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Motivating question

• Suppose that

Q(~x) =
r∑

i=1

r∑
j=i

aijxixj

is a positive-definite quadratic form with aij ∈ Z for all i , j .

• Which positive integers are represented by Q?

Theorem (Legendre, 1798)

If n is a positive integer, there are x , y , z ∈ Z with
n = x2 + y2 + z2 if and only if n 6= 4t(8k + 7) for t, k ≥ 0.
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Necessary conditions

• A positive integer n is said to be locally represented by Q if there
is a solution to Q(~x) = n with ~x ∈ Zr

p for every p.

Theorem (Tartakowski)

If r ≥ 5, then a positive-definite form Q represents every
sufficiently large locally represented positive integer n.
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Anisotropic primes (1/2)

• Let Q = x2 + y2 + 7z2 + 7w2.

• The form Q locally represents all positive integers, and fails to
represent 3, 6, 21 and 42.

• If Q(x , y , z ,w) ≡ 0 (mod 49), then x ≡ y ≡ z ≡ w ≡ 0
(mod 7).

• It follows that Q doesn’t represent 3 · 7k or 6 · 7k for any k ≥ 0.
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Anisotropic primes (2/2)

• We say that a quadratic form Q is anisotropic over Qp if when
~x ∈ Qr

p and Q(~x) = 0, it follows that ~x = ~0.

Theorem (Tartakowski)

If Q has four variables, there are only finitely many anisotropic
primes. Fix a positive integer m. Then there is a constant C (Q,m)
so that if n is locally represented, ordp(n) ≤ m for all anisotropic
primes p, and n > C (Q,m), then n is represented by Q.
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Prior work (1/3)

• In 1963, Fomenko gave the first bounds for Tartakowski’s
theorem that indicated the dependence on Q.

• If Q = 1
2~x

TA~x , define D(Q) = det(A). Let N(Q) be the
smallest positive integer so that N(Q)A−1 has integer entries and
even diagonal entries.

Theorem (Schulze-Pillot, 2001)

If n is coprime to any anisotropic prime, n is locally represented by
Q, and n� N(Q)14+ε, then n is represented.
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Prior work (2/3)

• We say that n satisfies the strong local solubility condition if for
all primes p there is some ~x ∈ (Z/prZ)4 so that Q(~x) ≡ n
(mod pr ) with p - A~x . (We have r = 3 if p = 2 and r = 1 if
p > 2.)

Theorem (Browning-Dietmann, 2008)

If n satisfies the strong local solubility condition and
n� D(Q)10+ε, then n is represented by Q.

• Browning and Dietmann’s result is stronger when the successive
minima of Q are close in size.
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Main results (1/3)

Theorem (R, 2014)

If n is locally represented by Q, D(Q) is a fundamental
discriminant, and n� D(Q)2+ε, then n is represented by Q.

• The above result is not effective. It depends on zero-free regions
for GL(1) L-functions.
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Main results (2/3)

Theorem (R, 2019)

Let Q be a quaternary quadratic form and suppose that n is locally
represented by Q. If gcd(n,D(Q)) = 1, then n is represented by Q
provided n� max{N(Q)3/2+εD(Q)5/4+ε,N(Q)2+εD(Q)1+ε}.

• If n satisfies the strong local solubility condition, then n is
represented by Q provided

n� max{N(Q)5/4+εD(Q)5/4+ε,N(Q)3+εD(Q)1+ε}.
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Main results (3/3)

• We say that n is primitively locally represented by Q if there is a
solution to Q(~x) ≡ n (mod pk) for all p and k with p - ~x .

• If n is primitively locally represented, then n is represented by Q if

n� max{N(Q)5/2+εD(Q)9/4+ε,N(Q)3+εD(Q)2+ε}.

• If n is locally represented by Q, not represented, and

n� max{N(Q)9/2+εD(Q)5/4+ε,N(Q)5+εD(Q)1+ε},

then there is an anisotropic prime p so that p2|n and np2k is not
represented by Q for any k ≥ 1.
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Wu’s result

• Q: Which primitive positive-definite quaternary form represents n
the greatest number of times?

• It is natural to guess that if Q represents n more times than any
other form, then the discriminant of Q is small.

Theorem (Wu, 2020)

Let S = {Q1,Q2, . . . ,Qs} be any finite set of primitive
positive-definite quaternary forms. Then there is a quaternary form
R and an integer n so that rR(n) > rQi

(n) for all 1 ≤ i ≤ s.
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Overview

• “There are five fundamental operations of arithmetic: addition,
subtraction, multiplication, division, and modular forms.”
(Attributed to Martin Eichler.)
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Definitions

• A modular form of weight k, level N and character χ is a
holomorphic function f : H→ C so that

f

(
az + b

cz + d

)
= χ(d)(cz + d)k f (z)

for all

[
a b
c d

]
∈ Γ0(N).

