Walter Bridges (LSU)

September 17, 2020 Vanderbilt Number Theory Seminar This talk is based on:

- W. Bridges "Distinct parts partitions with bounded largest part," to appear in Research in Number Theory arXiv: 2004.12036
- W. Bridges "Limit shapes for unimodal sequences," arXiv: 2001.06878

This talk is based on:

- W. Bridges "Distinct parts partitions with bounded largest part," to appear in Research in Number Theory arXiv: 2004.12036
- W. Bridges "Limit shapes for unimodal sequences," arXiv: 2001.06878

Goals:

() discuss **probabilistic methods** for proving asymptotics

This talk is based on:

- W. Bridges "Distinct parts partitions with bounded largest part," to appear in Research in Number Theory arXiv: 2004.12036
- W. Bridges "Limit shapes for unimodal sequences," arXiv: 2001.06878

Goals:

- **(**) discuss **probabilistic methods** for proving asymptotics
- escribe "direct" generating functions approach to limit shapes for unimodal sequences

Introduction

Definitions

Partitions

Definition

A *partition* of *n* is a multiset of positive integers $\{\lambda_k\}$ with

$$\lambda_1 \geq \cdots \geq \lambda_\ell$$
 and $\sum_{k=1}^\ell \lambda_k = n.$

We write $\lambda \vdash n$ and denote the *size* as $|\lambda| := n$. We set $p(n) := \#\{\lambda \vdash n\}$.

Example

The partitions of 4 are

$$4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1,$$

so p(4) = 5.

Definitions

Young/Ferrer's Diagrams

Represent parts as columns of squares.

Definitions

Young/Ferrer's Diagrams

Represent parts as columns of squares.

Statistics for Partitions

Asymptotic enumeration

Question

How many partitions of n are there?

Asymptotic enumeration

Question

How many partitions of n are there?

$$p(n) = ext{Coeff}[q^n] \left(\prod_{k \geq 1} rac{1}{1-q^k}
ight). \ (= rac{q^{1/24}}{\eta(au)}, ext{ modular})$$

Asymptotic enumeration

Question

How many partitions of n are there?

$$p(n) = \operatorname{Coeff}[q^n] \left(\prod_{k \ge 1} \frac{1}{1-q^k} \right). \ (= \frac{q^{1/24}}{\eta(\tau)}, \ \mathsf{modular})$$

Theorem (Hardy-Ramanujan 1919, Rademacher 1937)

p(n) = "convergent series"; in particular,

$$p(n) \sim \frac{1}{4\sqrt{3}n} e^{\pi \sqrt{\frac{2n}{3}}}$$

Remark

Hardy-Ramanujan's work marks the birth of the HR-Circle Method.

Other asymptotic formulas

d(n) - "distinct parts partitions of n"

 $= \operatorname{Coeff}[q^n] \prod_{k \geq 1} (1 + q^k).$ (modular)

Other asymptotic formulas

$$d(n)$$
 - "distinct parts partitions of n "

$$= {\sf Coeff}[q^n] \prod_{k \geq 1} (1+q^k).$$
 (modular)

Theorem (Hardy-Ramanujan 1919, Hagis 1964)

d(n) = "convergent series"; in particular,

$$d(n) \sim \frac{1}{4\sqrt[4]{3}n^{3/4}}e^{\pi\sqrt{\frac{n}{3}}}.$$

Other asymptotic formulas

 $p_t(n)$ - partitions with largest part $\leq t\sqrt{n}$

 $= \operatorname{Coeff}[q^n] \prod_{k \leq t\sqrt{n}} rac{1}{1-q^k}$. (non-modular)

Other asymptotic formulas

 $p_t(n)$ - partitions with largest part $\leq t\sqrt{n}$

 $= \operatorname{Coeff}[q^n] \prod_{k \leq t\sqrt{n}} rac{1}{1-q^k}$. (non-modular)

Theorem (Szekeres 1953, Canfield 1997, Romik 2005)

