Multiplicative theory of (additive) partitions

Robert Schneider
University of Georgia

October 27, 2020
Additive number theory
Additive number theory

Patterns and interconnections
Patterns and interconnections

- theory of *partitions*
Patterns and interconnections

- theory of partitions
- beautiful generating functions
- surprising bijections
- Ramanujan congruences
- combinatorics, algebra, analytic num. theory, mod. forms, stat. phys., QT, string theory, chemistry, ...
Birth of partition theory
Birth of partition theory

Ishango bone (Africa, ca. 20,000 B.C.E.)
Birth of partition theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)
Incan *quipu* (Peru, 2,000 B.C.E. - 1600s)
Birth of partition theory
Birth of partition theory

G. W. Leibniz (1600s)
Leibniz wondered about size of $p(n) := \# \text{ of partitions of } n$
Leibniz

- wondered about size of $p(n) := \# \text{ of partitions of } n$
- $p(n)$ is called the *partition function*
Birth of partition theory
Birth of partition theory

Leonhard Euler (1700s)
Birth of partition theory

Partition generating function (Euler)

$$\sum_{n=0}^{\infty} p(n) q^n = \prod_{n=1}^{\infty} \left(1 - q^n\right) - 1$$

$$q \in \mathbb{C}, |q| < 1$$

Template for partition theory
product-sum generating functions
combinatorics encoded in exponents, coefficients
connected analysis to partitions
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n \]
Birth of partition theory

Partition generating function (Euler)

\[
\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)
\]
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Template for partition theory
Birth of partition theory

Partition generating function (Euler)

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)$$

Template for partition theory

- product-sum generating functions
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Template for partition theory

- product-sum generating functions
- combinatorics encoded in exponents, coefficients
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Template for partition theory

- product-sum generating functions
- combinatorics encoded in exponents, coefficients
- connected analysis to partitions
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Proof
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n) q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Proof

RHS
Birth of partition theory

Partition generating function (Euler)

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)$$

Proof

$$\text{RHS} = \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + \ldots)$$
Birth of partition theory

Partition generating function (Euler)

\[
\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)
\]

Proof

\[
\text{RHS} = \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + \ldots) \quad \text{(geom. series)}
\]
Birth of partition theory

Partition generating function (Euler)

\[
\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)
\]

Proof

\[
\text{RHS} = \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + \ldots) \quad \text{(geom. series)}
\]

\[
= \prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + \ldots)
\]
Birth of partition theory

Partition generating function (Euler)

\[
\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)
\]

Proof

RHS = \[\prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...)\] (geom. series)
= \[\prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + ...)\] (like, second grade)
Birth of partition theory

Partition generating function (Euler)

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \left(1 - q^n\right)^{-1} \quad (q \in \mathbb{C}, |q| < 1) \]

Proof

RHS = \(\prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + ...) \) (geom. series)
= \(\prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + ...) \) (like, second grade)
= 1 + q^1 + q^{1+1} + q^2 + q^{1+1+1} + q^{1+2} + q^3 + ...
Birth of partition theory

Partition generating function (Euler)

\[
\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-1} \quad (q \in \mathbb{C}, |q| < 1)
\]

Proof

\[
RHS = \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + \ldots) \quad \text{(geom. series)}
\]

\[
= \prod_{n=1}^{\infty} (1 + q^n + q^{n+n} + q^{n+n+n} + \ldots) \quad \text{(like, second grade)}
\]

\[
= 1 + q^1 + q^{1+1} + q^2 + q^{1+1+1} + q^{1+2} + q^3 + \ldots = LHS
\]
I.e., most of classical number theory focuses on primes, divisors, Euler phi function $\phi(n)$, Möbius function $\mu(n)$, arithmetic functions, Dirichlet convolution, zeta functions, Dirichlet series, and L-functions.
Multiplicative number theory

I.e., most of classical number theory
Multiplicative number theory

I.e., most of classical number theory
- primes
- divisors
- Euler phi function $\varphi(n)$, Möbius function $\mu(n)$
- arithmetic functions, Dirichlet convolution
- zeta functions, Dirichlet series, L-functions
Birth of multiplicative number theory

Ishango bone (Africa, ca. 20,000 B.C.E.)
Birth of multiplicative number theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)
Birth of multiplicative number theory

Eratosthenes, Euclid (Alexandria, ca. 300 B.C.E.)
Birth of multiplicative number theory

Euler

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\text{Re}(s) > 1) \]

explicit zeta values → compute even powers of \(\pi \):

- \(\zeta(2) = \pi^2 / 6 \)
- \(\zeta(4) = \pi^4 / 90 \)
- \(\zeta(6) = \pi^6 / 945 \)

...
Birth of multiplicative number theory

Euler

- first to understand (Riemann) zeta function

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\text{Re}(s) > 1) \]

- explicit zeta values imply computing even powers of \(\pi \):
 \[
 \zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}, \ldots
 \]
Birth of multiplicative number theory

Euler

- first to understand (Riemann) zeta function:

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\text{Re}(s) > 1) \]
Birth of multiplicative number theory

Euler

- first to understand (Riemann) zeta function:
 \[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\text{Re}(s) > 1) \]

- explicit zeta values → compute even powers of \(\pi\)
Birth of multiplicative number theory

Euler

- first to understand (Riemann) zeta function:

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\text{Re}(s) > 1) \]

- explicit zeta values \(\rightarrow \) compute even powers of \(\pi \):

\[\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}, \ldots \]
Product formula for zeta function (Euler)

\[\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \left(1 - \frac{1}{p^s}\right)^{-1} \quad (\text{Re}(s) > 1)\]
Multiplicative number theory

Product formula for zeta function (Euler)

\[\sum_{n=0}^{\infty} \frac{1}{n^s} \]
Product formula for zeta function (Euler)

\[\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \left(1 - p^{-s}\right)^{-1} \quad (\text{Re}(s) > 1)\]
Product formula for zeta function (Euler)

\[\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \left(1 - p^{-s}\right)^{-1} \quad \text{for} \quad \text{Re}(s) > 1 \]

Template for study of L-functions
Product formula for zeta function (Euler)

\[
\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} \quad (\text{Re}(s) > 1)
\]

Template for study of L-functions

- “Euler product” generating functions
Product formula for zeta function (Euler)

\[\sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} \quad (\text{Re}(s) > 1) \]

Template for study of L-functions

- “Euler product” generating functions
- connected analysis to prime numbers
Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)

\[\prod_{n=1}^{\infty} \left(1 - q^n\right) = \sum_{n=0}^{\infty} p(n) q^n, \quad |q| < 1 \]

Euler product formula (encodes primes / multiplic.)

\[\prod_{p \in \mathbb{P}} \left(1 - p^{-s}\right) = \sum_{k=1}^{\infty} \frac{n^{-s}}{k^n}, \quad \text{Re}(s) > 1 \]

Proofs feel similar (multiply geometric series)
Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)

\[\prod_{n=1}^{\infty} (1 - q^n)^{-1} = \sum_{n=0}^{\infty} p(n)q^n, \quad |q| < 1 \]