• Let Mk(Γ0(N), χ) denote the C-vector space of such modular
forms, and Sk(Γ0(N), χ) the subspace of cusp forms.

• These vector spaces are finite-dimensional!
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Theta series

• Let Q be a quaternary quadratic form and let
rQ(n) = #{~x ∈ Z4 : Q(~x) = n} be the number of representations
of n by Q.

• Define

θQ(z) =
∞∑
n=0

rQ(n)qn, q = e2πiz .

• The generating function θQ(z) is a modular form of weight 2 on
Γ0(D(Q)) with character χD(Q).
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Decomposition

• We can decompose θQ(z) as the sum of an Eisenstein series
E (z) and a cusp form C (z).

• The coefficients aE (n) of E (z) are large and predictable
(aE (n)� n1−ε if n is locally represented and coprime to D(Q)).

• The coefficients of aC (n) are small and mysterious
(|aC (n)| � d(n)

√
n).
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Example (1/2)

• If Q = x2 + y2 + 3z2 + 3w2 + xz + yw , then

θQ(z) = 1 + 4q + 4q2 + 8q3 + 20q4 + 16q5 + · · · ∈ M2(Γ0(11), χ1).

• We have

E (z) = 1 +
12

5

∞∑
n=1

(σ(n)− 11σ(n/11))qn.

• If

f (z) = q
∞∏
n=1

(1− qn)2(1− q11n)2 =
∞∑
n=1

a(n)qn,

then C (z) = 8
5 f (z).
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Example (2/2)

• The Hasse bound gives that |a(n)| ≤ d(n)
√
n and so

rQ(n) ≥ 12

5

∑
d |n
11-d

d − 8

5
d(n)
√
n.

• There are 110 squarefree integers for which the right hand side is
negative.

• One can check that Q represents all of these. It follows that Q
represents all positive integers.
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Eisenstein part

• The coefficient aE (n) of the Eisenstein series can be written

aE (n) =
∏
p≤∞

βp(Q, n)

as a product of local densities.

• Here

βp(Q, n) = lim
k→∞

#{~x ∈ (Z/pkZ)4 : Q(~x) ≡ n (mod pk)}
p3k

.

• We have β∞(n) = π2n√
D(Q)

. If p - nD(Q), then

βp(Q, n) = 1 + O(1/p2). If p|n but p - D(Q), then
βp(Q) = 1 + O(1/p).
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Bounds on βp(n)

• Let p be a prime and decompose Q over Zp as

pa1Q1⊥pa2Q2⊥ · · ·⊥pakQk .

For ~x ∈ Z4
p, decompose ~x = ~x1⊥ · · ·⊥~xk .

• Define

rp(Q) = min
1≤i≤k

inf
~x∈Zr

p

Q(~x)=0

ordp(ai ) + ordp(~xi ).

• The rp(Q) is a measure of how anisotropic Q is. If Q is
anisotropic, then rp(Q) =∞.
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Local density bounds

Lemma

Suppose that Q is primitive and n is locally represented by Q and
p > 2.

If n satisfies the strong local solubility condition, then
βp(n) ≥ 1− 1/p.

If n is primitively locally represented by Q, then
βp(n) ≥ (1− 1/p)p−bordp(D(Q))/2c.

In general, βp(n) ≥ (1− 1/p)p−min{rp(Q),ordp(n)}.

• We have similar results if p = 2.
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The cusp form piece

• To bound aC (n), we use the same approach as the work of
Fomenko and Schulze-Pillot. This is to bound

〈C ,C 〉 =
3

π[SL2(Z) : Γ0(N(Q))]

∫∫
H/Γ0(N)

|C (z)|2 dx dy .

• Blomer and Milićević show that there is an orthonormal basis
hi =

∑
ai (n)qn for S2(Γ0(N(Q)), χ) so that

ai (n)� N(Q)1/2+εd(n)
√
n

provided gcd(n,D(Q)) = 1.
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Lattice

• Goal: Bound 〈C ,C 〉.

• To do so, we use an explicit formula for the Weil representation
due to Scheithauer to compute how θQ transforms under any
matrix in SL2(Z).

• Let L be the lattice attached to Q. This is the set Z4 with the
inner product

〈~x , ~y〉 =
1

2
(Q(~x + ~y)− Q(~x)− Q(~y)) .

