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Ramsey Theory

Fundamental Question

Let G be any complete graph with colored edges, and let r ∈ Z+.

How large must G be to have a complete 1-color subgraph of ord. r?

Theorem (Ramsey’s Theorem)

Let c and n1, . . . , nc be integers. There is a number R (n1, . . . , nc)
such that if the edges of a complete graph of order R (n1, . . . , nc) are
colored with c different colors, then it must contain a complete
subgraph of order ni whose edges are all color i, for some 1 ≤ i ≤ c.
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Example

R(3, 3) = 6

Friends and Strangers Theorem:
In any party of six people, either
at least three of them are
pairwise mutual strangers or at
least three of them are pairwise
mutual acquaintances.
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Example

R(3, 3) = 6

R(4, 4) = 18

Other known values:
R(2, n), R(3, 4)-R(3, 9), R(4, 5)

43 ≤ R(5, 5) ≤ 48
...

17885 ≤ R(19, 19) ≤ 9075135299
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Ramsey Theory

Theorem (Greenwood–Gleason, 1955)

R(4, 4) = 18

Proof.

Ramsey #s can be restated in terms of graphs and complements.

The Paley graph of order 17 is self-complementary and does
not contain a complete subgraph of order 4, so R(4, 4) ≥ 18.

Elementary upper bounds give R(4, 4) ≤ 18.
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Paley Graphs

Definition

For q ≡ 1 (mod 4) a prime power, the Paley graph G(q) is the graph

with vertex set Fq where ab is an edge if and only if

(
a− b
q

)
= 1.

Paley graphs are natural to study: they are self-complementary.

Proof: Let x ∈ V (G(q)).

Then G(q) ∼= G(q)C by x 7→ xk (mod q), where k is a nonresidue.
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(
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q

)
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Paley graphs are undirected:
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Paley Graphs

Greenwood–Gleason: G(17) has no complete subgraph of order 4.

Question: How many complete subgraphs of order 4 does G(q) have?

Theorem (Evans–Pulham–Sheehan, 1981)

If p ≡ 1 (mod 4) is a prime with p = x2 + y2 and y even, then the
number of complete subgraphs of order 4 contained in G(p) is

K4(G(p)) =
p(p− 1)

(
(p− 9)2 − 4y2

)
29 · 3

.
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Generalized Paley Graphs

Definition 1

Let k ≥ 2 be an integer.

Let q be a prime power such that q ≡

{
1 (mod k), if q is even

1 (mod 2k), if q is odd.

The generalized Paley graph Gk(q) is the graph with vertex set Fq
where ab is an edge if and only if a− b is a k-th power residue.

Generalized Paley graphs are

not self-complementary unless k = 2.

undirected: χk(−1) = 1.
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Goals

1) Find formulas for K4 (Gk(q)) and K3 (Gk(q)).

2) Obtain improved bounds for Rk(4) and Rk(3).

3) Identify connections with modular forms and elliptic curves.

11 / 43



Introduction and Statement of Results
Proofs

Summary

Main Results

Theorem 1 (D.–McCarthy, 2020)

Let χk ∈ F̂∗q of order k. Then

K4 (Gk(q)) =
q3(q − 1)

24 · k6
∑

(t1,t2,t3,t4,t5)∈(Zk)5
3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣∣ λ
)
q

.

Corollary 1

We have that K4(G(17)) = K4 (G3(127)) = K4 (G4(457)) = 0, and so

18 ≤ R(4, 4).

128 ≤ R3(4).

458 ≤ R4(4).

12 / 43



Introduction and Statement of Results
Proofs

Summary

Main Results

Theorem 1 (D.–McCarthy, 2020)

Let χk ∈ F̂∗q of order k. Then

K4 (Gk(q)) =
q3(q − 1)

24 · k6
∑

(t1,t2,t3,t4,t5)∈(Zk)5
3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣∣ λ
)
q

.

Corollary 1

We have that K4(G(17)) = K4 (G3(127)) = K4 (G4(457)) = 0, and so

18 ≤ R(4, 4).

128 ≤ R3(4).

