Rota＇s vision and the Lehmer conjecture Bernhard Heim
 （joint work with M．Neuhauser）
 Vanderbilt University Number Theory Seminar

RWTH Aachen
14．April 2021

Outline

(1) Introduction

- Rota and Lehmer
- Serre's Table and beyond
(2) D'Arcais Polynomials
- Analytic Approach
- Algebraic Approach
(3) Exponential Case: Polynomials $P_{n}^{g}(x)$
(4) Polynomials $P_{n}^{g, h}(x)$
(5) Bessenrodt-Ono type inequality

Infinite Products and Generating Series

Let $r \in \mathbb{Z}$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(r) X^{n}:=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{r} . \tag{1}
\end{equation*}
$$

Important topic: Properties and formulas of the $a_{n}(r)$.

Infinite Products and Generating Series

Let $r \in \mathbb{Z}$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(r) X^{n}:=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{r} . \tag{1}
\end{equation*}
$$

Important topic: Properties and formulas of the $a_{n}(r)$.

- $r=1$ Euler (Pentagonal numbers)

Infinite Products and Generating Series

Let $r \in \mathbb{Z}$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(r) X^{n}:=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{r} . \tag{1}
\end{equation*}
$$

Important topic: Properties and formulas of the $a_{n}(r)$.

- $r=1$ Euler (Pentagonal numbers)
- $r=3$ Jacobi (Triangle numbers)

Infinite Products and Generating Series

Let $r \in \mathbb{Z}$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(r) X^{n}:=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{r} . \tag{1}
\end{equation*}
$$

Important topic: Properties and formulas of the $a_{n}(r)$.

- $r=1$ Euler (Pentagonal numbers)
- $r=3$ Jacobi (Triangle numbers)
- $r=-1$ Euler (Partition numbers)

Infinite Products and Generating Series

Let $r \in \mathbb{Z}$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(r) X^{n}:=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{r} . \tag{1}
\end{equation*}
$$

Important topic: Properties and formulas of the $a_{n}(r)$.

- $r=1$ Euler (Pentagonal numbers)
- $r=3$ Jacobi (Triangle numbers)
- $r=-1$ Euler (Partition numbers)
- $r=24$ Ramanujan tau-function

Lehmer conjecture (1947): $\tau(n):=a_{n-1}(24) \neq 0$ for all $n \in \mathbb{N}$.

Rota and Lehmer

Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems

Rota and Lehmer

Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems of location of the zeros of certain polynomials

Rota and Lehmer

Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems of location of the zeros of certain polynomials and in giving these zeros a combinatorial interpretation.

$$
\text { Let } \begin{aligned}
P_{0}(x)= & 1 \text { and } P_{n}(x):=\frac{x}{n} \sum_{k=1}^{n} \sigma(k) P_{n-k}(x) . \\
& \text { Then } \tau(n)=P_{n-1}(-24) .
\end{aligned}
$$

Rota's way-combinatorics and roots

Rota's way - combinatorics and roots

Rota's way-combinatorics and roots

Vanishing results: $r \in \mathbb{N}$.

```
Case r odd
\eta}\mp@subsup{}{}{r}\mathrm{ superlacunary iff }r\in\mp@subsup{S}{odd}{}:={1,3}
```


Vanishing results: $r \in \mathbb{N}$.

```
Case \(r\) odd
\(\eta^{r}\) superlacunary iff \(r \in S_{o d d}:=\{1,3\}\).
```

Case r even
Serre: η^{r} lacunary iff $r \in S_{\text {even }}:=\{2,4,6,8,10,14,26\}$.