Euler product formula (encodes primes / multiplic.)

\[\prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} = \sum_{k=1}^{\infty} n^{-s}, \quad \text{Re}(s) > 1 \]
Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)

\[
\prod_{n=1}^{\infty} (1 - q^n)^{-1} = \sum_{n=0}^{\infty} p(n)q^n, \quad |q| < 1
\]

Euler product formula (encodes primes / multiplic.)

\[
\prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} = \sum_{k=1}^{\infty} n^{-s}, \quad \text{Re}(s) > 1
\]

- Proofs feel similar (multiply geometric series)
Modern vistas in partition theory

Alladi–Erdős (1970s)

Bijection between integer factorizations, prime partitions

Study properties of arithmetic functions

Question

Are other theorems in arithmetic images in prime partitions of combinatorial/set-theoretic meta-structures?
Modern vistas in partition theory

Alladi–Erdős (1970s)
Modern vistas in partition theory

Alladi–Erdős (1970s)

Bijection between integer factorizations, prime partitions
Modern vistas in partition theory

Alladi–Erdős (1970s)

Bijection between *integer factorizations, prime partitions*

- study properties of arithmetic functions
Modern vistas in partition theory

Alladi–Erdős (1970s)

Bijection between *integer factorizations, prime partitions*
- study properties of arithmetic functions

Question
Alladi–Erdős (1970s)

Bijection between *integer factorizations, prime partitions*

- study properties of arithmetic functions

Question

Are other thms. in arithmetic *images in prime partitions*
Alladi–Erdős (1970s)

Bijection between integer factorizations, prime partitions
- study properties of arithmetic functions

Question

Are other thms. in arithmetic images in prime partitions of combinatorial/set-theoretic meta-structures?
Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals inspired by lattice theory unifies classical results on generating functions, bijections suggestive of a universal algebra of partitions.

Question:
Is there an algebra of partitions generalizing arithmetic in integers (i.e., prime partitions)?
Andrews (1970s)

Theory of partition ideals

Modern vistas in partition theory
Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals
- inspired by lattice theory
Andrews (1970s)

- **Theory of partition ideals**
 - inspired by lattice theory
 - unifies classical results on generating functions, bijections

Modern vistas in partition theory
Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals

- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a universal algebra of partitions

Question

Is there an algebra of partitions generalizing arithmetic in integers (i.e., prime partitions)?
Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals
- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a *universal algebra of partitions*

Question
Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals
- inspired by lattice theory
- unifies classical results on gen. functions, bijections
- suggestive of a *universal algebra of partitions*

Question

Is there an *algebra of partitions*
Modern vistas in partition theory

<table>
<thead>
<tr>
<th>Andrews (1970s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of partition ideals</td>
</tr>
<tr>
<td>• inspired by lattice theory</td>
</tr>
<tr>
<td>• unifies classical results on gen. functions, bijections</td>
</tr>
<tr>
<td>• suggestive of a universal algebra of partitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there an algebra of partitions generalizing arithmetic in integers</td>
</tr>
</tbody>
</table>
Modern vistas in partition theory

Andrews (1970s)

- Theory of partition ideals
- Inspired by lattice theory
- Unifies classical results on generating functions, bijections
- Suggestive of a *universal algebra of partitions*

Question

Is there an *algebra of partitions* generalizing arithmetic in integers (i.e., prime partitions)?
Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory

→ special cases of partition-theoretic structures

Expect arithmetic theorems

→ extend to partitions

Expect partition properties

→ properties of integers
Multiplicative theory of (additive) partitions

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
Multiplicative theory of (additive) partitions

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplicative number theory
Exist multipl., division, arith. functions on partitions

Objects in classical multiplicative number theory → special cases of partition-theoretic structures
Multiplicative theory of (additive) partitions

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplicative number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems
Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplicative number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems → extend to partitions
Multiplicative theory of (additive) partitions

Philosophy of this talk

- Exist multiplicative, division, arithmetic functions on partitions
- Objects in classical multiplicative number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems → extend to partitions
- Expect partition properties
Multiplicative theory of (additive) partitions

Philosophy of this talk

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplicative number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems → extend to partitions
- Expect partition properties → properties of integers
Partition notations

Let P denote the set of all integer partitions.

Let \emptyset denote the empty partition.

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$, denote a nonempty partition, e.g. $\lambda = (3, 2, 2, 1)$.

Let P_X denote partitions into elements $\lambda_i \in X \subseteq \mathbb{N}$, e.g. P_P is the "prime partitions".
Let \mathcal{P} denote the set of all integer partitions.
Let \mathcal{P} denote the set of all integer partitions.

Let \emptyset denote the empty partition.
Partition notations

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r), \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$, denote a nonempty partition.
Let \mathcal{P} denote the set of all integer partitions.

Let \emptyset denote the empty partition.

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$, denote a nonempty partition, e.g. $\lambda = (3, 2, 2, 1)$.
• Let \mathcal{P} denote the set of all integer partitions.

• Let \emptyset denote the empty partition.

• Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$, denote a nonempty partition, e.g. $\lambda = (3, 2, 2, 1)$.

• Let \mathcal{P}_X denote partitions into elements $\lambda_i \in X \subseteq \mathbb{N}$.
Let \mathcal{P} denote the set of all integer partitions.

Let \emptyset denote the empty partition.

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$, denote a nonempty partition, e.g. $\lambda = (3, 2, 2, 1)$.

Let \mathcal{P}_X denote partitions into elements $\lambda_i \in X \subseteq \mathbb{N}$, e.g. $\mathcal{P}_\mathbb{P}$ is the “prime partitions”.
Partition notations

\[\ell(\lambda) := \text{length (number of parts)}. \]

\[m_i(\lambda) := \text{multiplicity (or "frequency") of } i. \]

\[|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r \text{ is size (sum of parts)}. \]

"\(\lambda \vdash n \)" means \(\lambda \) is a partition of \(n \).

Define \(\ell(\emptyset) = |\emptyset| = m_i(\emptyset) = 0, \emptyset \vdash 0. \)
Partition notations

\[\ell(\lambda) := r \text{ is } \textit{length} \text{ (number of parts)}. \]
Partition notations

- $\ell(\lambda) := r$ is length (number of parts).
- $m_i = m_i(\lambda) :=$ multiplicity (or “frequency”) of i.
Partition notations

- \(\ell(\lambda) := r \) is length (number of parts).
- \(m_i = m_i(\lambda) := \text{multiplicity} \) (or “frequency”) of \(i \).
- \(|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r \) is size (sum of parts).
Partition notations

- \(\ell(\lambda) := r \) is length (number of parts).
- \(m_i = m_i(\lambda) := \text{multiplicity} \) (or “frequency”) of \(i \).
- \(|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r \) is size (sum of parts).
- “\(\lambda \vdash n \)” means \(\lambda \) is a partition of \(n \).
Partition notations