Let $\alpha = \alpha(t)$ satisfy $\int_0^t \frac{ue^{-\alpha u}}{1-e^{-\alpha u}} du = 1$. Then we have an asymptotic of the form

$$p_t(n) \sim \frac{g(\alpha, t)}{n} e^{H(\alpha, t)\sqrt{n}}.$$

Other asymptotic formulas

 $p_t(n)$ - partitions with largest part $\leq t\sqrt{n}$

$$= \mathsf{Coeff}[q^n] \prod_{k \leq t\sqrt{n}} rac{1}{1-q^k}.$$
 (non-modular)

Theorem (Szekeres 1953, Canfield 1997, Romik 2005)

Let $\alpha = \alpha(t)$ satisfy $\int_0^t \frac{ue^{-\alpha u}}{1-e^{-\alpha u}} du = 1$. Then we have an asymptotic of the form

$$p_t(n) \sim \frac{g(\alpha, t)}{n} e^{H(\alpha, t)\sqrt{n}}.$$

- Szekeres: saddle-point method (complex analysis)
- Canfield: recurrences + real analysis
- Romik: probabilistic

Other asymptotic formulas

$$p_t(n)$$
 - partitions with largest part $\leq t\sqrt{n}$
= Coeff[q^n] $\prod_{k \leq t\sqrt{n}} \frac{1}{1-q^k}$. (non-modular!)

Theorem (Szekeres (1953), Canfield (1997), Romik (2005))

Let $\alpha = \alpha(t)$ satisfy $\int_0^t \frac{ue^{-\alpha u}}{1-e^{-\alpha u}} du = 1$. Then we have an asymptotic of the form

$$p_t(n) \sim \frac{g(\alpha, t)}{n} e^{H(\alpha, t)\sqrt{n}}.$$

- Szekeres: saddle-point method (complex analysis)
- Canfield: recurrences + real analysis
- Romik: probabilistic

(More intuitive reformulation of saddle-point method.)

 $d_t(n)$ - distinct parts partitions with largest part $\leq t\sqrt{n}$ = Coeff $[q^n] \prod_{k \leq t\sqrt{n}} (1+q^k)$.

Theorem (B. (2020))

Let
$$t > \sqrt{2}$$
 and let $\beta = \beta(t)$ satisfy $\int_0^t \frac{ue^{-\beta u}}{1+e^{-\beta u}} du = 1$. Then

$$d_t(n)\sim rac{A_n(t)}{n^{3/4}}e^{B(t)\sqrt{n}},$$

where

$$A_n(t) = \frac{e^{\frac{\beta t}{2}} + e^{-\frac{\beta t}{2}}}{2(1 + e^{-\beta t})^{\{t\sqrt{n}\}}} \sqrt{\frac{\beta'(t)}{\pi t}}, \qquad B(t) = 2\beta + \log(1 + e^{-\beta t}).$$

• probabilistic proof

Largest part distribution

$$P_n(\lambda) := \frac{1}{p(n)}$$
 - uniform probability meas. on $\{\lambda \vdash n\}$.

Question

What is the size of λ_1 for a typical partition of n?

Largest part distribution

$$P_n(\lambda) := \frac{1}{p(n)}$$
 - uniform probability meas. on $\{\lambda \vdash n\}$.

Question

What is the size of λ_1 for a typical partition of n?

Theorem (Erdős-Lehner 1941)

Let
$$c := \frac{\sqrt{6}}{\pi}$$
. Then
$$\lim_{n \to \infty} P_n \left(\frac{\lambda_1 - c\sqrt{n} \log (c\sqrt{n})}{c\sqrt{n}} \le x \right) = e^{-e^{-x}}.$$

Answer

Typically, $\lambda_1 \sim c\sqrt{n}\log(c\sqrt{n})$ and the error has an extreme value distribution.

