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Definitions

Partitions

Definition

A partition of n is a multiset of positive integers {λk} with

λ1 ≥ · · · ≥ λ` and
∑̀
k=1

λk = n.

We write λ ` n and denote the size as |λ| := n. We set
p(n) := #{λ ` n}.

Example

The partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,

so p(4) = 5.
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Definitions

Young/Ferrer’s Diagrams

Represent parts as columns of squares.

9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1 = 41.

Conjugation: −→
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Statistics for Partitions

Asymptotic enumeration

Question

How many partitions of n are there?

p(n) = Coeff[qn]
(∏

k≥1
1

1−qk

)
. (= q1/24

η(τ) , modular)

Theorem (Hardy-Ramanujan 1919, Rademacher 1937)

p(n) = “convergent series”; in particular,

p(n) ∼ 1

4
√

3n
e
π
√

2n
3 .

Remark

Hardy-Ramanujan’s work marks the birth of the HR-Circle Method.
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Statistics for Partitions

Other asymptotic formulas

d(n) - “distinct parts partitions of n”

= Coeff[qn]
∏

k≥1(1 + qk). (modular)

Theorem (Hardy-Ramanujan 1919, Hagis 1964)

d(n) = “convergent series”; in particular,

d(n) ∼ 1

4 4
√

3n3/4
eπ
√

n
3 .
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Statistics for Partitions

Other asymptotic formulas

pt(n) - partitions with largest part ≤ t
√
n

= Coeff[qn]
∏

k≤t
√
n

1
1−qk . (non-modular)

Theorem (Szekeres 1953, Canfield 1997, Romik 2005)

Let α = α(t) satisfy
∫ t

0
ue−αu

1−e−αu du = 1. Then we have an
asymptotic of the form

pt(n) ∼ g(α, t)

n
eH(α,t)

√
n.

Szekeres: saddle-point method (complex analysis)

Canfield: recurrences + real analysis

Romik: probabilistic
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Statistics for Partitions

Other asymptotic formulas

pt(n) - partitions with largest part ≤ t
√
n

= Coeff[qn]
∏

k≤t
√
n

1
1−qk . (non-modular!)

Theorem (Szekeres (1953), Canfield (1997), Romik (2005))

Let α = α(t) satisfy
∫ t

0
ue−αu

1−e−αu du = 1. Then we have an
asymptotic of the form

pt(n) ∼ g(α, t)

n
eH(α,t)

√
n.

Szekeres: saddle-point method (complex analysis)

Canfield: recurrences + real analysis

Romik: probabilistic

(More intuitive reformulation of saddle-point method.)
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dt(n) - distinct parts partitions with largest part ≤ t
√
n

= Coeff[qn]
∏

k≤t
√
n(1 + qk).

Theorem (B. (2020))

Let t >
√

2 and let β = β(t) satisfy
∫ t

0
ue−βu

1+e−βu
du = 1. Then

dt(n) ∼ An(t)

n3/4
eB(t)

√
n,

where

An(t) =
e
βt
2 + e−

βt
2

2(1 + e−βt){t
√
n}

√
β′(t)

πt
, B(t) = 2β+ log(1 +e−βt).

probabilistic proof
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Statistics for Partitions

Largest part distribution

Pn(λ) := 1
p(n) - uniform probability meas. on {λ ` n}.

Question

What is the size of λ1 for a typical partition of n?

Theorem (Erdős-Lehner 1941)

Let c :=
√

6
π . Then

lim
n→∞

Pn

(
λ1 − c

√
n log

(
c
√
n
)

c
√
n

≤ x

)
= e−e

−x
.

Answer

Typically, λ1 ∼ c
√
n log(c

√
n) and the error has an extreme value

distribution.
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Statistics for Partitions

Largest part distribution

Proof Idea

By inclusion-exclusion:

#{λ ` n : λ1 ≤ k} = p(n)−
∑
r1≥1

p (n − (k + r1))

+
∑

r2>r1≥1

p (n − (k + r1)− (k + r2))

− . . . .

Set k := c
√
n log

(
c
√
n
)

+ c
√
nx and plug in Hardy-Ramanujan

asymptotic.
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t-th largest part distribution

Theorem (Fristedt 1993, Trans. AMS)

lim
n→∞

Pn

(
λt − c

√
n log

(
c
√
n
)

c
√
n

≤ x

)
=

1

(t − 1)!

