Multiplicative theory of (additive) partitions

Robert Schneider University of Georgia

October 27, 2020

Additive number theory

Additive number theory

Patterns and interconnections

Additive number theory

Patterns and interconnections

• theory of partitions

Patterns and interconnections

- theory of partitions
- beautiful generating functions
- surprising bijections
- Ramanujan congruences
- combinatorics, algebra, analytic num. theory, mod. forms, stat. phys., QT, string theory, chemistry, ...

Ishango bone (Africa, ca. 20,000 B.C.E.)

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)

Partition theory

Partition theory

Incan quipu (Peru, 2,000 B.C.E. - 1600s)

G. W. Leibniz (1600s)

Leibniz

• wondered about size of p(n) := # of partitions of n

Leibniz

- wondered about size of p(n) := # of partitions of n
- p(n) is called the *partition function*

Leonhard Euler (1700s)

$$\sum_{n=0}^{\infty} p(n)q^n$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

Template for partition theory

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

Template for partition theory

product-sum generating functions

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

Template for partition theory

- product-sum generating functions
- combinatorics encoded in exponents, coefficients

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

Template for partition theory

- product-sum generating functions
- combinatorics encoded in exponents, coefficients
- connected analysis to partitions

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

Proof

RHS

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

RHS =
$$\prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...)$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

RHS =
$$\prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...)$$
 (geom. series)

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\begin{aligned} \mathsf{RHS} &= \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...) \quad (\text{geom. series}) \\ &= \prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + ...) \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\begin{aligned} \mathsf{RHS} &= \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...) & (\text{geom. series}) \\ &= \prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + ...) & (\text{like, second grade}) \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\begin{aligned} \mathsf{RHS} &= \prod_{n=1}^{\infty} (1+q^n+q^{2n}+q^{3n}+...) \quad (\text{geom. series}) \\ &= \prod_{n=1}^{\infty} (1+q^n+q^{n+n}+q^{n+n+n}+...) \quad (\text{like, second grade}) \\ &= 1+q^1+q^{1+1}+q^2+q^{1+1+1}+q^{1+2}+q^3+... \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} \qquad (q \in \mathbb{C}, |q| < 1)$$

$$\begin{array}{l} \mathsf{RHS} = \prod_{n=1}^{\infty} (1+q^n+q^{2n}+q^{3n}+...) & (\text{geom. series}) \\ = \prod_{n=1}^{\infty} (1+q^n+q^{n+n}+q^{n+n+n}+...) & (\text{like, second grade}) \\ = 1+q^1+q^{1+1}+q^2+q^{1+1+1}+q^{1+2}+q^3+...= \mathsf{LHS} \end{array}$$

Multiplicative number theory

Multiplicative number theory

I.e., most of classical number theory

I.e., most of classical number theory

- o primes
- divisors
- Euler phi function $\varphi(n)$, Möbius function $\mu(n)$
- arithmetic functions, Dirichlet convolution
- zeta functions, Dirichlet series, L-functions

Birth of multiplicative number theory

Ishango bone (Africa, ca. 20,000 B.C.E.)

Birth of multiplicative number theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)

Birth of multiplicative number theory

Eratosthenes, Euclid (Alexandria, ca. 300 B.C.E.)

Birth of multiplicative number theory

Euler

• first to understand (Riemann) zeta function

• first to understand (Riemann) zeta function:

$$\zeta(\boldsymbol{s}) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 (Re(\boldsymbol{s}) > 1)

• first to understand (Riemann) zeta function:

$$\zeta(\boldsymbol{s}) := \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

• explicit zeta values \rightarrow compute even powers of π

• first to understand (Riemann) zeta function:

$$\zeta(\boldsymbol{s}) := \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

• explicit zeta values \rightarrow compute even powers of π :

$$\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}, \dots$$

Multiplicative number theory

Product formula for zeta function (Euler)

Multiplicative number theory

Product formula for zeta function (Euler)

$$\sum_{n=0}^{\infty} \frac{1}{n^s}$$

Multiplicative number theory

Product formula for zeta function (Euler)

$$\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \left(1 - p^{-s}\right)^{-1} \qquad (\operatorname{Re}(s) > 1)$$

Product formula for zeta function (Euler)

$$\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{\boldsymbol{p} \in \mathbb{P}} \left(1 - \boldsymbol{p}^{-s}\right)^{-1} \qquad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

Template for study of L-functions

Product formula for zeta function (Euler)

$$\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{\boldsymbol{p} \in \mathbb{P}} \left(1 - \boldsymbol{p}^{-s}\right)^{-1} \qquad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

