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Part I:

Priestley duality and canonical extensions
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Priestley spaces

Definition:

A Priestley space is an ordered topological space (X ,≤, τ) such
that:

1 (X , τ) is compact, and

2 for every x , y ∈ X with x 6≤ y , there exists a clopen down-set
U ⊆ X such that x 6∈ U, y ∈ U.

Generic example: If L = (L,∧,∨, 0, 1) is a bounded distributive
lattice, then the set of prime ideals X (L) of L is a Priestley space
ordered by inclusion.The topology is generated by the clopen
subbasis {â, (â)c : a ∈ L}, where

â = {x ∈ X (L) : a ∈ x}.
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Priestley duality

The correspondence L 7→ X (L) may be lifted to (one functor of)
an equivalence of categories between bounded distributive lattices
and Priestley spaces (with continuous isotone maps).

Maps h : L1 → L2 are sent to continuous isotone maps
X (L2)→ X (L1) given by h 7→ h−1[−].

The reverse functor takes a Priestley space to its bounded
distributive lattice of clopen down-sets.

Residuated operations · on BDLs can be captured by ternary
relations that amount to the downward-closure (in X (L)) of their
complex products:

R(x , y , z) ⇐⇒ x ⊆ ↓{a · b : a ∈ y , b ∈ z}.
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Meet- and join-irreducibles

One way of cashing out Priestley duality: It’s about meet/join
irreducible elements.

Recall:

Definition:

m is called meet-irreducible if m = x ∧ y implies m = x or
m = y .

m is called completely meet-irreducible if m =
∧
S implies

m ∈ S .

j is called join-irreducible if j = x ∨ y implies j = x or j = y .

j is called completely join-irreducible if j =
∨

S implies j ∈ S .
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Duality and irreducible elements

Key antecedent of Priestley duality (Birkhoff 1937): Each finite
distributive lattice is determined by its poset of meet-irreducibles
(likewise join-irreducibles).

Not true in the infinite setting. Infinite distributive lattice need not
have meet/join irreducibles at all...

But some infinite distributive lattices are determined by their
posets of meet-irreducibles, namely the doubly algebraic ones.

Canonical extensions are a view of Priestley duality that exploits
this.
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Doubly algebraic distributive lattices

Definition:

Let C is a complete lattice. We say:

x ∈ C is compact if whenever x ≤
∨

S there exists a finite
S ′ ⊆ S with x ≤

∨
S ′.

C is algebraic if for every x ∈ C there exists a set S ⊆ C of
compact elements with x =

∨
S .

C is dually algebraic if its opposite lattice is algebraic.

C is doubly algebraic if it is both algebraic and dually
algebraic.

Every doubly algebraic distributive lattice C is determined by its
poset M∞(C ) of completely meet-irreducible elements.
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Canonical extensions

Let L be a bounded distributive lattice and C be a doubly algebraic
distributive lattice with L be a sublattice of C . We say:

L is compact in C if whenever S ,T ⊆ L and
∧
S ≤

∨
T in C ,

there exists finite subsets S ′ ⊆ S and T ′ ⊆ T such that∧
S ′ ≤

∨
T ′.

L is separating in C if whenever x , y ∈ C with x 6≤ y , there
exists a ∈ L with x 6≤ a and y ≤ a.

Definition:

The canonical extension of a bounded distributive lattice L is a
doubly algebraic lattice Lδ that contains L as a compact,
separating sublattice.
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Priestley duality and canonical extensions

Now if L is a bounded distributive lattice, then for any a ∈ L we
define

â = {x ∈ M∞(Lδ) : a 6≤ x}.

The sets â, (â)c form a subbase for a topology τ on M∞(Lδ).

The structure (M∞(Lδ),≤, τ) is a Priestley space

And is isomorphic to the (usual) Priestley dual of L.

And here the fact that the points in the dual space are idealized
meet-irreducibles is much more explicit.
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The sets â, (â)c form a subbase for a topology τ on M∞(Lδ).

The structure (M∞(Lδ),≤, τ) is a Priestley space

And is isomorphic to the (usual) Priestley dual of L.

And here the fact that the points in the dual space are idealized
meet-irreducibles is much more explicit.

11 / 36



DR
AF
T
2

Working with completely join-irreducibles

Just like you can work with filters instead of ideals, you could work
with set of completely join-irreducibles J∞(Lδ) of the canonical
extension.