∫ x

−∞
e−e

−u−tudu.

Fristedt also found joint distribution for (λ1, . . . , λtn) where
tn = o

(
n1/4

)
and distributions for many other statistics.

Proof Idea

Fristedt’s conditioning device. Let N, the size of a partition, be a
random variable. Then

Pn (·) = Qq (·|N = n) ,

for a “better” family of probability measures Qq.



Statistics for Partitions and Unimodal Sequences

Statistics for Partitions

t-th largest part distribution

Theorem (Fristedt 1993, Trans. AMS)

lim
n→∞

Pn

(
λt − c

√
n log

(
c
√
n
)

c
√
n

≤ x

)
=

1

(t − 1)!

∫ x

−∞
e−e

−u−tudu.

Fristedt also found joint distribution for (λ1, . . . , λtn) where
tn = o

(
n1/4

)
and distributions for many other statistics.

Proof Idea

Fristedt’s conditioning device. Let N, the size of a partition, be a
random variable. Then

Pn (·) = Qq (·|N = n) ,

for a “better” family of probability measures Qq.



Statistics for Partitions and Unimodal Sequences

Statistics for Partitions

Limit shapes

Question

What are the likely shapes of diagrams among partitions of n?

Figure: Density plot of {λ ` 300}.
ϕ̃(λ) - renormalized
shape; rescale by

1√
n

5√
19

6√
19

Total Area = 1
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Statistics for Partitions

Limit shapes

Question

What are the likely shapes of diagrams among partitions of n?

Let ε > 0 and let Nε be an ε-n’hood of e
− π√

6
x

+ e
− π√

6
y

= 1.

Conjecture (Temperley 1952, Szalay-Turán 1977, Vershik 1996,
. . . )

(Roughly)
lim
n→∞

Pn (ϕ̃(λ) ⊂ Nε) = 1.

Dembo-Vershik-Zeitouni 1998 proof of above∗ and large
deviation principle using Fristedt’s conditioning device

Petrov 2010 proof by “elementary” gen. f’n estimates

distinct parts partitions: e
− π√

6
y − e

− π√
6
x

= 1
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Statistics for Unimodal Sequences

Question

Are there limit shapes for unimodal sequences?
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Unimodal Sequences

Definition

A unimodal sequence λ of size n is a sequence of positive integers
satisfying

λ1 ≤ · · · ≤ λp ≥ · · · ≥ λ`
∑̀
k=1

λk = n.

λp (and other parts of this size) is called a peak.

Example

The unimodal sequences of size 4 are

1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2, 3 + 1, 1 + 3, 4,

so u(4) = 8.
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Statistics for Unimodal Sequences

Because of peaks, unimodal sequences are not “double partitions”,∑
n≥1

u(n)qn =
∏
k≥1

1

(1− qk)2︸ ︷︷ ︸
modular

∑
k≥1

(−1)k+1q
k(k+1)

2

︸ ︷︷ ︸
false θ-f’n

.

Theorem (Auluck 1951)

u(n) ∼ 1
2333/4n5/4 e

2π
√

n
3

Theorem (Bringmann-Nazaroglu 2019, Research in Math. Sci.)

u(n) = “convergent series”
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Definitions (by Picture)

(Unrestricted) U.S.

Strongly U.S.

strict ineq.

Semi-strict U.S.

a single peak; strict ineq. to the left

(1, 1, 3, 3, 2, 1)

(1, 2, 4, 5, 2, 1)

(1, 3, 4, 2, 1, 1)
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Definitions (by Picture)

(Unrestricted) U.S.

Strongly U.S.

strict ineq.

Semi-strict U.S.

a single peak; strict ineq. to the left

(1, 1, 3, 3, 2, 1)

(1, 2, 4, 5, 2, 1)

(1, 3, 4, 2, 1, 1)

ϕ̃(λ) - renormalized shape, rescale by 1√
n
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Limit shapes

Question

What is the typical shape of a unimodal sequence of size n?

Recall limit shape for partitions:

e
− π√

6
x

+ e
− π√

6
y

= 1.

So we may expect:

unrestricted u. s. strongly u.s.

?

semi-strict u.s.
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Limit shapes

Theorem (B.)