Template for study of L-functions

"Euler product" generating functions

Product formula for zeta function (Euler)

$$\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{\boldsymbol{p} \in \mathbb{P}} \left(1 - \boldsymbol{p}^{-s}\right)^{-1} \qquad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

Template for study of L-functions

- "Euler product" generating functions
- connected analysis to prime numbers

Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)

$$\prod_{n=1}^{\infty} (1-q^n)^{-1} = \sum_{n=0}^{\infty} p(n)q^n, \quad |q| < 1$$

Euler product formula (encodes primes / multiplic.)

$$\prod_{p\in\mathbb{P}}(1-p^{-s})^{-1}=\sum_{k=1}^{\infty}n^{-s},\quad \operatorname{Re}(s)>1$$

Partition generating function (encodes addition)

$$\prod_{n=1}^{\infty} (1-q^n)^{-1} = \sum_{n=0}^{\infty} p(n)q^n, \quad |q| < 1$$

Euler product formula (encodes primes / multiplic.)

$$\prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} = \sum_{k=1}^{\infty} n^{-s}, \quad \text{Re}(s) > 1$$

Proofs feel similar (multiply geometric series)

Alladi–Erdős (1970s)

Alladi–Erdős (1970s)

Bijection between integer factorizations, prime partitions

Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

Bijection between integer factorizations, prime partitions

• study properties of arithmetic functions

Question

Bijection between integer factorizations, prime partitions

• study properties of arithmetic functions

Question

Are other thms. in arithmetic images in prime partitions

Bijection between integer factorizations, prime partitions

• study properties of arithmetic functions

Question

Are other thms. in arithmetic *images in prime partitions* of combinatorial/set-theoretic meta-structures?

Andrews (1970s)

60

Theory of partition ideals

Theory of partition ideals

inspired by lattice theory

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Question

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Question

Is there an algebra of partitions

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Question

Is there an *algebra of partitions* generalizing arithmetic in integers

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Question

Is there an *algebra of partitions* generalizing arithmetic in integers (i.e., prime partitions)?

Multiplicative theory of (additive) partitions

Philosophy of this talk

Philosophy of this talk

• Exist multipl., division, arith. functions on partitions

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties \rightarrow properties of integers

Partition notations

• Let \mathcal{P} denote the set of all integer partitions.

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let λ = (λ₁, λ₂,..., λ_r), λ₁ ≥ λ₂ ≥ ··· ≥ λ_r ≥ 1, denote a nonempty partition

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let λ = (λ₁, λ₂,..., λ_r), λ₁ ≥ λ₂ ≥ ··· ≥ λ_r ≥ 1, denote a nonempty partition, e.g. λ = (3, 2, 2, 1).

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let λ = (λ₁, λ₂,..., λ_r), λ₁ ≥ λ₂ ≥ ··· ≥ λ_r ≥ 1, denote a nonempty partition, e.g. λ = (3,2,2,1).
- Let $\mathcal{P}_{\mathbb{X}}$ denote partitions into elements $\lambda_i \in \mathbb{X} \subseteq \mathbb{N}$

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let λ = (λ₁, λ₂,..., λ_r), λ₁ ≥ λ₂ ≥ ··· ≥ λ_r ≥ 1, denote a nonempty partition, e.g. λ = (3,2,2,1).
- Let P_X denote partitions into elements λ_i ∈ X ⊆ N, e.g. P_P is the "prime partitions".

Partition notations

• $\ell(\lambda) := r$ is *length* (number of parts).

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) := multiplicity$ (or "frequency") of *i*.

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) := multiplicity$ (or "frequency") of *i*.
- $|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r$ is *size* (sum of parts).

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) := multiplicity$ (or "frequency") of *i*.
- $|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r$ is *size* (sum of parts).
- " $\lambda \vdash n$ " means λ is a partition of *n*.

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) := multiplicity$ (or "frequency") of *i*.
- $|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r$ is *size* (sum of parts).
- " $\lambda \vdash n$ " means λ is a partition of n.
- Define $\ell(\emptyset) = |\emptyset| = m_i(\emptyset) = 0, \quad \emptyset \vdash 0.$

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

 $N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

• Define $N(\emptyset) := 1$ (it is an empty product)

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

- Define $N(\emptyset) := 1$ (it is an empty product)
- See "The product of parts or 'norm' etc." (S-Sills)

Partition multiplication

Partition multiplication

• For $\lambda, \gamma \in \mathcal{P}$ let $\lambda \gamma$ denote multiset union of the parts

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts, e.g. (3,2)(2,1) = (3,2,2,1).

