Rota's vision and the Lehmer conjecture Bernhard Heim (joint work with M. Neuhauser) Vanderbilt University Number Theory Seminar

RWTH Aachen

14. April 2021

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

Introduction

- Rota and Lehmer
- Serre's Table and beyond

2 D'Arcais Polynomials

- Analytic Approach
- Algebraic Approach

3 Exponential Case: Polynomials $P_n^g(x)$

- 4 Polynomials $P_n^{g,h}(x)$
- Bessenrodt-Ono type inequality

Infinite Products and Generating Series

Let
$$r \in \mathbb{Z}$$
.

$$\sum_{n=0}^{\infty} a_n(r) X^n := \prod_{n=1}^{\infty} (1 - X^n)^r.$$
(1)
Important topic: Properties and formulas of the $a_n(r)$.

Infinite Products and Generating Series

Let
$$r \in \mathbb{Z}$$
.

$$\sum_{n=0}^{\infty} a_n(r) X^n := \prod_{n=1}^{\infty} (1 - X^n)^r.$$
(1)
Important topic: Properties and formulas of the $a_n(r)$.

• r = 1 Euler (Pentagonal numbers)

Let $r \in \mathbb{Z}$.

$$\sum_{n=0}^{\infty} a_n(r) X^n := \prod_{n=1}^{\infty} (1 - X^n)^r \,. \tag{1}$$

Important topic: Properties and formulas of the $a_n(r)$.

- r = 1 Euler (Pentagonal numbers)
- r = 3 Jacobi (Triangle numbers)

Let $r \in \mathbb{Z}$.

$$\sum_{n=0}^{\infty} a_n(r) X^n := \prod_{n=1}^{\infty} (1 - X^n)^r .$$
 (1)

Important topic: Properties and formulas of the $a_n(r)$.

- r = 1 Euler (Pentagonal numbers)
- r = 3 Jacobi (Triangle numbers)
- r = -1 Euler (Partition numbers)

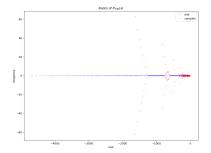
Let $r \in \mathbb{Z}$.

$$\sum_{n=0}^{\infty} a_n(r) X^n := \prod_{n=1}^{\infty} (1 - X^n)^r .$$
 (1)

Important topic: Properties and formulas of the $a_n(r)$.

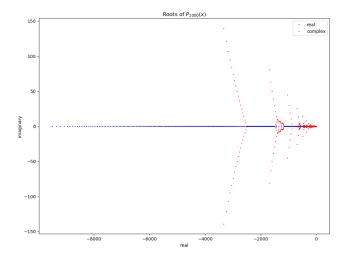
- r = 1 Euler (Pentagonal numbers)
- r = 3 Jacobi (Triangle numbers)
- r = -1 Euler (Partition numbers)
- r = 24 Ramanujan tau-function Lehmer conjecture (1947): $\tau(n) := a_{n-1}(24) \neq 0$ for all $n \in \mathbb{N}$.

Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems of location of the zeros of certain polynomials Gian-Carlo Rota 1985: The one contribution of mine that I hope will be remembered ... that all sorts of problems of combinatorics can be viewed as problems of location of the zeros of certain polynomials and in giving these zeros a combinatorial interpretation.

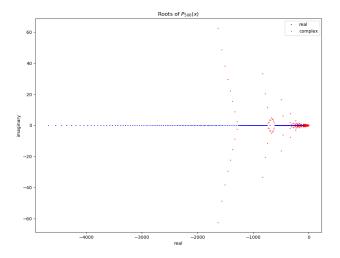


Let
$$P_0(x) = 1$$
 and $P_n(x) := \frac{x}{n} \sum_{k=1}^n \sigma(k) P_{n-k}(x)$.
Then $\tau(n) = P_{n-1}(-24)$.

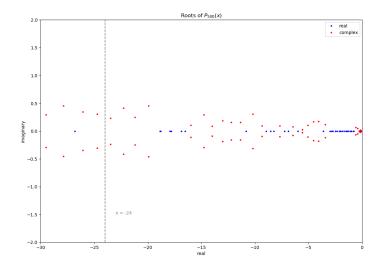
Rota's way-combinatorics and roots



Rota's way - combinatorics and roots



Rota's way-combinatorics and roots



14. April 2021 7 / 48

$\mathsf{Case}\; r \; \mathsf{odd}$

 η^r superlacunary iff $r \in S_{odd} := \{1, 3\}.$

$\mathsf{Case}\ r\ \mathsf{odd}$

 η^r superlacunary iff $r \in S_{odd} := \{1, 3\}.$

Case r even

Serre: η^r lacunary iff $r \in S_{even} := \{2, 4, 6, 8, 10, 14, 26\}.$

Atkin, Cohen	r = 5	$n = 1560, 1802, 1838, 2318, 2690, \dots$
Atkin	r = 7	n = 28017
Newman	r = 15	n = 53

э.