Serre's Table

$$
\begin{array}{lll}
\text { Atkin, Cohen } & r=5 & n=1560,1802,1838,2318,2690, \ldots \\
\text { Atkin } & r=7 & n=28017 \\
\text { Newman } & r=15 & n=53
\end{array}
$$

Extended Serre's Table

Serre's table extended

r	Sources n_{0}	$\mathcal{N}_{r}\left(n_{0}\right)$	Checked up to
5	$1560,1802, \ldots$	$\left\{n_{0} l^{2}+5 \cdot \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
7	28017	$\left\{28017 l^{2}+7 \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
9	-	\emptyset	10^{10}
11	-	\emptyset	10^{10}
13	-	\emptyset	10^{10}
15	53	$\left\{429\binom{l}{2}+53, l \in \mathbb{N}\right\}$	10^{10}
$17 \leq r \leq 27$	-	\emptyset	10^{9}
$29 \leq r \leq 549$	-	\emptyset	10^{8}

Extended Serre's Table

Serre's table extended

r	Sources n_{0}	$\mathcal{N}_{r}\left(n_{0}\right)$	Checked up to
5	$1560,1802, \ldots$	$\left\{n_{0} l^{2}+5 \cdot \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
7	28017	$\left\{28017 l^{2}+7 \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
9	-	\emptyset	10^{10}
11	-	\emptyset	10^{10}
13	-	\emptyset	10^{10}
15	53	$\left\{429\left(\frac{l}{2}\right)+53, l \in \mathbb{N}\right\}$	10^{10}
$17 \leq r \leq 27$	-	\emptyset	10^{9}
$29 \leq r \leq 549$	-	\emptyset	10^{8}

Let r be even and $r \notin S_{\text {even }}\{2,4,6,8,10,14,26\}$ all numerical checks give $a_{n}(r) \neq 0$.

Extended Serre's Table

Serre's table extended

r	Sources n_{0}	$\mathcal{N}_{r}\left(n_{0}\right)$	Checked up to
5	$1560,1802, \ldots$	$\left\{n_{0} l^{2}+5 \cdot \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
7	28017	$\left\{28017 l^{2}+7 \frac{l^{2}-1}{24},(l, 2 \cdot 3)=1, l \in \mathbb{N}\right\}$	10^{10}
9	-	\emptyset	10^{10}
11	-	\emptyset	10^{10}
13	-	\emptyset	10^{10}
15	53	$\left\{429\left(\frac{l}{2}\right)+53, l \in \mathbb{N}\right\}$	10^{10}
$17 \leq r \leq 27$	-	\emptyset	10^{9}
$29 \leq r \leq 549$	-	\emptyset	10^{8}

Let r be even and $r \notin S_{\text {even }}\{2,4,6,8,10,14,26\}$ all numerical checks give $a_{n}(r) \neq 0$.
B. Heim, M. Neuhauser, A. Weisse: Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function. Res. Number Theory (2018).

Even case

Numerical evidence, Maeda's conjecture,

Complex powers

Let $z \in \mathbb{C}$.

$$
\prod_{n=1}^{\infty}\left(1-X^{n}\right)
$$

Complex powers

Let $z \in \mathbb{C}$.

$$
\prod_{1}^{\infty}\left(1-X^{n}\right)^{-z}=
$$

Complex powers

Let $z \in \mathbb{C}$.

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}=: \sum_{n=0}^{\infty} P_{n}(z) X^{n} . \tag{2}
\end{equation*}
$$

The $P_{n}(z)$ are polynomials of degree n.

Families of polynomials: Most of interest are of D'Arcais Type

Main Idea

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}(z) X^{n}=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}, \quad(X \in \mathbb{C},|X|<1) \tag{3}
\end{equation*}
$$

Families of polynomials: Most of interest are of D'Arcais Type

Main Idea

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}(z) X^{n}=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}, \quad(X \in \mathbb{C},|X|<1) \tag{3}
\end{equation*}
$$

- Evaluated at integer points $-r$, they coincide with $a_{n}(r)$

Families of polynomials: Most of interest are of D'Arcais Type

Main Idea

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}(z) X^{n}=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}, \quad(X \in \mathbb{C},|X|<1) \tag{3}
\end{equation*}
$$

- Evaluated at integer points $-r$, they coincide with $a_{n}(r)$
- $n!/ x P_{n}(x)$ is a normalized polynomial of degree $n-1$ and positive integer coefficients.

Families of polynomials: Most of interest are of D'Arcais

 Type
Main Idea

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}(z) X^{n}=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}, \quad(X \in \mathbb{C},|X|<1) \tag{3}
\end{equation*}
$$

- Evaluated at integer points $-r$, they coincide with $a_{n}(r)$
- $n!/ x P_{n}(x)$ is a normalized polynomial of degree $n-1$ and positive integer coefficients.
- $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=x / 2(x+3), P_{3}(x)=$ $x / 3!(x+1)(x+8)$.

