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Ramsey Theory

Fundamental Question

Let G be any complete graph with colored edges, and let r € Z™.

How large must G be to have a complete 1-color subgraph of ord. r?

v

Theorem (Ramsey’s Theorem)

Let ¢ and nq,...,n. be integers. There is a number R (nqy,...,n.)
such that if the edges of a complete graph of order R (ny,...,n.) are
colored with ¢ different colors, then it must contain a complete
subgraph of order n; whose edges are all color i, for some 1 < i < c.

v
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Introduction and Statement of Results

Ramsey Theory

Ramsey Number: R(m,n)

e R(3,3)=6

o Friends and Strangers Theorem:
In any party of six people, either
at least three of them are
pairwise mutual strangers or at
least three of them are pairwise
mutual acquaintances.
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o R(4,4) =18
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Introduction and Statement of Results

Ramsey Theory

e R(3,3)=6
o R(4,4) =18

Other known values:
R(zv n)v R(37 4)_R(37 9)’ R(4a 5)

43 < R(5,5) < 48

17885 < R(19,19) < 9075135299
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Introduction and Statement of Results

Ramsey Theory

Theorem (Greenwood—Gleason, 1955)

R(4,4) =18

o Ramsey #s can be restated in terms of graphs and complements.

o The Paley graph of order 17 is self~-complementary and does
not contain a complete subgraph of order 4, so R(4,4) > 18.

o Elementary upper bounds give R(4,4) < 18. ]
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Introduction and Statement of Results

Paley Graphs

Definition

For ¢ =1 (mod 4) a prime power, the Paley graph G(q) is the graph
—b

with vertex set I, where ab is an edge if and only if (a) =1
q

o Paley graphs are natural to study: they are self-complementary.
Proof: Let x € V(G(q)).
Then G(q) = G(¢)¢ by =+ xk (mod q), where k is a nonresidue.
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q
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Introduction and Statement of Results

Paley Graphs

Definition

For ¢ =1 (mod 4) a prime power, the Paley graph G(q) is the graph
—b

with vertex set F, where ab is an edge if and only if <a> =1.
q

-1

o Paley graphs are undirected: () =1ifg=1 (mod 4).
q
Proof: Let g be a generator of Fy.

Then g~ ! — 1 = (gq%1 - 1) (g%1 + 1) =0 (mod q),

q—1

S0 gq%1 = (gT)2 = —1 (mod q).
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Introduction and Statement of Results

Paley Graphs

Greenwood—Gleason: G(17) has no complete subgraph of order 4.

Question: How many complete subgraphs of order 4 does G(q) have?

Theorem (Evans—Pulham-Sheehan, 1981)

If p=1 (mod 4) is a prime with p = x> + y* and y even, then the
number of complete subgraphs of order 4 contained in G(p) is

p(p—1) ((p—9)° —49*)

Ku(G(p)) = i

9/43
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Generalized Paley Graphs

Definition 1

Let k > 2 be an integer.

1 (mod k), if g is even

Let ¢ be a prime power such that ¢ =
4 D¢ & PHme Pow a {1 (mod 28), it glislodd!

The generalized Paley graph Gj(q) is the graph with vertex set F,
where ab is an edge if and only if @ — b is a k-th power residue.

v
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Introduction and Statement of Results

Generalized Paley Graphs

Definition 1

Let k > 2 be an integer.

1 (mod k), if g is even

Let ¢ be a prime power such that ¢ =
4 D¢ & PHme Pow a {1 (mod 28), it glislodd!

The generalized Paley graph Gj(q) is the graph with vertex set F,
where ab is an edge if and only if @ — b is a k-th power residue.

v

Generalized Paley graphs are

o not self-complementary unless k = 2.

o undirected: yx(—1) = 1.
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Introduction and Statement of Results

Goals

1) Find formulas for ICy (Gx(q)) and K3 (Gr(q)).
2) Obtain improved bounds for Ry(4) and Ry (3).

3) Identify connections with modular forms and elliptic curves.
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Introduction and Statement of Results

Main Results

Theorem 1 (D.—McCarthy, 2020)

Let xx € ﬁ of order k. Then

Pqg—1) X xS XE
Ka(Gr(a) = =5 > 3Fh

24 . k6 t t
(t1,t2,t3,ta,t5)E(Zk)® Xk X
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Main Results

Theorem 1 (D.—McCarthy, 2020)

Let xx € ﬁ of order k. Then

?(g—1) X, X2, xE
K4 (Gr(q)) = TN Z 355 . . A
(t1,ta,ta,ta,ts)E(Zy)® Xi' o X .