・ロト ・ 日 ・ ・ ヨ ・ ・

Serre's table extended

r	Sources n_0	$\mathcal{N}_r(n_0)$	Checked up to
5	1560, 1802,	$\{n_0l^2 + 5 \cdot \frac{l^2 - 1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}\$	10 ¹⁰
7	28017	$\{28017 l^2 + 7\frac{l^2-1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}$	10^{10}
9	_	Ø	10^{10}
11	-	Ø	10^{10}
13	-	Ø	10^{10}
15	53	$\{429\binom{l}{2} + 53, l \in \mathbb{N}\}$	10^{10}
$17 \le r \le 27$	-	Ø	10 ⁹
$29 \leq r \leq 549$	-	Ø	108

э

æ

Serre's table extended

r	Sources n ₀	$\mathcal{N}_r(n_0)$	Checked up to
5	1560, 1802,	$\{n_0l^2 + 5 \cdot \frac{l^2 - 1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}\$	10 ¹⁰
7	28017	$\{28017 l^2 + 7\frac{l^2-1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}$	10^{10}
9	-	Ø	10^{10}
11	-	Ø	10^{10}
13	-	Ø	10^{10}
15	53	$\{429\binom{l}{2} + 53, l \in \mathbb{N}\}\$	10^{10}
$17 \le r \le 27$	-	Ø	10 ⁹
$29 \le r \le 549$	-	Ø	10^{8}

Let r be even and $r \notin S_{even}\{2, 4, 6, 8, 10, 14, 26\}$ all numerical checks give $a_n(r) \neq 0$.

Serre's table extended

r	Sources n ₀	$\mathcal{N}_r(n_0)$	Checked up to
5	1560, 1802,	$\{n_0l^2 + 5 \cdot \frac{l^2 - 1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}\$	10^{10}
7	28017	$\{28017 l^2 + 7\frac{l^2-1}{24}, (l, 2 \cdot 3) = 1, l \in \mathbb{N}\}\$	10^{10}
9	-	Ø	10^{10}
11	-	Ø	10^{10}
13	-	Ø	10^{10}
15	53	$\{429\binom{l}{2} + 53, l \in \mathbb{N}\}$	10^{10}
$17 \le r \le 27$	-	Ø	10 ⁹
$29 \leq r \leq 549$	-	Ø	10^{8}

Let r be even and $r \notin S_{even}\{2, 4, 6, 8, 10, 14, 26\}$ all numerical checks give $a_n(r) \neq 0$.

B. Heim, M. Neuhauser, A. Weisse: *Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function.* Res. Number Theory (2018).

Even case

Numerical evidence, Maeda's conjecture,

Let $z \in \mathbb{C}$.

$$\prod_{n=1}^{\infty} \left(1 - X^n \right)$$

Image: A math a math

æ

Let $z \in \mathbb{C}$.

$$\prod_{n=1}^{\infty} \left(1 - X^n\right)^{-z} =$$

Image: A math a math

æ

Let $z \in \mathbb{C}$.

$$\prod_{n=1}^{\infty} (1 - X^n)^{-z} = : \sum_{n=0}^{\infty} P_n(z) X^n.$$

The $P_n(z)$ are polynomials of degree n.

(2)

$$\sum_{n=0}^{\infty} P_n(z) X^n = \prod_{n=1}^{\infty} (1 - X^n)^{-z}, \qquad (X \in \mathbb{C}, |X| < 1).$$
(3)

Main Idea

$$\sum_{n=0}^{\infty} P_n(z) X^n = \prod_{n=1}^{\infty} (1 - X^n)^{-z}, \qquad (X \in \mathbb{C}, |X| < 1).$$
(3)

• Evaluated at integer points -r, they coincide with $a_n(r)$

$$\sum_{n=0}^{\infty} P_n(z) X^n = \prod_{n=1}^{\infty} (1 - X^n)^{-z}, \qquad (X \in \mathbb{C}, |X| < 1).$$
(3)

