras that model the MV \ominus without $\oplus.$ But this generalizes to other order types.

⊖-algebras

We will actually work with algebras that model the MV \ominus without $\oplus.$ But this generalizes to other order types.

Definition:

A \ominus -algebra, (A, \ominus) , is a bounded distributive lattice A equipped with a binary operation \ominus satisfying:

• For all $a, b, c \in A$,

\ominus -algebras

We will actually work with algebras that model the MV \ominus without $\oplus.$ But this generalizes to other order types.

Definition:

A \ominus -algebra, (A, \ominus) , is a bounded distributive lattice A equipped with a binary operation \ominus satisfying:

• For all
$$a, b, c \in A$$
,

$$(a \land b) \ominus c = (a \ominus c) \land (b \ominus c)$$
$$(a \lor b) \ominus c = (a \ominus c) \lor (b \ominus c)$$
$$a \ominus (b \land c) = (a \ominus b) \lor (a \ominus c)$$
$$a \ominus (b \lor c) = (a \ominus b) \land (a \ominus c)$$

⊖-algebras

We will actually work with algebras that model the MV \ominus without $\oplus.$ But this generalizes to other order types.

Definition:

A \ominus -algebra, (A, \ominus) , is a bounded distributive lattice A equipped with a binary operation \ominus satisfying:

• For all $a, b, c \in A$,

$$(a \land b) \ominus c = (a \ominus c) \land (b \ominus c)$$
$$(a \lor b) \ominus c = (a \ominus c) \lor (b \ominus c)$$
$$a \ominus (b \land c) = (a \ominus b) \lor (a \ominus c)$$
$$a \ominus (b \lor c) = (a \ominus b) \land (a \ominus c)$$

2 For all $a \in A$ we have $0 \ominus a = 0$ and $a \ominus 1 = 0$.

⊖-algebras

We will actually work with algebras that model the MV \ominus without $\oplus.$ But this generalizes to other order types.

Definition:

A \ominus -algebra, (A, \ominus) , is a bounded distributive lattice A equipped with a binary operation \ominus satisfying:

• For all $a, b, c \in A$,

$$(a \land b) \ominus c = (a \ominus c) \land (b \ominus c)$$
$$(a \lor b) \ominus c = (a \ominus c) \lor (b \ominus c)$$
$$a \ominus (b \land c) = (a \ominus b) \lor (a \ominus c)$$
$$a \ominus (b \lor c) = (a \ominus b) \land (a \ominus c)$$

② For all *a* ∈ *A* we have 0 ⊖ *a* = 0 and *a* ⊖ 1 = 0.
③ For all *a* ∈ *A*, *a* ⊖ 0 = *a*.

Strategy: Develop a duality for \ominus -algebras

Success depends on being able to describe the $\ominus\mbox{-algebras}$ coming from MV-algebras.

Success depends on being able to describe the $\ominus\mbox{-algebras}$ coming from MV-algebras.

For an \ominus -algebra (A, \ominus) , we set $\neg a := 1 \ominus a$ and $a \oplus b := \neg(\neg a \ominus b)$.

Success depends on being able to describe the $\ominus\mbox{-algebras}$ coming from MV-algebras.

For an \ominus -algebra (A, \ominus) , we set $\neg a := 1 \ominus a$ and $a \oplus b := \neg(\neg a \ominus b)$.

Proposition (F.):

Let $\mathbf{A} = (A, \lor, \land, \ominus, \neg, 0, 1)$ be a \ominus -algebra. Then with \oplus and \neg defined as above, $(A, \oplus, 0, \neg)$ is an MV-algebra iff for all $a, b, c \in A$:

Success depends on being able to describe the $\ominus\mbox{-algebras}$ coming from MV-algebras.

For an \ominus -algebra (A, \ominus) , we set $\neg a := 1 \ominus a$ and $a \oplus b := \neg(\neg a \ominus b)$.

Proposition (F.):

Let $\mathbf{A} = (A, \lor, \land, \ominus, \neg, 0, 1)$ be a \ominus -algebra. Then with \oplus and \neg defined as above, $(A, \oplus, 0, \neg)$ is an MV-algebra iff for all $a, b, c \in A$: (i) $(a \ominus b) \ominus c = a \ominus \neg (\neg b \ominus c)$,

Success depends on being able to describe the $\ominus\mbox{-algebras}$ coming from MV-algebras.