- \(\ell(\lambda) := r \) is length (number of parts).
- \(m_i = m_i(\lambda) := \text{multiplicity (or “frequency”) of } i. \)
- \(|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r \) is size (sum of parts).
- “\(\lambda \vdash n \)” means \(\lambda \) is a partition of \(n \).
- Define \(\ell(\emptyset) = |\emptyset| = m_i(\emptyset) = 0, \quad \emptyset \vdash 0. \)
Multiplicative theory of (additive) partitions

Define $N(\lambda)$, the norm of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

Define $N(\emptyset) := 1$ (it is an empty product).
Multiplicative theory of (additive) partitions

New partition statistic

Define $N(\lambda)$, the norm of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

Define $N(\emptyset) := 1$ (it is an empty product)

See "The product of parts or 'norm' etc." (S-Sills)
New partition statistic

Define $N(\lambda)$, the *norm* of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

Define $N(\emptyset) := 1$ (it is an empty product)

See "The product of parts or 'norm' etc." (S-Sills)
New partition statistic

Define $N(\lambda)$, the *norm* of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$
Define $N(\lambda)$, the *norm* of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

Define $N(\emptyset) := 1$ (it is an empty product)
Multiplicative theory of (additive) partitions

New partition statistic
Define $N(\lambda)$, the norm of λ, to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

- Define $N(\emptyset) := 1$ (it is an empty product)
- See “The product of parts or ‘norm’ etc.” (S-Sills)
Multiplicative theory of (additive) partitions

Partition multiplication

For $\lambda, \gamma \in \mathcal{P}$ let $\lambda \gamma$ denote multiset union of the parts, e.g. $(3, 2)(2, 1) = (3, 2, 2, 1)$.

Identity is \emptyset.

Partitions into one part are like primes, FTA holds.
Multiplicative theory of (additive) partitions

Partition multiplication

For $\lambda, \gamma \in \mathcal{P}$ let $\lambda \gamma$ denote multiset union of the parts,
Multiplicative theory of (additive) partitions

Partition multiplication

For $\lambda, \gamma \in \mathcal{P}$ let $\lambda \gamma$ denote multiset union of the parts, e.g. $(3, 2)(2, 1) = (3, 2, 2, 1)$.
Partition multiplication

- For $\lambda, \gamma \in \mathcal{P}$ let $\lambda \gamma$ denote multiset union of the parts, e.g. $(3, 2)(2, 1) = (3, 2, 2, 1)$.

- Identity is \emptyset
Partition multiplication

- For \(\lambda, \gamma \in \mathcal{P} \) let \(\lambda \gamma \) denote multiset union of the parts, e.g. \((3, 2)(2, 1) = (3, 2, 2, 1)\).
- Identity is \(\emptyset \)
- Partitions into one part are like primes, FTA holds
Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For $\lambda, \delta \in \mathbb{P}$, let $\delta \mid \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) \mid (3, 2, 2, 1)$.

For $\delta \mid \lambda$, let λ / δ mean parts of δ deleted from λ, e.g. $(3, 2, 2, 1) / (3, 2, 1) = (2)$.

Replace \mathbb{P} with \mathbb{P} mult./div. in \mathbb{Z}^+
For $\lambda, \delta \in \mathcal{P}$, let $\delta \mid \lambda$ mean all parts of δ are parts of λ.
Multiplicative theory of (additive) partitions

For $\lambda, \delta \in \mathcal{P}$, let $\delta | \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) | (3, 2, 2, 1)$.

Partition division (subpartitions)
Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For $\lambda, \delta \in \mathcal{P}$, let $\delta \mid \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) \mid (3, 2, 2, 1)$.

For $\delta \mid \lambda$, let λ / δ mean parts of δ deleted from λ.
For $\lambda, \delta \in \mathcal{P}$, let $\delta \mid \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) \mid (3, 2, 2, 1)$.

For $\delta \mid \lambda$, let λ / δ mean parts of δ deleted from λ, e.g. $(3, 2, 2, 1) / (3, 2, 1) = (2)$.

```
Replace \mathcal{P} with \mathcal{P} \rightarrow \text{mult./div. in } \mathbb{Z}_+^{105}
```
Multiplicative theory of (additive) partitions

Partition division (subpartitions)

- For $\lambda, \delta \in \mathcal{P}$, let $\delta \mid \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) \mid (3, 2, 2, 1)$.

- For $\delta \mid \lambda$, let λ / δ mean parts of δ deleted from λ, e.g. $(3, 2, 2, 1) / (3, 2, 1) = (2)$.

- Replace \mathcal{P} with $\mathcal{P}_{\mathbb{P}}$.

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

- For $\lambda, \delta \in \mathcal{P}$, let $\delta | \lambda$ mean all parts of δ are parts of λ, e.g. $(3, 2, 1) | (3, 2, 2, 1)$.

- For $\delta | \lambda$, let λ / δ mean parts of δ deleted from λ, e.g. $(3, 2, 2, 1) / (3, 2, 1) = (2)$.

- Replace \mathcal{P} with $\mathcal{P}_\mathbb{P} \rightarrow \text{mult./div. in } \mathbb{Z}^+$
Many arithmetic objects have partition counterparts.

Partition Möbius function

For $\lambda \in \mathbb{P}$, define

$$\mu(\lambda) = \begin{cases} 0 & \text{if } \lambda \text{ has any part repeated,} \\ (-1)^{\ell(\lambda)} & \text{otherwise.} \end{cases}$$

Replacing \mathbb{P} with $\mathbb{P}^{\mathbb{P}}$ reduces to $\mu(N(\lambda))$, where $N(\lambda)$ is the norm (product of parts).
Many arithmetic objects have partition counterparts.
Many arithmetic objects have partition counterparts.

\[\mu_P(\lambda) := \begin{cases} 0 & \text{if } \lambda \text{ has any part repeated}, \\ (-1)^\ell(\lambda) & \text{otherwise} \end{cases} \]

Replacing \(P \) with \(\overline{P} \) reduces to \(\mu(N(\lambda)) \), where \(N(\lambda) \) is the norm (product of parts).
Many arithmetic objects have partition counterparts.

Partition Möbius function

For \(\lambda \in P \), define

\[
\mu_P(\lambda) =
\begin{cases}
0 & \text{if } \lambda \text{ has any part repeated,} \\
(-1)^{\ell(\lambda)} & \text{otherwise}
\end{cases}
\]

Replacing \(P \) with \(PP \) reduces to \(\mu(N(\lambda)) \), where \(N(\lambda) \) is the norm (product of parts).
Many arithmetic objects have partition counterparts.

Partition Möbius function

For \(\lambda \in \mathcal{P} \), define

\[
\mu_{\mathcal{P}}(\lambda) := \begin{cases}
0 & \text{if } \lambda \text{ has any part repeated}, \\
(-1)^{\ell(\lambda)} & \text{otherwise}.
\end{cases}
\]
Many arithmetic objects have partition counterparts.