- Evaluated at integer points -r, they coincide with $a_n(r)$
- $n!/xP_n(x)$ is a normalized polynomial of degree n-1 and positive integer coefficients.

$$\sum_{n=0}^{\infty} P_n(z) X^n = \prod_{n=1}^{\infty} (1 - X^n)^{-z}, \qquad (X \in \mathbb{C}, |X| < 1).$$
(3)

- Evaluated at integer points -r, they coincide with $a_n(r)$
- $n!/xP_n(x)$ is a normalized polynomial of degree n-1 and positive integer coefficients.
- $P_0(x) = 1, P_1(x) = x, P_2(x) = x/2(x+3), P_3(x) = x/3! (x+1)(x+8).$

$$\sum_{n=0}^{\infty} P_n(z) X^n = \prod_{n=1}^{\infty} (1 - X^n)^{-z}, \qquad (X \in \mathbb{C}, |X| < 1).$$
(3)

- Evaluated at integer points -r, they coincide with $a_n(r)$
- $n!/xP_n(x)$ is a normalized polynomial of degree n-1 and positive integer coefficients.
- $P_0(x) = 1, P_1(x) = x, P_2(x) = x/2(x+3), P_3(x) = x/3!(x+1)(x+8).$
- Note that $P_3(-8) = 0$ encodes the information, that the third coefficient of $\prod_n (1 X^n)^8$ is vanishing.

Basic properties of $P_n(x)$

• Positive integer coefficients

$$P_n(x) = \frac{x}{n!} \sum_{k=0}^{n-1} a_k x^k$$
, where $a_k \in \mathbb{N}$ with $a_{n-1} = 1$. (4)

This implies that non-trivial real roots are negative.

• Positive integer coefficients

$$P_n(x) = \frac{x}{n!} \sum_{k=0}^{n-1} a_k x^k$$
, where $a_k \in \mathbb{N}$ with $a_{n-1} = 1$. (4)

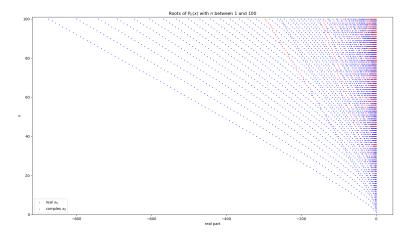
This implies that non-trivial real roots are negative.

• Observation ($n \le N = 1000$)

$$P_n(x) = \frac{x}{n!} \prod_{k=1}^{d_n} (x + r_k) \cdot \text{ irred. polynomial}/\mathbb{Q}, \quad \text{where } r_k \in \mathbb{N}.$$
(5)

Basic properties of $\overline{P_n(x)}$

• Root distribution



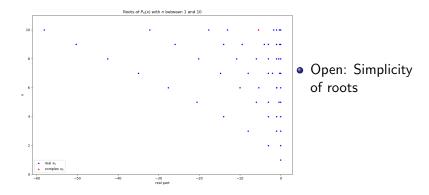
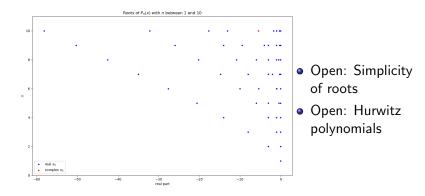


Image: Image:

3



3

We have already observed that roots are algebraic numbers and negative if real. Is $P_n(i) = 0$ possible? No.

We have already observed that roots are algebraic numbers and negative if real. $P_{i}(t) = 0$ are the 2 Ne

Is $P_n(i) = 0$ possible? No.

Theorem ('18, H., Luca, Neuhauser)

Suppose that ξ_m is a *m*th root of unity and there exist an $n \in \mathbb{N}$, such that $P_n(\xi_m) = 0$. Then $\xi_m = -1$.

Definition

Let $g:\mathbb{N}\longrightarrow\mathbb{C}$ normalized arithmetic function. Then

$$P_n^g(x) := \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}(x), \qquad (P_0(x) := 1).$$
(6)

Definition

Let $g:\mathbb{N}\longrightarrow\mathbb{C}$ normalized arithmetic function. Then

$$P_n^g(x) := \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}(x), \qquad (P_0(x) := 1).$$
(6)

Observation

Let
$$g(n) = \sigma(n) = \sum_{d|n} d$$
. Then $P_n(x) = P_n^{\sigma}(x)$.