458 ≤ R4(4).

12 / 43



Introduction and Statement of Results
Proofs

Summary

Main Results

Theorem 1 (D.–McCarthy, 2020)

Let χk ∈ F̂∗q of order k. Then

K4 (Gk(q)) =
q3(q − 1)

24 · k6
∑

(t1,t2,t3,t4,t5)∈(Zk)5
3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣∣ λ
)
q

.

Corollary 1

We have that K4(G(17)) = K4 (G3(127)) = K4 (G4(457)) = 0, and so

18 ≤ R(4, 4).

128 ≤ R3(4).

458 ≤ R4(4).

12 / 43



Introduction and Statement of Results
Proofs

Summary

Main Results

Theorem 1 (D.–McCarthy, 2020)

Let χk ∈ F̂∗q of order k. Then

K4 (Gk(q)) =
q3(q − 1)

24 · k6
∑

(t1,t2,t3,t4,t5)∈(Zk)5
3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣∣ λ
)
q

.

Corollary 1

We have that K4(G(17)) = K4 (G3(127)) = K4 (G4(457)) = 0, and so

18 ≤ R(4, 4).

128 ≤ R3(4).

458 ≤ R4(4).

13 / 43



Introduction and Statement of Results
Proofs

Summary

Main Results

Theorem 2 (D.–McCarthy, 2020)

Let χk ∈ F̂∗q of order k. Then

K3 (Gk(q)) =
q(q − 1)

6 · k3

q − 3k + 1 +

k−1∑
s,t=1

s+t6≡0 (mod k)

J
(
χsk, χ

t
k

) .

Corollary 2

We have that K3(G(5)) = K3 (G3(16)) = K3 (G4(41)) = 0, and so

6 ≤ R(3, 3).

17 ≤ R3(3).

42 ≤ R4(3).
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Hypergeometric Functions

Let F̂∗q be the group of multiplicative characters of F∗q .

For A,B ∈ F̂∗q , define the Jacobi sum J(A,B) :=
∑
a∈Fq

A(a)B(1− a).

Define the symbol
(
A
B

)
:= B(−1)

q J(A, B̄).

Definition

For characters A0, A1, . . . , An and B1, . . . , Bn of F∗q and λ ∈ Fq, define
the finite field hypergeometric function

n+1Fn

 A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣ λ

q

:=
q

q − 1

∑
χ∈F̂∗q

(A0χ

χ

)(A1χ

B1χ

)
· · ·
(Anχ
Bnχ

)
χ(λ).
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Summary

Hypergeometric Function Evaluations

Example

If p is an odd prime, then

2F1

(
φp, φp

εp

∣∣∣∣ 1

)
p

= −φp(−1)

p
.

Example

If p is an odd prime, then

3F2

(
φp, φp, φp

εp, εp

∣∣∣∣ 1

)
p

=

{
0, p ≡ 3 (4)
4x2−2p
p2 , p ≡ 1 (4), p = x2 + y2, x odd.
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Hypergeometric Function Evaluations

Theorem (Greene)

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣ x
)
p

=
AnBn(−1)

p

×
p−1∑
y=0

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣ xy
)
p

·An(y)AnBn(1− y)

In other words: n+1Fn is a “trace” of nFn−1.

18 / 43



Introduction and Statement of Results
Proofs

Summary

Hypergeometric Function Evaluations

Theorem (Greene)

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣ x
)
p

=
AnBn(−1)

p

×
p−1∑
y=0

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣ xy
)
p

·An(y)AnBn(1− y)

In other words: n+1Fn is a “trace” of nFn−1.

18 / 43



Introduction and Statement of Results
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Summary

Connections to Elliptic Curves

Example

Let λ ∈ Q \ {0, 1}. Consider the elliptic curve

2E1(λ) : y2 = x(x− 1)(x− λ)

with Hasse–Weil L-function

L (2E1(λ, s)) =

∞∑
n=1

2a1(n;λ)

ns
.