Corollary 1

We have that K4(G(17)) = K4 (G3(127)) = K4 (G4(457)) = 0, and so
o 18 < R(4,4).

o 128 < Ry(4).
o 458 < Ry(4).
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Introduction and Statement of Results

Main Results

Theorem 2 (D.-McCarthy, 2020)

Let x1, € IF% of order k. Then

k—1
Ks (Gr(q)) = % g-3k+1+ > J(G.xk)
s,t=1

s+t#£0 (mod k)
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Introduction and Statement of Results

Main Results

Theorem 2 (D.-McCarthy, 2020)

Let x1, € IF% of order k. Then

k—1
K3 (Gr(q)) = q(6q, kg) g=3k+1+ Y J(xi.xh)
s,t=1

s+t#£0 (mod k)

Corollary 2

We have that IC3(G(5)) = K3 (G3(16)) = K3 (G4(41)) = 0, and so
e 6 < R(3,3).
e 17 < R3(3).
o 42 < Ry(3).
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Main Results

Theorem 2 (D.-McCarthy, 2020)

Let x1, € IF% of order k. Then

k—1
K3 (Gr(q)) = q(6q, kg) g=3k+1+ Y J(xi.xh)
s,t=1

s+t#£0 (mod k)

Corollary 2

We have that IC3(G(5)) = K3 (G3(16)) = K3 (G4(41)) = 0, and so
e 6 < R(3,3).
e 17 < R3(3).
® 42 < Ry(3).
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Introduction and Statement of Results

Hypergeometric Functions

Let IE/TE be the group of multiplicative characters of Fy.

For A,B € Iﬁg, define the Jacobi sum J(A, B) := > A(a)B(1l — a).

a€l,

Define the symbol (g) = B(fl)J(A,B).

Definition

For characters Ao, A1,..., A, and By, ..., B, of F} and A € Fy, define
the finite field hypergeometric function

RHF"(AO’ 21 . A) =5 2 CG) G,
q
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Hypergeometric Function Evaluations
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. ( oy bp

€p

1) __$(=D)
» p
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Introduction and Statement of Results

Hypergeometric Function Evaluations

If p is an odd prime, then

. ( oy bp

If p is an odd prime, then

3F2<¢>p, b bp

Ep, Ep

0, p=3(4
1 - 4;&2—217 _ 2 2
=2 p=1(4), p=a*+y? zodd.
P

17 /43



Introduction and Statement of Results

Hypergeometric Function Evaluations

Theorem (Greene)

18 /43



Introduction and Statement of Results

Hypergeometric Function Evaluations

Theorem (Greene)

Ao, A1, ..., An
n+1Fn
Blv R} Br

p—1
Ao, A1, ..., Apa
X Znanl ( B B
y=0 1, n—1

In other words: ,,41F}, is a “trace” of ,Fj,_1.
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Introduction and Statement of Results

Connections to Elliptic Curves

Let A € Q\ {0,1}. Consider the elliptic curve
2B1(N\) 1 y? = 2(z — 1)(z — \)
with Hasse-Weil L-function
2 gai(n;N)
LGeE()s) =) 222

ns
n=1
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Connections to Elliptic Curves

Let A € Q\ {0,1}. Consider the elliptic curve
2B1(N) 192 = 2(xz — 1)(z — \)

with Hasse—Weil L-function

LGE(, ) = 3 220Y),

nS

If p is a prime of good reduction, then

gal(p; )\) = —¢ (p_l) -2_F1 ( ¢Pa ¢P
p
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Introduction and Statement of Results

Connections to Elliptic Curves

Let A € Q\ {0,1}. Consider the elliptic curve
2B1(N) 192 = 2(xz — 1)(z — \)
with Hasse-Weil L-function

LG:E(Ns) = wiﬁnﬂ
=1l

If p is a prime of good reduction, then

gal(p; )\) = —¢ (p_l) -2_F1 ( ¢Pa f?
p P

)

and the number of points on the reduction of o F1(\) mod p is

P

N,g,o0(@) =p+1—2a1(p; A).
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Introduction and Statement of Results

Connections to Elliptic Curves

Let A € Q\ {0,4}. Consider the elliptic curve
3E(N) 1y =2 — N22% + (N3 = XYz + A0 — 4N

with Hasse—Weil L-function
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Introduction and Statement of Results