Families of polynomials: Most of interest are of D'Arcais

 Type
Main Idea

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}(z) X^{n}=\prod_{n=1}^{\infty}\left(1-X^{n}\right)^{-z}, \quad(X \in \mathbb{C},|X|<1) \tag{3}
\end{equation*}
$$

- Evaluated at integer points $-r$, they coincide with $a_{n}(r)$
- $n!/ x P_{n}(x)$ is a normalized polynomial of degree $n-1$ and positive integer coefficients.
- $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=x / 2(x+3), P_{3}(x)=$ $x / 3!(x+1)(x+8)$.
- Note that $P_{3}(-8)=0$ encodes the information, that the third coefficient of $\prod_{n}\left(1-X^{n}\right)^{8}$ is vanishing.

Basic properties of $P_{n}(x)$

- Positive integer coefficients

$$
\begin{equation*}
P_{n}(x)=\frac{x}{n!} \sum_{k=0}^{n-1} a_{k} x^{k}, \quad \text { where } a_{k} \in \mathbb{N} \text { with } a_{n-1}=1 \tag{4}
\end{equation*}
$$

This implies that non-trivial real roots are negative.

Basic properties of $P_{n}(x)$

- Positive integer coefficients

$$
\begin{equation*}
P_{n}(x)=\frac{x}{n!} \sum_{k=0}^{n-1} a_{k} x^{k}, \quad \text { where } a_{k} \in \mathbb{N} \text { with } a_{n-1}=1 \tag{4}
\end{equation*}
$$

This implies that non-trivial real roots are negative.

- Observation ($n \leq N=1000$)

$$
\begin{equation*}
P_{n}(x)=\frac{x}{n!} \prod_{k=1}^{d_{n}}\left(x+r_{k}\right) \cdot \text { irred. polynomial } / \mathbb{Q}, \quad \text { where } r_{k} \in \mathbb{N} \tag{5}
\end{equation*}
$$

Basic properties of $P_{n}(x)$

- Root distribution

Roots of $P_{n}(x)$ with n between 1 and 100

Properties of $P_{n}(x)$

Properties of $P_{n}(x)$

Algebraic approach

We have already observed that roots are algebraic numbers and negative if real.
Is $P_{n}(i)=0$ possible? No.

Algebraic approach

We have already observed that roots are algebraic numbers and negative if real.
Is $P_{n}(i)=0$ possible? No.
Theorem ('18, H., Luca, Neuhauser)
Suppose that ξ_{m} is a m th root of unity and there exist an $n \in \mathbb{N}$, such that $P_{n}\left(\xi_{m}\right)=0$. Then $\xi_{m}=-1$.

Fundamental recursion formula

Definition

Let $g: \mathbb{N} \longrightarrow \mathbb{C}$ normalized arithmetic function. Then

$$
\begin{equation*}
P_{n}^{g}(x):=\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}(x), \quad\left(P_{0}(x):=1\right) \tag{6}
\end{equation*}
$$

Fundamental recursion formula

Definition

Let $g: \mathbb{N} \longrightarrow \mathbb{C}$ normalized arithmetic function. Then

$$
\begin{equation*}
P_{n}^{g}(x):=\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}(x), \quad\left(P_{0}(x):=1\right) \tag{6}
\end{equation*}
$$

Observation

Let $g(n)=\sigma(n)=\sum_{d \mid n} d$. Then $P_{n}(x)=P_{n}^{\sigma}(x)$.

Laguerre polynomials

Observation

Let $g(n)=i d(n)$. Then $P_{n}^{i d}(x)=\frac{x}{n} L_{n-1}^{(1)}(-x)$, where $L_{n}^{(\alpha)}(x)$ is the α-associated Laguerre polynomial of degree n.