For an \ominus -algebra (A, \ominus) , we set $\neg a := 1 \ominus a$ and $a \oplus b := \neg(\neg a \ominus b)$.

Proposition (F.):

Let $\mathbf{A} = (A, \lor, \land, \ominus, \neg, 0, 1)$ be a \ominus -algebra. Then with \oplus and \neg defined as above, $(A, \oplus, 0, \neg)$ is an MV-algebra iff for all $a, b, c \in A$: (i) $(a \ominus b) \ominus c = a \ominus \neg (\neg b \ominus c)$, (ii) $a \land b = a \ominus (a \ominus b)$.

How do we get a duality for \ominus -algebras?

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

We also look at the σ - and π -extensions of \ominus and extract two partial operations on the Priestley dual:

 \ominus

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

How do we get a duality for \ominus -algebras?

We 'split' the operation \ominus into three pieces.

Convenient to consider the operation \neg defined by $\neg a = 1 \ominus a$. We can view this as a lattice homomorphism $A^{op} \rightarrow A$, so it has a dual map that we denote by *i*.

The π -extension of \ominus

To follow the process explicitly:

To follow the process explicitly:

For each completely join-irreducible $j \in A^{\delta}$, the map

 $u\mapsto u\ominus^{\pi}j$

has range $[0, \neg^{\delta} j]$.

To follow the process explicitly:

For each completely join-irreducible $j \in A^{\delta}$, the map

 $u\mapsto u\ominus^{\pi}j$

has range $[0, \neg^{\delta} j]$.

And we may show that this map has an adjoint $\ominus^{\pi b}$ determined by the property that for all $j \in J^{\infty}(A^{\delta})$, $v \in A^{\delta}$, $u \in [0, \neg^{\delta} j]$,

$$u \leq v \ominus^{\pi} j \iff u \ominus^{\pi\flat} j \leq v.$$

The σ -extension of \ominus

Similar remarks show that \ominus^{σ} has an adjoint determined for all $u, v \in A^{\delta}$ and $m \in M^{\infty}(A^{\delta})$ by

$$u\ominus^{\sigma} m\leq v\iff u\leq v\ominus^{\sigma\sharp} m.$$

Similar remarks show that \ominus^{σ} has an adjoint determined for all $u, v \in A^{\delta}$ and $m \in M^{\infty}(A^{\delta})$ by

$$u\ominus^{\sigma} m \leq v \iff u \leq v\ominus^{\sigma\sharp} m.$$

These maps can be restricted to partial binary operations on the dual of A, i.e., on $M^{\infty}(A^{\delta})$ (Fussner–Palmigiano, Gehrke–Priestley).
Similar remarks show that \ominus^{σ} has an adjoint determined for all $u, v \in A^{\delta}$ and $m \in M^{\infty}(A^{\delta})$ by

$$u\ominus^{\sigma} m \leq v \iff u \leq v\ominus^{\sigma\sharp} m.$$

These maps can be restricted to partial binary operations on the dual of A, i.e., on $M^{\infty}(A^{\delta})$ (Fussner–Palmigiano, Gehrke–Priestley).

 $\ominus^{\sigma\sharp}$ manifests as a partial operation that we call +, and $\ominus^{\pi\flat}$ as an operation that we call \star .

Definition:

Definition:

A \ominus -space is a Priestley space X expanded by operations i, +, \star , where:

• $i: X \to X$ is a continuous order-reversing function,

Definition:

- $i: X \to X$ is a continuous order-reversing function,

Definition:

- $i: X \to X$ is a continuous order-reversing function,
- ★ is a lower continuous partial function with dom(★) = {(x, y) ∈ $X^2 | i(x) \leq y$ },

Definition:

- $i: X \to X$ is a continuous order-reversing function,
- ★ is a lower continuous partial function with dom(★) = {(x, y) ∈ $X^2 | i(x) \leq y$ },
- \bullet + and \star are order preserving in both coordinates,

Definition:

- $i: X \to X$ is a continuous order-reversing function,
- \star is a lower continuous partial function with dom(\star) = {(x, y) ∈ X² | $i(x) \leq y$ },
- \bullet + and \star are order preserving in both coordinates,
- **⑤** for any (x, y) ∈ dom(*),

$$x \star y = \inf\{x + w \mid (x, w) \in \operatorname{dom}(+) \text{ and } w \nleq y\}$$

Definition:

A \ominus -space is a Priestley space X expanded by operations i, +, \star , where:

- $i: X \to X$ is a continuous order-reversing function,
- + is an upper continuous partial function with $dom(+) = \{(x, y) \in X^2 \mid y \le i(x)\},\$
- \star is a lower continuous partial function with dom(\star) = {(x, y) ∈ X² | $i(x) \not\leq y$ },
- \bullet + and \star are order preserving in both coordinates,
- **⑤** for any (x, y) ∈ dom (\star) ,

$$x \star y = \inf\{x + w \mid (x, w) \in \operatorname{dom}(+) \text{ and } w \nleq y\}$$

 for any x ∈ X, the image of the left translation y → x + y is a totally-ordered subset of ↑x, and moreover this function has an upper adjoint.

Morphisms

Definition:

A morphism from a \ominus -space $(X_1, i_1, +_1, \star_1)$ to a \ominus -space $(X_2, i_2, +_2, \star_2)$ is a continuous isotone function $f: X_1 \to X_2$ such that

Definition:

A morphism from a \ominus -space $(X_1, i_1, +_1, \star_1)$ to a \ominus -space $(X_2, i_2, +_2, \star_2)$ is a continuous isotone function $f: X_1 \to X_2$ such that

• for all $x \in X_1$, $f(i_1(x)) = i_2(f(x))$,

Definition:

A morphism from a \ominus -space $(X_1, i_1, +_1, \star_1)$ to a \ominus -space $(X_2, i_2, +_2, \star_2)$ is a continuous isotone function $f: X_1 \to X_2$ such that

• for all $x \in X_1$, $f(i_1(x)) = i_2(f(x))$,

② for all
$$x, y \in X_1$$
, if $(x, y) \in dom(+_1)$, then $f(x) +_2 f(y) \le f(x +_1 y)$,

Definition:

A morphism from a \ominus -space $(X_1, i_1, +_1, \star_1)$ to a \ominus -space $(X_2, i_2, +_2, \star_2)$ is a continuous isotone function $f: X_1 \to X_2$ such that

• for all $x \in X_1$, $f(i_1(x)) = i_2(f(x))$,

② for all
$$x, y \in X_1$$
, if $(x, y) \in dom(+_1)$, then $f(x) +_2 f(y) \le f(x +_1 y)$,

• for all $x \in X_1$ and $z \in X_2$, if $(f(x), z) \in \text{dom}(+_2)$, then there exists $w' \in X_1$ such that $(x, w') \in \text{dom}(+_1)$, $z \leq f(w')$, and $f(x +_1 w') = f(x) +_2 z$.

Theorem (F., Gehrke, van Gool, Marra):

The category of \ominus -algebras is dually equivalent to the category of \ominus -spaces.

Theorem (F., Gehrke, van Gool, Marra):

The category of \ominus -algebras is dually equivalent to the category of \ominus -spaces.

This forms the basis of our duality for MV-algebras.

Theorem (F., Gehrke, van Gool, Marra):

The category of \ominus -algebras is dually equivalent to the category of \ominus -spaces.

This forms the basis of our duality for MV-algebras.

In particular, we specialize to those $\ominus\mbox{-algebras}$ that give MV-algebras.

Theorem (F., Gehrke, van Gool, Marra):

The category of \ominus -algebras is dually equivalent to the category of \ominus -spaces.

This forms the basis of our duality for MV-algebras.

In particular, we specialize to those $\ominus\mbox{-algebras}$ that give MV-algebras. And this class can be transparently described on the duals.

(i)
$$i(i(x)) = x$$
.

(i)
$$i(i(x)) = x$$
.
(ii) $x + y = y + x$.

(i)
$$i(i(x)) = x$$
.
(ii) $x + y = y + x$.
(iii) $x + (y + z) = (x + y) + z$.

