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Implicative semilattices

An implicative semilattice is an algebra (A,∧,→) where (A,∧) is
a meet-semilattice and→ is the residual of ∧:

a ∧ x 6 b iff x 6 a→ b

The study of implicative semilattices was pioneered by Nemitz
in 1960s. Since then they have been studied rather extensively
(also under the name of Brouwerian semilattices).
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Diego’s theorem

Let IS be the variety of implicative semilattices.

Diego, 1966: IS is locally finite.

Diego worked in the→-signature, but local finiteness is
preserved if we add ∧ (and even 0) to the signature.

Of course, we cannot further add ∨ to the signature as the
variety of Heyting algebras is not locally finite.
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Main idea of proof

Enough to prove that for each n there is m(n) bounding the
cardinality of all n-generated subdirectly irreducible members of
IS.

Let A ∈ IS be n-generated and subdirectly irreducible. Since
congruences of A are characterized by filters, A has the second
largest element s.

But then s has to be one of the generators. So A \ {s} is a
subalgebra of A which has one less generator. Therefore, its
cardinality is bounded by induction. Thus, the cardinality of A is
also bounded.
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Applications to logic

Diego’s theorem is very useful in establishing the finite model
property (fmp) of intermediate and modal logics.

McKay, 1968: Each intermediate logic axiomatized by
disjunction-free formulas has the fmp.

These turn out to be the subframe logics (Zakharyaschev, 1989).

Diego’s theorem also plays an important role in the algebraic
proof of Fine’s 1984 result that all subframe logics above K4
have the fmp.

It is also critical for an algebraic account of Zakharyaschev’s
canonical formulas which provide a uniform axiomatization of
all intermediate logics and logics above K4.
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Goal

Enrich the signature of implicative semilattices with nuclei.

A nucleus on an implicative semilattice A is a unary function
j : A→ A satisfying

1 a 6 ja,
2 jja = ja,
3 j(a ∧ b) = ja ∧ jb.

A nuclear implicative semilattice is a pair A = (A, j) where A is
an implicative semilattice and j is a nucleus on A.
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Nuclei

Nuclei play an important role in different branches of
mathematics, logic, and computer science:

1 In topos theory, nuclei on the subobject classifier of a topos
are exactly the Lawvere-Tierney operators, and give rise to
sheaf subtoposes, generalizing sheaves with respect to a
Grothendieck topology.

2 In pointfree topology, nuclei characterize sublocales of
locales.

3 In logic, nuclei model the so-called lax modality. The
corresponding Lax Logic is an intuitionistic modal logic
with interesting links to computer science since lax
modality is used to reason about formal verification of
hardware.

4 Nuclei also provide a unifying tool for different semantics
of intuitionistic logic.
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Nuclear implicative semilattices

Let NIS be the variety of nuclear implicative semilattices.

Congruences of A ∈ NIS are still characterized by filters. So
subdirectly irreducible members of NIS are still the ones that
have the second largest element s.

However, s no longer needs to be a generator as it could be that
s = ja for some a < s. Thus, the technique of Diego no longer
applies to NIS.

In fact, it is rather surprising that NIS remains locally finite as
nuclei add quite a bit of expressive power to the signature of
implicative semilattices.

Our technique is based on duality theory and the construction of
universal models from modal logic.
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Finite implicative semilattices

Finite implicative semilatices are finite Heyting algebras. So
they dually correspond to finite posets. In fact, each finite
implicative semilattice is isomorphic to the algebra of upsets
(upward directed sets) of a finite poset.

A map f : P→ Q between posets is called a bounded morphism
(or p-morphism) if

1 p 6 p′ ⇒ f(p) 6 f(p′);
2 f(p) 6 q⇒ ∃p′ ∈ P : p 6 p′ & f(p′) = q.

It is well known that bounded morphisms dually correspond to
Heyting homomorphisms.

Since there are more implicative semilattice homomorphisms,
we need to generalize the above notion.
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Köhler duality

One solution is to work with partial maps. For a partial map f
we denote by D the domain of f .

A partial map f : P→ Q between two posets is a Köhler
morphism if

1 p < p′ ⇒ f(p) < f(p′);
2 f(p) < q⇒ ∃p′ ∈ D : p < p′ & f(p′) = q.

Köhler duality (1981): The category of finite implicative
semilattices and implicative semilattice homomorphisms is
dually equivalent to the category of finite posets and Köhler
maps.
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Generalizations

There are several dualities for all implicative semilattices.