Partition multiplication

- For λ, γ ∈ P let λγ denote multiset union of the parts, e.g. (3,2)(2,1) = (3,2,2,1).
- Identity is Ø

Partition multiplication

- For λ, γ ∈ P let λγ denote multiset union of the parts, e.g. (3,2)(2,1) = (3,2,2,1).
- Identity is Ø
- Partitions into one part are like primes, FTA holds

Partition division (subpartitions)

• For $\lambda, \delta \in \mathcal{P}$, let $\delta | \lambda$ mean all parts of δ are parts of λ

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ, e.g. (3,2,1)|(3,2,2,1).

- For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ, e.g. (3,2,1)|(3,2,2,1).
- For $\delta | \lambda$, let λ / δ mean parts of δ deleted from λ

- For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ, e.g. (3,2,1)|(3,2,2,1).
- For δ|λ, let λ/δ mean parts of δ deleted from λ, e.g. (3,2,2,1)/(3,2,1) = (2).

- For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ, e.g. (3,2,1)|(3,2,2,1).
- For δ|λ, let λ/δ mean parts of δ deleted from λ, e.g. (3,2,2,1)/(3,2,1) = (2).
- Replace \mathcal{P} with $\mathcal{P}_{\mathbb{P}}$

- For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ, e.g. (3,2,1)|(3,2,2,1).
- For δ|λ, let λ/δ mean parts of δ deleted from λ, e.g. (3,2,2,1)/(3,2,1) = (2).
- Replace \mathcal{P} with $\mathcal{P}_{\mathbb{P}} \to \text{mult./div. in } \mathbb{Z}^+$

Parallel universe

Partition Möbius function

Partition Möbius function

For $\lambda \in \mathcal{P}$, define

Partition Möbius function

For $\lambda \in \mathcal{P}$, define

$$\mu_{\mathcal{P}}(\lambda) := \left\{ egin{array}{ll} \mathsf{0} & ext{if } \lambda ext{ has any part repeated,} \ (-1)^{\ell(\lambda)} & ext{otherwise.} \end{array}
ight.$$

Partition Möbius function

For $\lambda \in \mathcal{P}$, define

$$\mu_{\mathcal{P}}(\lambda) := \left\{ egin{array}{ll} 0 & ext{if } \lambda ext{ has any part repeated,} \\ (-1)^{\ell(\lambda)} & ext{otherwise.} \end{array}
ight.$$

Replacing *P* with *P*_P reduces to μ(*N*(λ)), where *N*(λ) is the norm (product of parts).

Parallel universe

Just as in classical cases, nice sums over "divisors"...

Just as in classical cases, nice sums over "divisors"...

Partition Möbius function

Just as in classical cases, nice sums over "divisors"...

Partition Möbius function

$$\sum_{\delta|\lambda} \mu_{\mathcal{P}}(\delta) = \begin{cases} 1 & \text{if } \lambda = \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

Parallel universe

Partition Möbius inversion

If we have

$$f(\lambda) = \sum_{\delta \mid \lambda} g(\delta)$$

we also have

$$g(\lambda) = \sum_{\delta \mid \lambda} \mu_{\mathcal{P}}(\lambda \mid \delta) f(\delta).$$

Partition phi function

Partition phi function

For $\lambda \in \mathcal{P}$, define

Partition phi function

For $\lambda \in \mathcal{P}$, define

$$arphi_{\mathcal{P}}(\lambda) := \textit{N}(\lambda) \prod_{\substack{\lambda_i \in \lambda \ ext{no repeats}}} (1 - \lambda_i^{-1}).$$

Partition phi function

For $\lambda \in \mathcal{P}$, define

$$arphi_{\mathcal{P}}(\lambda) := \textit{N}(\lambda) \prod_{\substack{\lambda_i \in \lambda \ \text{no repeats}}} (1 - \lambda_i^{-1}).$$

• Replacing \mathcal{P} with $\mathcal{P}_{\mathbb{P}}$ reduces to $\varphi(N(\lambda))$.

Parallel universe

Phi function identities

Phi function identities

$$\sum_{\delta|\lambda} \varphi_{\mathcal{P}}(\delta) = \boldsymbol{N}(\lambda), \qquad \varphi_{\mathcal{P}}(\lambda) = \boldsymbol{N}(\lambda) \sum_{\delta|\lambda} \frac{\mu_{\mathcal{P}}(\delta)}{\boldsymbol{N}(\delta)}$$

Phi function identities

$$\sum_{\delta|\lambda} \varphi_{\mathcal{P}}(\delta) = \boldsymbol{N}(\lambda), \qquad \varphi_{\mathcal{P}}(\lambda) = \boldsymbol{N}(\lambda) \sum_{\delta|\lambda} \frac{\mu_{\mathcal{P}}(\delta)}{\boldsymbol{N}(\delta)}$$

• Replacing \mathcal{P} with $\mathcal{P}_{\mathbb{P}}$ reduces to classical cases.

