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Part One: Hilbert’s 12th Problem
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Hilbert’s 12th problem

List of 23 open problems published in 1900
12th problem asks for an “Extension of
Kronecker’s Theorem on Abelian Fields to
any Algebraic Realm of Rationality.”
Kronecker’s Theorem (Kronecker-Weber
theorem) says that the abelian extensions of
Q are generated by the values of
e(z) = e2πiz at rational values of z.
Given any base field (“realm of rationality”),
Hilbert wanted “analytic functions” that play
the role of e(z).
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Class field theory

The imaginary quadratic case was mostly known to Hilbert and
uses the theory of elliptic curves with complex multiplication
(CM), due to Weber and others.
Abstract class field theory, developed during the 1910s and
1920s by Takagi and others, constructs class fields in an indirect
manner.

Goro Shimura generalized CM theory to
“CM base fields” by replacing elliptic curves
with abelian varieties.
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Stark conjectures

Introduced 1971–1980 by Harold Stark
Artin L-function L(s, ρ) for irrep
ρ : Gal(L/K )→ GLn(C)

Taylor series at s = 0: L(s, ρ) = cr sr + · · ·

Leading coefficient cr conjectured to be a product of an algebraic
number and a “Stark regulator”, a determinant of an r × r matrix
of linear forms of logarithms of algebraic units.
If L/K is an abelian, L(s, ρ) = L(s, χ) is a Hecke
L-function—specified by data internal to K .
Units are predicted to live in the corresponding class field.
Partial answer to Hilbert’s 12th problem in the “rank 1” case
(r = 1), when we can recover the Stark units by exponentiation.
The rank 1 abelian Stark conjectures remain open for any real
quadratic field, e.g., Q(

√
3).
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L-functions at s = 1: rational example

This formula can be proved using calculus. Try it! Hint: Replace 1
n

with xn

n and take a derivative.

Example

1− 1
3
− 1

5
+

1
7

+
1
9
− 1

11
− 1

13
+

1
15

+−−+ · · · =
1√
2

log
(

1 +
√

2
)

The left-hand side is the value L(1, χ), where χ(n) =
( 2

n

)
is the

Dirichlet character associated to the field extension Q(
√

2)/Q. The
right-hand side involves ε = 1 +

√
2, the fundamental unit of Q(

√
2).
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L-functions at s = 1: imaginary quadratic example

This formula is proved using the theory of complex multiplication for
elliptic curves. The notation e(z) := e2πiz .

Example ∑∑
(m,n)∈Z2\(0,0)

e(m/5)− e(2m/5)

m2 + mn + n2 =
2π√

3
log
(
ε1/5

)

where ε = 29 + 12
√

5 + 2
√

6(65 + 29
√

5).

The left-hand side is a linear combination of Hecke L-values at s = 1
for Q(

√
−3). The right-hand side involves an algebraic unit ε in the

ray class field modulo (5) for Q(
√
−3).

This example is related to the 5-torsion points of the elliptic curve
y2 = x3 + 1.
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L-functions at s = 1: real quadratic example

This formula is an open conjecture!

Example
∞∑

m=1

∑
n∈Z

− 5
3 m≤n< 5

3 m

e (4m/5)− e (m/5)

3m2 − n2 =
π

i
√

3
log (ε) ,

where ε ≈ 3.890861714 is a root of the polynomial equation

x8 − (8 + 5
√

3)x7 + (53 + 30
√

3)x6 − (156 + 90
√

3)x5

+ (225 + 130
√

3)x4 − (156 + 90
√

3)x3 + (53 + 30
√

3)x2

− (8 + 5
√

3)x + 1 = 0.

The number ε is an algebraic unit in the narrow ray class field of
Q(
√

3) modulo 5.
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Kronecker limit formulas

In the imaginary quadratic case (where Stark is known), L-values
relate to special values of modular forms by Kronecker limit formulas.

The first limit formula is for the real analytic Eisenstein series (which
specialize to linear combinations of Hecke L-functions of conductor 1
when τ is imaginary quadratic),

E(τ, s) :=
∑

(m,n)∈Z2

(m,n) 6=(0,0)

Im(τ)s

|mτ + n|2s .

Theorem (Kronecker first limit formula)

lim
s→1

(
E(τ, s)− π

s − 1

)
= γ − 2 log

∣∣∣2√Im(τ)η(τ)
∣∣∣ .