This is because there is a poset isomorphism κ : J∞(C )→ M∞(C )
given by

κ(a) =
∨

(A− ↑a).

In fact, you can work with a generic dual space X of L and present
it in many ways using the obvious Priestley space isomorphisms...

I(−) : X → PrIdl(L),

F(−) : X → PrFil(L),

µ : X → M∞(Lδ),

ν : X → J∞(Lδ),
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Connecting the different presentations

These isomorphisms are connected via

Ix = L ∩ ↓µ(x),

µ(x) =
∨

Ix ,

Fx = L ∩ ↑ν(x),

ν(x) =
∧

Fx ,

κ(ν(x)) = µ(x),

F c
x = Ix .
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Open and closed elements

A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’
in Lδ.

We call:

the
∧

-closure of L in Lδ the closed elements and denote them
by K (L), and

the
∨

-closure of L in Lδ the open elements and denote them
by O(L).

14 / 36



DR
AF
T
2

Open and closed elements

A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’
in Lδ.

We call:

the
∧

-closure of L in Lδ the closed elements and denote them
by K (L), and

the
∨

-closure of L in Lδ the open elements and denote them
by O(L).

14 / 36



DR
AF
T
2

Open and closed elements

A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’
in Lδ.

We call:

the
∧

-closure of L in Lδ the closed elements and denote them
by K (L), and

the
∨

-closure of L in Lδ the open elements and denote them
by O(L).

14 / 36



DR
AF
T
2

Open and closed elements

A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’
in Lδ.

We call:

the
∧

-closure of L in Lδ the closed elements and denote them
by K (L)

, and

the
∨

-closure of L in Lδ the open elements and denote them
by O(L).

14 / 36



DR
AF
T
2

Open and closed elements

A big advantage of the canonical extension: It is quite easy to see
how to extend additional operations to duals because L is ‘dense’
in Lδ.

We call:

the
∧

-closure of L in Lδ the closed elements and denote them
by K (L), and

the
∨

-closure of L in Lδ the open elements and denote them
by O(L).

14 / 36



DR
AF
T
2

Extending additional operations

We extend operations to the canonical extension by
‘approximating’ with closed and open elements.

First, we extend unary maps f : A→ B to maps between the
canonical extensions Aδ → Bδ

This extends unary operations (maps f : A→ A).

Operations of higher arity can be extended by using the fact that
(A× B)δ ∼= Aδ × Bδ.
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The σ- and π-extensions

There are two natural ways to extend a map f : A→ B to the
canonical extension.

For p ∈ K (Aδ) and u ∈ O(Aδ), set:

[p, u] = {y ∈ Aδ : p ≤ y ≤ u}.

Further:

f σ(x) =
∨{∧

f ([p, u] ∩ A) : p ∈ K (Aδ), u ∈ O(Aδ), and p ≤ x ≤ u
}

and

f π(x) =
∧{∨

f ([p, u] ∩ A) : p ∈ K (Aδ), u ∈ O(Aδ), and p ≤ x ≤ u
}
.
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Some properties of the σ- and π-extensions

Note that we always have f σ ≤ f π.

But f σ 6= f π except in very special cases.

When f σ = f π we say that f is smooth (and write f δ).

The fact that the non-lattice operations of MV-algebras aren’t
smooth is fundamental to the difficulty of MV.
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The duals of homomorphisms

Dual of a map f usually obtained by

I 7→ f −1[I ].

If f : A→ B is a lattice homomorphism, then f is smooth.

And there exists a unique map f δ] : Bδ → Aδ such that

f δ(x) ≤ y ⇐⇒ x ≤ f δ](y).

We call the restriction of f δ] to M∞(Bδ) the dual of f .
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Part II:

MV-algebras, 	-algebras, and the duality
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MV-algebras

Instead of the residuated lattice signature, it’s convenient for us to
work with the MV-algebra addition/subtraction. In this language...

Definition:

An MV-algebra is an algebraic structure (A,⊕, 0,¬) such that:

1 (A,⊕, 0) is a commutative monoid,

2 ¬¬x = x for all x ∈ A,

3 x ⊕ 1 = 1 for all x ∈ A, where 1 := ¬0, and

4 ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x for all x , y ∈ A.

The last condition is often called (MV6).
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The consequences of (MV6)

(MV6) gives MV-algebras most of their nice algebraic properties.