Phi function identities

$$\sum_{\delta|\lambda} \varphi_{\mathcal{P}}(\delta) = \boldsymbol{N}(\lambda), \qquad \varphi_{\mathcal{P}}(\lambda) = \boldsymbol{N}(\lambda) \sum_{\delta|\lambda} \frac{\mu_{\mathcal{P}}(\delta)}{\boldsymbol{N}(\delta)}$$

- Replacing \mathcal{P} with $\mathcal{P}_{\mathbb{P}}$ reduces to classical cases.
- Many analogs of objects in multiplic. # theory...

Partition Cauchy product

$$\left(\sum_{\lambda\in\mathcal{P}}f(\lambda)m{q}^{|\lambda|}
ight)\left(\sum_{\lambda\in\mathcal{P}}m{g}(\lambda)m{q}^{|\lambda|}
ight)=\sum_{\lambda\in\mathcal{P}}m{q}^{|\lambda|}\sum_{\delta|\lambda}f(\delta)m{g}(\lambda/\delta)$$

Partition Cauchy product

$$\left(\sum_{\lambda\in\mathcal{P}}f(\lambda)m{q}^{|\lambda|}
ight)\left(\sum_{\lambda\in\mathcal{P}}m{g}(\lambda)m{q}^{|\lambda|}
ight)=\sum_{\lambda\in\mathcal{P}}m{q}^{|\lambda|}\sum_{\delta|\lambda}f(\delta)m{g}(\lambda/\delta)$$

Swapping order of summation

$$\sum_{\lambda \in \mathcal{P}} f(\lambda) \sum_{\delta \mid \lambda} g(\delta) = \sum_{\lambda \in \mathcal{P}} g(\lambda) \sum_{\gamma \in \mathcal{P}} f(\lambda \gamma)$$

Partition Cauchy product

$$\left(\sum_{\lambda\in\mathcal{P}}f(\lambda)m{q}^{|\lambda|}
ight)\left(\sum_{\lambda\in\mathcal{P}}m{g}(\lambda)m{q}^{|\lambda|}
ight)=\sum_{\lambda\in\mathcal{P}}m{q}^{|\lambda|}\sum_{\delta|\lambda}f(\delta)m{g}(\lambda/\delta)$$

Swapping order of summation

$$\sum_{\lambda\in\mathcal{P}} f(\lambda) \sum_{\delta|\lambda} g(\delta) = \sum_{\lambda\in\mathcal{P}} g(\lambda) \sum_{\gamma\in\mathcal{P}} f(\lambda\gamma)$$

Other multiplicative objects generalize to partition theory...

Partition zeta functions

In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

In analogy with
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
:

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*

In analogy with
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
:

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(\boldsymbol{s}) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-\boldsymbol{s}}$$

In analogy with
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
:

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(\boldsymbol{s}) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-\boldsymbol{s}}$$

• $N(\lambda)$ is the *norm* (product of parts) of λ , $N(\emptyset) := 1$.

In analogy with
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
:

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(\boldsymbol{s}) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-\boldsymbol{s}}$$

N(λ) is the *norm* (product of parts) of λ, *N*(∅) := 1.
For 1 ∉ P' = P_x (parts in X ⊂ N)

In analogy with
$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
:

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(\boldsymbol{s}) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-\boldsymbol{s}}$$

N(λ) is the *norm* (product of parts) of λ, *N*(∅) := 1.
For 1 ∉ P' = P_X (parts in X ⊂ N) → Euler product:

$$\zeta_{\mathcal{P}_{\mathbb{X}}}(s) = \prod_{n \in \mathbb{X}} (1 - n^{-s})^{-1}$$

Partition zeta functions: nice identities

Fix s= 2, vary subset \mathcal{P}'

Fix s = 2, vary subset \mathcal{P}'

Summing over partitions into prime parts:

$$\zeta_{\mathcal{P}_{\mathbb{P}}}(\mathsf{2}) = \zeta(\mathsf{2}) = rac{\pi^2}{6}$$

Summing over partitions into even parts:

$$\zeta_{\mathcal{P}_{\mathsf{even}}}(\mathsf{2}) = rac{\pi}{\mathsf{2}}$$

Summing over partitions into distinct parts:

$$\zeta_{\mathcal{P}_{\mathsf{distinct}}}(\mathbf{2}) = rac{\sinh \pi}{\pi}$$

$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$
$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_{\mathbb{X}}}(s-1)}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$