Here, η(τ) is the Dedekind eta function (a modular form of weight 1
2 ),

and γ is the Euler-Mascheroni constant.
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Kronecker limit formulas

The second limit formula is for the twisted real analytic Eisenstein
series for (p1,p2) ∈ R2 \ Z2 (which specialize to to linear
combinations of Hecke L-functions of conductor N when τ is
imaginary quadratic and p1,p2 ∈ 1

N Z),

E∗p1,p2
(τ, s) :=

1
2
π−sΓ(s)

∑
(m,n)∈Z2

(m,n) 6=(0,0)

e (p1m + p2n)
Im(τ)s

|mτ + n|2s .

Theorem (Kronecker second limit formula)

E∗p1,p2
(τ,1) = −2 log

∣∣∣∣∣ϑ 1
2 +p1,

1
2−p2

(τ)

η(τ)

∣∣∣∣∣ .
Here ϑ is the Jacobi theta function, η is the Dedekind eta function,
and the expression inside the absolute value is a modular function for
Γ(N) whenever p1,p2 ∈ 1

N Z.
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Kronecker limit formulas for real quadratic fields

One approach to the Stark conjectures is to find Kronecker limit
formula for real quadratic fields.
Hecke (1917), Herglotz (1923), Zagier (1975) found analogues of
first limit formula.

Shintani (1976) found an analogue of the
second limit formula...
...and proved (1978) a special case of the Stark
conjectures.
All (except Hecke) interpolate between zeta
functions in a similar way.
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Kronecker limit formulas for real quadratic fields

We introduce a new way of interpolating that preserves the
functional equation...
...and obtain a new Kronecker limit formula (analogous to
second).
Gives a new, fast-converging analytic formula for (presumptive)
Stark units...
...but does not (yet) help with proving algebraicity.
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Part Two: Indefinite Theta Functions
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Zwegers’s thesis

Indefinite theta functions were introduced in the PhD thesis of
Sander Zwegers in 2002.
He used them to build harmonic weak Maass forms whose
holomorphic parts are Ramanujan’s mock theta functions.
Zwegers’s work, and subsequent work of Kathrin Bringmann and
Ken Ono, led to a renaissance in mock modular forms.
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Generalizing Zwegers’s theta

Let M be a real symmetric matrix of signature (g − 1,1) and
c1, c2 ∈ Rg satisfying c>j Acj < 0. Zwegers’s indefinite theta function is
ϑc1,c2

M (z, τ) for z ∈ Cg and τ ∈ H. We generalize it by...
Replacing τM with a symmetric matrix Ω = N + iM such that M
has signature (g − 1,1). Fairly straightforward.
Allowing c1, c2 to take complex values. Not straightforward.
To get a good transformation theory, the latter is required to once
we do the former.
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Siegel intermediate half-space

Definition (Siegel intermediate half-space)

For 0 ≤ k ≤ g, we define the Siegel intermediate half-space of genus
g and index k to be

H(k)
g = {Ω ∈ Mg(C) : Ω = Ω> and Im(Ω) has signature (g − k , k)}.
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Symplectic group action

The symplectic group Sp2g(R) acts on the set of g × g complex
symmetric matrices Ω = N + iM with M invertible, by(

A B
C D

)
· Ω = (AΩ + B)(CΩ + D)−1.

Proposition

The H(k)
g are the open orbits of this Sp2g(R)-action.

18



Moduli problem

The space H(0)
g /Sp2(Z) is the moduli space of principally

polarized abelian varieties of dimension g.

For k > 0, the points of H(k)
g /Sp2(Z) correspond to certain

non-algebraic complex tori of dimension g...
...except the action of Sp2(Z) is not properly discontinuous.
When k = 1, one may fix the action by adding an auxiliary
parameter c ∈ Pg−1(C) such that c> Im(Ω)c < 0 and letting
Sp2(Z) act on (Ω, c) by(

A B
C D

)
· (Ω, c) =

(
(AΩ + B)(CΩ + D)−1, (CΩ + D)c

)
.

Also works for (Ω, c1, c2).
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Definition of definite (Riemann) theta function

This function was defined by Riemann and is known as the Riemann
theta function.