Partition Möbius function

For $\lambda \in \mathcal{P}$, define

$$\mu_\mathcal{P}(\lambda) := \begin{cases}
0 & \text{if } \lambda \text{ has any part repeated,} \\
(-1)^{\ell(\lambda)} & \text{otherwise.}
\end{cases}$$

Replacing \mathcal{P} with $\mathcal{P}_\mathbb{P}$ reduces to $\mu(N(\lambda))$, where $N(\lambda)$ is the norm (product of parts).
Parallel universe

Just as in classical cases, nice sums over “divisors”...

\[\sum_{\delta} \mu(\lambda) P(\delta) = \begin{cases} 1 & \text{if } \lambda = \emptyset, \\ 0 & \text{otherwise} \end{cases} \]
Just as in classical cases, nice sums over “divisors”...
Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function
Just as in classical cases, nice sums over “divisors”...

\[
\sum_{\delta \mid \lambda} \mu_P(\delta) = \begin{cases}
1 & \text{if } \lambda = \emptyset, \\
0 & \text{otherwise}
\end{cases}
\]
If we have \(f(\lambda) = \sum \delta |\lambda| g(\delta) \), we also have \(g(\lambda) = \sum \delta |\lambda| \mu P(\lambda/\delta) f(\delta) \).
If we have

\[f(\lambda) = \sum_{\delta | \lambda} g(\delta) \]

we also have

\[g(\lambda) = \sum_{\delta | \lambda} \mu_P(\lambda / \delta) f(\delta). \]
Classically, $\mu(n)$ has a close companion in $\varphi(n)$.
Classically, $\mu(n)$ has a close companion in $\varphi(n)$.
Classically, $\mu(n)$ has a close companion in $\varphi(n)$.

Partition phi function

For $\lambda \in \mathcal{P}$, define

$$\varphi(\lambda) = N(\lambda) \prod_{\lambda_i \in \lambda \text{ no repeats}} (1 - \lambda - 1)^i.$$
Classically, \(\mu(n) \) has a close companion in \(\varphi(n) \).

Partition phi function

For \(\lambda \in \mathcal{P} \), define

\[
\varphi_{\mathcal{P}}(\lambda) := N(\lambda) \prod_{\lambda_i \in \lambda \atop \text{no repeats}} (1 - \lambda_i^{-1}).
\]
Classically, $\mu(n)$ has a close companion in $\varphi(n)$.

Partition phi function

For $\lambda \in \mathcal{P}$, define

$$\varphi_{\mathcal{P}}(\lambda) := N(\lambda) \prod_{\lambda_i \in \lambda \atop \text{no repeats}} (1 - \lambda_i^{-1}).$$

- Replacing \mathcal{P} with $\mathcal{P}_\mathcal{P}$ reduces to $\varphi(N(\lambda))$.
Parallel universe

Phi function identities
Parallel universe

Phi function identities

\[\sum_{\delta|\lambda} \varphi_{\mathcal{P}}(\delta) = N(\lambda), \quad \varphi_{\mathcal{P}}(\lambda) = N(\lambda) \sum_{\delta|\lambda} \frac{\mu_{\mathcal{P}}(\delta)}{N(\delta)} \]
Parallel universe

Phi function identities

\[
\sum_{\delta|\lambda} \varphi_{\mathcal{P}}(\delta) = N(\lambda), \quad \varphi_{\mathcal{P}}(\lambda) = N(\lambda) \sum_{\delta|\lambda} \frac{\mu_{\mathcal{P}}(\delta)}{N(\delta)}
\]

- Replacing \(\mathcal{P} \) with \(\mathcal{P}_\mathbb{P} \) reduces to classical cases.
Parallel universe

Phi function identities

\[\sum_{\delta | \lambda} \varphi_\mathcal{P}(\delta) = N(\lambda), \quad \varphi_\mathcal{P}(\lambda) = N(\lambda) \sum_{\delta | \lambda} \frac{\mu_\mathcal{P}(\delta)}{N(\delta)} \]

- Replacing \(\mathcal{P} \) with \(\mathcal{P}_\mathcal{P} \) reduces to classical cases.
- Many analogs of objects in multiplicative # theory...
Parallel universe

Partition Cauchy product

\[
\left(\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{\lambda} \right) \left(\sum_{\lambda \in \mathcal{P}} g(\lambda) q^{\lambda} \right) = \sum_{\lambda \in \mathcal{P}} q^{\lambda} \sum_{\delta | \lambda} f(\delta) g(\lambda/\delta)
\]
Parallel universe

Partition Cauchy product

\[
\left(\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{\lambda_1} \right) \left(\sum_{\lambda \in \mathcal{P}} g(\lambda) q^{\lambda_1} \right) = \sum_{\lambda \in \mathcal{P}} q^{\lambda_1} \sum_{\delta | \lambda} f(\delta) g(\lambda / \delta)
\]

Swapping order of summation

\[
\sum_{\lambda \in \mathcal{P}} f(\lambda) \sum_{\delta | \lambda} g(\delta) = \sum_{\lambda \in \mathcal{P}} g(\lambda) \sum_{\gamma \in \mathcal{P}} f(\lambda \gamma)
\]
Parallel universe

Partition Cauchy product

\[
\left(\sum_{\lambda \in \mathcal{P}} f(\lambda) q^{\lambda} \right) \cdot \left(\sum_{\lambda \in \mathcal{P}} g(\lambda) q^{\lambda} \right) = \sum_{\lambda \in \mathcal{P}} q^{\lambda} \sum_{\delta | \lambda} f(\delta) g(\lambda / \delta)
\]

Swapping order of summation

\[
\sum_{\lambda \in \mathcal{P}} f(\lambda) \sum_{\delta | \lambda} g(\delta) = \sum_{\lambda \in \mathcal{P}} g(\lambda) \sum_{\gamma \in \mathcal{P}} f(\lambda \gamma)
\]

Other multiplicative objects generalize to partition theory...
Partition zeta functions

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{-s}} \]

Definition

For \(P' \subsetneq P \), \(s \in \mathbb{C} \), define a partition zeta function

\[\zeta_{P'}(s) := \sum_{\lambda \in P'} N(\lambda)^{-s} \]

where \(N(\lambda) \) is the norm (product of parts) of \(\lambda \), \(N(\emptyset) := 1 \).

For \(1 \not\in P' = P \setminus \{ \text{parts in } X \subset \mathbb{N} \} \rightarrow \) Euler product:

\[\zeta_{P,X}(s) = \prod_{n \in X} \left(1 - n^{-s} \right) \]
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $P' \subset P$, $s \in \mathbb{C}$, define a partition zeta function $\zeta_{P'}(s) := \sum_{\lambda \in P'} N(\lambda) n^{-s}$, where $N(\emptyset) := 1$.