Largest part distribution

Proof Idea

By inclusion-exclusion:

$$\#\{\lambda \vdash n : \lambda_1 \le k\} = p(n) - \sum_{r_1 \ge 1} p(n - (k + r_1)) + \sum_{r_2 > r_1 \ge 1} p(n - (k + r_1) - (k + r_2))$$

Set $k := c\sqrt{n} \log (c\sqrt{n}) + c\sqrt{n}x$ and plug in Hardy-Ramanujan asymptotic.

t-th largest part distribution

Theorem (Fristedt 1993, Trans. AMS)

$$\lim_{n\to\infty} P_n\left(\frac{\lambda_t - c\sqrt{n}\log\left(c\sqrt{n}\right)}{c\sqrt{n}} \le x\right) = \frac{1}{(t-1)!}\int_{-\infty}^x e^{-e^{-u}-tu}du.$$

Fristedt also found joint distribution for $(\lambda_1, \ldots, \lambda_{t_n})$ where $t_n = o(n^{1/4})$ and distributions for **many** other statistics.

t-th largest part distribution

Theorem (Fristedt 1993, Trans. AMS)

$$\lim_{n\to\infty} P_n\left(\frac{\lambda_t - c\sqrt{n}\log\left(c\sqrt{n}\right)}{c\sqrt{n}} \le x\right) = \frac{1}{(t-1)!}\int_{-\infty}^x e^{-e^{-u}-tu}du.$$

Fristedt also found joint distribution for $(\lambda_1, \ldots, \lambda_{t_n})$ where $t_n = o(n^{1/4})$ and distributions for **many** other statistics.

Proof Idea

Fristedt's **conditioning device**. Let N, the size of a partition, be a *random variable*. Then

$$P_n(\cdot)=Q_q(\cdot|N=n),$$

for a "better" family of probability measures Q_q .

Limit shapes

Question

What are the likely shapes of diagrams among partitions of n?

Limit shapes

Question

What are the likely shapes of diagrams among partitions of n?

Question

50-

What are the likely shapes of diagrams among partitions of n?

Figure: Density plot of $\{\lambda \vdash 300\}$.

 $\widetilde{\varphi}(\lambda)$ - renormalized shape; rescale by $\frac{1}{\sqrt{n}}$

Question

What are the likely shapes of diagrams among partitions of n?

Let $\epsilon > 0$ and let N_{ϵ} be an ϵ -n'hood of $e^{-\frac{\pi}{\sqrt{6}}x} + e^{-\frac{\pi}{\sqrt{6}}y} = 1$.

Conjecture (Temperley 1952, Szalay-Turán 1977, Vershik 1996, ...) (Roughly) $\lim_{n\to\infty} P_n\left(\widetilde{\varphi}(\lambda)\subset N_\epsilon\right) = 1.$

Question

What are the likely shapes of diagrams among partitions of n?

Let $\epsilon > 0$ and let N_{ϵ} be an ϵ -n'hood of $e^{-\frac{\pi}{\sqrt{6}}x} + e^{-\frac{\pi}{\sqrt{6}}y} = 1$.

Conjecture (Temperley 1952, Szalay-Turán 1977, Vershik 1996, ...) (Roughly)

$$\lim_{n\to\infty}P_n\left(\widetilde{\varphi}(\lambda)\subset N_\epsilon\right)=1.$$

- Dembo-Vershik-Zeitouni 1998 proof of above* and large deviation principle using Fristedt's conditioning device
- Petrov 2010 proof by "elementary" gen. f'n estimates
- distinct parts partitions: $e^{-\frac{\pi}{\sqrt{6}}y} e^{-\frac{\pi}{\sqrt{6}}x} = 1$

Statistics for Unimodal Sequences

Question

Are there limit shapes for unimodal sequences?

Unimodal Sequences

Definition

A unimodal sequence λ of size n is a sequence of positive integers satisfying

$$\lambda_1 \leq \cdots \leq \lambda_p \geq \cdots \geq \lambda_\ell$$
 $\sum_{k=1}^{\ell} \lambda_k = n.$

 λ_p (and other parts of this size) is called a *peak*.

Example

The unimodal sequences of size 4 are

1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2, 3 + 1, 1 + 3, 4,

so u(4) = 8.