Definition (Definite theta function)

Let z ∈ Cg and Ω = N + iM ∈ H(0)
g . Define

Θ(z; Ω) =
∑
n∈Zg

e
(

1
2

n>Ωn + n>z
)
.

The sum will only converge if the bilinear form QM(n) = 1
2 n>Mn is

positive definite—that is, if Ω ∈ H(0)
g .
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Definition of indefinite theta function

Definition (Incomplete Gaussian integral)

For any α ∈ C, set E(α) =

∫ α

0
e−πu2

du.

Definition (Indefinite theta function)

Let z ∈ Cg and Ω = N + iM ∈ H(1)
g . Take c1, c2 ∈ Cg such that

cj
>Mcj < 0. Define

Θc1,c2 (z; Ω) =
∑
n∈Zg

E

c> Im(Ωn + z)√
− 1

2 c>Mc

∣∣∣∣∣∣
c2

c=c1

e
(

1
2

n>Ωn + n>z
)
.

Note: f (c)|c2
c=c1

means f (c2)− f (c1).

Proposition (K)

The series defining the indefinite theta function converges absolutely.
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Theta functions with real characteristics

We switch to a different notation because it will make our formulas
nicer.

Definition (Definite theta null with real characteristics)

For “characteristics” p,q ∈ Rg and Ω ∈ H(0)
g , set

Θp,q(Ω) = e
(

1
2

q>Ωq + p>q
)

Θ (p + Ωq,Ω) .

Definition (Indefinite theta null with real characteristics)

For “characteristics” p,q ∈ Rg , Ω ∈ H(1)
g , and c1, c2 ∈ Cg such that

cj
> Im(Ω)cj < 0, set

Θc1,c2
p,q (Ω) = e

(
1
2

q>Ωq + p>q
)

Θc1,c2 (p + Ωq; Ω) .
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Elliptic transformation laws

Let p,q ∈ Rg and a,b ∈ Zg .

Proposition (Elliptic trans., definite case; classical)

For Ω ∈ H(0)
g ,

Θp+a,q+b(Ω) = e
(
a>(q + b)

)
Θp,q(Ω).

Proposition (Elliptic trans., indefinite case; K)

For Ω ∈ H(1)
g , c1, c2 ∈ Cg , and cj

> Im(Ω)cj < 0,

Θc1,c2
p+a,q+b(Ω) = e

(
a>(q + b)

)
Θc1,c2

p,q (Ω).

If you ignore the cj , these two equations are exactly the same.
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Modular transformation laws, definite case

Proposition (Modular trans., definite case; classical)

Let Ω ∈ H(0)
g and p,q ∈ Rg . Let A ∈ GLg(Z), B ∈ Mg(Z), and B = B>.

(1) Θp,q(A>ΩA) = ΘA−>p,Aq(Ω).
(2) Θp,q(Ω + 2B) = e(−q>Bq)Θp+2Bq,q(Ω).

(3) Θp,q
(
−Ω−1

)
=

e(p>q)√
det(iΩ−1)

Θ−q,p(Ω).
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Modular transformation laws, indefinite case

Theorem (Modular trans., indefinite case; K)

Let Ω = N + iM ∈ H(1)
g , c1, c2 ∈ Cg such that cj

>Mcj < 0, and
p,q ∈ Rg . Let A ∈ GLg(Z), B ∈ Mg(Z), and B = B>.

(1) Θc1,c2
p,q (A>ΩA) = ΘAc1,Ac2

A−>p,Aq(Ω).

(2) Θc1,c2
p,q (Ω + 2B) = e(−q>Bq)Θc1,c2

p+2Bq,q(Ω).

(3) Θc1,c2
p,q (−Ω−1) = e(p>q)√

det(iΩ−1)
Θ−Ω

−1c1,−Ω
−1c2

−q,p (Ω).

The case when N is a constant multiple of M and c1, c2 ∈ Rg is due to
Zwegers. If you ignore the cj , these are exactly the same equations
as on the previous slide.
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Part Three: Indefinite Zeta Functions
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Definition of definite and indefinite zeta function

Definition

Let p,q ∈ Rg and Ω ∈ H(0)
g . For Re(s) > 1, define

ζ̂p,q(Ω, s) =

∫ ∞
0

Θp,q(tΩ)ts dt
t
.