For $1 \not\in P' = P \setminus \{\text{parts in } X \subset \mathbb{N}\}$, the Euler product is:

$$\zeta_{P}(s) = \prod_{n \in X} \left(1 - \frac{1}{n^{-s}} \right)$$
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $\mathcal{P}' \subsetneq \mathcal{P}, s \in \mathbb{C}$, define a *partition zeta function*
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $\mathcal{P}' \subsetneq \mathcal{P}$, $s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(s) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-s}$$
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $\mathcal{P}' \subsetneq \mathcal{P}$, $s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(s) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-s}$$

- $N(\lambda)$ is the *norm* (product of parts) of λ, $N(\emptyset) := 1$.
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $\mathcal{P}' \subsetneq \mathcal{P}$, $s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(s) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-s}$$

- $N(\lambda)$ is the *norm* (product of parts) of λ, $N(\emptyset) := 1$.
- For $1 \notin \mathcal{P}' = \mathcal{P}_X$ (parts in $X \subset \mathbb{N}$)
In analogy with $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$:

Definition

For $\mathcal{P}' \subset \mathcal{P}$, $s \in \mathbb{C}$, define a *partition zeta function*:

$$\zeta_{\mathcal{P}'}(s) := \sum_{\lambda \in \mathcal{P}'} N(\lambda)^{-s}$$

- $N(\lambda)$ is the *norm* (product of parts) of λ, $N(\emptyset) := 1$.
- For $1 \notin \mathcal{P}' = \mathcal{P}_X$ (parts in $X \subset \mathbb{N}$) → Euler product:

$$\zeta_{\mathcal{P}_X}(s) = \prod_{n \in X} (1 - n^{-s})^{-1}$$
Fix $s = 2$, vary subset \mathcal{P}'.
Fix $s = 2$, vary subset \mathcal{P}'

Summing over partitions into prime parts:

$$\zeta_{\mathcal{P}_p}(2) = \zeta(2) = \frac{\pi^2}{6}$$

Summing over partitions into even parts:

$$\zeta_{\mathcal{P}_{\text{even}}}(2) = \frac{\pi}{2}$$

Summing over partitions into distinct parts:

$$\zeta_{\mathcal{P}_{\text{distinct}}}(2) = \frac{\sinh \pi}{\pi}$$
Partition zeta functions: nice identities

Partition analogs of classical identities

\[
\sum_{\lambda \in \mathcal{P}_X} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_X}(s)}
\]

\[
\sum_{\lambda \in \mathcal{P}_X} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_X}(s-1)}{\zeta_{\mathcal{P}_X}(s)}
\]

Takeaway from these examples

Different subsets of \(\mathcal{P} \) induce very different zeta values.

Classical zeta theorems \(\rightarrow \) partition zeta theorems.
Partition zeta functions: nice identities

Partition analogs of classical identities

\[\sum_{\lambda \in \mathcal{P}_X} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_X}(s)} \]

\[\sum_{\lambda \in \mathcal{P}_X} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_X}(s - 1)}{\zeta_{\mathcal{P}_X}(s)} \]

Takeaway from these examples

Different subsets of \(\mathcal{P} \) induce very different zeta values.

Classical zeta theorems \(\rightarrow \) partition zeta theorems.
Partition zeta functions: nice identities

Partition analogs of classical identities

\[
\sum_{\lambda \in \mathcal{P}_X} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_X}(s)}
\]

\[
\sum_{\lambda \in \mathcal{P}_X} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_X}(s-1)}{\zeta_{\mathcal{P}_X}(s)}
\]

Takeaway from these examples

- Different subsets of \(\mathcal{P} \) induce very different zeta values
Partition zeta functions: nice identities

Partition analogs of classical identities

\[\sum_{\lambda \in \mathcal{P}_x} \mu_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{1}{\zeta_{\mathcal{P}_x}(s)} \]

\[\sum_{\lambda \in \mathcal{P}_x} \varphi_{\mathcal{P}}(\lambda) N(\lambda)^{-s} = \frac{\zeta_{\mathcal{P}_x}(s - 1)}{\zeta_{\mathcal{P}_x}(s)} \]

Takeaway from these examples

- Different subsets of \(\mathcal{P} \) induce very different zeta values
- Classical zeta theorems \(\rightarrow \) partition zeta theorems
Pretty cool, but it would be a whole lot cooler if we had families of identities like Euler’s zeta values
Pretty cool, but it would be a whole lot cooler if we had families of identities like Euler’s zeta values:

\[\zeta(2N) = \pi^{2N} \times \text{rational number} \]
Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had families of identities like Euler’s zeta values:

\[\zeta(2N) = \pi^{2N} \times \text{rational number} \]

Question
Pretty cool, but it would be a whole lot cooler if we had *families* of identities like Euler’s zeta values:

\[\zeta(2N) = \pi^{2N} \times \text{rational number} \]

Question

Do there exist (non-Riemann) partition zeta functions such that, for the “right” choice of \(P' \subsetneq P \)
Pretty cool, but it would be a whole lot cooler if we had families of identities like Euler’s zeta values:

\[\zeta(2N) = \pi^{2N} \times \text{rational number} \]

Question

Do there exist (non-Riemann) partition zeta functions such that, for the “right” choice of \(P' \not\subset P \),

\[\zeta_{P'}(N) = \pi^M \times \text{rational number} \]
Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length $\ell(\lambda) = k$:

$$\zeta_P(\{s\}_k) := \sum_{\lambda \in P} \lambda - s(\text{Re}(s) > 1)$$
Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length $\ell(\lambda) = k$:
Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length $\ell(\lambda) = k$:

$$\zeta_P(\{s\}^k) \ := \sum_{\lambda \in \mathcal{P} \atop \ell(\lambda) = k} N(\lambda)^{-s} \quad (\text{Re}(s) > 1)$$
Theorem (S, 2016)

Summing over partitions of fixed length $k > 0$:

$$\zeta_P(\{2\}_k) = \pi^2 k \times \text{rational number}$$

Note: $k = 0$ suggests $\zeta(0) = -\frac{1}{2}$ (correct value)

Theorem (Ono-Rolen-S, 2017)

For $N \geq 1$:

$$\zeta_P(\{2N\}_k) = \pi^2 Nk \times \text{rational number}$$
Theorem (S, 2016)

Summing over partitions of fixed length $k > 0$:

$$\zeta_P(\{2\}^k) = \frac{2^{2k-1} - 1}{2^{2k-2}} \zeta(2k) = \pi^{2k} \times \text{rational number}$$
Partition zeta functions: nice family

Theorem (S, 2016)

Summing over partitions of fixed length $k > 0$:

$$\zeta_P(\{2\}^k) = \frac{2^{2k-1} - 1}{2^{2k-2}} \zeta(2k) = \pi^{2k} \times \text{rational number}$$

- **Note:** $k = 0$ suggests $\zeta(0) = -\frac{1}{2}$ (correct value)
Theorem (S, 2016)

Summing over partitions of fixed length $k > 0$:

$$\zeta_P(\{2\}^k) = \frac{2^{2k-1} - 1}{2^{2k-2}} \zeta(2k) = \pi^{2k} \times \text{rational number}$$

Note: $k = 0$ suggests $\zeta(0) = -\frac{1}{2}$ (correct value)

Theorem (Ono-Rolen-S, 2017)
Theorem (S, 2016)

Summing over partitions of fixed length \(k > 0 \):

\[
\zeta_P(\{2\}^k) = \frac{2^{2k-1} - 1}{2^{2k-2}} \zeta(2k) = \pi^{2k} \times \text{rational number}
\]

Note: \(k = 0 \) suggests \(\zeta(0) = -\frac{1}{2} \) (correct value)

Theorem (Ono-Rolen-S, 2017)

For \(N \geq 1 \):

\[
\zeta_P(\{2N\}^k) = \pi^{2Nk} \times \text{rational number}
\]
Theorem (Ono-Rolen-S., 2017)

Some *other* partition zeta fcts. contin. to right half-plane.
Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)
Some *other* partition zeta functions continue to the right half-plane.