$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$
$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_{\mathbb{X}}}(s-1)}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$

Takeaway from these examples

$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$
$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_{\mathbb{X}}}(s-1)}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$

Takeaway from these examples

Different subsets of *P* induce very diff. zeta values

$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \mu_{\mathcal{P}}(\lambda) \mathsf{N}(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$
$$\sum_{\lambda \in \mathcal{P}_{\mathbb{X}}} \varphi_{\mathcal{P}}(\lambda) \mathsf{N}(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_{\mathbb{X}}}(s-1)}{\zeta_{\mathcal{P}_{\mathbb{X}}}(s)}$$

Takeaway from these examples

- Different subsets of *P* induce very diff. zeta values
- Classical zeta theorems \rightarrow partition zeta theorems

 $\zeta(2N) = \pi^{2N} \times rational number$

 $\zeta(2N) = \pi^{2N} \times rational number$

Question

 $\zeta(2N) = \pi^{2N} \times rational number$

Question

Do there exist (non-Riemann) partition zeta functions such that, for the "right" choice of $\mathcal{P}' \subsetneq \mathcal{P}$

 $\zeta(2N) = \pi^{2N} \times rational number$

Question

Do there exist (non-Riemann) partition zeta functions such that, for the "right" choice of $\mathcal{P}' \subsetneq \mathcal{P}$,

$$\zeta_{\mathcal{P}'}(\mathcal{N}) = \pi^{\mathcal{M}} imes rational number?$$

Partitions of fixed length k

Partitions of fixed length k

Define sum over partitions of fixed length $\ell(\lambda) = k$:

Partitions of fixed length k

Define sum over partitions of fixed length $\ell(\lambda) = k$:

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^k) := \sum_{\substack{\lambda \in \mathcal{P} \\ \ell(\lambda) = k}} N(\lambda)^{-s} \quad (\operatorname{Re}(\boldsymbol{s}) > 1)$$

Theorem (S, 2016)

Summing over partitions of fixed length k > 0:

$$\zeta_{\mathcal{P}}(\{2\}^k) = \frac{2^{2k-1}-1}{2^{2k-2}}\zeta(2k) = \pi^{2k} \times \text{rational number}$$

Summing over partitions of fixed length k > 0:

$$\zeta_{\mathcal{P}}(\{2\}^k) = \frac{2^{2k-1}-1}{2^{2k-2}}\zeta(2k) = \pi^{2k} \times \text{rational number}$$

• Note: k = 0 suggests $\zeta(0) = -\frac{1}{2}$ (correct value)

Summing over partitions of fixed length k > 0:

$$\zeta_{\mathcal{P}}(\{2\}^k) = \frac{2^{2k-1}-1}{2^{2k-2}}\zeta(2k) = \pi^{2k} \times \text{rational number}$$

• Note: k = 0 suggests $\zeta(0) = -\frac{1}{2}$ (correct value)

Theorem (Ono-Rolen-S, 2017)

Summing over partitions of fixed length k > 0:

$$\zeta_{\mathcal{P}}(\{2\}^k) = \frac{2^{2k-1}-1}{2^{2k-2}}\zeta(2k) = \pi^{2k} \times \text{rational number}$$

• Note: k = 0 suggests $\zeta(0) = -\frac{1}{2}$ (correct value)

Theorem (Ono-Rolen-S, 2017) For $N \ge 1$: $\zeta_{\mathcal{P}}(\{2N\}^k) = \pi^{2Nk} \times rational number$

Theorem (Ono-Rolen-S., 2017)

Some other partition zeta fctns. contin. to right half-plane.

Theorem (Ono-Rolen-S., 2017)

Some other partition zeta fctns. contin. to right half-plane.

Natural questions

Theorem (Ono-Rolen-S., 2017)

Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General $\zeta_{\mathcal{P}}(\{s\}^k)$? Analytic continuation? Poles? Roots?

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

For $\operatorname{Re}(s) > 1$:

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

sum over partitions λ of size k on RHS

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
- poles at *s* = 1, 1/2, 1/3, 1/4, ..., 1/*k*

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
- poles at *s* = 1, 1/2, 1/3, 1/4, ..., 1/*k*
- trivial roots at $s \in -2\mathbb{N}$

For $\operatorname{Re}(s) > 1$:

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(2\boldsymbol{s})^{m_{2}} \zeta(3\boldsymbol{s})^{m_{3}} \cdots \zeta(k\boldsymbol{s})^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ m_{3}! \ \cdots \ m_{k}!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
- poles at *s* = 1, 1/2, 1/3, 1/4, ..., 1/*k*
- trivial roots at $s \in -2\mathbb{N}$