3

Observation

Let
$$g(n) = id(n)$$
. Then $P_n^{id}(x) = \frac{x}{n} L_{n-1}^{(1)}(-x)$, where $L_n^{(\alpha)}(x)$ is the α -associated Laguerre polynomial of degree n .

Theorem: Heim, Neuhauser 2020

Let $z\in\mathbb{C}$ and let $\mid z\mid >\kappa(n-1)\text{, }\kappa:=10.82\text{, then}$

$$|P_n(z)| > \frac{|z|}{2n} |P_{n-1}(z)|.$$
 (7)

This implies $P_n(z) \neq 0$ for $|z| > \kappa (n-1)$.

See HN 2020 : On the growth and zeros of polynomials attached to arithmetic functions. arXiv:2101.04654.

Definition

Let $g,h:\mathbb{N}\longrightarrow\mathbb{C}$ normalized arithmetic function and let h be non-vanishing. Then

$$P_n^{g,h}(x) := \frac{x}{h(n)} \sum_{k=1}^n g(k) P_{n-k}^{g,h}(x), \qquad (P_0^{g,h}(x) := 1).$$
(8)

3

Definition

Let $g,h:\mathbb{N}\longrightarrow\mathbb{C}$ normalized arithmetic function and let h be non-vanishing. Then

$$P_n^{g,h}(x) := \frac{x}{h(n)} \sum_{k=1}^n g(k) P_{n-k}^{g,h}(x), \qquad (P_0^{g,h}(x) := 1).$$
(8)

Theorem: H-N

Let $Q_n(x)$ be the family of polynomials attached to σ and h(n) = 1. Let $z \in \mathbb{C}$ and let $|z| > \kappa$, $\kappa := 10.82$, then

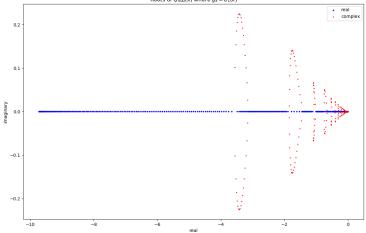
$$|Q_n(z)| > \frac{|z|}{2} |Q_{n-1}(z)|.$$
(9)

This implies $Q_n(z) \neq 0$ for $|z| > \kappa$.

Chebychev polynomials of the second kind

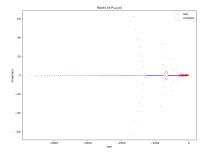
Let g(n) = id(n) = n. Then $Q_n^{id}(x) = x U_{n-1}(x/2+1)$, Chebychev polynomial of the second kind.

Rota's way-combinatorics and roots

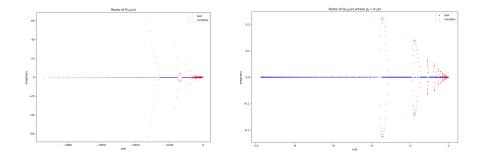


Roots of $Q_{500}(x)$ where $g_k = \sigma_1(k)$

P and Q polynomials n = 500

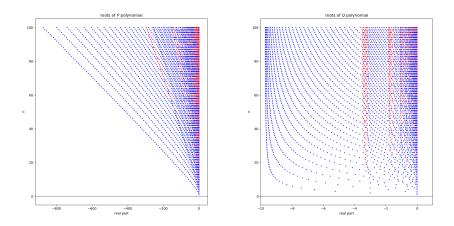


P and Q polynomials n = 500

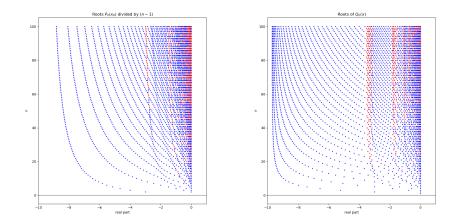


A (1) > 4

P and Q polynomials: roots (until n = 100)

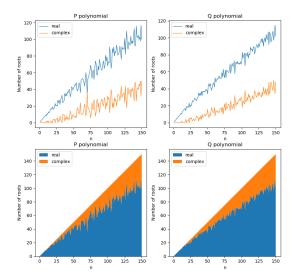


P and Q polynomials: roots (until n = 100) $x_0^{(P)}/(n-1)$



P and Q polynomials: type of roots (until n = 150)

Number of real and complex roots of P and Q polynomial



13

Two families of polynomials P_n and Q_n .