Because of peaks, unimodal sequences are not "double partitions",

$$\sum_{n\geq 1} u(n)q^n = \prod_{k\geq 1} \frac{1}{(1-q^k)^2} \sum_{k\geq 1} (-1)^{k+1} q^{\frac{k(k+1)}{2}}$$

modular false θ -f'n

Because of peaks, unimodal sequences are not "double partitions",

$$\sum_{n\geq 1} u(n)q^n = \prod_{k\geq 1} \frac{1}{(1-q^k)^2} \sum_{k\geq 1} (-1)^{k+1} q^{\frac{k(k+1)}{2}}$$

modular false θ -f'n

$$u(n) \sim rac{1}{2^3 3^{3/4} n^{5/4}} e^{2\pi \sqrt{rac{n}{3}}}$$

Theorem (Bringmann-Nazaroglu 2019, Research in Math. Sci.)

u(n) = "convergent series"

Statistics for Unimodal Sequences

Definitions (by Picture)

• (Unrestricted) U.S.

- Strongly U.S.
 - strict ineq.

• Semi-strict U.S.

• a single peak; strict ineq. to the left

Statistics for Unimodal Sequences

Definitions (by Picture)

• (Unrestricted) U.S.

- Strongly U.S.
 - strict ineq.

- Semi-strict U.S.
 - a single peak; strict ineq. to the left

$$\widetilde{arphi}(\lambda)$$
 - renormalized shape, rescale by $rac{1}{\sqrt{n}}$

Question

What is the typical shape of a unimodal sequence of size n?

Recall limit shape for partitions: $e^{-\frac{\pi}{\sqrt{6}}x} + e^{-\frac{\pi}{\sqrt{6}}y} = 1.$

Question

What is the typical shape of a unimodal sequence of size n?

Recall limit shape for partitions:

$$e^{-\frac{\pi}{\sqrt{6}}x} + e^{-\frac{\pi}{\sqrt{6}}y} = 1.$$

Limit shapes

Theorem (B.)

We have the following limit shapes:

• Unrestricted Unimodal Sequences

• Each side is the limit shape for partitions (scaled by $\frac{1}{2}$).

Limit shapes

Theorem (B.)

(continued)

• Strongly Unimodal Sequences

$$f_{\mathfrak{s}}(x) := \begin{cases} -\frac{\sqrt{6}}{\pi} \log\left(e^{-\frac{\pi}{\sqrt{6}}x} - 1\right) & \text{if } x \in \left[-\frac{\sqrt{6}}{\pi} \log(2), 0\right), \\ -\frac{\sqrt{6}}{\pi} \log\left(e^{\frac{\pi}{\sqrt{6}}x} - 1\right) & \text{if } x \in \left(0, \frac{\sqrt{6}}{\pi} \log(2)\right]. \end{cases}$$

• Each side - lim shape for dist. parts partitions (scaled by $\frac{1}{2}$).

Limit shapes

Theorem (B.)

(continued)

• Semi-strict Unimodal Sequences

$$f_{ss}(x) := \begin{cases} -\frac{2}{\pi} \log\left(e^{-\frac{\pi}{2}x} - 1\right) & \text{if } x \in \left[-\frac{2}{\pi} \log(2), 0\right), \\ -\frac{2}{\pi} \log\left(1 - e^{-\frac{\pi}{2}x}\right) & \text{if } x > 0. \end{cases}$$

Remark: Left Area + Right Area = $\frac{1}{3} + \frac{2}{3} = 1$.

Statistics for Unimodal Sequences

Interpretation

• 0-1 laws for "medium" parts ($\asymp \sqrt{n}$)

Interpretation

- 0-1 laws for "medium" parts ($\asymp \sqrt{n}$)
- E.g., fix *ϵ* > 0. Then for 100% of strongly unimodal sequences as *n* → ∞, the number of parts lies in

$$\sqrt{n}\left[2rac{\sqrt{6}}{\pi}\log(2)-\epsilon,2rac{\sqrt{6}}{\pi}\log(2)+\epsilon
ight]$$

Interpretation

- 0-1 laws for "medium" parts ($\asymp \sqrt{n}$)
- E.g., fix *ϵ* > 0. Then for 100% of strongly unimodal sequences as *n* → ∞, the number of parts lies in

$$\sqrt{n}\left[2rac{\sqrt{6}}{\pi}\log(2)-\epsilon,2rac{\sqrt{6}}{\pi}\log(2)+\epsilon
ight].$$

• Limit shapes say very little about "small" and "large" parts.