Natural questions
Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)

Some *other* partition zeta functions continue to the right half-plane.

Natural questions

General $\zeta_P(\{s\}^k)$? Analytic continuation? Poles? Roots?
Theorem (S.-Sills, 2020)

For $\Re(s) > 1$:

$$\zeta_P(\{s\}_k) = \sum_{\lambda \vdash k} \zeta(\lambda \mu_1 \zeta(2s) \mu_2 \zeta(3s) \mu_3 \cdots \zeta(ks) \mu_k \mathcal{N}(\lambda) \mu_1! \mu_2! \mu_3! \cdots \mu_k!$$

sum over partitions λ of size k on RHS inherits continuation from $\zeta(\lambda \mu_1 \cdots \zeta(ks) \mu_k)$.

poles at $s = 1, 1/2, 1/3, 1/4, \ldots, 1/k$.

trivial roots at $s \in -2\mathcal{N}$.

Note: $\zeta_P(\{s\}_k)$ not zero at roots of $\zeta(\lambda \mu_1 \cdots \zeta(ks) \mu_k)$ for $k > 1$.

Theorem (S.-Sills, 2020)

For $\Re(s) > 1$:

$$\zeta_P(\{s\}^k) = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \zeta(3s)^{m_3} \cdots \zeta(ks)^{m_k}}{N(\lambda) \ m_1! \ m_2! \ m_3! \ \cdots \ m_k!}$$
Theorem (S.-Sills, 2020)

For \(\text{Re}(s) > 1 \):

\[
\zeta_{\mathcal{P}}(\{s\}^k) = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \zeta(3s)^{m_3} \cdots \zeta(ks)^{m_k}}{N(\lambda) \ m_1! \ m_2! \ m_3! \cdots \ m_k!}
\]

- sum over partitions \(\lambda \) of size \(k \) on RHS
Theorem (S.-Sills, 2020)

For $\text{Re}(s) > 1$:

$$\zeta_P({\{s\}}^k) = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \zeta(3s)^{m_3} \cdots \zeta(ks)^{m_k}}{N(\lambda) \ m_1! \ m_2! \ m_3! \ \cdots \ m_k!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
Theorem (S.-Sills, 2020)

For $\text{Re}(s) > 1$:

$$\zeta_P(\{s\}^k) = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \zeta(3s)^{m_3} \cdots \zeta(ks)^{m_k}}{N(\lambda) \ m_1! \ m_2! \ m_3! \ \cdots \ m_k!}$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
- poles at $s = 1, 1/2, 1/3, 1/4, \ldots, 1/k$
Theorem (S.-Sills, 2020)

For \(\text{Re}(s) > 1 \):

\[
ζ_P(\{s\}^k) = \sum_{\lambda \vdash k} \frac{ζ(s)^{m_1} ζ(2s)^{m_2} ζ(3s)^{m_3} \cdots ζ(ks)^{m_k}}{N(λ) \ m_1 ! \ m_2 ! \ m_3 ! \cdots \ m_k !}
\]

- sum over partitions \(\lambda \) of size \(k \) on RHS
- inherits continuation from \(ζ(s) \)
- poles at \(s = 1, 1/2, 1/3, 1/4, \ldots, 1/k \)
- trivial roots at \(s \in -2\mathbb{N} \)
Theorem (S.-Sills, 2020)

For $\text{Re}(s) > 1$:

$$
\zeta_P(\{s\}^k) = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \zeta(3s)^{m_3} \cdots \zeta(ks)^{m_k}}{N(\lambda) \ m_1! \ m_2! \ m_3! \ \cdots \ m_k!}
$$

- sum over partitions λ of size k on RHS
- inherits continuation from $\zeta(s)$
- poles at $s = 1, 1/2, 1/3, 1/4, \ldots, 1/k$
- trivial roots at $s \in -2\mathbb{N}$

Note: $\zeta_P(\{s\}^k)$ not zero at roots of $\zeta(s)$ for $k > 1$
MacMahon-partition zeta correspondence

Proof mimics Sills’ combinatorial proof (2019) of MacMahon’s partial fraction decomposition...
Proof mimics Sills’ combinatorial proof (2019) of MacMahon’s partial fraction decomposition...

MacMahon’s partial fraction decomposition

For $|q| < 1$:

$$\prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\lambda|k} \frac{(1 - q^2)^{-m_2} \cdots q^{km_k} (1 - q^k)^{-m_k}}{N(\lambda) \ m_1! \ m_2! \cdots \ m_k!}$$

Although here we really want to use...
MacMahon's partial fraction decomposition times q^k

\[q^k \prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\ell(\lambda) = k} q^{\lambda} \]

\[= \sum_{\lambda \vdash k} \frac{q^{m_1}(1 - q)^{-m_1} \cdot q^{2m_2}(1 - q^2)^{-m_2} \cdots q^{km_k}(1 - q^k)^{-m_k}}{N(\lambda) \ m_1! \ m_2! \ \cdots \ \ m_k!} \]
MacMahon's partial fraction decomposition times q^k

$$q^k \prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\ell(\lambda) = k} q^{\ell(\lambda)}$$

$$= \sum_{\lambda \vdash k} \frac{q^m (1 - q)^{-m_1} \cdot q^{2m_2} (1 - q^2)^{-m_2} \cdots q^{km_k} (1 - q^k)^{-m_k}}{N(\lambda) \cdot m_1! \cdot m_2! \cdots m_k!}$$

- LHS generates all partitions with largest part k
MacMahon’s partial fraction decomposition times q^k

\[
q^k \prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\ell(\lambda) = k} q^{\lambda} = \sum_{\lambda \vdash k} q^{\lambda} \prod_{n=1}^{k} (1 - q^n)^{-1} \prod_{m_1}^{m_k} (1 - q^{m_i})^{-m_i} \cdot (1 - q^{k})^{-m_k} \cdot \frac{N(\lambda)}{m_1! \cdot m_2! \cdots m_k!}
\]

- LHS generates all partitions with largest part k
- Conjugation \rightarrow also generates partitions with length k
MacMahon's partial fraction decomposition times q^k

$$q^k \prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\ell(\lambda) = k} q^{||\lambda||}$$

$$= \sum_{\lambda \vdash k} \frac{q^{m_1}(1 - q)^{-m_1} \cdot q^{2m_2}(1 - q^2)^{-m_2} \cdots q^{km_k}(1 - q^k)^{-m_k}}{N(\lambda) \ m_1! \ m_2! \cdots \ m_k!}$$