• The dual lattice L′ of L is
L′ = {~x ∈ R4 : 〈~x , ~y〉 ∈ Z for all ~y ∈ L}.

Jeremy Rouse Quadratic forms 22/43



Introduction
Modular forms

Universality theorems

Lattice

• Goal: Bound 〈C ,C 〉.

• To do so, we use an explicit formula for the Weil representation
due to Scheithauer to compute how θQ transforms under any
matrix in SL2(Z).

• Let L be the lattice attached to Q. This is the set Z4 with the
inner product

〈~x , ~y〉 =
1

2
(Q(~x + ~y)− Q(~x)− Q(~y)) .

• The dual lattice L′ of L is
L′ = {~x ∈ R4 : 〈~x , ~y〉 ∈ Z for all ~y ∈ L}.

Jeremy Rouse Quadratic forms 22/43



Introduction
Modular forms

Universality theorems

Lattice

• Goal: Bound 〈C ,C 〉.

• To do so, we use an explicit formula for the Weil representation
due to Scheithauer to compute how θQ transforms under any
matrix in SL2(Z).

• Let L be the lattice attached to Q. This is the set Z4 with the
inner product

〈~x , ~y〉 =
1

2
(Q(~x + ~y)− Q(~x)− Q(~y)) .

• The dual lattice L′ of L is
L′ = {~x ∈ R4 : 〈~x , ~y〉 ∈ Z for all ~y ∈ L}.

Jeremy Rouse Quadratic forms 22/43



Introduction
Modular forms

Universality theorems

Lattice

• Goal: Bound 〈C ,C 〉.

• To do so, we use an explicit formula for the Weil representation
due to Scheithauer to compute how θQ transforms under any
matrix in SL2(Z).

• Let L be the lattice attached to Q. This is the set Z4 with the
inner product

〈~x , ~y〉 =
1

2
(Q(~x + ~y)− Q(~x)− Q(~y)) .

• The dual lattice L′ of L is
L′ = {~x ∈ R4 : 〈~x , ~y〉 ∈ Z for all ~y ∈ L}.

Jeremy Rouse Quadratic forms 22/43



Introduction
Modular forms

Universality theorems

Notation

• Define D = L′/L to be the discriminant group. It’s order is
D(Q).

• For a number c |N(Q), define Dc to be the kernel of the map
[c] : D → D and Dc to be the image. Define

Dc∗ = {α ∈ D :
1

2
c〈γ, γ〉+ 〈α, γ〉 ≡ 0 (mod 1) for all γ ∈ Dc}.

• Let w = c
gcd(N(Q),c) .
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Formula

• With all the notation on the previous slide, the coefficient of
qn/w in the Fourier expansion of (cz + d)−2θQ((az + b)/(cz + d))
is a root of unity times

1√
|Dc∗|

∑
β∈Dc∗

eπia〈β,β〉/2#{~v ∈
⋃

L + β : β ∈ Dc∗,Q(~v) = n/w}.

• Let T = {~x ∈ L′ : ~x mod L ⊆ Dc ∪ Dc∗}.

• If we define R : T → Q by

R(~x) = 4w〈~x , ~x〉,

then R is an integral quadratic form with discriminant ≤ (4w)4D(Q)
|Dc |2 .
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Bound on 〈C ,C 〉

• Putting this together, we get

〈C ,C 〉 � 1

[SL2(Z) : Γ0(N)]

∑
a/c

w
∞∑
n=1

rR(4n)2

|Dc∗|(n/w)
e−2π

√
3n/w .

• To estimate the sum, we need to bound
∑

n≤x rR(n)2.
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Analyzing this sum

• The easiest way to do this is to use

∑
n≤x

rR(n)2 ≤

∑
n≤x

rR(n)

 · (max
n≤x

rR(n)

)
.

• The first term is straightforward to analyze. We get∑
n≤x

rR(n)� x2

D(R)1/2
+ x3/2.

• There’s a clever argument I learned from MathOverflow that
gives

max
n≤x

rR(n)� x1+εD(R)−1/4+ε + x1/2.
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Cusp form bound

• From this we get that

〈C ,C 〉 � 1

[SL2(Z) : Γ0(N(Q))]

∑
a/c

w3

|Dc∗|
.

• This is � E (Q) = max{N(Q)1/2+εD(Q)1/4+ε,N(Q)1+ε}.

• It follows from this that |aC (n)| � E (Q)d(n)
√
n if

gcd(n,D(Q)) = 1.
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Conclusion

• We have that rQ(n) = aE (n) + aC (n).