Growth Condition and Non-vanishing Zone

Theorem: Heim, Neuhauser 2020
Let $z \in \mathbb{C}$ and let $|z|>\kappa(n-1), \kappa:=10.82$, then

$$
\begin{equation*}
\left|P_{n}(z)\right|>\frac{|z|}{2 n}\left|P_{n-1}(z)\right| \tag{7}
\end{equation*}
$$

This implies $P_{n}(z) \neq 0$ for $|z|>\kappa(n-1)$.
See HN 2020 : On the growth and zeros of polynomials attached to arithmetic functions. arXiv:2101.04654.

Fundamental recursion formula

Definition

Let $g, h: \mathbb{N} \longrightarrow \mathbb{C}$ normalized arithmetic function and let h be non-vanishing. Then

$$
\begin{equation*}
P_{n}^{g, h}(x):=\frac{x}{h(n)} \sum_{k=1}^{n} g(k) P_{n-k}^{g, h}(x), \quad\left(P_{0}^{g, h}(x):=1\right) \tag{8}
\end{equation*}
$$

Fundamental recursion formula

Definition

Let $g, h: \mathbb{N} \longrightarrow \mathbb{C}$ normalized arithmetic function and let h be non-vanishing. Then

$$
\begin{equation*}
P_{n}^{g, h}(x):=\frac{x}{h(n)} \sum_{k=1}^{n} g(k) P_{n-k}^{g, h}(x), \quad\left(P_{0}^{g, h}(x):=1\right) \tag{8}
\end{equation*}
$$

Theorem: H-N

Let $Q_{n}(x)$ be the family of polynomials attached to σ and $h(n)=1$.
Let $z \in \mathbb{C}$ and let $|z|>\kappa, \kappa:=10.82$, then

$$
\begin{equation*}
\left|Q_{n}(z)\right|>\frac{|z|}{2}\left|Q_{n-1}(z)\right| \tag{9}
\end{equation*}
$$

This implies $Q_{n}(z) \neq 0$ for $|z|>\kappa$.

Chebychev polynomials of the second kind

Let $g(n)=i d(n)=n$. Then $Q_{n}^{i d}(x)=x U_{n-1}(x / 2+1)$, Chebychev polynomial of the second kind.

Rota's way-combinatorics and roots

Roots of $Q_{500}(x)$ where $g_{k}=\sigma_{1}(k)$

P and Q polynomials $n=500$

P and Q polynomials $n=500$

P and Q polynomials: roots (until $n=100$)

P and Q polynomials: roots (until $n=100) x_{0}^{(P)} /(n-1)$

P and Q polynomials: type of roots (until $n=150$)

Number of real and complex roots of P and Q polynomial

Two families of polynomials P_{n} and Q_{n}.

Summary.

$$
\begin{align*}
P_{n}^{g}(x) & =\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}^{g}(x) \tag{10}\\
Q_{n}^{g}(x) & =x \sum_{k=1}^{n} g(k) Q_{n-k}^{g}(x) \tag{11}
\end{align*}
$$

Two families of polynomials P_{n} and Q_{n}.

Summary.

$$
\begin{align*}
P_{n}^{g}(x) & =\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}^{g}(x) \tag{10}\\
Q_{n}^{g}(x) & =x \sum_{k=1}^{n} g(k) Q_{n-k}^{g}(x) \tag{11}
\end{align*}
$$

Let $g(n)=\sum_{d \mid n} d$.

- $P_{n}(z) \neq 0$ for $|z|>10.82(n-1)$ and $Q_{n}(z) \neq 0$ for $|z|>10.82$.

Two families of polynomials P_{n} and Q_{n}.

Summary.

$$
\begin{align*}
P_{n}^{g}(x) & =\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}^{g}(x) \tag{10}\\
Q_{n}^{g}(x) & =x \sum_{k=1}^{n} g(k) Q_{n-k}^{g}(x) \tag{11}
\end{align*}
$$

Let $g(n)=\sum_{d \mid n} d$.

- $P_{n}(z) \neq 0$ for $|z|>10.82(n-1)$ and $Q_{n}(z) \neq 0$ for $|z|>10.82$.
- Hurwitz polynomials. We observed numerically, and have high evidence that the roots of both polynomials (up to $z=0$), have simple roots with negative real part.

$Q_{n}(x)$ Volterra type difference equation, $x_{0} \in \mathbb{C}$.

