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Canonical extensions of bounded distributive lattices.
Priestley duality via the canonical extension.

©O-algebras.

Priestley duality for ©-algebras by their canonical extensions.

Splitting of the operation © on duals to obtain a more
expressive environment.
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Definition:
A Priestley space is an ordered topological space (X, <, 7) such
that:

Q@ (X,7) is compact, and

@ for every x,y € X with x £ y, there exists a clopen down-set
UC X suchthat x £ U, y € U.

Generic example: If L = (L, A,V,0,1) is a bounded distributive
lattice, then the set of prime ideals X(L) of L is a Priestley space
ordered by inclusion.The topology is generated by the clopen
subbasis {4, (3)° : a € L}, where
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The correspondence L — X(L) may be lifted to (one functor of)
an equivalence of categories between bounded distributive lattices
and Priestley spaces (with continuous isotone maps).

Maps h: L1 — Ly are sent to continuous isotone maps
X(Ly) — X(L1) given by h+— h=1[-].

The reverse functor takes a Priestley space to its bounded
distributive lattice of clopen down-sets.

Residuated operations - on BDLs can be captured by ternary
relations that amount to the downward-closure (in X (L)) of their
complex products:

R(x,y,z) <= xCl{a-b:ac€y,bez}.
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One way of cashing out Priestley duality: It's about meet/join
irreducible elements.

Recall:

Definition:

@ m is called meet-irreducible if m = x A y implies m = x or
m=y.

e mis called completely meet-irreducible if m = /\ S implies
meS.

@ j is called join-irreducible if j = x \V y implies j = x or j = y.

e j is called completely join-irreducible if j =\/ S implies j € S.
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Duality and irreducible elements

Key antecedent of Priestley duality (Birkhoff 1937): Each finite
distributive lattice is determined by its poset of meet-irreducibles
(likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not
have meet/join irreducibles at all...

But some infinite distributive lattices are determined by their
posets of meet-irreducibles, namely the doubly algebraic ones.

Canonical extensions are a view of Priestley duality that exploits
this.
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Doubly algebraic distributive lattices

Let C is a complete lattice. We say:
@ x € C is compact if whenever x <\/ S there exists a finite
S'CSwithx<VS.
e C is algebraic if for every x € C there exists a set S C C of
compact elements with x =/ S.
o C is dually algebraic if its opposite lattice is algebraic.

e C is doubly algebraic if it is both algebraic and dually
algebraic.

Every doubly algebraic distributive lattice C is determined by its
poset M>°(C) of completely meet-irreducible elements.
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Canonical extensions

Let L be a bounded distributive lattice and C be a doubly algebraic
distributive lattice with L be a sublattice of C. We say:
e Lis compactin C if whenever S, T CLand AS<V T inC,
there exists finite subsets S’ C S and T’ C T such that
ANS' <V T.
o L is separating in C if whenever x,y € C with x £ y, there
exists a € L with x £ aand y < a.

Definition:

The canonical extension of a bounded distributive lattice L is a
doubly algebraic lattice L? that contains L as a compact,
separating sublattice.
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An example of the canonical extension
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Priestley duality and canonical extensions

Now if L is a bounded distributive lattice, then for any a € L we
define
d={xec M>(L%:a<x}.

The sets 4, (4)° form a subbase for a topology 7 on M>(L?).
The structure (M>(L%), <, 7) is a Priestley space
And is isomorphic to the (usual) Priestley dual of L.

And here the fact that the points in the dual space are idealized
meet-irreducibles is much more explicit.
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Working with completely join-irreducibles

Just like you can work with filters instead of ideals, you could work
with set of completely join-irreducibles J*°(L%) of the canonical
extension.

This is because there is a poset isomorphism x: J>°(C) — M*>(C)
given by

k(a) = \/(A-1a).

In fact, you can work with a generic dual space X of L and present
it in many ways using the obvious Priestley space isomorphisms...