Note: $\zeta_{\mathcal{P}}({s}^k)$ **not** zero at roots of $\zeta(s)$ for k > 1

Proof mimics Sills' combinatorial proof (2019) of *MacMahon's partial fraction decomposition...*

Proof mimics Sills' combinatorial proof (2019) of *MacMahon's partial fraction decomposition...*

MacMahon's partial fraction decomposition

For |*q*| < 1:

$$\prod_{n=1}^{k} (1-q^n)^{-1} = \sum_{\lambda \vdash k} \frac{(1-q^2)^{-m_2} \cdots q^{km_k} (1-q^k)^{-m_k}}{N(\lambda) \ m_1! \ m_2! \ \cdots \ m_k!}$$

Although here we really want to use...

$$q^{k} \prod_{n=1}^{k} (1-q^{n})^{-1} = \sum_{\ell(\lambda)=k} q^{|\lambda|}$$

= $\sum_{\lambda \vdash k} \frac{q^{m_{1}}(1-q)^{-m_{1}} \cdot q^{2m_{2}}(1-q^{2})^{-m_{2}} \cdots q^{km_{k}}(1-q^{k})^{-m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$

$$q^{k}\prod_{n=1}^{k}(1-q^{n})^{-1} = \sum_{\ell(\lambda)=k}q^{|\lambda|}$$
$$= \sum_{\lambda \vdash k} \frac{q^{m_{1}}(1-q)^{-m_{1}} \cdot q^{2m_{2}}(1-q^{2})^{-m_{2}} \cdots q^{km_{k}}(1-q^{k})^{-m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$$

LHS generates all partitions with largest part k

$$q^{k}\prod_{n=1}^{k}(1-q^{n})^{-1} = \sum_{\ell(\lambda)=k}q^{|\lambda|}$$
$$= \sum_{\lambda \vdash k} \frac{q^{m_{1}}(1-q)^{-m_{1}} \cdot q^{2m_{2}}(1-q^{2})^{-m_{2}} \cdots q^{km_{k}}(1-q^{k})^{-m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$$

- LHS generates all partitions with largest part k
- Conjugation \rightarrow also gen. partitions w/ length k

$$q^{k} \prod_{n=1}^{k} (1-q^{n})^{-1} = \sum_{\ell(\lambda)=k} q^{|\lambda|}$$

= $\sum_{\lambda \vdash k} \frac{q^{m_{1}}(1-q)^{-m_{1}} \cdot q^{2m_{2}}(1-q^{2})^{-m_{2}} \cdots q^{km_{k}}(1-q^{k})^{-m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$

- LHS generates all partitions with largest part k
- Conjugation → also gen. partitions w/ length k
- RHS = comb. geom. series over partitions of size k

MacMahon-partition zeta correspondence

MacMahon's partial fraction decomposition times q^k

$$q^{k} \prod_{n=1}^{k} (1-q^{n})^{-1} = \sum_{\ell(\lambda)=k} q^{|\lambda|}$$

= $\sum_{\lambda \vdash k} \frac{q^{m_{1}}(1-q)^{-m_{1}} \cdot q^{2m_{2}}(1-q^{2})^{-m_{2}} \cdots q^{km_{k}}(1-q^{k})^{-m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$

Compare and contrast

$$\zeta_{\mathcal{P}}(\{\boldsymbol{s}\}^{k}) = \sum_{\ell(\lambda)=k} N(\lambda)^{-s} = \sum_{\lambda \vdash k} \frac{\zeta(\boldsymbol{s})^{m_{1}} \zeta(\boldsymbol{2s})^{m_{2}} \cdots \zeta(ks)^{m_{k}}}{N(\lambda) \ m_{1}! \ m_{2}! \ \cdots \ m_{k}!}$$

Gen fctn component	Analogous zeta fctn component
$ $ $q^{ \lambda }$	$N(\lambda)^{-s}$
$\frac{q^{j}}{1-q^{j}}$	$\zeta(js)$
$\frac{q^k}{\prod_{j=1}^k (1-q^j)}$	$\zeta_{\mathcal{P}}(\{\boldsymbol{\mathcal{S}}\}^k)$

Gen fctn component	Analogous zeta fctn component
$ $ $q^{ \lambda }$	$N(\lambda)^{-s}$
$\frac{q^j}{1-q^j}$	$\zeta(js)$
$\frac{q^k}{\prod_{j=1}^k (1-q^j)}$	$\zeta_{\mathcal{P}}(\{\boldsymbol{\mathcal{S}}\}^k)$