Summary.

$$P_n^g(x) = \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}^g(x)$$
(10)
$$Q_n^g(x) = x \sum_{k=1}^n g(k) Q_{n-k}^g(x)$$
(11)

э

Two families of polynomials P_n and Q_n .

Summary.

$$P_n^g(x) = \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}^g(x)$$
(10)
$$Q_n^g(x) = x \sum_{k=1}^n g(k) Q_{n-k}^g(x)$$
(11)

Let
$$g(n) = \sum_{d|n} d$$
.
• $P_n(z) \neq 0$ for $|z| > 10.82 (n-1)$ and $Q_n(z) \neq 0$ for $|z| > 10.82$.

Two families of polynomials P_n and Q_n .

Summary.

$$P_{n}^{g}(x) = \frac{x}{n} \sum_{k=1}^{n} g(k) P_{n-k}^{g}(x)$$
(10)
$$Q_{n}^{g}(x) = x \sum_{k=1}^{n} g(k) Q_{n-k}^{g}(x)$$
(11)

Let $g(n) = \sum_{d|n} d$.

- $P_n(z) \neq 0$ for |z| > 10.82 (n-1) and $Q_n(z) \neq 0$ for |z| > 10.82.
- Hurwitz polynomials. We observed numerically, and have high evidence that the roots of both polynomials (up to z = 0), have simple roots with negative real part.

$Q_n(x)$ Volterra type difference equation, $x_0 \in \mathbb{C}$.

Basic equation

Let $B(n) = x_0 g(n+1)$ and $x_0 := Q_1(x_0)$. Then

$$x(n+1) = Ax(n) + \sum_{k=0}^{n} B(n+1-k) x(k), \qquad (A=0).$$
(12)

Note that this implies $Q_n(x_0) = x(n)$.

$Q_n(x)$ Volterra type difference equation, $x_0 \in \mathbb{C}$.

Basic equation

Let $B(n) = x_0 g(n+1)$ and $x_0 := Q_1(x_0)$. Then

$$x(n+1) = Ax(n) + \sum_{k=0}^{n} B(n+1-k) x(k), \qquad (A=0).$$
(12)

Note that this implies $Q_n(x_0) = x(n)$.

The Z-transformation leads to

Identity

$$\frac{1}{1 - x_0 \sum_{n=1}^{\infty} g(n) z^{-n}} = Z(x(n)).$$
(13)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $q := e^{2\pi i \tau}$, τ in the complex upper half-space, $z := q^{-1}$. Let j be Klein's absolute invariant and g(n) essentially the coefficients of j. Then

$$\frac{1}{j(\tau)} = q \sum_{n=0}^{\infty} Q_n^g(-744) q^n,$$
(14)

where $(-1)^n Q_n^g(-744) > 0.$

Actually we prove that $\gamma_2(\tau)$, the cubic root of j has this property. **Remark:** See also recent results on $1/E_k$ on reciprocal Eisenstein series. IJNT 2021 and arXiv.

Summary and next steps

Fundamental equations

$$\sum_{n=0}^{\infty} P_n^g(x) X^n = \exp\left(x \sum_{n=1}^{\infty} g(n) \frac{X}{n}\right)$$
(15)
$$\sum_{n=0}^{\infty} Q_n^g(x) X^n = \frac{1}{1 - x_0 \sum_{n=1}^{\infty} g(n) X^n}.$$
(16)

Summary and next steps

Fundamental equations

$$\sum_{n=0}^{\infty} P_n^g(x) X^n = \exp\left(x \sum_{n=1}^{\infty} g(n) \frac{X}{n}\right)$$
(15)
$$\sum_{n=0}^{\infty} Q_n^g(x) X^n = \frac{1}{1 - x_0 \sum_{n=1}^{\infty} g(n) X^n}.$$
(16)

Identities

$$P_n^g(x) = \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}^g(x), \quad (P_0^g(x) = 1)$$

$$Q_n^g(x) = x \sum_{k=1}^n g(k) Q_{n-k}^g(x), \quad (Q_0^g(x) = 1)$$
(18)

Lehmer's conjecture

In 1916, Ramanujan¹ published the following table:

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

 1 On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, XXII, No.9, 159-184 \bigcirc

In 1916, Ramanujan¹ published the following table:

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Ramanujan observed

- Congruences
- Multiplicative properties: Hecke Theory (Mordell, Hecke)
- Growth conditions: Ramanujan-Petersson conjecture (Deligne)

In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Hot topic since 20 years: **Sign changes**.