Basic equation

Let $B(n)=x_{0} g(n+1)$ and $x_{0}:=Q_{1}\left(x_{0}\right)$. Then

$$
\begin{equation*}
x(n+1)=A x(n)+\sum_{k=0}^{n} B(n+1-k) x(k), \quad(A=0) . \tag{12}
\end{equation*}
$$

Note that this implies $Q_{n}\left(x_{0}\right)=x(n)$.

$Q_{n}(x)$ Volterra type difference equation, $x_{0} \in \mathbb{C}$.

Basic equation

Let $B(n)=x_{0} g(n+1)$ and $x_{0}:=Q_{1}\left(x_{0}\right)$. Then

$$
\begin{equation*}
x(n+1)=A x(n)+\sum_{k=0}^{n} B(n+1-k) x(k), \quad(A=0) . \tag{12}
\end{equation*}
$$

Note that this implies $Q_{n}\left(x_{0}\right)=x(n)$.
The Z-transformation leads to
Identity

$$
\begin{equation*}
\frac{1}{1-x_{0} \sum_{n=1}^{\infty} g(n) z^{-n}}=Z(x(n)) \tag{13}
\end{equation*}
$$

Applications

Theorem

Let $q:=e^{2 \pi i \tau}, \tau$ in the complex upper half-space, $z:=q^{-1}$. Let j be Klein's absolute invariant and $g(n)$ essentially the coefficients of j. Then

$$
\begin{equation*}
\frac{1}{j(\tau)}=q \sum_{n=0}^{\infty} Q_{n}^{g}(-744) q^{n}, \tag{14}
\end{equation*}
$$

where $(-1)^{n} Q_{n}^{g}(-744)>0$.
Actually we prove that $\gamma_{2}(\tau)$, the cubic root of j has this property. Remark: See also recent results on $1 / E_{k}$ on reciprocal Eisenstein series. IJNT 2021 and arXiv.

Summary and next steps

Fundamental equations

$$
\begin{align*}
\sum_{n=0}^{\infty} P_{n}^{g}(x) X^{n} & =\exp \left(x \sum_{n=1}^{\infty} g(n) \frac{X}{n}\right) \tag{15}\\
\sum_{n=0}^{\infty} Q_{n}^{g}(x) X^{n} & =\frac{1}{1-x_{0} \sum_{n=1}^{\infty} g(n) X^{n}} \tag{16}
\end{align*}
$$

Summary and next steps

Fundamental equations

$$
\begin{align*}
\sum_{n=0}^{\infty} P_{n}^{g}(x) X^{n} & =\exp \left(x \sum_{n=1}^{\infty} g(n) \frac{X}{n}\right) \tag{15}\\
\sum_{n=0}^{\infty} Q_{n}^{g}(x) X^{n} & =\frac{1}{1-x_{0} \sum_{n=1}^{\infty} g(n) X^{n}} \tag{16}
\end{align*}
$$

Identities

$$
\left.\begin{array}{rl}
P_{n}^{g}(x) & =\frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}^{g}(x),
\end{array} \quad\left(P_{0}^{g}(x)=1\right)\right)
$$

Ramanujan's table on the $\tau(n)$ numbers

In 1916, Ramanujan ${ }^{1}$ published the following table:

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

[^0]
Ramanujan's table on the $\tau(n)$ numbers

In 1916, Ramanujan ${ }^{1}$ published the following table:

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Ramanujan observed

- Congruences
- Multiplicative properties: Hecke Theory (Mordell, Hecke)
- Growth conditions: Ramanujan-Petersson conjecture (Deligne)

[^1]
Non-vanishing \& (non)-sign changes

In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Non-vanishing \& (non)-sign changes

In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Hot topic since 20 years:
Sign changes.

- Infinite sign changes (Murty, Knopp, Kohnen, Pribtin, ...)

Non-vanishing \& (non)-sign changes

In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Hot topic since 20 years:
Sign changes.

- Infinite sign changes (Murty, Knopp, Kohnen, Pribtin, ...)
- First non-sign change. New results. See Conference
Proceedings 2020, Ramakrishnan, H., Sahu (Article H-N).