Iy X — Prldl(L),
F(,): X = Pl"Fﬂ(L),
w: X — M>®(L°),
v: X — J=(L%),
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Connecting the different presentations

These isomorphisms are connected via
L=1LnN i,u(x),
M(X) = \/ Ix,
F = LN tr(x),
v(x) = /\ Fx,

K(v(x)) = p(x),
FS = .
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A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’

in L9,
We call:

o the A-closure of L in L’ the closed elements and denote them
by K(L), and

o the \/-closure of L in L the open elements and denote them
by O(L).
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Extending additional operations

We extend operations to the canonical extension by
‘approximating’ with closed and open elements.

First, we extend unary maps f: A — B to maps between the
canonical extensions A° — B9

This extends unary operations (maps f: A — A).

Operations of higher arity can be extended by using the fact that
(Ax B)Y) = AS x BY.
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The o- and m-extensions

There are two natural ways to extend a map f: A — B to the
canonical extension.

For p € K(A%) and u € O(A%), set:
[pul={yeA :p<y<u}.
Further:
F7(x) = \/ {/\ F([p,u] NA) : p € K(A%),u € O(A%), and p < x < u}
and

F(x) = A\ {\/ F([p,u] NA) : p € K(A%),u € O(A%), and p < x < u} .
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Some properties of the o- and 7-extensions

Note that we always have f? < 7.
But 7 # f™ except in very special cases.
When f? = ™ we say that f is smooth (and write f°).

The fact that the non-lattice operations of MV-algebras aren't
smooth is fundamental to the difficulty of MV.
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The duals of homomorphisms

Dual of a map f usually obtained by

[ 1.

If f: A— B is a lattice homomorphism, then f is smooth.

And there exists a unique map f%: B® — A% such that
Fx) <y < x < FA(y).

We call the restriction of % to M>(B°) the dual of f.

18 /36



Part Il:
MV-algebras, ©-algebras, and the duality

19/36



MV-algebras

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction.

20 /36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:
An MV-algebra is an algebraic structure (A, ®,0, ) such that:

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:
An MV-algebra is an algebraic structure (A, ®,0, ) such that:

Q (A,®,0) is a commutative monoid,

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:

An MV-algebra is an algebraic structure (A, ®,0, ) such that:
Q (A,®,0) is a commutative monoid,
Q@ ——x=xforall x € A,

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:

An MV-algebra is an algebraic structure (A, ®,0, ) such that:
Q (A,®,0) is a commutative monoid,
Q@ ——x=xforall x € A,
Q@ x®1=1forall x e A where 1 := =0, and

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:
An MV-algebra is an algebraic structure (A, ®,0, ) such that:

Q (A,®,0) is a commutative monoid,

Q@ ——x=xforall x € A,
Q@ x®d1=1forall x e A, where 1 := =0, and
QO (xdy)dy=—(-ydx)®x for all x,y € A.

20/36



MV-algebras

Instead of the residuated lattice signature, it's convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:
An MV-algebra is an algebraic structure (A, ®,0, ) such that:

Q (A,®,0) is a commutative monoid,

Q@ ——x=xforall x € A,
Q@ x®d1=1forall x e A, where 1 := =0, and
QO (xdy)dy=—(-ydx)®x for all x,y € A.

The last condition is often called (MV6).
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The consequences of (MV6)

(MV6) gives MV-algebras most of their nice algebraic properties.

In particular, the terms
xVy:i==(-x@y)dy=-(-y®x)dx

define the join operation V of a lattice, so MV-algebras are
lattice-ordered.

If we set x © y = =(—x @ y), we also obtain an operation that
satisfies the (co-)residuation law

x{ydz < x0z<y.
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(MV6) and duality theory

MV-algebras have proven notoriously resistant to a useful
duality-theoretic treatment.

Gehrke and Priestley showed that the characteristic identity (MV6)
is not canonical.