 Infinite sign changes (Murty, Knopp, Kohnen, Pribtin, ...) In 1947, Lehmer conjectured that $\tau(n) \neq 0$ for all natural numbers. The conjecture is still open.

n	$\tau(n)$	n	$\tau(n)$
1	+1	16	+987136
2	-24	17	-6905934
3	+252	18	+2727432
4	-1472	19	+10661420
5	+4830	20	-7109760
6	-6048	21	-4219488
7	-16744	22	-12830688
8	+84480	23	+18643272
9	-113643	24	+21288960
10	-115920	25	-25499225
11	+534612	26	+13865712
12	-370944	27	-73279080
13	-577738	28	+24647168
14	+401856	29	+128406630
15	+1217160	30	-29211840

Hot topic since 20 years: **Sign changes**.

- Infinite sign changes (Murty, Knopp, Kohnen, Pribtin, ...)
- First non-sign change. New results. See Conference Proceedings 2020, Ramakrishnan, H., Sahu (Article H-N).

Kostant 2004

Let \mathfrak{g} be a simple complex Lie-algebra (different from A_1, A_2, G_2). Then

$$\prod_{n=1}^{\infty} (1-q^n)^{\dim \mathfrak{g}} = \sum_{n=0}^{\infty} a_n(\dim \mathfrak{g}) q^n$$
(19)

has non-vanishing coefficients up to the dual Coxeter number h^{\vee} and their sign is strictly alternating.

Kostant 2004

Let \mathfrak{g} be a simple complex Lie-algebra (different from A_1, A_2, G_2). Then

$$\prod_{n=1}^{\infty} (1-q^n)^{\dim \mathfrak{g}} = \sum_{n=0}^{\infty} a_n(\dim \mathfrak{g}) q^n$$
(19)

has non-vanishing coefficients up to the dual Coxeter number h^{\vee} and their sign is strictly alternating.

Root System A_{m-1} dim $\mathfrak{g} = m^2 - 1$ and $(-1)^n a_n > 0$ for $n \le \max\{4, m\}$.

Nekrasov-Okounkov Hook Length Formula

Random partitions and the Seiberg-Witten theory led Nekrasov-Okounkov (2003, appeared 2006) to

NO Formula

Let λ run through all partitions. Let $|\lambda|$ be the size, and $\mathcal{H}(\lambda)$ be the multiset of hook lengths. Then

$$\sum_{\lambda} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)} \left(1 + \frac{z}{h^2} \right) = \prod_{n=1}^{\infty} (1 - q^n)^{-(z+1)}.$$
 (20)

Nekrasov-Okounkov Hook Length Formula

Random partitions and the Seiberg-Witten theory led Nekrasov-Okounkov (2003, appeared 2006) to

NO Formula

Let λ run through all partitions. Let $|\lambda|$ be the size, and $\mathcal{H}(\lambda)$ be the multiset of hook lengths. Then

$$\sum_{\lambda} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)} \left(1 + \frac{z}{h^2} \right) = \prod_{n=1}^{\infty} \left(1 - q^n \right)^{-(z+1)}.$$
 (20)

NO Polynomials

$$P_n^{\mathsf{NO}}(z) := \sum_{\lambda \vdash n} \prod_{h \in \mathcal{H}(\lambda)} \left(1 + \frac{z}{h^2} \right)$$
(21)

< ロ > < 同 > < 三 > < 三

See also important results of Westbury (2006) and Han (2010).

Theorem: Han 2008

Han proved by applying the Nekrasov-kounkov Hook Length Formula, that let $x \in \mathbb{R}_{>0}$, then $(-1)^n a_n(x^2 - 1) > 0$ for $n \leq \max\{4, x\}$.

Using our approach of recursively defined polynomials $P_n(x)$ leads actually to a linear condition. Let $z \in \mathbb{C}$ and let |z| > 10.82(n-1). Then $P_n(z) \neq 0$ and $(-1)^n P_n(z) > 0$ if z is real and negative.

- We refer to work of Amdeberhan (arXiv) , Keith (2013), and Walsh and Warnaar (2020).
- Heim and Neuhauser (several papers). e.g. Conjecture: $P_n^{\sigma}(x+1)$ is log-concave for all n.
- Significant evidence for the Conjecture by the recent work of Hong and Zhang (published 2021, Research in Number Theory).