If p is a prime of good reduction, then

2a1(p;λ) = − p

φp(−1)
· 2F1

(
φp, φp

εp

∣∣∣∣λ
)
p

and the number of points on the reduction of 2E1(λ) mod p is

N
2E1(λ)(p) = p+ 1− 2a1(p;λ).
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Introduction and Statement of Results
Proofs

Summary

Connections to Elliptic Curves

Example

Let λ ∈ Q \ {0, 4}. Consider the elliptic curve

3E2(λ) : y2 = x3 − λ2x2 +
(
4λ3 − λ4

)
x+ λ6 − 4λ5

with Hasse–Weil L-function

L (3E2(λ, s)) =

∞∑
n=1

3a2(n;λ)

ns
.

If p ≥ 3 is a prime with ordp(λ(λ− 4)) = 0, then

3a2(p;λ)2 = p+
p2

φp (λ2 − 4λ)
· 3F2

(
φp, φp, φp

εp εp

∣∣∣∣ 4

4− λ

)
p

and the number of points on the reduction of 3E2(λ) mod p is

N
3E2(λ)(p) = p+ 1− 3a2(p;λ).
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Summary

Consequences of the Modularity Theorem

Example

If λ ∈ Q \ {0, 1} and Nλ is the conductor of 2E1(λ), then there is a

newform f(z) =
∞∑
n=1

a(n)qn ∈ Snew
2 (Γ0 (Nλ)) such that

a(p) = −φp(−1)p · 2F1

(
φp, φp

εp

∣∣∣∣λ
)
p

.

Example

If λ ∈ Q \ {0, 4} and Nλ is the conductor of 3E2(λ), then there is a

newform f(z) =
∞∑
n=1

b(n)qn ∈ Snew
2 (Γ0 (Nλ)) such that

b(p)2 = p+
p2

φp (λ2 − 4λ)
· 3F2

(
φp, φp, φp

εp εp

∣∣∣∣ 4

4− λ

)
p
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Summary

Further Connections to Modular Forms

Let f be the unique newform in S3

(
Γ0(16),

(−4
·
))

with CM by Q(i):

f(z) =

∞∑
n=1

α(n)qn = q

∞∏
m=1

(
1− q4m

)6
, q := e2πiz.

For p ≡ 1 (mod 4) with p = x2 + y2, y even: α(p) = 2p− 4y2.

Corollary 3

Let p ≡ 1 (mod 4) be prime. Then

K4(G(p)) =
p(p− 1)

(
(p− 9)2 − 2p+ α(p)

)
29 · 3

.
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Introduction and Statement of Results
Proofs

Summary

Conjectural Connections

Let g1 be the unique newform in S2 (Γ0(27)) with CM by Q
(√
−3
)
:

g1(z) =

∞∑
n=1

β1(n)qn = q

∞∏
m=1

(
1− q3m

)2 (
1− q9m

)2
,

and let g2 ∈ S3

(
Γ0(27),

(−3
·
))

be the non-CM newform

g2(z) =
∞∑
n=1

β2(n)qn = q + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + · · · .

Conjecture 1

Let p ≡ 1 (mod 6) be prime. Then

K4 (G3(p)) =
p(p− 1)

23 · 37
[
p2 − 5p (β1(p) + 11)

+ 10β1(p)2 + 85β1(p) + 316 + 12β2(p)
]
.
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Summary

Conjectural Connections

Define the following newforms:

h1(z) =

∞∑
n=1

γ1(n)q
n

= q

∞∏
m=1

(1 − q4m)
−2

(1 − q8m)
8
(1 − q16m

)
−2 ∈ S2(Γ0(64));

h2(z) =

∞∑
n=1

γ2(n)q
n

= q + 2iq
3 − q9 − 6iq

11 − 6q
17

+ 2iq
19

+ 5q
25 · · · ∈ S2(Γ0(64),Ψ1);

h3(z) =

∞∑
n=1

γ3(n)q
n

= q

∞∏
m=1

(1 − qm)
2
(1 − q2m)(1 − q4m)(1 − q8m)

2 ∈ S3(Γ0(8), (−2
· )); and

h4(z) =

∞∑
n=1

γ4(n)q
n

= q + 4iq
3

+ 2q
5 − 8iq

7 − 7q
9 − 4iq

11 − 14q
13

+ · · · ∈ S3(Γ0(32), (−4
· )),

where

Ψ1 is the Dirichlet char. mod 64 sending (63, 5) 7→ (1,−1),

h1 has CM by Q(i), and

h2 and h3 have CM by Q(
√
−2).
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Conjectural Connections

Define

γ5(p) := p2 3F2

 χ4, χ4 χ̄4

ε, ε

∣∣∣ 1


p

.