Results of Kostant and Han

Kostant 2004

Let \mathfrak{g} be a simple complex Lie-algebra (different from A_{1}, A_{2}, G_{2}). Then

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\operatorname{dim} \mathfrak{g}}=\sum_{n=0}^{\infty} a_{n}(\operatorname{dim} \mathfrak{g}) q^{n} \tag{19}
\end{equation*}
$$

has non-vanishing coefficients up to the dual Coxeter number h^{\vee} and their sign is strictly alternating.

Results of Kostant and Han

Kostant 2004

Let \mathfrak{g} be a simple complex Lie-algebra (different from A_{1}, A_{2}, G_{2}). Then

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\operatorname{dim} \mathfrak{g}}=\sum_{n=0}^{\infty} a_{n}(\operatorname{dim} \mathfrak{g}) q^{n} \tag{19}
\end{equation*}
$$

has non-vanishing coefficients up to the dual Coxeter number h^{\vee} and their sign is strictly alternating.

Root System A_{m-1}
$\operatorname{dim} \mathfrak{g}=m^{2}-1$ and $(-1)^{n} a_{n}>0$ for $n \leq \max \{4, m\}$.

Nekrasov-Okounkov Hook Length Formula

Random partitions and the Seiberg-Witten theory led Nekrasov-Okounkov (2003, appeared 2006) to

NO Formula

Let λ run through all partitions. Let $|\lambda|$ be the size, and $\mathcal{H}(\lambda)$ be the multiset of hook lengths. Then

$$
\begin{equation*}
\sum_{\lambda} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1+\frac{z}{h^{2}}\right)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-(z+1)} \tag{20}
\end{equation*}
$$

Nekrasov-Okounkov Hook Length Formula

Random partitions and the Seiberg-Witten theory led Nekrasov-Okounkov (2003, appeared 2006) to

NO Formula

Let λ run through all partitions. Let $|\lambda|$ be the size, and $\mathcal{H}(\lambda)$ be the multiset of hook lengths. Then

$$
\begin{equation*}
\sum_{\lambda} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1+\frac{z}{h^{2}}\right)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-(z+1)} \tag{20}
\end{equation*}
$$

NO Polynomials

$$
\begin{equation*}
P_{n}^{\mathrm{NO}}(z):=\sum_{\lambda \vdash n} \prod_{h \in \mathcal{H}(\lambda)}\left(1+\frac{z}{h^{2}}\right) \tag{21}
\end{equation*}
$$

See also important results of Westbury (2006) and Han (2010).

Theorem: Han 2008

Han proved by applying the Nekrasov-kounkov Hook Length Formula, that let $x \in \mathbb{R}_{>0}$, then $(-1)^{n} a_{n}\left(x^{2}-1\right)>0$ for $n \leq \max \{4, x\}$.

Using our approach of recursively defined polynomials $P_{n}(x)$ leads actually to a linear condition. Let $z \in \mathbb{C}$ and let $|z|>10.82(n-1)$. Then $P_{n}(z) \neq 0$ and $(-1)^{n} P_{n}(z)>0$ if z is real and negative.

Recent Results towards

- We refer to work of Amdeberhan (arXiv), Keith (2013), and Walsh and Warnaar (2020).
- Heim and Neuhauser (several papers). e.g. Conjecture: $P_{n}^{\sigma}(x+1)$ is log-concave for all n.
- Significant evidence for the Conjecture by the recent work of Hong and Zhang (published 2021, Research in Number Theory).

Open questions and next steps

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_{n}(x)$ and $Q_{n}(x)$.

Open questions and next steps

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_{n}(x)$ and $Q_{n}(x)$.
- Proving a Poincare-Perron type Volterra equation result

Open questions and next steps

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_{n}(x)$ and $Q_{n}(x)$.
- Proving a Poincare-Perron type Volterra equation result
- Extend the result of Heim-Luca-Neuhauser (work in progress).

Open questions and next steps

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_{n}(x)$ and $Q_{n}(x)$.
- Proving a Poincare-Perron type Volterra equation result
- Extend the result of Heim-Luca-Neuhauser (work in progress).
- Proof that all $P_{n}(x)$ are Hurwitz polynomials.