Connections to Elliptic Curves

Let A € Q\ {0,4}. Consider the elliptic curve
3E(N) 1y =2 — N22% + (N3 = XYz + A0 — 4N

with Hasse—Weil L-function

If p > 3 is a prime with ord,(A(A —4)) = 0, then

¢P7 ¢P7 (z)P ’ 4
g & 14—A

p

sa2(p; \)* =p+

-
=
ol
(V)
B
>
S~—
w
<
VRS
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Connections to Elliptic Curves

Let A € Q\ {0,4}. Consider the elliptic curve
3E(N) 1y =2 — N22% + (N3 = XYz + A0 — 4N

with Hasse—Weil L-function

If p > 3 is a prime with ord,(A(A —4)) = 0, then

sa2(p; \)* =p+

02—y 3

€p Ep

p2 ¢P7 ¢P7 (z)P 4
4—- X
p

and the number of points on the reduction of 3F5(\) mod p is

N,e,(0(p) =p+ 1 —3a2(p; A).
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Introduction and Statement of Results

Consequences of the Modularity Theorem

If X e Q\{0,1} and N, is the conductor of o E7(X), then there is a
newform f(z) = > a(n)g™ € S5V (T'o (Vy)) such that

n=1

a(p) = —dp(—1)p  »Fy ( e

Ep

)

p
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Introduction and Statement of Results

Consequences of the Modularity Theorem

If X e Q\{0,1} and N, is the conductor of o E7(X), then there is a
newform f(z) = > a(n)g™ € S5V (T'o (Vy)) such that

n=1
A)
Example

bp,
a(p) = —¢p(=1)p- 211 < ’
If A€ Q\ {0,4} and N, is the conductor of 3E2(A), then there is a
newform f(z) = > b(n)g™ € S5 (I'g (Ny)) such that
n=1
4
4— )\

p

bp

Ep

p

| \

Z ¢p, bp, @
b(p)2 — + b o F P P P
(p) p 7% 2 —4x) 32 < 0 o

A
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Further Connections to Modular Forms

Let f be the unique newform in Sz (I'o(16), (=%)) with CM by Q(i):

= Za(n)q" H (1 —¢* )6, q = e,

n=1 m=1
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Introduction and Statement of Results

Further Connections to Modular Forms

Let f be the unique newform in Sz (I'o(16), (=%)) with CM by Q(i):

= Za(n)q" H (1 —¢* )6, q = e,

n=1 m=1

For p=1 (mod 4) with p = 22 + y2, y even: a(p) = 2p — 4y°.

Let p=1 (mod 4) be prime. Then

_pe=1)((p=9° =2 +a@)

293
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Introduction and Statement of Results

Conjectural Connections

Let g1 be the unique newform in S5 (I'9(27)) with CM by Q (v/=3):

91(2) = Zﬁl(n)qn =4q H (1 — q3m>2 (1 _ qgm)Q ,
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Introduction and Statement of Results

Conjectural Connections

Let g1 be the unique newform in S5 (I'9(27)) with CM by Q (v/=3):
91(2) — 251(71)61" =q H (1 _ q3m>2 (1 . qu)Q,
n=1
and let g2 € S5 (I'g(27), (=2)) be the non-CM newform

o0
92(2) = Y Ba(n)q™ = q + 3iq® — 5q* — 3ig” +5q" — 3ig® + -+ .
n=1
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Introduction and Statement of Results

Conjectural Connections

Let g1 be the unique newform in S5 (I'9(27)) with CM by Q (v/=3):
91(2) — 251(71)61" =q H (1 _ q3m>2 (1 . q9m)2,
n=1
and let g2 € S5 (I'g(27), (=2)) be the non-CM newform

o0
92(2) = Y Ba(n)q™ = q + 3iq® — 5q* — 3ig” +5q" — 3ig® + -+ .
n=1

Conjecture 1

Let p=1 (mod 6) be prime. Then

K4 (Ga(w)) = ZE=D 2~ 5p (81(p) + 11)

2. 37
+ 108, (p)? + 8551 (p) + 316 + 12,6’2(]))} .
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Introduction and Statement of Results