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_n(x)$ and $Q_n(x)$.

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_n(x)$ and $Q_n(x)$.
- Proving a Poincare–Perron type Volterra equation result

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_n(x)$ and $Q_n(x)$.
- Proving a Poincare–Perron type Volterra equation result
- Extend the result of Heim-Luca-Neuhauser (work in progress).

- Proof the log-concave conjecture.
- Proving correspondence between properties of $P_n(x)$ and $Q_n(x)$.
- Proving a Poincare–Perron type Volterra equation result
- Extend the result of Heim-Luca-Neuhauser (work in progress).
- Proof that all $P_n(x)$ are Hurwitz polynomials.

Theorem: Bessenrodt-Ono 2016

Let p(n) be the number of partitions. Let a,b integers. Let a,b>1 and a+b>9. Then

$$p(a) p(b) > p(a+b).$$
 (BO) (22)

Theorem: Bessenrodt-Ono 2016

Let p(n) be the number of partitions. Let a,b integers. Let a,b>1 and a+b>9. Then

$$p(a) p(b) > p(a+b).$$
 (BO) (22)

- Condition a, b > 1 obvious.
- BO has essentially finitely many exceptions.
- Analytic proof (Lehmer-type estimation).

• Alanazi, Gagola, Munagi (2017) combinatorial proof.

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for *k*-regular partitions.

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for *k*-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews *spt*-function.

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for *k*-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews *spt*-function.
- Hou, Jagadeesan (2019): B-O for Dyson partition ranks.

- Alanazi, Gagola, Munagi (2017) combinatorial proof.
- Beckenwith, Bessenrodt: B-O for *k*-regular partitions.
- Dawsey, Masri (2019): B-O for Andrews *spt*-funtion.
- Hou, Jagadeesan (2019): B-O for Dyson partition ranks.
- Heim, Neuhauser (2019): Inequalities of type $p(a)p(b) \ge p(a+b+m-1)$.

Theorem: Chern, Fu, Tang (2018)

Let k > 1 be given and $p_{-k}(n)$ be the number of k-colored partitions. For any positive integers $a \ge b$ we have

Theorem: Chern, Fu, Tang (2018)

Let k>1 be given and $p_{-k}(n)$ be the number of k-colored partitions. For any positive integers $a\geq b$ we have

$$p_{-k}(a) p_{-k}(b) > p_{-k}(a+b),$$
(23)

except for (a, b, k) = (1, 1, 2), (2, 1, 2), (3, 1, 2), (1, 1, 3).

Combinatorial proof.

Let $P_n(x)$ already introduced. Then $p_{-k}(n) = P_n(k)$.

Theorem: Heim, Neuhauser, Troeger (2019) Let $a, b \in \mathbb{N}$, a + b > 2 and x > 2. Then Let $P_n(x)$ already introduced. Then $p_{-k}(n) = P_n(k)$.

Theorem: Heim, Neuhauser, Troeger (2019)	
Let $a, b \in \mathbb{N}$, $a + b > 2$ and $x > 2$. Then	
$P_a(x) P_b(x) > P_{a+b}(x),$	(24)
The case $x = 2$ is true for $a + b > 4$.	

Conjectures

Conjecture CFT: Chern, Fu, Tang (2018)

Let $a > b \ge 1$ and $k \ge 2$, except for (k, a, b) = (2, 6, 4) we have

$$P_{-k}(a-1) P_{-k}(b+1) > P_{-k}(a) P_{-k}(b).$$
(25)

3

Conjectures

Conjecture CFT: Chern, Fu, Tang (2018)

Let $a > b \ge 1$ and $k \ge 2$, except for (k, a, b) = (2, 6, 4) we have

$$P_{-k}(a-1) P_{-k}(b+1) > P_{-k}(a) P_{-k}(b).$$
(25)

Conjecture HN: Heim, Neuhauser (2019)*

Let $a > b \ge 0$ be integers. Then for all $x \ge 2$:

$$\Delta_{a,b}(x) := P_{a-1}(x)P_{b+1}(x) - P_a(x)P_b(x) \ge 0,$$
(26)

except for b = 0 and (a, b) = (6, 4). The inequality (26) is still true for $x \ge 3$ for b = 0 and for $x \ge x_{6,4}$ for (a, b) = (6, 4). Here $x_{a,b}$ is the largest real root of $\Delta_{a,b}(x)$.