A new type of inequality for partitions

Theorem: Bessenrodt-Ono 2016

Let $p(n)$ be the number of partitions. Let a, b integers. Let $a, b>1$ and $a+b>9$. Then

$$
\begin{equation*}
p(a) p(b)>p(a+b) . \quad(B O) \tag{22}
\end{equation*}
$$

A new type of inequality for partitions

Theorem: Bessenrodt-Ono 2016

Let $p(n)$ be the number of partitions. Let a, b integers. Let $a, b>1$ and $a+b>9$. Then

$$
\begin{equation*}
p(a) p(b)>p(a+b) . \quad(B O) \tag{22}
\end{equation*}
$$

- Condition $a, b>1$ obvious.
- BO has essentially finitely many exceptions.
- Analytic proof (Lehmer-type estimation).

Related work - Extensions

- Alanazi, Gagola, Munagi (2017) combinatorial proof.

Related work - Extensions

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for k-regular partitions.

Related work - Extensions

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for k-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews spt-funtion.

Related work - Extensions

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for k-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews spt-funtion.
- Hou, Jagadeesan (2019): B-O for Dyson partition ranks.

Related work - Extensions

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for k-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews spt-funtion.
- Hou, Jagadeesan (2019): B-O for Dyson partition ranks.
- Heim, Neuhauser (2019): Inequalities of type $p(a) p(b) \geq p(a+b+m-1)$.

Generalisation

Theorem: Chern, Fu, Tang (2018)

Let $k>1$ be given and $p_{-k}(n)$ be the number of k-colored partitions. For any positive integers $a \geq b$ we have

Generalisation

Theorem: Chern, Fu, Tang (2018)

Let $k>1$ be given and $p_{-k}(n)$ be the number of k-colored partitions. For any positive integers $a \geq b$ we have

$$
\begin{equation*}
p_{-k}(a) p_{-k}(b)>p_{-k}(a+b) \tag{23}
\end{equation*}
$$

except for $(a, b, k)=(1,1,2),(2,1,2),(3,1,2),(1,1,3)$.
Combinatorial proof.

Polynomization

Let $P_{n}(x)$ already introduced. Then $p_{-k}(n)=P_{n}(k)$.
Theorem: Heim, Neuhauser, Troeger (2019)
Let $a, b \in \mathbb{N}, a+b>2$ and $x>2$. Then

Polynomization

Let $P_{n}(x)$ already introduced. Then $p_{-k}(n)=P_{n}(k)$.
Theorem: Heim, Neuhauser, Troeger (2019)
Let $a, b \in \mathbb{N}, a+b>2$ and $x>2$. Then

$$
\begin{equation*}
P_{a}(x) P_{b}(x)>P_{a+b}(x), \tag{24}
\end{equation*}
$$

The case $x=2$ is true for $a+b>4$.

Conjectures

Conjecture CFT: Chern, Fu, Tang (2018)

Let $a>b \geq 1$ and $k \geq 2$, except for $(k, a, b)=(2,6,4)$ we have

$$
\begin{equation*}
P_{-k}(a-1) P_{-k}(b+1)>P_{-k}(a) P_{-k}(b) \tag{25}
\end{equation*}
$$

Conjectures

Conjecture CFT: Chern, Fu, Tang (2018)

Let $a>b \geq 1$ and $k \geq 2$, except for $(k, a, b)=(2,6,4)$ we have

$$
\begin{equation*}
P_{-k}(a-1) P_{-k}(b+1)>P_{-k}(a) P_{-k}(b) \tag{25}
\end{equation*}
$$

Conjecture HN: Heim, Neuhauser (2019)*

Let $a>b \geq 0$ be integers. Then for all $x \geq 2$:

$$
\begin{equation*}
\Delta_{a, b}(x):=P_{a-1}(x) P_{b+1}(x)-P_{a}(x) P_{b}(x) \geq 0 \tag{26}
\end{equation*}
$$

except for $b=0$ and $(a, b)=(6,4)$. The inequality (26) is still true for $x \geq 3$ for $b=0$ and for $x \geq x_{6,4}$ for $(a, b)=(6,4)$. Here $x_{a, b}$ is the largest real root of $\Delta_{a, b}(x)$.

Theorem: Heim, Neuhauser (2020)
The Conjecture HN is true for $b=1$.