This fact is behind a lot of the complexity. For example, Cabrer
and Cignoli gave a duality for many algebras in the vicinity but
could only find complicated second-order conditions that dualize
(MV®6).
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We will actually work with algebras that model the MV © without
@. But this generalizes to other order types.
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(aAnb)oc=(acc)A(bSC)
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Q@ Forallac Awehave0©a=0and ac1=0.
@ Forallac A a0 =a.
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defined as above, (A, ®,0,—) is an MV-algebra iff for all
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MV-algebras as ©-algebras

Strategy: Develop a duality for ©-algebras, then specialize to MV.

Success depends on being able to describe the &-algebras coming
from MV-algebras.

For an ©-algebra (A, ©), we set ma:= 16 a and
ad®b:=-(-acb).

Proposition (F.):
Let A= (A,V,A,6,7,0,1) be a &-algebra. Then with & and —
defined as above, (A, ®,0,—) is an MV-algebra iff for all
a,b,c €A
(i) (aeb)ec=ae~(-bsc),
(i) anb=ao (acb).
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How do we get a duality for ©-algebras?
We ‘split’ the operation © into three pieces.

Convenient to consider the operation — defined by —a=16a. We
can view this as a lattice homomorphism A°P — A, so it has a dual
map that we denote by /.

We also look at the o- and m-extensions of © and extract two
partial operations on the Priestley dual:
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The m-extension of ©

To follow the process explicitly:

For each completely join-irreducible j € A%, the map
ur—ue”"j

has range [0, =j].

And we may show that this map has an adjoint &™ determined by
the property that for all j € J*®(A%), v € A%, u € [0,-%]],

U<VETj = uo™j<v.
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The o-extension of ©

Similar remarks show that &7 has an adjoint determined for all
u,v € A and m € M>(A%) by

U m<v < u<vesm
These maps can be restricted to partial binary operations on the

dual of A, i.e., on I\/IOO(A‘;) (Fussner—Palmigiano,
Gehrke—Priestley).

&% manifests as a partial operation that we call +, and ©™ as an
operation that we call x.
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Abstract ©-spaces

A ©-space is a Priestley space X expanded by operations i, +, x,
where:

@ /: X — X is a continuous order-reversing function,

@ -+ is an upper continuous partial function with
dom(+) = {(x,y) € X* | y < i(x)},

© x is a lower continuous partial function with
dom(x) = {(x,y) € X? | i(x) £ y},

@ + and x are order preserving in both coordinates,

@ for any (x,y) € dom(x),

xxy =inf{x+w| (x,w) € dom(+) and w £ y}

@ for any x € X, the image of the left translation y +— x + y is
a totally-ordered subset of 1x, and moreover this function has
an upper adjoint.
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Morphisms

As always, the core of a duality is in its morphisms.

Definition:
A morphism from a &-space (X1, i1, +1,*1) to a &-space
(X2, i, +2,*2) is a continuous isotone function f: X; — X such
that
Q for all x € Xy, f(i(x)) = (f(x)),
Q for all x,y € Xy, if (x,y) € dom(+1), then
f(x) +2 f(y) < f(x+1y),
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Morphisms

As always, the core of a duality is in its morphisms.

Definition:

A morphism from a ©-space (X1, i1, +1,*1) to a ©-space
(X2, i, +2,*2) is a continuous isotone function f: X; — X such
that
@ for all x € X1, f(i1(x)) = i(f(x)),
Q for all x,y € X, if (x,y) € dom(+71), then
F(x) +2 f(y) < f(x+1y),
Q for all x € X; and z € Xy, if (f(x), z) € dom(+2), then there
exists w’ € Xi such that (x,w’) € dom(+;), z < f(w’), and
f(x+1w') = f(x) +2 z

29 /36



Priestley duality for &-algebras

30/36



Priestley duality for &-algebras

Considering the category of ©-spaces with morphisms as defined
above, we obtain...