Definition

Let p,q ∈ Rg and Ω ∈ H(1)
g . Consider c1, c2 ∈ Cg such that

cj
> Im(Ω)cj < 0. For Re(s) > 1, define

ζ̂c1,c2
p,q (Ω, s) =

∫ ∞
0

Θc1,c2
p,q (tΩ)ts dt

t
.
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Analytic continuation and rapid convergence

Theorem (Analytic continuation; K)

For any choice of r > 0, the following expression is an analytic
continuation of ζ̂c1,c2

p,q (Ω, s) to the entire s-plane.

ζ̂c1,c2
p,q (Ω, s) =

∫ ∞
r

Θc1,c2
p,q (tΩ)ts dt

t

+
e(p>q)√
det(−iΩ)

∫ ∞
r−1

ΘΩc1,Ωc2
−q,p

(
t
(
−Ω−1)) t

g
2−s dt

t
.

I have used this formula for computer calculations, as it may be used
to compute the indefinite zeta function to arbitrary precision in
polynomial time.
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Functional equation

Symmetry about the line s = g
2 .

Corollary (Functional equation; K)

ζ̂c1,c2
p,q

(
Ω,

g
2
− s
)

=
e(p>q)√
det(−iΩ)

ζ̂Ωc1,Ωc2
−q,p

(
−Ω−1, s

)
.
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Ray class groups

Let K be a number field and OK its ring of integers. Let c be a ideal in
OK , and let S be a subset of the real embeddings of K .

Definition (Ray class group modulo {c,S})

Clc,S(OK ) =
{fractional ideals of OK coprime to c}

{aOK s.t. a ≡ 1 (mod c) and ρ(a) > 0 for ρ ∈ S}
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Zeta functions associated to ray classes

Definition
For A ∈ Clc,S(OK ), the associated zeta function is

ζ(s,A) =
∑
a≤OK
a∈A

N(a)−s.

Let R ∈ Clc,S(OK ) be the ideal class

R = {aOK : a ≡ −1 (mod c) and ρ(a) > 0 for ρ ∈ S}.

Definition
For A ∈ Clc,S(OK ), the associated differenced zeta function is

ZA(s) = ζ(s,A)− ζ(s,RA).
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Real quadratic ZA(s) as an indefinite zeta function

Let K be a real quadratic field and c a nonzero ideal in OK .

Theorem (Specialization of indefinite zeta; K)

For each A ∈ Clc,{∞1,∞2} and integral ideal b ∈ A−1, there exist
c1, c2 ∈ Q2, M a rational symmetric matrix of signature (1,1), and
q ∈ Q2 such that,

(2πN(b))−sΓ(s)ZA(s) = ζ̂c1,c2
0,q (iM, s).

The rank 1 Stark conjecture predicts that, for B ∈ Clc,{∞2},
Z ′B(0) = log(εB) for some algebraic unit εB generating a particular
abelian extension of K .
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Example

Let K = Q(
√

3), so OK = Z[
√

3], and let c = 5OK .
The ray class group Clc,{∞2}

∼= Z/8Z. Let I be the identity.
The ray class group Clc,{∞1,∞2}

∼= Z/2Z× Z/8Z. Write
I = I+ t I−, where I+ is the identity element of Clc,{∞1,∞2}.
We have ZI(s) = ZI+ (s) + ZI−(s). But it turns out that ZI−(s) is
identically zero in this case, so ZI(s) = ZI+ (s).

For q = 1
5

(
1
0

)
, c1 =

(
0
1

)
, and P =

(
2 3
1 2

)
,

Z ′I (0) = Z ′I+ (0)

= ζ̂c1,P3c1
0,q (iM,0)

= ζ̂c1,Pc1
0,q (iM,0) + ζ̂Pc1,P2c1

0,q (iM,0) + ζ̂P2c1,P3c1
0,q (iM,0)

= ζ̂c1,Pc1
0,q0

(iM,0) + ζ̂c1,Pc1
0,q1

(iM,0) + ζ̂c1,Pc1
0,q2

(iM,0),

where q0 = 1
5

(
1
0

)
, q1 = 1

5

(
2
1

)
, and q2 = 1

5

(
2
4

)
.
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Example

Using this, we can calculate Z ′I (0) ≈ 1.3586306534 and
exp(Z ′I (0)) ≈ 3.8908617139—apparently the root of the degree 8
polynomial we saw earlier.

x8 − (8 + 5
√

3)x7 + (53 + 30
√

3)x6 − (156 + 90
√

3)x5

+ (225 + 130
√

3)x4 − (156 + 90
√

3)x3 + (53 + 30
√

3)x2

− (8 + 5
√

3)x + 1 = 0.