Multiplication of terms of either shape q^n or n^{-s} generates partitions in exactly the same way:

$$\boldsymbol{q}^{\lambda_{1}}\boldsymbol{q}^{\lambda_{2}}\boldsymbol{q}^{\lambda_{3}}\cdots\boldsymbol{q}^{\lambda_{r}}=\boldsymbol{q}^{|\lambda|}\quad\longleftrightarrow\quad\lambda_{1}^{-s}\lambda_{2}^{-s}\lambda_{3}^{-s}\cdots\lambda_{r}^{-s}=\boldsymbol{N}\left(\lambda\right)^{-s}$$

Gen fctn component	Analogous zeta fctn component
$ $ $q^{ \lambda }$	$N(\lambda)^{-s}$
$\frac{q^{j}}{1-q^{j}}$	$\zeta(js)$
$\frac{q^k}{\prod_{j=1}^k (1-q^j)}$	$\zeta_{\mathcal{P}}(\{\boldsymbol{\mathcal{S}}\}^k)$

The term q^{jn} in geom series $\sum_{n=1}^{\infty} q^{jn}$ and resp. term n^{-js} of $\zeta(js)$ both encode partition $(n)^j := (n, n, ..., n)$ (*j* times):

$$\frac{q^{j}}{1-q^{j}} = \sum_{n=1}^{\infty} q^{|(n)^{j}|} \quad \longleftrightarrow \quad \zeta(js) = \sum_{n=1}^{\infty} N\left((n)^{j}\right)^{-s}.$$

MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Geometric series-zeta function duality

Correspondence says $\frac{q^i}{1-q^i}$ and $\zeta(js)$ are interchangeable

Geometric series-zeta function duality

Correspondence says $\frac{q^i}{1-q^i}$ and $\zeta(js)$ are interchangeable as gen fctns for partitions (n, n, \dots, n) (*j* reps / same part).

Multiplicative theory of (additive) partitions

Applications

Applications

- New combinatorial bijections
- Computing coefficients of q-series, mock mod. forms
- Statistical physics
- Computational chemistry
- Computing arithmetic densities
- Computing π

Applications

- New combinatorial bijections
- Computing coefficients of *q*-series, mock mod. forms
- Statistical physics
- Computational chemistry
- Computing arithmetic densities
- Computing π (quite inefficiently, to boot!)

Application: arithmetic densities

Application: arithmetic densities

Definition

185

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N\to\infty}\frac{\#\{n\in S\mid n\leq N\}}{N},$$

if the limit exists.

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N\to\infty}\frac{\#\{n\in S\mid n\leq N\}}{N},$$

if the limit exists.

Examples

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N\to\infty}\frac{\#\{n\in S\mid n\leq N\}}{N}$$

if the limit exists.

Examples

• Integers $\equiv r \pmod{t}$ have density 1/t

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N\to\infty}\frac{\#\{n\in S\mid n\leq N\}}{N}$$

if the limit exists.

Examples

- Integers $\equiv r \pmod{t}$ have density 1/t
- Square-free integers have density $6/\pi^2 = 1/\zeta(2)$

Application: arithmetic densities

Classical computation

Classical computation

 Well-known relation between arithmetic density and zeta-type sums

Classical computation

- Well-known relation between arithmetic density and zeta-type sums
- If a subset *T* ⊆ ℙ has arith. density in ℙ, its density is equal to the *Dirichlet density* of *T*

$$\lim_{s \to 1} \frac{\sum_{p \in T} p^{-s}}{\sum_{p \in \mathbb{P}} p^{-s}}$$

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of integers $\equiv r \mod t$ is equal to

$$-\lim_{q\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\ \mathrm{sm}(\lambda)\equiv r(\mathrm{mod}\ t)}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\frac{1}{t}.$$

The arith. density of integers $\equiv r \mod t$ is equal to

$$-\lim_{q\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\ \mathrm{sm}(\lambda)\equiv r(\mathrm{mod}\ t)}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\frac{1}{t}.$$

• "sm" is the smallest part of λ

The arith. density of integers $\equiv r \mod t$ is equal to

$$-\lim_{q\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\\mathrm{sm}(\lambda)\equiv r(\mathrm{mod}\ t)}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\frac{1}{t}.$$

- "sm" is the smallest part of λ
- extends work of Alladi (1977), Locus Dawsey (2017)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

$$-\lim_{q
ightarrow 1}\sum_{\substack{\lambda\in\mathcal{P}\ \mathrm{sm}(\lambda)\ k ext{th power-free}}}\mu_{\mathcal{P}}(\lambda)oldsymbol{q}^{|\lambda|}=rac{1}{\zeta(k)}.$$