(i)
$$i(i(x)) = x$$
.
(ii) $x + y = y + x$.
(iii) $x + (y + z) = (x + y) + z$.
(iv) $i(x) + y \le i(z)$ if and only if $z + y \le x$.

(i)
$$i(i(x)) = x$$
.
(ii) $x + y = y + x$.
(iii) $x + (y + z) = (x + y) + z$.
(iv) $i(x) + y \le i(z)$ if and only if $z + y \le x$.
(v) If there exists $w \le y$ such that $z + w \le x \star y$, then $z \le x$.

Remarks on the duality

In particular, the troublesome axiom (MV6) is dualized by the condition that for all $(x, y) \in dom(\star)$,

In particular, the troublesome axiom (MV6) is dualized by the condition that for all $(x, y) \in dom(\star)$,

$$w \not\leq y \text{ and } z + w \leq x \star y \implies z \leq x.$$

In particular, the troublesome axiom (MV6) is dualized by the condition that for all $(x, y) \in dom(\star)$,

$$w \nleq y \text{ and } z + w \leq x \star y \implies z \leq x.$$

This axiom did not even have a first-order equivalent in previously-known dualities, but in the language of these two partial operations it is transparent.

An example: The Chang algebra

Consider the Chang MV-algebra as the rotation of the cancellative hoop $\{0, -1, -2, \dots\}$.

The following describes + and \star when defined:

$$\downarrow (0, a) + \downarrow (0, b) = \downarrow (0, b) + \downarrow (0, a) = \downarrow (0, a + b)$$

$$C + \downarrow (0, a) = \downarrow (0, a) + C = C, \text{ and}$$

$$(0, a) + \downarrow (1, b) = \downarrow (1, b) + \downarrow (0, a) = \downarrow (1, a - b) \text{ for } a < b,$$

$$\downarrow (0, a) \star \downarrow (0, b) = \downarrow (0, b) \star \downarrow (0, a) = \downarrow (0, a + b - 1),$$

$$\downarrow (0, a) \star C = C \star \downarrow (0, a) = C,$$

$$\downarrow (0, a) \star \downarrow (1, b) = \downarrow (1, a - b - 1) \text{ if } b < a, \text{ and}$$

$$\downarrow (1, a) \star \downarrow (0, b) = \downarrow (1, a - b + 1) \text{ if } b < a,$$

The duals of free MV-algebras

Let $F_{MV}(1)$ be the free MV-algebra on one generator
Let $F_{MV}(1)$ be the free MV-algebra on one generator, i.e., the subalgebra of $[0, 1]^{[0,1]}$ whose members are piecewise linear with integer coefficients.

Let $F_{MV}(1)$ be the free MV-algebra on one generator, i.e., the subalgebra of $[0, 1]^{[0,1]}$ whose members are piecewise linear with integer coefficients.

The Chang algebra is the quotient of $F_{MV}(1)$ by the prime MV-ideal consisting of all $f \in F_{MV}(1)$ such that $f \upharpoonright_{[0,\epsilon)} = 0$ for some $\epsilon > 0$

Let $F_{MV}(1)$ be the free MV-algebra on one generator, i.e., the subalgebra of $[0, 1]^{[0,1]}$ whose members are piecewise linear with integer coefficients.

The Chang algebra is the quotient of $F_{MV}(1)$ by the prime MV-ideal consisting of all $f \in F_{MV}(1)$ such that $f \upharpoonright_{[0,\epsilon)} = 0$ for some $\epsilon > 0$

One could similarly compute the duals of quotients at other prime MV-ideals.

The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of $F_{MV}(1)$ (Gehrke–van Gool–Marra 2014) over its space of prime MV-ideals.

These quotients are the stalks in the sheaf representation of $F_{MV}(1)$ (Gehrke–van Gool–Marra 2014) over its space of prime MV-ideals.

So examples like the above give you the dual of $F_{MV}(1)$

These quotients are the stalks in the sheaf representation of $F_{MV}(1)$ (Gehrke–van Gool–Marra 2014) over its space of prime MV-ideals.

So examples like the above give you the dual of $F_{MV}(1)$ (and even $F_{MV}(n)$).

Thank you!

Preprint at: arXiv 2002.12715