Conjectural Connections

Define the following newforms:

hi(z) = 3 vi(m)a™ =a J] @ —a*) 721 - ¢®)8a — ¢1%™) 72 € 5y(rg(64)):
n=1 m=1

o
L . . 11 17 .1 2
ho(z) = Z ~vo(n)q" :q+21q37q9761q — 6q" " + 2iq 9+5q 5~-~€SZ(FO(64),\P1);

n=1
o0 oo

hg(2) = > v3(m)a™ =q [[ A —a™21 - *™)a - ¢*™)1 - ¢¥™)? € 53T (8). (52)); and
n=1 m=1
oo

hg(z) = > va(n)q"™ =q+ 4iq® + 24° — 8iq" — 7¢° — 4iq*t —14¢'3 + ... € S3(Tp(32), (=2)),
n=1

where

e Uy is the Dirichlet char. mod 64 sending (63,5) — (1,—1),
e hj has CM by Q(7), and

@ hy and hg have CM by Q(v/—2).
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Conjectural Connections

Define

v5(p) = p° 3F> 1
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Introduction and Statement of Results

Conjectural Connections

Define

X4, X4 X4
V5(p) = p* 3Fa 1

Let p=1 (mod 8) be prime. Then

Ka (Calp)) = P2 D[ — p (152 (p) + 142) + T672(9)° + 4650 (p)

+ 801 + 1071(p)y2(p) + 3073(p) + 3074(p) + 1275(p) |-

25 /43
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Proofs

Counting Vertices and Edges

Gk (q): generalized Paley graph.
Hy(q): induced subgraph of G (q), vertex set {k-th power residues}.
H} (q): induced subgraph of Hy(q), vertex set {neighbors of 1}.

Proposition

3) #V (Hi(q)) = T2

k—1
1) #E(H(q) =%z [¢—-3k+1+ D> T xb)

s, t=1
s+t#£0 (k)
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Proofs

Counting Vertices and Edges

Gk (q): generalized Paley graph.
Hi.(q): induced subgraph of G (q), vertex set {k-th power residues}.

H}(q): induced subgraph of Hy/(q), vertex set {neighbors of 1}.

Proposition
k—1

5) #V (Hp(@) == |a=3k+1+ > J(x.xh)
s,t=1

s+t#£0 (mod k)

k—1 th Xt2 th
6) #E (H: @) =55 Y q23F2<k oAk 1)

tq ts
t1,t2,t3,t4,t5=0 Xk > Xk
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Proofs

Character Sums in Graph Theory

Proof of Proposition.
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Proofs

Character Sums in Graph Theory

Proof of Proposition.
e ab € FE(Gk(q)) < xx(a—10) =1.

o ab€ E(Hi(q)) < xx(a) =xx(b) = xx(a—b) =1.

e abe E(H(q)) <

xk(a) = xx(b) = xi(1 — a) = xx(1 = b) = xx(a —b) = 1.
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

o Greene: For A,B,C,D,E € E,

goF < “o B ’A) — S AT(H)BC( - byA(b— )

¢ beF,
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

o Greene: For A,B,C,D,E € E,

q2F1<A’ & ’A) = Y ATHBC(1—bA(b-)) and
c beF,

= Y AE(a)CE(1 - a)B(b)BD(b— 1)A(a — \b).
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

o Char. Orthogonality: If k > 2, ¢ =1 (mod k) is a prime power,

1, if bis a k-th power

if b is not a k-th power.
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

o Char. Orthogonality: If k > 2, ¢ =1 (mod k) is a prime power,

1« 1, if bis a k-th power
E Xk(b) = a2 i
0, if bis not a k-th power.

@ For each vertex a of Hy(q),

deg, (@) == > Z x5 (b)xk(a —b).

be]F*\{a}s t=0
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

o Char. Orthogonality: If k > 2, ¢ =1 (mod k) is a prime power,

1« 1, if bis a k-th power
E Xk(b) = a2 i
0, if bis not a k-th power.

@ For each vertex a of Hy(q),

deg, (@) == > Z x5 (b)xk(a —b).

be]F*\{a}s t=0

o Rewrite in terms of Jacobi sums.
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

e For each vertex a of H}(q),

degpy(q)(a) = % > Z

beF;\{1,a} t1,t2,t3=0

f2(1 — p)yh

3(a —b).
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

e For each vertex a of H}(q),

degHé(q)(a):$ > Z 2(1 —b)xt(a — b).

beF;\{1,a} t1,t2,t3=0

o Rewrite in terms of o F}.
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Proofs

Character Sums in Graph Theory

Proof of Proposition (continued).

e For each vertex a of H}(q),

degHé(q)(a):$ > Z 2(1 —b)xt(a — b).

beF;\{1,a} t1,t2,t3=0

o Rewrite in terms of o F}.