In particular, the terms

x ∨ y := ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

define the join operation ∨ of a lattice, so MV-algebras are
lattice-ordered.

If we set x 	 y = ¬(¬x ⊕ y), we also obtain an operation that
satisfies the (co-)residuation law

x ≤ y ⊕ z ⇐⇒ x 	 z ≤ y .
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(MV6) and duality theory

MV-algebras have proven notoriously resistant to a useful
duality-theoretic treatment.

Gehrke and Priestley showed that the characteristic identity (MV6)
is not canonical.

This fact is behind a lot of the complexity. For example, Cabrer
and Cignoli gave a duality for many algebras in the vicinity but
could only find complicated second-order conditions that dualize
(MV6).
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	-algebras

We will actually work with algebras that model the MV 	 without
⊕.

But this generalizes to other order types.

Definition:

A 	-algebra, (A,	), is a bounded distributive lattice A equipped
with a binary operation 	 satisfying:

1 For all a, b, c ∈ A,

(a ∧ b)	 c = (a	 c) ∧ (b 	 c)

(a ∨ b)	 c = (a	 c) ∨ (b 	 c)

a	 (b ∧ c) = (a	 b) ∨ (a	 c)

a	 (b ∨ c) = (a	 b) ∧ (a	 c)

2 For all a ∈ A we have 0	 a = 0 and a	 1 = 0.

3 For all a ∈ A, a	 0 = a.
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MV-algebras as 	-algebras

Strategy: Develop a duality for 	-algebras, then specialize to MV.

Success depends on being able to describe the 	-algebras coming
from MV-algebras.

For an 	-algebra (A,	), we set ¬a := 1	 a and
a⊕ b := ¬(¬a	 b).

Proposition (F.):

Let A = (A,∨,∧,	,¬, 0, 1) be a 	-algebra. Then with ⊕ and ¬
defined as above, (A,⊕, 0,¬) is an MV-algebra iff for all
a, b, c ∈ A:

(i) (a	 b)	 c = a	 ¬(¬b 	 c),

(ii) a ∧ b = a	 (a	 b).
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Duality for 	-algebras by canonical extensions

How do we get a duality for 	-algebras?

We ‘split’ the operation 	 into three pieces.

Convenient to consider the operation ¬ defined by ¬a = 1	 a.

We
can view this as a lattice homomorphism Aop → A, so it has a dual
map that we denote by i .

We also look at the σ- and π-extensions of 	 and extract two
partial operations on the Priestley dual:

	

	σ

	π

	σ]

	π[

+

?
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The π-extension of 	

To follow the process explicitly:

For each completely join-irreducible j ∈ Aδ, the map

u 7→ u 	π j

has range [0,¬δj ].

And we may show that this map has an adjoint 	π[ determined by
the property that for all j ∈ J∞(Aδ), v ∈ Aδ, u ∈ [0,¬δj ],

u ≤ v 	π j ⇐⇒ u 	π[ j ≤ v .
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The σ-extension of 	

Similar remarks show that 	σ has an adjoint determined for all
u, v ∈ Aδ and m ∈ M∞(Aδ) by

u 	σ m ≤ v ⇐⇒ u ≤ v 	σ] m.

These maps can be restricted to partial binary operations on the
dual of A, i.e., on M∞(Aδ) (Fussner–Palmigiano,
Gehrke–Priestley).

	σ] manifests as a partial operation that we call +, and 	π[ as an
operation that we call ?.
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Abstract 	-spaces

Definition:

A 	-space is a Priestley space X expanded by operations i , +, ?,
where:

1 i : X → X is a continuous order-reversing function,

2 + is an upper continuous partial function with
dom(+) = {(x , y) ∈ X 2 | y ≤ i(x)},

3 ? is a lower continuous partial function with
dom(?) = {(x , y) ∈ X 2 | i(x) � y},

4 + and ? are order preserving in both coordinates,

5 for any (x , y) ∈ dom(?),

x ? y = inf{x + w | (x ,w) ∈ dom(+) and w � y}
6 for any x ∈ X , the image of the left translation y 7→ x + y is

a totally-ordered subset of ↑x , and moreover this function has
an upper adjoint.
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Morphisms

As always, the core of a duality is in its morphisms.