Theorem: Heim, Neuhauser (2020)

The Conjecture HN is true for b = 1.

Building on results of Iskander, Jain and Talvola:

Theorem BKRT: Bringmann, Kane, Rolen, Tripp 2020 arXiv

$$\begin{split} & \mathsf{Fix} \ x \in \mathbb{R} \ \text{with} \ x \geq 2, \ \text{and} \ \mathsf{let} \ a, b \in \mathbb{N}_{\geq 2} \ \mathsf{with} \ a > b + 1. \ \mathsf{Set} \\ & A := a - 1 - \frac{x}{24} \ \mathsf{and} \ B := b - \frac{x}{24}, \ \mathsf{we} \ \mathsf{suppose} \ B \geq \max \ \Big\{ 2 \, x^{11}, \frac{100}{x - 24} \Big\}. \end{split}$$
Then

$$\begin{aligned} \Delta_{a,b}(x) &= P_{a-1}(x) P_{b+1}(x) - P_a(x) P_b(x) \\ &= \pi \left(\frac{x}{24}\right)^{\frac{x}{2}+1} (AB)^{-\frac{x}{4}-\frac{5}{4}} e^{\pi \sqrt{\frac{2x}{3}} \left(\sqrt{A}+\sqrt{B}\right)} \left(\sqrt{A}-\sqrt{B}\right) \\ &\qquad \left(1+O_{\leq}\left(\frac{2}{3}\right)\right). \end{aligned}$$

Notation: Let $f(x) = O_{\leq}\left(g(x)\right)$ mean that $|f(x)| \leq g(x)$ in the relevant domain.

Corollary: BKRT 2020

For any real number $x \ge 2$ and positive integers

$$b \ge B_0(x) := \max\left\{2x^{11} + \frac{x}{24}, \frac{100}{x - 24} + \frac{x}{24}\right\}.$$
 (27)

Conjecture CFT is true.

Corollary: BKRT 2020

- The CTF Conjecture is true.
- For each x, the HN Conjecture is true for all $b \ge B_0(x)$.

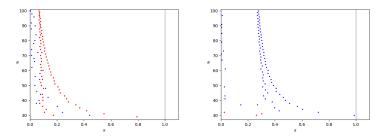
Heim, Neuhauser: Polynomization of the Chern-Fu-Tang Conjecture. Research in Number Theory (published online 22.March 2021).

Theorem

Let $a \in \mathbb{N}$, $b \in \{1, 2, 3\}$ and $x \in \mathbb{R}$. For b odd we put $x_0 := 1$ and for b even $x_0 := 2$. Let $a_0 := a_0(b) := b + 2$. Then

$$\Delta_{a,b}(x) > 0 \quad (a \ge a_0, x > 0).$$
(28)

Proof method very briefly: Check $\Delta_{a,b}(x_0) \ge 0$ and $\Delta'_{a,b}(x) \ge 0$ for $x \ge x_0$.



Roots of $\Delta_{a,27}(x)$ and $\Delta_{a,28}(x)$ with positive real part. Blue = real roots, red = complex roots.

Final Page: Challenges

7 Challenges

	ecture

Image: A mathematical states and a mathem

Final Page: Challenges

7 Challenges

• Vary g and h and find common properties of $P_n^{g,h}(x)$.

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_n^{g,h}(x)$ and renormalized variants.

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_n^{g,h}(x)$ and renormalized variants.
- Prove that at least for one negative integer z_0 : $P_n^{\sigma}(z_0) \neq 0$ for all $n \in \mathbb{N}$.

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_n^{g,h}(x)$ and renormalized variants.
- Prove that at least for one negative integer z_0 : $P_n^{\sigma}(z_0) \neq 0$ for all $n \in \mathbb{N}$.
- Prove the HN Conjecture, the polynomization of the CFT Conjecture (proven by Bringman et. al.).

- Vary g and h and find common properties of $P_n^{g,h}(x)$.
- Prove that $P_n^{\sigma}(x)$ is Hurwitz.
- Prove the log-concave conjecture.
- Find the root distribution of $P_n^{g,h}(x)$ and renormalized variants.
- Prove that at least for one negative integer z_0 : $P_n^{\sigma}(z_0) \neq 0$ for all $n \in \mathbb{N}$.
- Prove the HN Conjecture, the polynomization of the CFT Conjecture (proven by Bringman et. al.).
- Find a NO type hook length formula for $P_n^{g,h}(x)$ for well chosen g and h.