- LHS generates all partitions with largest part k
- Conjugation \rightarrow also gen. partitions w/ length k
- RHS = comb. geom. series over partitions of size k
MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times q^k

$$q^k \prod_{n=1}^{k} (1 - q^n)^{-1} = \sum_{\ell(\lambda)=k} q^{|\lambda|}$$

$$= \sum_{\lambda \vdash k} \frac{q^{m_1} (1 - q)^{-m_1} \cdot q^{2m_2} (1 - q^2)^{-m_2} \cdots q^{km_k} (1 - q^k)^{-m_k}}{N(\lambda) \cdot m_1! \cdot m_2! \cdots m_k!}$$

Compare and contrast

$$\zeta_P(\{s\}^k) = \sum_{\ell(\lambda)=k} N(\lambda)^{-s} = \sum_{\lambda \vdash k} \frac{\zeta(s)^{m_1} \zeta(2s)^{m_2} \cdots \zeta(ks)^{m_k}}{N(\lambda) \cdot m_1! \cdot m_2! \cdots m_k!}$$
MacMahon-partition zeta correspondence

<table>
<thead>
<tr>
<th>Gen fctn component</th>
<th>Analogous zeta fctn component</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q^{</td>
<td>\lambda</td>
</tr>
<tr>
<td>$\frac{q^j}{1-q^j}$</td>
<td>$\zeta(js)$</td>
</tr>
<tr>
<td>$\frac{q^k}{\prod_{j=1}^k (1-q^j)}$</td>
<td>$\zeta_P({s}^k)$</td>
</tr>
</tbody>
</table>
MacMahon-partition zeta correspondence

<table>
<thead>
<tr>
<th>Gen fctn component</th>
<th>Analogous zeta fctn component</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q^{</td>
<td>\lambda</td>
</tr>
<tr>
<td>$\frac{q^j}{1-q^j}$</td>
<td>$\zeta(js)$</td>
</tr>
<tr>
<td>$\frac{q^k}{\prod_{j=1}^{k}(1-q^j)}$</td>
<td>$\zeta_P({s}^k)$</td>
</tr>
</tbody>
</table>

Multiplication of terms of either shape q^n or n^{-s} generates partitions in exactly the same way:

$$q^{\lambda_1} q^{\lambda_2} q^{\lambda_3} \ldots q^{\lambda_r} = q^{|\lambda|} \longleftrightarrow \lambda_1^{-s} \lambda_2^{-s} \lambda_3^{-s} \ldots \lambda_r^{-s} = N(\lambda)^{-s}$$
<table>
<thead>
<tr>
<th>Gen fctn component</th>
<th>Analogous zeta fctn component</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^{λ}</td>
<td>$N(\lambda)^{-s}$</td>
</tr>
<tr>
<td>$\frac{q^i}{1-q^i}$</td>
<td>$\zeta(js)$</td>
</tr>
<tr>
<td>$\frac{q^k}{\prod_{j=1}^{k}(1-q^j)}$</td>
<td>$\zeta_P({s}^k)$</td>
</tr>
</tbody>
</table>

The term q^{jn} in geom series $\sum_{n=1}^{\infty} q^{jn}$ and resp. term n^{-js} of $\zeta(js)$ both encode partition $(n)^j := (n, n, ..., n)$ (j times):

$$\frac{q^i}{1-q^i} = \sum_{n=1}^{\infty} q^{\|(n)^j\|} \iff \zeta(js) = \sum_{n=1}^{\infty} N((n)^j)^{-s}.$$
Correspondence says q^j and $\zeta(js)$ are interchangeable as gen fctns for partitions $(n, n, ..., n)$ (j reps / same part).
MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says $\frac{q^j}{1-q^j}$ and $\zeta(js)$ are interchangeable.
Correspondence says $\frac{q^j}{1-q^j}$ and $\zeta(js)$ are interchangeable as gen fctns for partitions (n, n, \ldots, n) (j reps / same part).
Multiplicative theory of (additive) partitions

Applications

New combinatorial bijections
Computing coefficients of q-series, mock mod. forms
Statistical physics
Computational chemistry
Computing arithmetic densities
Computing π (quite inefficiently, to boot!)
Multiplicative theory of (additive) partitions

Applications

- New combinatorial bijections
- Computing coefficients of q-series, mock mod. forms
- Statistical physics
- Computational chemistry
- Computing arithmetic densities
- Computing π
Multiplicative theory of (additive) partitions

Applications

- New combinatorial bijections
- Computing coefficients of q-series, mock mod. forms
- Statistical physics
- Computational chemistry
- Computing arithmetic densities
- Computing π (quite inefficiently, to boot!)
Definition

The arithmetic density of a subset \(S \subseteq \mathbb{Z}^+ \) is
\[
\lim_{N \to \infty} \frac{\#\{ n \in S \mid n \leq N \}}{N},
\]
if the limit exists.

Examples

Integers ≡ \(r \) (mod \(t \)) have density \(1/t \).

Square-free integers have density \(6/\pi^2 = 1/\zeta(2) \).
Application: arithmetic densities

Definition

The arithmetic density of a subset \(S \subseteq \mathbb{Z}^+ \) is \(\lim_{N \to \infty} \frac{\# \{ n \in S \mid n \leq N \}}{N} \), if the limit exists.

Examples

Integers \(\equiv r \pmod{t} \) have density \(\frac{1}{t} \).

Square-free integers have density \(\frac{6}{\pi^2} = \frac{1}{\zeta(2)} \).
Definition

The arithmetic density of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N \to \infty} \frac{\# \{ n \in S \mid n \leq N \}}{N},$$

if the limit exists.
The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N \to \infty} \frac{\#\{n \in S \mid n \leq N\}}{N},$$

if the limit exists.

Examples

Integers $\equiv r \pmod{t}$ have density $1/t$.

Square-free integers have density $6/\pi^2 = 1/\zeta(2)$.

187
Definition

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N \to \infty} \frac{\# \{ n \in S \mid n \leq N \}}{N},$$

if the limit exists.

Examples

- Integers $\equiv r \pmod{t}$ have density $1/t$
Application: arithmetic densities

Definition

The *arithmetic density* of a subset $S \subseteq \mathbb{Z}^+$ is

$$\lim_{N \to \infty} \frac{\#\{n \in S \mid n \leq N\}}{N},$$

if the limit exists.