Indeed, the polynomial was found (as a factor of a degree 16
integer polynomial found) by the Mathematica
RootApproximant[] function after calculating exp(Z ′I (0)) to
100 decimal places. We then checked in Magma that it
generates the expected class field.
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Part Four: Kronecker Limit Formulas
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Kronecker limit formula for definite zeta functions

Let p1,p2 ∈ R2 with 0 ≤ p1,p2 < 1. For τ ∈ H, set

fp1,p2 (τ) = e
(
−p2

2

)
u

p2
1
2 + 1

12
τ

(
v

1
2
τ − v−

1
2

τ

) ∞∏
d=1

(
1− ud

τ vτ
) (

1− ud
τ v−1
τ

)
=

e
((

p1 − 1
2

) (
p2 + 1

2

))
ϑ 1

2 +p2,
1
2−p1

(τ)

η(τ)
,

where uτ = e(τ), vτ = e(p2 − p1τ), ϑ is the Jacobi theta function, and
η is the Dedekind eta function. Let Log fp1,p2 is the branch satisfying

(Log fp1,p2 )(τ) ∼ πi
(

p2
1 − p1 +

1
6

)
τ as τ → i∞.
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Kronecker limit formula for definite zeta functions

Theorem (Generalized second KLF at s = 1; K)

Let p =

(
p1
p2

)
∈ R2 with 0 ≤ p1,p2 < 1, and let Ω = N + iM ∈ H(0)

2 .

Let z = τ+ and z = τ− be the solutions of QΩ

(
z
1

)
= 0 in the upper

and lower half-planes, respectively. Then,

ζ̂p,0(Ω,1) =
−1√

det(−iΩ)

(
(Log fp1,p2 ) (τ+) + (Log fp1,p2 ) (−τ−)

)
.
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Kronecker limit formula for indefinite zeta functions

Suppose Ω = N + iM ∈ H(1)
2 and c ∈ C2 such that c>Mc < 0. Let

Λc = Ω− i
QM (c) Mcc>M ∈ H(0)

2 . For v ∈ C2, set

κc
Ω(v) =

c>Mv
4πi
√
−QM(c)QΩ(v)

√
−2iQΛc (v)

.

The function ϕp1,p2 : H → C is defined by a product expansion,

ϕp1,p2 (ξ) := (1− e(p1ξt + p2))
∞∏

d=1

1− e ((d + p1)ξ + p2)

1− e ((d − p1)ξ − p2)
,

and its logarithm (Logϕp1,p2 ) (ξ) is the unique continuous branch with
the property

lim
ξ→i∞

(Logϕp1,p2 ) (ξ) =

{
log(1− e(p2)) if p1 = 0,
0 if p1 6= 0.

Here log(1− e(p2)) is the standard principal branch.
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Kronecker limit formula for indefinite zeta functions

Theorem (KLF for indefinite zeta functions at s = 1; K)

Let Ω = N + iM =∈ H(1)
2 , p =

(
p1
p2

)
∈ R2, and c1, c2 ∈ C2 such that

cj
> Im Ωcj < 0. For c = c1, c2, factor the quadratic form

QΛc

(
ξ
1

)
= α(c)(ξ − τ+(c))(ξ − τ−(c)),

where τ+(c) is in the upper half-plane and τ−(c) is in the lower
half-plane. Then,

ζ̂c1,c2
p,0 (Ω,1) = I+(c2)− I−(c2)− I+(c1) + I−(c1), where

I±(c) = − Li2(e(±p1))κc
Ω

(
1
0

)
+ 2i

∫ ∞
0

(Logϕp1,±p2 ) (±τ±(c) + it)κc
Ω

(
± (τ±(c) + it)

1

)
dt .
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(In)definite KLF—proof sketch

Compute Fourier series in ξ for Θ(Tξ)>p,T−ξq

(
t
(
T ξ
)>

ΩT ξ
)

or

ΘT−ξc1,T−ξc2

(Tξ)>p,T−ξq

(
t
(
T ξ
)>

ΩT ξ
)

. The k th Fourier coefficient is a sum
over divisors of k .
Take Mellin transform term-by-term to compute Fourier series for
ζ̂(Tξ)>p,T−ξq

((
T ξ
)>

ΩT ξ, s
)

or ζ̂T−ξc1,T−ξc2

(Tξ)>p,T−ξq

((
T ξ
)>

ΩT ξ, s
)

.