Spectral-like dualities were developed by Vrancken-Mawet
(1986) and Celani (2003).

Priestley-like duality and the connections with the previous
approaches was developed jointly with Ramon Jansana
(2008,2013).
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Duality for nuclei

Nuclei are dually described by subsets of a poset.

Let P be a poset, Up(P) the algebra of upsets of P, and S ⊆ P. For
U,V ∈ Up(P)

U ∧ V = U ∩ V
U → V = P \ ↓(U \ V)

j(U) = P \ ↓(S \ U)

Up to isomorphism, each nucleus on a finite implicative
semilattice arises this way.
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Duality for nuclear homomorphisms

Let P,Q be finite posets and f : P→ Q a Köhler morphism with
domain D. Then f gives rise to an implicative semilattice
homomorphism f∗ : Up(Q)→ Up(P) given by

f∗(U) = P \ ↓ f−1(Q \ U)

Suppose S ⊆ P and jS is the corresponding nucleus on Up(P).
Also, let T ⊆ Q and jT be the corresponding nucleus on Up(Q).

What does it take for f∗(jTU) = jSf∗(U)?
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domain D. Then f gives rise to an implicative semilattice
homomorphism f∗ : Up(Q)→ Up(P) given by

f∗(U) = P \ ↓ f−1(Q \ U)

Suppose S ⊆ P and jS is the corresponding nucleus on Up(P).
Also, let T ⊆ Q and jT be the corresponding nucleus on Up(Q).

What does it take for f∗(jTU) = jSf∗(U)?



Duality for nuclear homomorphisms

Let P,Q be finite posets and f : P→ Q a Köhler morphism with
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Duality for nuclear homomorphisms

Lemma: f∗ : Up(Q)→ Up(P) is a nuclear homomorphism iff

1 f−1(T) = D ∩ S,
2 if s ∈ S, d ∈ D, and s 6 d, then there are s′ ∈ S ∩ D and

d′ ∈ D such that s 6 s′ 6 d′ and f(d) = f(d′).

◦d ◦d′
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•f(d) = f(d′)
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Duality for finite nuclear implicative semilattices

Call a pair (P, S) an S-poset if P is a poset and S ⊆ P.

Given two S-posets (P, S) and (Q,T), call a Köhler morphism
f : P→ Q an S-morphism if it satisfies the above two conditions.

Theorem: The category of finite nuclear implicative semilattices
and nuclear homomorphisms is dually equivalent to the
category of finite S-posets and S-morphisms.
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Coloring technique

Fix n > 1. Colors will be subsets of {1, . . . ,n}. If n = 0, then we
assume that {1, . . . ,n} = ∅, so ∅ is the only available color.

A coloring of an S-poset (X, S) is a function
c : X → ℘({1, . . . ,n}) such that x 6 y implies c(x) ⊆ c(y).

A model is a triple M = (X, S, c) where (X, S) is an S-poset and c
is a coloring of (X, S).

For Y ⊆ X let
c(Y) =

⋂
{c(x) | x ∈ Y}.

We think of c as a function associating to each element of X one
of 2n colors. We refer to c(x) as the color of x, and to c(Y) as the
color of Y.
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Colorings

There is a one-to-one correspondence between colorings of
(X, S) and n-tuples U1, . . . ,Un of upsets of X.

Each n-tuple U1, . . . ,Un ∈ Up(X) gives rise to the coloring
c : X → ℘({1, . . . ,n}) given by

c(x) = {i ∈ {1, . . . ,n} | x ∈ Ui}.

Conversely, each coloring gives rise to the n-tuple
U1, . . . ,Un ∈ Up(X) given by

Ui = {x ∈ X | i ∈ c(x)}

for each i = 1, . . . ,n.
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Coloring theorem

A finite model M = (X, S, c) is irreducible if the nuclear
implicative semilattice (Up(X), jS) is generated by the upsets
U1, . . . ,Un.

There is a one-to-one correspondence between finite irreducible
models and finite n-generated nuclear implicative semilattices.
It is obtained by associating with each finite irreducible model
M = (X, S, c) the finite nuclear implicative semilattice (Up(X), jS)
generated by U1, . . . ,Un where Ui = {x ∈ X | i ∈ c(x)} for each i.

We denote by ∇x the set of (upper) covers of x.