o The number of edges in H}(q) is

#E (Hzi(q))zé > degpg(a).

aEV(H;(q))

32/43
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A Lemma in Graph Theory

For n € ZT, we have that
1) Knt1(Gi(9)) = 755 Kn (Hi(g)) and

2) K (Hi(@)) = gz K (HE(9)-
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For n € ZT, we have that

1) Knt1(Gr(g) = %H’C (Hk(q)) and

2) Krnt1 (Hk(Q)) = njrll)lC (H;%(Q))

Therefore,

i (Gu(0) = Pl (HG)).
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Proofs

A Lemma in Graph Theory

Lemma

For n € ZT, we have that
1) Kns1(Grlq)) = n+1’C (H(g)) and
2) Knt1 (Hi(0) = s Kn (HE(2)-

Therefore,

i (Gu(0) = Pl (HG)).

#{complete subgraphs of order 4 in Gj(q)} ~ #{edges in H}-(q)}.
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Proofs

A Lemma in Graph Theory

1) Kn+1(Gr(9)) = 755 Kn (Hi(q)) and
2) K:n-l-l (Hk(Q)) = k(qnjrll)’(:n (H%(Q))

Proof of Lemma.
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A Lemma in Graph Theory

1) Knt1(Gr(q) = nLHICn(
2) K:n-l-l (Hk(Q)) k(qnjrll)’(:n (Hl% (Q))

Proof of Lemma.

@ The subgraph (0, a1, ...,a,) of Gg(q) is complete iff
Xk (ai) = xk (@i —a;) =1forall 1 <i < j<n.
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1) Kn+1(Gr(9)) = 755 Kn (Hi(q)) and

(
2) K1 (Hr(q) = k(nJrll)IC” (Hj(a))-

Proof of Lemma.

@ The subgraph (0, a1, ...,a,) of Gg(q) is complete iff
Xk (ai) = xk (@i —a;) =1forall 1 <i < j<n.

o This is true iff (aq,...,a,) is a complete subgraph of Hy(q).
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2) K1 (Hr(q) = k(nJrll)IC” (Hj(a))-

Proof of Lemma.

@ The subgraph (0, a1, ...,a,) of Gg(q) is complete iff
Xk (ai) = xk (@i —a;) =1forall 1 <i < j<n.

o This is true iff (aq,...,a,) is a complete subgraph of Hy(q).

e Fix a € F;. Repeat for all ¢ vertices by automorphism A — A + a.
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Proofs

A Lemma in Graph Theory

1) Kn+1(Gr(9)) = 755 Kn (Hi(q)) and

(
2) K1 (Hr(q) = k(nJrll)IC” (Hj(a))-

Proof of Lemma.

@ The subgraph (0, a1, ...,a,) of Gg(q) is complete iff
Xk (ai) = xk (a; —aj) =1forall 1 <i<j<n.

o This is true iff (aq,...,a,) is a complete subgraph of Hy(q).

e Fix a € F;. Repeat for all ¢ vertices by automorphism A — A + a.

e Divide by n + 1 repeated subgraphs.
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Proofs

A Lemma in Graph Theory

1) Kn+1(Gr(9)) = 755 Kn (Hi(q)) and
2) Kt (Hi(9)) = 75

Proof of Lemma (continued).

o The subgraph (1,a1, .

..yan) of Hi(q) is complete iff
Xk (a;) = xk (@i —1) = xx (a; —a;) =1forall 1 <i<j<n.

o This is true iff (ay,...,ay) is a complete subgraph of H}(q).
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A Lemma in Graph Theory
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1) Knt1(Gr(9) = 755
2) K:n-l-l (Hk(Q)) /g(qn;_ll)lcn (Hl% (Q))

Proof of Lemma (continued).

o The subgraph (1,a4,...,a,) of Hi(q) is complete iff
Xk (a;) = xk (@i —1) = xx (a; —a;) =1forall 1 <i<j<n.

o This is true iff (ay,...,ay) is a complete subgraph of H}(q).
e Fixac (IFZ)k. Repeat for all 4* vertices by aut. A+ a.

e Divide by n + 1 repeated subgraphs. O
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Proofs of Theorems 1 and 2.
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Proofs of Main Theorems

Proofs of Theorems 1 and 2.

e Proposition = K (H}.(q)).
o Lemma = K4 (Gk(q)). O
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o Reduction formulas for hypergeometric functions, e.g.

e, B, C 1 BD, CD B\ (C
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o Transformation formulas for hypergeometric functions, e.g.
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Proofs

Proofs of Main Theorems

Proofs of Corollaries 1 and 2.

o Reduction formulas for hypergeometric functions, e.g.
e, B, C 1 BD, CD B\ [C
F ‘ 1] =—2,F ‘ 1 +( ) < >
3L'2 2111 _
( D, E ) q ( ED ) DJ\E
q q
o Transformation formulas for hypergeometric functions, e.g.