• If gcd(n,D(Q)) = 1 then aE (n)� n1−εD(Q)−1/2.

• If gcd(n,D(Q)) = 1, then |aC (n)| � E (Q)d(n)
√
n.

• It follows that rQ(n) > 0 if n� D(Q)E (Q)2+ε.
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Motivation

Theorem (Lagrange, 1770)

Every positive integer can be written as a sum of four squares.

• What other expressions represent all positive integers?

• Write Q(~x) = 1
2~x

TA~x . We say that Q is integer-matrix if all the
entries of A are even.
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15

• We say a quadratic form is integer-valued if the diagonal entries
of A are even.

Theorem (Conway-Schneeberger-Bhargava)

A positive-definite integer matrix form Q represents every positive
integer if and only if it represents 1, 2, 3, 5, 6, 7, 10, 14, and 15.
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290

Theorem (Bhargava-Hanke)

A positive-definite, integer-valued form Q represents every positive
integer if and only if it represents

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.
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Consequences

• Each of these results is sharp. The form

x2 + 2y2 + 4z2 + 29w2 + 145v2 − xz − yz

represents every positive integer except 290.

• If a form represents every positive integer less than 290, it
represents every integer greater than 290.

• There are 6436 integer-valued quaternary forms that represent all
positive integers.
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Later results

Theorem (R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q
represents all positive odds if and only if it represents

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 47,

51, 53, 57, 59, 77, 83, 85, 87, 89, 91, 93, 105, 119, 123, 133, 137,

143, 145, 187, 195, 203, 205, 209, 231, 319, 385, and 451.

Theorem (DeBenedetto-R, 2016)

A positive-definite, integer-valued form Q represents every positive
integer coprime to 3 if and only if it represents

1, 2, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 35

37, 38, 46, 47, 55, 58, 62, 70, 94, 110, 119, 145, 203, and 290.
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Two exceptions

• It follows from the proof of the 15-theorem that if an
integer-valued form Q represents all positive integers with one
exception, then that exception must be 1, 2, 3, 5, 6, 7, 10, 14, or
15.

Theorem (BDMSST, 2017)

If a positive-definite integer-matrix form Q represents all positive
integers with two exceptions, the pair of exceptions {m, n} must
be one of the following: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 9}, {1, 10},

{1, 11}, {1, 13}, {1, 14}, {1, 15}, {1, 17}, {1, 19}, {1, 21}, {1, 23}, {1, 25}, {1, 30}, {1, 41}, {1, 55},

{2, 3}, {2, 5}, {2, 6}, {2, 8}, {2, 10}, {2, 11}, {2, 14}, {2, 15}, {2, 18}, {2, 22}, {2, 30}, {2, 38}, {2, 50},

{3, 6}, {3, 7}, {3, 11}, {3, 12}, {3, 19}, {3, 21}, {3, 27}, {3, 30}, {3, 35}, {3, 39}, {5, 7}, {5, 10},

{5, 13}, {5, 14}, {5, 20}, {5, 21}, {5, 29}, {5, 30}, {5, 35}, {5, 37}, {5, 42}, {5, 125}, {6, 15}, {6, 54},

{7, 10}, {7, 15}, {7, 23}, {7, 28}, {7, 31}, {7, 39}, {7, 55}, {10, 15}, {10, 26}, {10, 40}, {10, 58},

{10, 250}, {14, 30}, {14, 56}, {14, 78}.
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{3, 6}, {3, 7}, {3, 11}, {3, 12}, {3, 19}, {3, 21}, {3, 27}, {3, 30}, {3, 35}, {3, 39}, {5, 7}, {5, 10},

{5, 13}, {5, 14}, {5, 20}, {5, 21}, {5, 29}, {5, 30}, {5, 35}, {5, 37}, {5, 42}, {5, 125}, {6, 15}, {6, 54},

{7, 10}, {7, 15}, {7, 23}, {7, 28}, {7, 31}, {7, 39}, {7, 55}, {10, 15}, {10, 26}, {10, 40}, {10, 58},

{10, 250}, {14, 30}, {14, 56}, {14, 78}.
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Overview

• Bhargava’s escalator method is used to reduce problems like
those above to a finite calculation involving specific quaternary
quadratic forms.

• The modular symbols algorithm can be used to decompose C (z)
into newforms and to derive an explicit bound on aC (n).

• With that in hand, one can determine the integers represented by
a form Q.
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Example (from 451 theorem)

• For

Q(x , y , z ,w) = x2 − xy + 2y2 + yz − 2yw + 5z2 + zw + 29w2

we have θQ ∈ M2(Γ0(4200), χ168).