Consequences: semi-strict ranks

SS(n) - semi-strict unimodal sequences of size nrank $(\lambda) = \#$ right parts - # left parts (symmetry)

Consequences: semi-strict ranks

SS(n) - semi-strict unimodal sequences of size nrank $(\lambda) = \#$ right parts - # left parts (symmetry)

Theorem (Bringmann-Jennings-Shaffer-Mahlburg, (2020))

The rank of semi-strict unimodal sequences has a point-mass distribution:

$$\lim_{n\to\infty}\frac{1}{\#\mathcal{SS}(n)}\#\left\{\lambda\in\mathcal{SS}(n):\frac{\operatorname{rank}(\lambda)}{\frac{\sqrt{n}\log(n)}{\pi}}\leq x\right\}=\begin{cases}0 & \text{if } x<1,\\1 & \text{if } x\geq 1.\end{cases}$$

Consequences: semi-strict ranks

SS(n) - semi-strict unimodal sequences of size nrank $(\lambda) = \#$ right parts - # left parts (symmetry)

Theorem (Bringmann-Jennings-Shaffer-Mahlburg, (2020))

The rank of semi-strict unimodal sequences has a point-mass distribution:

$$\lim_{n \to \infty} \frac{1}{\# \mathcal{SS}(n)} \# \left\{ \lambda \in \mathcal{SS}(n) : \frac{\operatorname{rank}(\lambda)}{\frac{\sqrt{n}\log(n)}{\pi}} \leq x \right\} = \begin{cases} 0 & \text{if } x < 1, \\ 1 & \text{if } x \geq 1. \end{cases}$$

Recall limit shape:

Consequences: semi-strict ranks

Theorem (Bringmann–Jennings-Shaffer–Mahlburg, (2020))

The rank of semi-strict unimodal sequences has a point-mass distribution:

$$\lim_{n\to\infty}\frac{1}{\#\mathcal{SS}(n)}\#\left\{\lambda\in\mathcal{SS}(n):\frac{\operatorname{rank}(\lambda)}{\frac{\sqrt{n}\log(n)}{\pi}}\leq x\right\}=\begin{cases}0 & \text{if } x<1,\\1 & \text{if } x\geq 1.\end{cases}$$

 $\frac{1}{3}+\frac{2}{3}$ heuristic:

$$rank(\lambda) \approx \# \left(\text{parts in partition of } \frac{2}{3}n \right) - \frac{2}{\pi} \log 2\sqrt{n}$$
$$\sim \underbrace{\frac{\sqrt{3}}{\sqrt{2\pi}} \log \left(\frac{2}{3}n\right) \sqrt{\frac{2}{3}n}}_{\text{Erdős-Lehner}} - \frac{2}{\pi} \log 2\sqrt{n} \sim \frac{\sqrt{n} \log n}{\pi}.$$

Consequences: overpartitions

Question

Are there limit shapes for overpartitions?

Consequences: overpartitions

Question

Are there limit shapes for overpartitions?

Definition (Corteel-Lovejoy 2004)

An *overpartition* of n is a partition in which the last occurrence of a part may (or may not) be over-marked.

Example

The overpartitions of 4 are

$$4, \ \overline{4}, \ 3+1, \ \overline{3}+1, \ \overline{3}+\overline{1}, \ 2+2, \ 2+\overline{2}, \ 2+1+1,$$

 $\overline{2} + 1 + 1, \ \overline{2} + 1 + \overline{1}, \ 1 + 1 + 1 + 1, \ 1 + 1 + 1 + \overline{1},$

so $\overline{p}(4) = 12$.