Conjecture 2

Let p ≡ 1 (mod 8) be prime. Then

K4 (G4(p)) =
p(p− 1)

215 · 3

[
p2 − p (15γ1(p) + 142) + 76γ1(p)2 + 465γ1(p)

+ 801 + 10γ1(p)γ2(p) + 30γ3(p) + 30γ4(p) + 12γ5(p)
]
.
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Introduction and Statement of Results
Proofs

Summary

Counting Vertices and Edges

Gk(q): generalized Paley graph.

Hk(q): induced subgraph of Gk(q), vertex set {k-th power residues}.

H1
k(q): induced subgraph of Hk(q), vertex set {neighbors of 1}.

Proposition

1) #V (Gk(q)) = q

2) #E (Gk(q)) = q(q−1)
2k
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Counting Vertices and Edges

Gk(q): generalized Paley graph.

Hk(q): induced subgraph of Gk(q), vertex set {k-th power residues}.

H1
k(q): induced subgraph of Hk(q), vertex set {neighbors of 1}.

Proposition

3) #V (Hk(q)) = q−1
k

4) #E (Hk(q)) = q−1
2k3

q − 3k + 1 +

k−1∑
s,t=1

s+t6≡0 (k)

J (χsk, χ
t
k)
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Introduction and Statement of Results
Proofs

Summary

Counting Vertices and Edges

Gk(q): generalized Paley graph.

Hk(q): induced subgraph of Gk(q), vertex set {k-th power residues}.

H1
k(q): induced subgraph of Hk(q), vertex set {neighbors of 1}.

Proposition

5) #V
(
H1
k(q)

)
= 1

k2

q − 3k + 1 +

k−1∑
s,t=1

s+t6≡0 (mod k)

J (χsk, χ
t
k)


6) #E

(
H1
k(q)

)
= 1

2k5

k−1∑
t1,t2,t3,t4,t5=0

q2 3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣ 1
)
q
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Introduction and Statement of Results
Proofs

Summary

Character Sums in Graph Theory

Proof of Proposition.

ab ∈ E (Gk(q)) ⇐⇒ χk(a− b) = 1.

ab ∈ E (Hk(q)) ⇐⇒ χk(a) = χk(b) = χk(a− b) = 1.

ab ∈ E
(
H1
k(q)

)
⇐⇒

χk(a) = χk(b) = χk(1− a) = χk(1− b) = χk(a− b) = 1.
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Introduction and Statement of Results
Proofs

Summary

Character Sums in Graph Theory

Proof of Proposition (continued).

Greene: For A,B,C,D,E ∈ F̂∗q ,

q 2F1

(
A, B

C

∣∣∣∣λ
)
q

=
∑
b∈Fq

AC(b)BC(1− b)A(b− λ)

and

q23F2

(
A, B, C

D, E

∣∣∣∣λ
)
q

=
∑
a,b∈Fq

AE(a)CE(1− a)B(b)BD(b− 1)A(a− λb).
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Introduction and Statement of Results
Proofs

Summary

Character Sums in Graph Theory

Proof of Proposition (continued).

Char. Orthogonality: If k ≥ 2, q ≡ 1 (mod k) is a prime power,

1

k

k−1∑
t=0

χtk(b) =

{
1, if b is a k-th power

0, if b is not a k-th power.

For each vertex a of Hk(q),

degHk(q)(a) =
1

k2

∑
b∈F∗q\{a}

k−1∑
s,t=0

χsk(b)χtk(a− b).

Rewrite in terms of Jacobi sums.
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k
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Proof of Proposition (continued).