• We have dimS2(Γ0(4200), χ168) = 936.

• It takes almost a day to compute that |aC (n)| ≤ 31.0537d(n)
√
n.

• Once this is known, it takes 10 seconds to check that Q
represents every odd number.

Jeremy Rouse Quadratic forms 36/43



Introduction
Modular forms

Universality theorems

Example (from 451 theorem)

• For

Q(x , y , z ,w) = x2 − xy + 2y2 + yz − 2yw + 5z2 + zw + 29w2

we have θQ ∈ M2(Γ0(4200), χ168).

• We have dimS2(Γ0(4200), χ168) = 936.

• It takes almost a day to compute that |aC (n)| ≤ 31.0537d(n)
√
n.

• Once this is known, it takes 10 seconds to check that Q
represents every odd number.

Jeremy Rouse Quadratic forms 36/43



Introduction
Modular forms

Universality theorems

Example (from 451 theorem)

• For

Q(x , y , z ,w) = x2 − xy + 2y2 + yz − 2yw + 5z2 + zw + 29w2

we have θQ ∈ M2(Γ0(4200), χ168).

• We have dimS2(Γ0(4200), χ168) = 936.

• It takes almost a day to compute that |aC (n)| ≤ 31.0537d(n)
√
n.

• Once this is known, it takes 10 seconds to check that Q
represents every odd number.

Jeremy Rouse Quadratic forms 36/43



Introduction
Modular forms

Universality theorems

Example (from 451 theorem)

• For

Q(x , y , z ,w) = x2 − xy + 2y2 + yz − 2yw + 5z2 + zw + 29w2

we have θQ ∈ M2(Γ0(4200), χ168).

• We have dimS2(Γ0(4200), χ168) = 936.

• It takes almost a day to compute that |aC (n)| ≤ 31.0537d(n)
√
n.

• Once this is known, it takes 10 seconds to check that Q
represents every odd number.

Jeremy Rouse Quadratic forms 36/43



Introduction
Modular forms

Universality theorems

Another method (1/5)

• When D(Q) is a fundamental discriminant, there’s another
method. Rather than explicitly compute the decomposition of the
cusp form part into newforms, we instead do the following.

• Compute an upper bound for 〈C ,C 〉. We do this via the form
Q∗ = 1

2~x
TN(Q)A−1~x . Let θQ∗ = E ∗ + C ∗.

• Compute a lower bound on 〈g , g〉 for all newforms
g ∈ S2(Γ0(D), χD(Q)).
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Another method (2/5)

Theorem

If g is a non-CM newform in S2(Γ0(D(Q)), χD(Q)), then

〈g , g〉 ≥ 1

685 log(D(Q))

 ∏
p|D(Q)

p

p + 1



• There might be CM newforms in S2(Γ0(D(Q)), χD(Q)). We
explicitly enumerate them and handle them separately.
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Another method (3/5)

• Define

ψ(x) = − 6

π
xK1(4πx) + 24x2K0(4πx).

Theorem

If C (z) is the cusp form part of θQ , then 〈C ,C 〉 is given by

∞∑
n=1

2ω(gcd(n,D(Q)))N(Q)aC∗(n)2

n[SL2(Z) : Γ0(D(Q))]

∞∑
d=1

ψ

(
d

√
n

D(Q)

)
.
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Another method (4/5)

• For

Q(x , y , z ,w) = x2 + 3y2 + 3yz + 3yw + 5z2 + zw + 34w2

we have D(Q) = 6780.

• The space S2(Γ0(6780), χ6780) has four Galois-orbits of newforms
of sizes 4, 4, 40, and 1312.

• We find that for all newforms g ,

〈g , g〉 ≥ 1.019 · 10−5.
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Another method (5/5)

• We compute the first 101700 coefficients of C ∗ and use the
formula from three slides back to get

0.01066 ≤ 〈C ,C 〉 ≤ 0.01079.

• This gives |aC (n)| ≤ 1199.86d(n)
√
n. It follows that Q

represents every odd number larger than 8.315 · 1016. These
computations take 3 minutes and 50 seconds.

• Checking up to this bound requires 22 minutes and 29 seconds.
We find that Q represents all odd numbers.
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Summary

• Suppose Q is a quaternary form and n is locally represented by
Q. If gcd(n,D(Q)) = 1 and n� N(Q)2+εD(Q)1+ε, then n is
represented by Q.

• Stronger bounds can be obtained if D(Q) is a fundamental
discriminant.

• These methods can be used to determine precisely which integers
are represented by quaternary quadratic forms of large level.
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That’s all

Thank you very much!
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