Consequences: overpartitions

• DeSalvo-Pak 2019 - geometrically nice bijections \implies transfer of limit shapes

Consequences: overpartitions

- DeSalvo-Pak 2019 geometrically nice bijections \implies transfer of limit shapes
- $\overline{p}(n) = ss(n) + ss(n+1)$. Bijective proof:

Consequences: overpartitions

- DeSalvo-Pak 2019 geometrically nice bijections \implies transfer of limit shapes
- $\overline{p}(n) = ss(n) + ss(n+1)$. Bijective proof:

Case 1: a single marked largest part

Case 2: at least 1 unmarked largest part

Limit shape for overpartitions

Thus, we can transfer the limit shapes:

Corollary (B.)

The limit shape for overpartitions is

$$f_{\overline{\rho}}(x) := rac{2}{\pi} \log \left(rac{1 + e^{-rac{\pi}{2}x}}{1 - e^{-rac{\pi}{2}x}}
ight).$$

• symmetric in x and y (due to conjugation)

Limit shape for overpartitions

Comparison of limit shapes for partitions and overpartitions:

Limit shape for overpartitions

Comparison of limit shapes for partitions and overpartitions:

Question

• Is there a more direct combinatorial explanation for this difference?

Limit shape for overpartitions

Comparison of limit shapes for partitions and overpartitions:

Question

- Is there a more direct combinatorial explanation for this difference?
- How should we alter definition of partitions to achieve certain effects in limit shape?

Statistics for Unimodal Sequences

Proof of asymptotic for $d_t(n)$

Probabilistic proof for $d_t(n)$

Probabilistic proof of $d_t(n)$ asymptotic

Goal: asymptotic formula for

$$d_t(n) = \operatorname{Coeff}[q^n]\mathcal{D}_t(q), \qquad ext{where } \mathcal{D}_t(q) := \prod_{k \leq t\sqrt{n}} (1+q^k).$$

Probabilistic proof for $d_t(n)$

The measures Q_q

• For
$$q \in (0,1)$$
, set

$$\mathcal{Q}_q(\lambda) \coloneqq q^{|\lambda|} \prod_{k \leq t \sqrt{n}} rac{1}{1+q^k} = q^{|\lambda|} \mathcal{D}_t(q)^{-1}.$$

Probabilistic proof for $d_t(n)$

The measures Q_q

• For
$$q \in (0,1)$$
, set

$$Q_q(\lambda) := q^{|\lambda|} \prod_{k \leq t \sqrt{n}} rac{1}{1+q^k} = q^{|\lambda|} \mathcal{D}_t(q)^{-1}.$$

• r.v. $X_k(\lambda) := \#k$'s in λ . (Bernoulli: $X_k \in \{0, 1\}$.) • (e.g. $X_3(6+3+1) = 1$.)

Probabilistic proof for $d_t(n)$

The measures Q_q

• For
$$q \in (0,1)$$
, set

$$Q_q(\lambda) := q^{|\lambda|} \prod_{k \leq t \sqrt{n}} rac{1}{1+q^k} = q^{|\lambda|} \mathcal{D}_t(q)^{-1}.$$

r.v. X_k(λ) := #k's in λ. (Bernoulli: X_k ∈ {0,1}.)
(e.g. X₃(6+3+1) = 1.)

• r.v.
$$N := \sum_{k \ge 1} kX_k$$
 - the size.

Probabilistic proof for $d_t(n)$

The measures Q_q

• For
$$q \in (0,1)$$
, set

$$Q_q(\lambda) := q^{|\lambda|} \prod_{k \leq t \sqrt{n}} rac{1}{1+q^k} = q^{|\lambda|} \mathcal{D}_t(q)^{-1}.$$

• r.v. $X_k(\lambda) := \#k$'s in λ . (Bernoulli: $X_k \in \{0, 1\}$.) • (e.g. $X_3(6+3+1) = 1$.)

• r.v.
$$N := \sum_{k \ge 1} kX_k$$
 - the size.
• (e.g. $N(6+3+1) = 10.$)

Probabilistic proof for $d_t(n)$

The measures Q_q

Facts

• X_k 's are **independent** under Q_q and

$$Q_q(N = n) = d_t(n)q^n \mathcal{D}_t(q)^{-1}$$

Probabilistic proof for $d_t(n)$

The measures Q_q

Facts

• X_k 's are **independent** under Q_q and

$$Q_q(N = n) = d_t(n)q^n \mathcal{D}_t(q)^{-1}$$

2 Choosing
$$q = e^{-\beta/n^{1/2}}$$
 minimizes*

$$d_t(n) \leq q^{-n}\mathcal{D}_t(q),$$

so maximizes $Q_q(N = n)$.