Coloring Theorem: A finite model M = (X, S, c) is irreducible iff
the following two conditions are satisfied:

1 c(x) = c(∇x)⇒ x ∈ S & ∇x * S,
2 ∇x = ∇y & c(x) = c(y) & (x ∈ S⇔ y ∈ S)⇒ x = y.
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Universal models

A model L = (X, S, c) is n-universal provided for every finite
irreducible model M = (Y,T, c) there is a unique embedding of
posets e : Y → X such that e(Y) is an upset of X, e−1(S) = T, and
c(e(y)) = c(y) for all y ∈ Y.

We construct the n-universal model L recursively, building it
layer by layer, by constructing a sequence of finite irreducible
models

L0 ⊆ L1 ⊆ · · · ⊆ Lk ⊆ · · ·

Each Lk in the sequence has height k.

The n-universal model L is then the union of the models Lk.
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Construction

Base case:

Define L0 = (X0, S0, c0) by setting X0, S0 = ∅ and c0 to be the
empty map.

For σ ⊆ {1, . . . ,n} consider the formal symbols r∅,σ and s∅,σ.

Then define L1 = (X1, S1, c1) by setting

1 X1 = {r∅,σ, s∅,σ | σ ⊂ {1, . . . ,n}} and 61 is the identity
relation on X1,

2 S1 = {s∅,σ | σ ⊂ {1, . . . ,n}},
3 c1(r∅,σ) = c1(s∅,σ) = σ.
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Construction

Recursive step:
Suppose Lk = (Xk, Sk, ck) is already constructed for k > 1. For
α ⊆ Xk and σ ⊆ {1, . . . ,n} consider the formal symbols rα,σ and
sα,σ. Then define Lk+1 = (Xk+1, Sk+1, ck+1) by setting

1 Xk+1 is obtained by adding for each antichain α ⊆ Xk with
α * Xk−1 the following new elements to Xk:

1 rα,σ for each σ ⊂ ck(α),
2 sα,σ for each σ ⊂ ck(α),
3 sα,ck(α) if α * Sk.

The partial order on Xk+1 extends the partial order on Xk so
that the covers of the elements of Xk+1 \ Xk are defined as
∇rα,σ = ∇sα,σ = α.

2 Sk+1 is obtained by adding to Sk the elements of Xk+1 \ Xk
of the form sα,σ, sα,ck(α).

3 ck+1 extends ck so that ck+1(rα,σ) = ck+1(sα,σ) = σ and
ck+1(sα,ck(α)) = ck(α).
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Construction

Finally, we define L = (X, S, c) by setting

X =
⋃
k

Xk, S =
⋃
k

Sk, and c(x) = ck(x) if x ∈ Xk.

1 Each Lk is finite.
2 Each nonempty layer increases the height of the model by

one.
3 Rules (1) and (2) decrease the color of the new elements

added. However, Rule (3) does not.
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1-universal model

r∅,∅ s∅,∅

s{r∅,∅},∅ s{r∅,∅,s∅,∅},∅

The first layer has two elements: r∅,∅ and s∅,∅.

Rules (1) and (2) allow us to add elements to the next layer
only if their color is strictly smaller than the color of their cover.
So these rules do not apply.

Rule (3) gives an element in S with empty color for each
antichain not contained in S. There are two such antichains:
{r∅,∅} and {r∅,∅, s∅,∅}. Therefore, the second layer is made of
the two elements s{r∅,∅},∅ and s{r∅,∅,s∅,∅},∅.
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The third layer is empty because Rules (1) and (2) do not apply
since every element has empty color, and Rule (3) does not
apply as every antichain that is not contained in S is contained
entirely in the first layer.
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¬g¬gj(g) j(¬gj(g))

j(g) ¬gj(g)

g



Free cyclic nuclear implicative semilattice

1

(¬g¬gj(g)→ j(g))→ j(¬gj(g)) ¬g¬gj(g)→ j(g)

¬g¬gj(g) j(¬gj(g))

j(g) ¬gj(g)

g



Main result

Theorem: NIS is locally finite.

Idea of proof: Let Fn be the free n-generated nuclear
implicative semilattice.

Let {Aα} be the inverse system of finite homomorphic images of
Fn. Then each Aα is n-generated. The bonding maps of this
inverse system are homomorphisms mapping generators to
generators.

Let Mα be the finite irreducible model corresponding to Aα.
Then {Mα} is a direct system of finite irreducible models. The
maps of this direct system are S-morphisms preserving the
coloring.
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