We have the following limit shapes:

Unrestricted Unimodal Sequences

fu(x) :=

−
√

3
π log

(
1− e

π√
3
x
)

if x < 0,

−
√

3
π log

(
1− e

− π√
3
x
)

if x > 0.

fu(x)

Each side is the limit shape for partitions (scaled by 1
2 ).
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Limit shapes

Theorem (B.)

(continued)

Strongly Unimodal Sequences

fs(x) :=

−
√

6
π log

(
e
− π√

6
x − 1

)
if x ∈

[
−
√

6
π log(2), 0

)
,

−
√

6
π log

(
e
π√

6
x − 1

)
if x ∈

(
0,
√

6
π log(2)

]
.

fs(x)

Each side - lim shape for dist. parts partitions (scaled by 1
2 ).
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Limit shapes

Theorem (B.)

(continued)

Semi-strict Unimodal Sequences

fss(x) :=

−
2
π log

(
e−

π
2
x − 1

)
if x ∈

[
− 2
π log(2), 0

)
,

− 2
π log

(
1− e−

π
2
x
)

if x > 0.

fss(x)

Remark: Left Area + Right Area = 1
3 + 2

3 = 1.
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Interpretation

0-1 laws for “medium” parts (�
√
n)

E.g., fix ε > 0. Then for 100% of strongly unimodal sequences
as n→∞, the number of parts lies in

√
n

[
2

√
6

π
log(2)− ε, 2

√
6

π
log(2) + ε

]
.

Limit shapes say very little about “small” and “large” parts.
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Consequences: semi-strict ranks

SS(n) - semi-strict unimodal sequences of size n
rank(λ) = # right parts − # left parts (symmetry)

Theorem (Bringmann–Jennings-Shaffer–Mahlburg, (2020))

The rank of semi-strict unimodal sequences has a point-mass
distribution:

lim
n→∞

1

#SS(n)
#

{
λ ∈ SS(n) :

rank(λ)
√
n log(n)
π

≤ x

}
=

{
0 if x < 1,

1 if x ≥ 1.
.

Recall limit shape:

fss(x)

Area : 1
3 + 2

3 = 1
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Consequences: semi-strict ranks

Theorem (Bringmann–Jennings-Shaffer–Mahlburg, (2020))

The rank of semi-strict unimodal sequences has a point-mass
distribution:

lim
n→∞

1

#SS(n)
#

{
λ ∈ SS(n) :

rank(λ)
√
n log(n)
π

≤ x

}
=

{
0 if x < 1,

1 if x ≥ 1.
.

1
3 + 2

3 heuristic:

rank(λ) ≈ #

(
parts in partition of

2

3
n

)
− 2

π
log 2
√
n

∼
√

3√
2π

log

(
2

3
n

)√
2

3
n︸ ︷︷ ︸

Erdős-Lehner

− 2

π
log 2
√
n ∼
√
n log n

π
.
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Consequences: overpartitions

Question

Are there limit shapes for overpartitions?

Definition (Corteel-Lovejoy 2004)

An overpartition of n is a partition in which the last occurrence of
a part may (or may not) be over-marked.

Example

The overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1,

so p(4) = 12.
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Statistics for Unimodal Sequences

Consequences: overpartitions

DeSalvo-Pak 2019 - geometrically nice bijections =⇒
transfer of limit shapes

p(n) = ss(n) + ss(n + 1). Bijective proof:

Case 1: a single
marked largest part

∈ P(n)

−→

∈ SS(n)

Case 2: at least 1
unmarked largest
part ∈ P(n)

−→

∈ SS(n + 1)
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Limit shape for overpartitions

Thus, we can transfer the limit shapes:

fss(x)

7→ fp(x)

Corollary (B.)

The limit shape for overpartitions is

fp(x) :=
2

π
log

(
1 + e−

π
2
x

1− e−
π
2
x

)
.

symmetric in x and y (due to conjugation)
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Comparison of limit shapes for partitions and overpartitions:

2
π

2
π

Question

Is there a more direct combinatorial explanation for this
difference?

How should we alter definition of partitions to achieve certain
effects in limit shape?
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Probabilistic proof for dt (n)

Probabilistic proof of dt(n) asymptotic

Goal: asymptotic formula for

dt(n) = Coeff[qn]Dt(q), where Dt(q) :=
∏

k≤t
√
n

(1 + qk).
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Probabilistic proof for dt (n)

The measures Qq

For q ∈ (0, 1), set

Qq(λ) := q|λ|
∏

k≤t
√
n

1

1 + qk
= q|λ|Dt(q)−1.

r.v. Xk(λ) := #k’s in λ. (Bernoulli: Xk ∈ {0, 1}.)
(e.g. X3(6 + 3 + 1) = 1.)

r.v. N :=
∑

k≥1 kXk - the size.