Probabilistic proof for $d_t(n)$

The measures Q_q

Facts

• X_k 's are **independent** under Q_q and

$$Q_q(N = n) = d_t(n)q^n \mathcal{D}_t(q)^{-1}$$

2 Choosing
$$q = e^{-\beta/n^{1/2}}$$
 minimizes*

$$d_t(n) \leq q^{-n} \mathcal{D}_t(q),$$

so maximizes $Q_q(N = n)$.

saddle-point equation $\leftrightarrow E_q(N) \sim n$.

Probabilistic proof for $d_t(n)$

The measures Q_q

Facts

• Let
$$\sigma_n :=$$
 std. dev. of *N*. Then for $q = e^{-\beta/\sqrt{n}}$,

$$\frac{N-n}{\sigma_n}$$
 is asymptotically normal(0,1).

Probabilistic proof for $d_t(n)$

The measures Q_q

Facts

• Let
$$\sigma_n :=$$
 std. dev. of *N*. Then for $q = e^{-\beta/\sqrt{n}}$,

$$\frac{N-n}{\sigma_n}$$
 is asymptotically normal(0,1).

Heuristic:

$$egin{aligned} Q_q(N=n) &= Q_q\left(-rac{1}{2\sigma_n} \leq rac{N-n}{\sigma_n} \leq rac{1}{2\sigma_n}
ight) \ &pprox rac{1}{\sqrt{2\pi}} \int_{-rac{1}{2\sigma_n}}^{rac{1}{2\sigma_n}} e^{-x^2/2} dx \ &\sim rac{1}{\sqrt{2\pi}\sigma_n}. \end{aligned}$$

Probabilistic proof for $d_t(n)$

With
$$q=e^{-eta/\sqrt{n}}$$
 so that $E_q(N)\sim n,$
 $d_t(n)=Q_q(N=n)q^{-n}\mathcal{D}_t(n),$

we use

Euler-Maclaurin summation +Fourier inversion of char. f'n $\tilde{\varphi}_N$.

$$d_t(n) \sim \frac{A_n(t)}{n^{3/4}} e^{B(t)\sqrt{n}}.$$

•

Boltzmann models

Boltzmann models

Duchon-Flajolet-Louchard-Schaeffer 2003: "Boltzmann models" for general combinatorial structures.

Boltzmann models

Boltzmann models

Duchon-Flajolet-Louchard-Schaeffer 2003: "Boltzmann models" for general combinatorial structures. If

•
$$\mathscr{C}_n := \{\gamma : |\gamma| = n\}$$

•
$$\mathscr{C} = \cup_{n \geq 1} \mathscr{C}_n$$
,

study uniform measure $P_n(\gamma) := \frac{1}{\#\mathscr{C}_n}$ using the **Boltzmann** model,

$$\mathcal{Q}_{m{q}}(\gamma) := rac{m{q}^{|\gamma|}}{\sum_{\omega \in \mathscr{C}} m{q}^{|\omega|}}.$$

 Allowing size to be a random variable leads to faster sampling algorithms.

Boltzmann models

Boltzmann models

- Gen. f'n for unimodal sequences is **not** an infinite product.
- Boltzmann model is less useful*.

Boltzmann models

Boltzmann models

- Gen. f'n for unimodal sequences is **not** an infinite product.
- Boltzmann model is less useful*.
- Need "direct" generating functions approach for statistics for unimodal sequences.

Boltzmann models

Proof of limit shapes for semi-strict unimodal sequences
Proof Sketch for Semi-strict Unimodal Sequences

• Step 1: Limit shapes for the **left and right halves** in isolation: as $n \to \infty$, a proportion of **0% are not** in $N_{\epsilon}(f_{\ell})$ and $N_{\epsilon}(f_{r})$.