Building on results of Iskander, Jain and Talvola:

Theorem BKRT: Bringmann, Kane, Rolen, Tripp 2020 arXiv

Fix $x \in \mathbb{R}$ with $x \geq 2$, and let $a, b \in \mathbb{N}_{\geq 2}$ with $a>b+1$. Set
$A:=a-1-\frac{x}{24}$ and $B:=b-\frac{x}{24}$, we suppose $B \geq \max \left\{2 x^{11}, \frac{100}{x-24}\right\}$.
Then

$$
\begin{aligned}
\Delta_{a, b}(x)= & P_{a-1}(x) P_{b+1}(x)-P_{a}(x) P_{b}(x) \\
= & \pi\left(\frac{x}{24}\right)^{\frac{x}{2}+1}(A B)^{-\frac{x}{4}-\frac{5}{4}} e^{\pi \sqrt{\frac{2 x}{3}}(\sqrt{A}+\sqrt{B})}(\sqrt{A}-\sqrt{B}) \\
& \left(1+O_{\leq}\left(\frac{2}{3}\right)\right) .
\end{aligned}
$$

Notation: Let $f(x)=O_{\leq}(g(x))$ mean that $|f(x)| \leq g(x)$ in the relevant domain.

Applications

Corollary: BKRT 2020

For any real number $x \geq 2$ and positive integers

$$
\begin{equation*}
b \geq B_{0}(x):=\max \left\{2 x^{11}+\frac{x}{24}, \frac{100}{x-24}+\frac{x}{24}\right\} \tag{27}
\end{equation*}
$$

Conjecture CFT is true.

Corollary: BKRT 2020

- The CTF Conjecture is true.
- For each x, the HN Conjecture is true for all $b \geq B_{0}(x)$.

Latest Results

Heim, Neuhauser: Polynomization of the Chern-Fu-Tang Conjecture. Research in Number Theory (published online 22.March 2021).

Theorem

Let $a \in \mathbb{N}, b \in\{1,2,3\}$ and $x \in \mathbb{R}$. For b odd we put $x_{0}:=1$ and for b even $x_{0}:=2$. Let $a_{0}:=a_{0}(b):=b+2$. Then

$$
\begin{equation*}
\Delta_{a, b}(x)>0 \quad\left(a \geq a_{0}, x>0\right) \tag{28}
\end{equation*}
$$

Proof method very briefly: Check $\Delta_{a, b}\left(x_{0}\right) \geq 0$ and $\Delta_{a, b}^{\prime}(x) \geq 0$ for $x \geq x_{0}$.

General picture

Roots of $\Delta_{a, 27}(x)$ and $\Delta_{a, 28}(x)$ with positive real part. Blue $=$ real roots, red $=$ complex roots.

Final Page: Challenges

7 Challenges

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_{n}^{g, h}(x)$ and renormalized variants.

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_{n}^{g, h}(x)$ and renormalized variants.
- Prove that at least for one negative integer $z_{0}: P_{n}^{\sigma}\left(z_{0}\right) \neq 0$ for all $n \in \mathbb{N}$.

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_{n}^{g, h}(x)$ and renormalized variants.
- Prove that at least for one negative integer $z_{0}: P_{n}^{\sigma}\left(z_{0}\right) \neq 0$ for all $n \in \mathbb{N}$.
- Prove the HN Conjecture, the polynomization of the CFT Conjecture (proven by Bringman et. al.).

Final Page: Challenges

7 Challenges

- Vary g and h and find common properties of $P_{n}^{g, h}(x)$.
- Prove that $P_{n}^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_{n}^{g, h}(x)$ and renormalized variants.
- Prove that at least for one negative integer $z_{0}: P_{n}^{\sigma}\left(z_{0}\right) \neq 0$ for all $n \in \mathbb{N}$.
- Prove the HN Conjecture, the polynomization of the CFT Conjecture (proven by Bringman et. al.).
- Find a NO type hook length formula for $P_{n}^{g, h}(x)$ for well chosen g and h.

[^0]: ${ }^{1}$ On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, XXII, No.9, 159-184

[^1]: ${ }^{1}$ On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, XXII, No.9, 159-184