30/36



Priestley duality for ©-algebras

Considering the category of ©-spaces with morphisms as defined
above, we obtain...

Theorem (F., Gehrke, van Gool, Marra):

The category of &-algebras is dually equivalent to the category of
©-spaces.

30/36



Priestley duality for ©-algebras

Considering the category of ©-spaces with morphisms as defined
above, we obtain...

Theorem (F., Gehrke, van Gool, Marra):

The category of &-algebras is dually equivalent to the category of
©-spaces.

This forms the basis of our duality for MV-algebras.

30/36



Priestley duality for ©-algebras

Considering the category of ©-spaces with morphisms as defined
above, we obtain...

Theorem (F., Gehrke, van Gool, Marra):

The category of &-algebras is dually equivalent to the category of
©-spaces.

This forms the basis of our duality for MV-algebras.

In particular, we specialize to those &-algebras that give
MV-algebras.

30/36



Priestley duality for ©-algebras

Considering the category of ©-spaces with morphisms as defined
above, we obtain...

Theorem (F., Gehrke, van Gool, Marra):

The category of &-algebras is dually equivalent to the category of
©-spaces.

This forms the basis of our duality for MV-algebras.

In particular, we specialize to those &-algebras that give
MV-algebras. And this class can be transparently described on the
duals.
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Theorem (F., Gehrke, van Gool, Marra):
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for all x,y,z € X,
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Specializing to MV-algebras

Theorem (F., Gehrke, van Gool, Marra):

The category of MV-algebras with MV-algebra homomorphisms is
dually equivalent to the category of S-spaces (X, i, +, ) such that
for all x,y,z € X,

I(( )) X,

(y+2) (X+y)+z
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Specializing to MV-algebras

Theorem (F., Gehrke, van Gool, Marra):

The category of MV-algebras with MV-algebra homomorphisms is
dually equivalent to the category of S-spaces (X, i, +, ) such that
for all x,y,z € X,

(i) ii(x )) X.

(i) x

(iii) x (y+2) (X+y)+z
)
)

(iv) i(x)+y <i(z)ifand only if z+ y < x.
(v) If there exists w £ y such that z+ w < x x y, then z < x.
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Remarks on the duality

Note that all of the conditions we obtain when specializing to
MV-algebras are simple first-order properties.

In particular, the troublesome axiom (MV6) is dualized by the
condition that for all (x, y) € dom(x),

weyandz+w<xxy = z<x.

This axiom did not even have a first-order equivalent in
previously-known dualities, but in the language of these two partial
operations it is transparent.
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An example: The Chang algebra

Consider the Chang MV-algebra as the rotation of the cancellative
hoop {0,—1,—-2,...}.

The following describes + and x when defined:
10, 3) + (0, b) = 1(0, b) + (0, 3) = (0,2 + b)
C+1(0,a) =](0,a) +C =C, and
10, a) + }(1,b) = L(1,b) + 1(0,a) = [(1,a — b) for a < b,
U0, 2) % 1(0, b) = (0, b) x 1(0,a) = }(0,a+ b— 1),
1(0,a) xC=C«](0,a) =C,
10,a)x(1,b) = (1,a—b—1)if b< a, and
W1,a) % 1(0,b) = |(1,a— b+ 1) if b < a,
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The duals of free MV-algebras

Let Fpmy (1) be the free MV-algebra on one generator, i.e., the
subalgebra of [0, 1](%1] whose members are piecewise linear with
integer coefficients.

The Chang algebra is the quotient of Fpy(1) by the prime
MV-ideal consisting of all f € Fyy /(1) such that f [fg )= 0 for

some € > 0

One could similarly compute the duals of quotients at other prime
MV-ideals.
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The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of

Fumv(1) (Gehrke—van Gool-Marra 2014) over its space of prime
MV-ideals.

So examples like the above give you the dual of Fp/(1) (and even
F/\/Iv(n)).
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Thank you!

Thank you!

Preprint at: arXiv 2002.12715
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