(e.g. N(6 + 3 + 1) = 10.)
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Probabilistic proof for dt (n)

The measures Qq

Facts

1 Xk ’s are independent under Qq and

Qq(N = n) = dt(n)qnDt(q)−1.

2 Choosing q = e−β/n
1/2

minimizes∗

dt(n) ≤ q−nDt(q),

so maximizes Qq(N = n).

saddle-point equation ←→ Eq(N) ∼ n.
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Probabilistic proof for dt (n)

The measures Qq

Facts

Let σn := std. dev. of N. Then for q = e−β/
√
n,

N − n

σn
is asymptotically normal(0, 1).

Heuristic:

Qq(N = n) = Qq

(
− 1

2σn
≤ N − n

σn
≤ 1

2σn

)
≈ 1√

2π

∫ 1
2σn

− 1
2σn

e−x
2/2dx

∼ 1√
2πσn

.
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Probabilistic proof for dt (n)

With q = e−β/
√
n so that Eq(N) ∼ n,

dt(n) = Qq(N = n)q−nDt(n),

we use

Euler-Maclaurin summation
+

Fourier inversion of char. f’n ϕ̃N .

dt(n) ∼ An(t)

n3/4
eB(t)

√
n.
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Boltzmann models

Duchon-Flajolet-Louchard-Schaeffer 2003: “Boltzmann models”
for general combinatorial structures.

If

Cn := {γ : |γ| = n}
C = ∪n≥1Cn,

study uniform measure Pn(γ) := 1
#Cn

using the Boltzmann
model,

Qq(γ) :=
q|γ|∑
ω∈C q|ω|

.

Allowing size to be a random variable leads to faster sampling
algorithms.
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Boltzmann models

Gen. f’n for unimodal sequences is not an infinite product.

Boltzmann model is less useful∗.

Need “direct” generating functions approach for statistics for
unimodal sequences.
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Gen. f’n for unimodal sequences is not an infinite product.

Boltzmann model is less useful∗.

Need “direct” generating functions approach for statistics for
unimodal sequences.
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Boltzmann models

Proof of limit shapes for semi-strict unimodal
sequences
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Proof of ss limit shapes

Proof Sketch for Semi-strict Unimodal Sequences

Step 1: Limit shapes for the left and right halves in isolation:
as n→∞, a proportion of 0% are not in Nε(f`) and Nε(fr ).

f`(x) fr (x)

Step 2: To avoid degenerate limit shape, show peaks are
typically ω(

√
n).
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Proof of ss limit shapes

Step 1: Bounds from Generating Functions

The proportion of sequences with exactly a left parts ≤ b is

≤ q−nSS(q)

ss(n)
V (z) + e−C

√
n,

where,

V (z) = z−a
∏

1≤k≤b

1 + zqk

1 + qk
.

For a unique κ with q = e−κ/
√
n,

q−nSS(q)

ss(n)
= eo(

√
n).

Now choose z 6= 1 so that V (z) = e−C0
√
n uniformly for all pairs

(a, b) with λ
(

1√
n

(a, b)
)
/∈ Nε(f ). Thus, total at most

n2e−C0
√
n+o(

√
n) → 0.
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Proof of ss limit shapes

Step 2: Peaks are ω(
√
n)

Show sst(n)
ss(n) → 0 where sst(n) counts sequences with

peak ≤ t
√
n by injecting into pairs of partitions:

SSt(n)

↪→

Dt(n) Pt(n)

Apply asymptotics of Szekeres and B., respectfully.
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Proof of ss limit shapes

Essential ingredients for limit shapes for u.s.

Comb’lly, analytically “nice” gen. f’n A(q) =
∑

n≥1 a(n)qn.

Choice of q such that q−nA(q)
a(n) = eo(log a(n)).

Ability to “glue together” shapes by showing peaks are ω(
√
n)

(or similar).
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Apparent limit shapes for Dt(n) for t =
√

2,
√

3, 2, 3, 4.

Concavity switches at t = 2. Explanation?
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Thanks for listening!
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