Proof Sketch for Semi-strict Unimodal Sequences

• Step 1: Limit shapes for the **left and right halves** in isolation: as $n \to \infty$, a proportion of **0% are not** in $N_{\epsilon}(f_{\ell})$ and $N_{\epsilon}(f_{r})$.

 Step 2: To avoid degenerate limit shape, show peaks are typically ω(√n).

Step 1: Bounds from Generating Functions

The proportion of sequences with exactly a left parts $\leq b$ is

Step 1: Bounds from Generating Functions

The proportion of sequences with exactly a left parts $\leq b$ is

$$\leq \frac{q^{-n}\mathcal{SS}(q)}{ss(n)}V(z) + e^{-C\sqrt{n}},$$

where,

$$V(z) = z^{-a} \prod_{1 \le k \le b} \frac{1 + zq^k}{1 + q^k}.$$

Step 1: Bounds from Generating Functions

The proportion of sequences with exactly a left parts $\leq b$ is

$$\leq \frac{q^{-n}\mathcal{SS}(q)}{ss(n)}V(z) + e^{-C\sqrt{n}},$$

where,

$$V(z) = z^{-a} \prod_{1 \le k \le b} \frac{1 + zq^k}{1 + q^k}.$$

For a **unique** κ with $q = e^{-\kappa/\sqrt{n}}$,

$$\frac{q^{-n}\mathcal{SS}(q)}{ss(n)} = e^{o(\sqrt{n})}$$

Now choose $z \neq 1$ so that $V(z) = e^{-C_0\sqrt{n}}$ uniformly for all pairs (a, b) with $\lambda\left(\frac{1}{\sqrt{n}}(a, b)\right) \notin N_{\epsilon}(f)$.

Step 1: Bounds from Generating Functions

The proportion of sequences with exactly a left parts $\leq b$ is

$$\leq \frac{q^{-n}\mathcal{SS}(q)}{ss(n)}V(z) + e^{-C\sqrt{n}},$$

where,

$$V(z) = z^{-a} \prod_{1 \le k \le b} \frac{1 + zq^k}{1 + q^k}.$$

For a **unique** κ with $q = e^{-\kappa/\sqrt{n}}$,

$$\frac{q^{-n}\mathcal{SS}(q)}{ss(n)} = e^{o(\sqrt{n})}$$

Now choose $z \neq 1$ so that $V(z) = e^{-C_0\sqrt{n}}$ uniformly for all pairs (a, b) with $\lambda\left(\frac{1}{\sqrt{n}}(a, b)\right) \notin N_{\epsilon}(f)$. Thus, total at most $n^2 e^{-C_0\sqrt{n} + o(\sqrt{n})} \to 0$

Statistics for Partitions and Unimodal Sequences

Proof of *ss* limit shapes

Step 2: Peaks are $\omega(\sqrt{n})$

• Show $\frac{ss_t(n)}{ss(n)} \rightarrow 0$ where $ss_t(n)$ counts sequences with **peak** $\leq t\sqrt{n}$ by **injecting** into **pairs of partitions**:

Statistics for Partitions and Unimodal Sequences

Proof of *ss* limit shapes

Step 2: Peaks are $\omega(\sqrt{n})$

• Show $\frac{ss_t(n)}{ss(n)} \rightarrow 0$ where $ss_t(n)$ counts sequences with **peak** $\leq t\sqrt{n}$ by **injecting** into **pairs of partitions**:

Apply asymptotics of Szekeres and B., respectfully.

Essential ingredients for limit shapes for u.s.

• Comb'lly, analytically "nice" gen. f'n $A(q) = \sum_{n \ge 1} a(n)q^n$.

• Choice of q such that
$$\frac{q^{-n}A(q)}{a(n)} = e^{o(\log a(n))}$$
.

• Ability to "glue together" shapes by showing peaks are $\omega(\sqrt{n})$ (or similar).

- Apparent limit shapes for $\mathcal{D}_t(n)$ for $t = \sqrt{2}, \sqrt{3}, 2, 3, 4$.
- Concavity switches at t = 2. Explanation?

Statistics for Partitions and Unimodal Sequences

Thanks for listening!