Definition:

A morphism from a 	-space (X1, i1,+1, ?1) to a 	-space
(X2, i2,+2, ?2) is a continuous isotone function f : X1 → X2 such
that

1 for all x ∈ X1, f (i1(x)) = i2(f (x)),

2 for all x , y ∈ X1, if (x , y) ∈ dom(+1), then
f (x) +2 f (y) ≤ f (x +1 y),

3 for all x ∈ X1 and z ∈ X2, if (f (x), z) ∈ dom(+2), then there
exists w ′ ∈ X1 such that (x ,w ′) ∈ dom(+1), z ≤ f (w ′), and
f (x +1 w

′) = f (x) +2 z .
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Priestley duality for 	-algebras

Considering the category of 	-spaces with morphisms as defined
above, we obtain...

Theorem (F., Gehrke, van Gool, Marra):

The category of 	-algebras is dually equivalent to the category of
	-spaces.

This forms the basis of our duality for MV-algebras.

In particular, we specialize to those 	-algebras that give
MV-algebras. And this class can be transparently described on the
duals.
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Specializing to MV-algebras

Theorem (F., Gehrke, van Gool, Marra):

The category of MV-algebras with MV-algebra homomorphisms is
dually equivalent to the category of 	-spaces (X , i ,+, ?) such that
for all x , y , z ∈ X ,

(i) i(i(x)) = x .

(ii) x + y = y + x .

(iii) x + (y + z) = (x + y) + z .

(iv) i(x) + y ≤ i(z) if and only if z + y ≤ x .

(v) If there exists w � y such that z + w ≤ x ? y , then z ≤ x .
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Remarks on the duality

Note that all of the conditions we obtain when specializing to
MV-algebras are simple first-order properties.

In particular, the troublesome axiom (MV6) is dualized by the
condition that for all (x , y) ∈ dom(?),

w � y and z + w ≤ x ? y =⇒ z ≤ x .

This axiom did not even have a first-order equivalent in
previously-known dualities, but in the language of these two partial
operations it is transparent.
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An example: The Chang algebra

Consider the Chang MV-algebra as the rotation of the cancellative
hoop {0,−1,−2, . . . }.

The following describes + and ? when defined:

↓(0, a) + ↓(0, b) = ↓(0, b) + ↓(0, a) = ↓(0, a + b)

C + ↓(0, a) = ↓(0, a) + C = C, and

↓(0, a) + ↓(1, b) = ↓(1, b) + ↓(0, a) = ↓(1, a− b) for a < b,

↓(0, a) ? ↓(0, b) = ↓(0, b) ? ↓(0, a) = ↓(0, a + b − 1),

↓(0, a) ? C = C ? ↓(0, a) = C,

↓(0, a) ? ↓(1, b) = ↓(1, a− b − 1) if b < a, and

↓(1, a) ? ↓(0, b) = ↓(1, a− b + 1) if b < a,
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The duals of free MV-algebras

Let FMV (1) be the free MV-algebra on one generator, i.e., the
subalgebra of [0, 1][0,1] whose members are piecewise linear with
integer coefficients.

The Chang algebra is the quotient of FMV (1) by the prime
MV-ideal consisting of all f ∈ FMV (1) such that f �[0,ε)= 0 for
some ε > 0

One could similarly compute the duals of quotients at other prime
MV-ideals.
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The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of
FMV (1) (Gehrke–van Gool–Marra 2014) over its space of prime
MV-ideals.

So examples like the above give you the dual of FMV (1) (and even
FMV (n)).

35 / 36



DR
AF
T
2

The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of
FMV (1) (Gehrke–van Gool–Marra 2014) over its space of prime
MV-ideals.

So examples like the above give you the dual of FMV (1) (and even
FMV (n)).

35 / 36



DR
AF
T
2

The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of
FMV (1) (Gehrke–van Gool–Marra 2014) over its space of prime
MV-ideals.

So examples like the above give you the dual of FMV (1)

(and even
FMV (n)).

35 / 36



DR
AF
T
2

The duals of free MV-algebras

These quotients are the stalks in the sheaf representation of
FMV (1) (Gehrke–van Gool–Marra 2014) over its space of prime
MV-ideals.

So examples like the above give you the dual of FMV (1) (and even
FMV (n)).

35 / 36



DR
AF
T
2

Thank you!

Thank you!

Preprint at: arXiv 2002.12715
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