Examples

- Integers $\equiv r \pmod{t}$ have density $1/t$
- Square-free integers have density $6/\pi^2 = 1/\zeta(2)$
Well-known relation between arithmetic density and zeta-type sums

If a subset $T \subseteq \mathbb{P}$ has arithmetic density in \mathbb{P}, its density is equal to the Dirichlet density of T.

$$\lim_{s \to 1} \sum_{p \in T} p^{-s} - \sum_{p \in \mathbb{P}} p^{-s}$$
Application: arithmetic densities

Classical computation

- Well-known relation between arithmetic density and zeta-type sums
Classical computation

- Well-known relation between arithmetic density and zeta-type sums
- If a subset $T \subseteq \mathbb{P}$ has arithmetic density in \mathbb{P}, its density is equal to the *Dirichlet density* of T

$$\lim_{s \to 1} \frac{\sum_{p \in T} p^{-s}}{\sum_{p \in \mathbb{P}} p^{-s}}$$
Theorem (Ono-S-Wagner, 2018)

The arith. density of integers \(r \mod t \) is equal to

\[
- \lim_{q \to 1} \sum_{\lambda \in P} \lambda \text{sm}(\lambda) \equiv r(\mod t) \mu_P(\lambda) q \mid \lambda \mid = \frac{1}{t}.
\]

"sm" is the smallest part of \(\lambda \) extends work of Alladi (1977), Locus Dawsey (2017).
Theorem (Ono-S-Wagner, 2018)
The arith. density of integers $\equiv r \mod t$ is equal to

$$-\lim_{q \to 1} \sum_{\lambda \in \mathcal{P}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} \equiv \frac{1}{t}.$$

"sm" is the smallest part of λ extends work of Alladi (1977), Locus Dawsey (2017)
The arith. density of integers $\equiv r \mod t$ is equal to

$$- \lim_{q \to 1} \sum_{\lambda \in \mathcal{P} \atop \text{sm}(\lambda) \equiv r(\mod t)} \mu_{\mathcal{P}}(\lambda) q^{\lambda} = \frac{1}{t}. $$

- “sm” is the smallest part of λ
Theorem (Ono-S-Wagner, 2018)

The arith. density of integers \(\equiv r \mod t \) is equal to

\[
- \lim_{q \to 1} \sum_{\lambda \in P, \text{sm}(\lambda) \equiv r(\mod t)} \mu_P(\lambda) q^{|\lambda|} = \frac{1}{t}.
\]

- “sm” is the smallest part of \(\lambda \)
- extends work of Alladi (1977), Locus Dawsey (2017)
Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

$$\lim_{q \to 1} \sum_{\lambda \in \mathcal{P}} \frac{\mu_{\mathcal{P}}(\lambda)}{|\lambda|^{k}} = \frac{1}{\zeta(k)}.$$
Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

$$- \lim_{q \to 1} \sum_{\lambda \in \mathcal{P}} \mu_{\mathcal{P}}(\lambda) q^{\|\lambda\|} = \frac{1}{\zeta(k)}.$$
Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

$$- \lim_{q \to 1} \sum_{\lambda \in \mathcal{P}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = \frac{1}{\zeta(k)}.$$

Proofs

q-binomial thm + partition bijection + complex analysis
Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

$$\left. - \lim_{q \to 1} \right\} \sum_{\substack{\lambda \in \mathcal{P} \\
\text{sm}(\lambda) \ k\text{th power-free}}} \mu_{\mathcal{P}}(\lambda) q^{\lambda} = \frac{1}{\zeta(k)}. $$
Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

\[- \lim_{q \to 1} \sum_{\substack{\lambda \in \mathcal{P} \\ \text{sm}(\lambda) \text{ kth power-free}}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = \frac{1}{\zeta(k)}.\]

another partition-zeta connection
Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)

For d_S arith. density of a q-commensurate subset $S \subseteq \mathbb{N}$:

$$- \lim_{q \to 1} \sum_{\substack{\lambda \in \mathcal{P} \\ \text{sm}(\lambda) \in S}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = d_S.$$
Theorem (Ono-S-Wagner, 2020)

For d_S arith. density of a q-commensurate subset $S \subseteq \mathbb{N}$:

$$- \lim_{q \to 1} \sum_{\lambda \in \mathcal{P}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = d_S.$$

More generally, for $a(\lambda)$ with certain analytic conditions:
Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)

For d_S arith. density of a q-commensurate subset $S \subseteq \mathbb{N}$:

$$- \lim_{q \to 1} \sum_{\substack{\lambda \in \mathcal{P} \\ \text{sm}(\lambda) \in S}} \mu_{\mathcal{P}}(\lambda) q^{|\lambda|} = d_S.$$

More generally, for $a(\lambda)$ with certain analytic conditions:

$$- \lim_{q \to 1} \sum_{\text{sm}(\lambda) \in S} \frac{(\mu_{\mathcal{P}} * a)(\lambda)}{\varphi(\text{sm}(\lambda))} q^{|\lambda|} = d_S.$$
Theorem (Ono-S-Wagner, 2020)

For d_S arithmetic density of a q-commensurate subset $S \subseteq \mathbb{N}$:

$$\lim_{q \to 1} \sum_{\lambda \in \mathcal{P}, \text{sm}(\lambda) \in S} \mu_{\mathcal{P}}(\lambda) q^{\lambda} = d_S.$$

More generally, for $a(\lambda)$ with certain analytic conditions:

$$\lim_{q \to 1} \sum_{\text{sm}(\lambda) \in S} \frac{(\mu_{\mathcal{P}} \ast a)(\lambda)}{\varphi(\text{sm}(\lambda))} q^{\lambda} = d_S.$$

- here \ast is partition convolution, $\varphi(n)$ classical phi
- second formula extends work of Wang (2020)
Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)

Proof requires a new theory of \(q \)-series density computations based on “\(q \)-density” statistic.:

\[
d_S(q) := \frac{\sum_{\sm(\lambda) \in S} q^{\lambda}}{\sum_{\lambda} q^{\lambda}} = (1 - q) \sum_{\sm(\lambda) \in S} q^{\lambda}.
\]

<table>
<thead>
<tr>
<th>Natural number (n)</th>
<th>Partition (\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime factors of (n)</td>
<td>Parts of (\lambda)</td>
</tr>
<tr>
<td>Square-free integers</td>
<td>Partitions into distinct parts</td>
</tr>
<tr>
<td>(\mu(n))</td>
<td>(\mu_P(\lambda))</td>
</tr>
<tr>
<td>(\varphi(n))</td>
<td>(\varphi_P(\lambda))</td>
</tr>
<tr>
<td>(p_{\min}(n))</td>
<td>(\sm(\lambda))</td>
</tr>
<tr>
<td>(p_{\max}(n))</td>
<td>(\lg(\lambda))</td>
</tr>
<tr>
<td>(n^{-s})</td>
<td>(q^{\lambda})</td>
</tr>
</tbody>
</table>
Partition-theoretic multiverse

Philosophy of this talk (again)

Exist multipl., division, arith. functions on partitions

→

Objects in classical multiplic. number theory
→ extend to partitions

Expect arithmetic theorems
→

Expect partition properties
→ properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just, Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?
Philosophy of this talk (again)

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplicative number theory \rightarrow special cases of partition-theoretic structures
- Expect arithmetic theorems \rightarrow extend to partitions
- Expect partition properties \rightarrow properties of integers
Partition-theoretic multiverse

Philosophy of this talk (again)

- Exist multip., division, arith. functions on partitions
- Objects in classical multiplic. number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems → extend to partitions
- Expect partition properties → properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just, Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ...
Partition-theoretic multiverse

Philosophy of this talk (again)

- Exist multipl., division, arith. functions on partitions
- Objects in classical multiplic. number theory → special cases of partition-theoretic structures
- Expect arithmetic theorems → extend to partitions
- Expect partition properties → properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just, Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?
Thank you for listening :)

Gratitude