The arith. density of kth power-free integers is equal to

$$-\lim_{q
ightarrow 1}\sum_{\substack{\lambda\in\mathcal{P}\ ext{sm}(\lambda)\ ext{ kth power-free}}}\mu_{\mathcal{P}}(\lambda)oldsymbol{q}^{|\lambda|}=rac{1}{\zeta(k)}.$$

Proofs

q-binomial thm + partition bijection + complex analysis

The arith. density of *k*th power-free integers is equal to

$$-\lim_{q\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\k\text{th power-free}}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\frac{1}{\zeta(k)}.$$

The arith. density of kth power-free integers is equal to

$$-\lim_{m{q}
ightarrow 1}\sum_{\substack{\lambda\in\mathcal{P}\ {
m sm}(\lambda)\ {
m \textit{k}th\ power-free}}}\mu_{\mathcal{P}}(\lambda)m{q}^{|\lambda|}=rac{1}{\zeta(k)}.$$

another partition-zeta connection

For d_S arith. density of a *q*-commensurate subset $S \subseteq \mathbb{N}$:

$$-\lim_{q o 1} \sum_{\substack{\lambda \in \mathcal{P} \ \mathrm{sm}(\lambda) \in \mathcal{S}}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = d_{\mathcal{S}}.$$

For d_S arith. density of a *q*-commensurate subset $S \subseteq \mathbb{N}$:

$$-\lim_{\boldsymbol{q}\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\ \mathsf{sm}(\lambda)\in \boldsymbol{S}}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\boldsymbol{d}_{\boldsymbol{S}}.$$

More generally, for $a(\lambda)$ with certain analytic conditions:

For d_S arith. density of a *q*-commensurate subset $S \subseteq \mathbb{N}$:

$$-\lim_{\boldsymbol{q}\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\ \mathsf{sm}(\lambda)\in \boldsymbol{S}}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\boldsymbol{d}_{\boldsymbol{S}}.$$

More generally, for $a(\lambda)$ with certain analytic conditions:

$$-\lim_{q
ightarrow 1}\sum_{{
m sm}(\lambda)\in \mathcal{S}}rac{(\mu_{\mathcal{P}}*a)(\lambda)}{arphi({
m sm}(\lambda))}q^{|\lambda|} \ = \ d_{\mathcal{S}}.$$

For d_S arith. density of a *q*-commensurate subset $S \subseteq \mathbb{N}$:

$$-\lim_{\boldsymbol{q}\to 1}\sum_{\substack{\lambda\in\mathcal{P}\\ \mathsf{sm}(\lambda)\in \boldsymbol{S}}}\mu_{\mathcal{P}}(\lambda)\boldsymbol{q}^{|\lambda|}=\boldsymbol{d}_{\boldsymbol{S}}.$$

More generally, for $a(\lambda)$ with certain analytic conditions:

$$-\lim_{q\to 1}\sum_{\mathsf{sm}(\lambda)\in \mathcal{S}}\frac{(\mu_{\mathcal{P}}\ast \pmb{a})(\lambda)}{\varphi\left(\mathsf{sm}(\lambda)\right)}\pmb{q}^{|\lambda|} \ = \ \pmb{d}_{\mathcal{S}}.$$

- here * is partition convolution, φ(n) classical phi
- second formula extends work of Wang (2020)

Application: arithmetic densities

206

Theorem (Ono-S-Wagner, 2020)

 Proof requires a new theory of *q*-series density computations based on "*q*-density" statistic.:

$$d_{\mathcal{S}}(q) := rac{\sum_{\mathsf{sm}(\lambda)\in\mathcal{S}} q^{|\lambda|}}{\sum_{\lambda} q^{|\lambda|}} = (1-q) \sum_{\mathsf{sm}(\lambda)\in\mathcal{S}} q^{|\lambda|}.$$

Natural number n	Partition λ
Prime factors of <i>n</i>	Parts of λ
Square-free integers	Partitions into distinct parts
$\mu(n)$	$\mu_{\mathcal{P}}(\lambda)$
$\varphi(n)$	$arphi_{\mathcal{P}}(\lambda)$
$p_{\min}(n)$	$\operatorname{sm}(\lambda)$
$p_{\max}(n)$	$\lg(\lambda)$
n ^{-s}	$\boldsymbol{\alpha}^{ \lambda }$

Partition-theoretic multiverse

Philosophy of this talk (again)

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties \rightarrow properties of integers

Philosophy of this talk (again)

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties \rightarrow properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just, Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ...

Philosophy of this talk (again)

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory
 → special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties \rightarrow properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just, Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?

Gratitude

Thank you for listening :)