A, B, C BD, AD, CD
3Fy ‘ 1| =3k _ _ ‘ 1
D, E D, ED

q q

e 10 distinct cases depending on i € (Z;)°.
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Proofs

Proofs of Main Theorems

Proofs of Corollaries 1 and 2 (continued).

o To simplify notation:

k—1
Ry (q) == J (Xas X3) »
s,t=1
s+tZ0 (k)
k—1
Sk(q) = J (X xk) J (65 X3) »
s,t,uv=1

s+t7v+’t,v—s$0 (k)
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Proofs

Proofs of Main Theorems

Proofs of Corollaries 1 and 2 (continued).

o To simplify notation:

k—1
Ry (q) == J (Xas X3) »
s,t=1
s+t#£0 (k)
k—1
Sk(q) = J (X xk) J (65 X3) »
s,t,uv=1

s+t u+t,v—s#Z0 (k)

Xy = {(t17~--,t5) € (Zs)® | tr,ta,t3 # 0, s, ts;t1 +ta + b3 # ty +t5}
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Proofs

Proofs of Main Theorems

K4 (Gr(q) = QQ(Z _k? 10R(g)* + 5 (g — 2k* + 1) Ry (g) — 158k (q)

+¢° =52k -3k +2) ¢+ 15K° —10k° + 1+ 4> Y 3F> (F]1),,

te Xy,

v
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Proofs of Main Theorems

aries 1 and 2 (continued).

o Each transformation formula induces a map T : X — X.
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Proofs of Main Theorems

aries 1 and 2 (continued).

o Each transformation formula induces a map T : X — X.
o The group generated by {T'} is isomorphic to Sy and acts on Xj.

e 3, (f| 1)q,k is constant for all # in each orbit.
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Proofs

Proofs of Main Theorems

aries 1 and 2 (continued).

o Each transformation formula induces a map T : X — X.
o The group generated by {T'} is isomorphic to Sy and acts on Xj.

e 3, (F | 1) is constant for all # in each orbit.
a,

k

@ Use Theorem 3 for each orbit representative with k& = 2, 3, 4.
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Proofs

Proofs of Main Theorems

Proofs of Corollaries 1 and 2 (continued).

o Each transformation formula induces a map T : X — X.

o The group generated by {T'} is isomorphic to Sy and acts on Xj.

3y (F | 1)q . 1s constant for all t'in each orbit.

Use Theorem 3 for each orbit representative with k& = 2,3, 4.

o If IOy (Gk(q)) = 0 for some ¢, then g < Ry (¥). O
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Summary

Summary

3 t1 to t3
(g —1) Xk Xio» Xk
Ka(Gi(a)) = 5, 75 > 3F2< . .

(t1,t2,t3,ta,t5)E(Z1)° X/f» X}f

A)q

k-1
=1

KB(Gk(Q)):% q—3k+1+ Z J (X3 Xk)

s,t=1

s+t#£0 (mod k)

N
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Summary

Summary

Corollary 1
o 18 < R(4,4)
o 128 < Ry(4)
o 458 < Ry(4)

Corollary 2
o 6 < R(3,3)
e 17 < R3(3)
0 42 < Ry(3)
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Summary

Summary

Corollary 1

o 18 < R(4,4)
o 128 < R3(4)
e 458 S R4(4)

Corollary 2
o 6 < R(3,3)
e 17 < R3(3)
0 42 < Ry(3)

Corollary 3
Let p=1 (mod 4) be prime. Then

pp—1) (=9 -2 +a(p)

Ka(G(p) = s
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Summary

Summary

Conjecture 1

Let p=1 (mod 6) be prime. Then

K1 (@) = B2 12— 5p (81(0) + 1) + 108,0)°

+ 8561 (p) + 316 + 126, (p)} -

”
Conjecture 2

Let p=1 (mod 8) be prime. Then

K4 (Ga(p)) = pgf; ;) [pQ — p(157m(p) + 142) + 7671(p)* + 46571 (p)

+ 801 + 1071(p)72(p) + 3073(p) + 3074(p) + 1275 (p)] :
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