Plug in ξ = 0 and s = 1. The only remaining big idea in the
definite case is the use of the Jacobi triple product formula to

rewrite fp1,p2 (τ) =
e((p1− 1

2 )(p2+ 1
2 ))ϑ 1

2 +p2,
1
2−p1

(τ)

η(τ) .
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Indefinite KLF—proof sketch

In indefinite case, we obtain the following expression for the k th
Fourier coefficient of the theta function when k 6= 0.

bk (ξ) =
∑
n|k

|n|
∫ ∞
−∞

ρc1,c2
M

((
ξ
1

)
nt1/2

)

· e
(

QΩ

(
ξ
1

)
n2t + p>

(
ξ
1

)
n
)

e (−kξ) dξ.

Before taking the Mellin transform, we must shift some contours
of integration up and others down so that we get a convergent
expression afterwards.

bk (ξ) =
∑
n2|k

|n|
∫ ∞+iλ( k

n ,n)

−∞+iλ( k
n ,n)

ρc1,c2
M

((
ξ
1

)
nt1/2

)

· e
(

QΩ

(
ξ
1

)
n2t + p>

(
ξ
1

)
n
)

e (−kξ) dξ.
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Indefinite KLF—proof sketch

Combine into one integral over a horizontal line (plus Li2 term).

ζ̂
c1,c2
p,0 (Ω, 1) = − (Li2(e(p1)) − Li2(e(−p1)))κ

c1,c2
Ω

(
1
0

)
+

∫
C+

(
− (Logϕp1,−p2 ) (ξ) · κc1,c2

Ω

(
−ξ
1

)
+ (Logϕp1,p2 ) (ξ) · κc1,c2

Ω

(
ξ
1

))
dξ.

r1

r2

τ1(c1)

τ1(c2)

C+

r1

r2

τ1(c1)

τ1(c2)
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Indefinite KLF—proof sketch

After moving above the zeros of the QΛcj

(
±ξ
1

)
, the integral

can be split up into pieces for c1 and c2.
Finally, we collapse the contours onto the branch cuts of

κ
cj
Ω

(
ξ
1

)
.

r1

r2

τ1(c1)

τ1(c2)
r1

r2

τ1(c1)

τ1(c2)

43



Example

Continue our running example with K = Q(
√

3) and c = 5OK .
We use the Kronecker limit formula for indefinite zeta functions to
compute Z ′I (0), where I is the principal ray class in Clc,{∞2}.

By previous considerations, Z ′I (0) = ζ̂c1,P3c1
0,q (iM,0).

Use functional equation to write as Z ′I (0) = −i
2
√

3
ζ̂c1,P̃3c1
−q,0 (iM−1,1).

Here, P̃ = MPM−1 =

(
2 −1
−3 2

)
.
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Example

If we use the indefinite KLF directly, the branch cut of κP̃3c1
Ω

(
ξ
1

)
starts very close to the real axis, at ξ = −2340+i

√
3

4053 . Convergence is
slow in practical terms. Instead, split into three pieces:

ζ̂c1,P̃3c1
−q,0 (−Ω−1,1) = ζ̂c,P̃c

−q0,0(−Ω−1,1) + ζ̂c,P̃c
−q1,0(−Ω−1,1) + ζ̂c,P̃c

−q2,0(−Ω−1,1),

where c =

(
1
3

)
, q0 = 1

5

(
1
0

)
, q1 = 1

5

(
2
1

)
, and q2 = 1

5

(
2
4

)
.

Now, branch cuts start at ±3+i
√

3
6 , and convergence is rapid.

I0(P̃c) − I0(c) ≈ −0.0592384392 + 3.6568783902i

I1(P̃c) − I1(c) ≈ −1.3373302109 + 0.5247781254i

I2(P̃c) − I2(c) ≈ 2.6405758737 + 0.5247781254i

Obtain Z ′I (0) ≈ 1.3586306534, just as before.
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Thanks & Questions

Thank you for attending my talk! Thank you to Larry Rolen and the
other organizers.

Questions?
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