For each vertex a of H1
k(q),

degH1
k(q)

(a) =
1

k3

∑
b∈F∗q\{1,a}

k−1∑
t1,t2,t3=0

χt1k (b)χt2k (1− b)χt3k (a− b).

Rewrite in terms of 2F1.

The number of edges in H1
k(q) is

#E
(
H1
k(q)

)
=

1

2

∑
a∈V (H1

k(q))

degH1
k(q)

(a).
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Lemma

For n ∈ Z+, we have that

1) Kn+1 (Gk(q)) = q
n+1Kn (Hk(q)) and

2) Kn+1 (Hk(q)) = q−1
k(n+1)Kn

(
H1
k(q)

)
.

Therefore,

Kn+1 (Gk(q)) =
q(q − 1)

kn(n+ 1)
Kn−1

(
H1
k(q)

)
.

#
{

complete subgraphs of order 4 in Gk(q)
}
≈ #

{
edges in H1

k(q)
}

.
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Lemma

1) Kn+1 (Gk(q)) = q
n+1Kn (Hk(q)) and

2) Kn+1 (Hk(q)) = q−1
k(n+1)Kn

(
H1
k(q)

)
.

Proof of Lemma.

The subgraph (0, a1, . . . , an) of Gk(q) is complete iff
χk (ai) = χk (ai − aj) = 1 for all 1 ≤ i < j ≤ n.

This is true iff (a1, . . . , an) is a complete subgraph of Hk(q).

Fix a ∈ F∗q . Repeat for all q vertices by automorphism λ 7→ λ+ a.

Divide by n+ 1 repeated subgraphs.
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Proof of Lemma (continued).

The subgraph (1, a1, . . . , an) of Hk(q) is complete iff
χk (ai) = χk (ai − 1) = χk (ai − aj) = 1 for all 1 ≤ i < j ≤ n.

This is true iff (a1, . . . , an) is a complete subgraph of H1
k(q).

Fix a ∈
(
F∗q
)k

. Repeat for all q−1k vertices by aut. λ 7→ aλ.

Divide by n+ 1 repeated subgraphs.
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Proofs of Theorems 1 and 2.

Proposition =⇒ K2

(
H1
k(q)

)
.

Lemma =⇒ K4 (Gk(q)).
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Proofs of Main Theorems

Proofs of Corollaries 1 and 2.

Reduction formulas for hypergeometric functions, e.g.

3F2

(
ε, B, C

D, E

∣∣∣ 1

)
q

= −1

q
2F1

(
BD̄, CD̄

ED̄

∣∣∣ 1

)
q

+

(
B

D

)(
C

E

)

Transformation formulas for hypergeometric functions, e.g.

3F2

(
A, B, C

D, E

∣∣∣ 1

)
q

= 3F2

(
BD̄, AD̄, CD̄

D̄, ED̄

∣∣∣ 1

)
q

10 distinct cases depending on ~t ∈ (Zk)
5
.
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Proofs of Corollaries 1 and 2 (continued).

To simplify notation:

Rk(q) :=

k−1∑
s,t=1

s+t 6≡0 (k)

J
(
χsk, χ

t
k

)
,

Sk(q) :=

k−1∑
s,t,v=1

s+t,v+t,v−s6≡0 (k)

J
(
χsk, χ

t
k

)
J (χk

s, χvk) ,

Xk :=
{

(t1, . . . , t5) ∈ (Z5)
5 | t1, t2, t3 6= 0, t4, t5; t1 + t2 + t3 6= t4 + t5

}
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Proofs of Main Theorems

Theorem 3

K4 (Gk(q)) =
q(q − 1)

24 · k6

[
10Rk(q)2 + 5

(
q − 2k2 + 1

)
Rk(q)− 15Sk(q)

+ q2 − 5
(
2k2 − 3k + 2

)
q + 15k3 − 10k2 + 1 + q2

∑
~t∈Xk

3F2

(
~t | 1

)
q,k

]
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Proofs of Main Theorems

Proofs of Corollaries 1 and 2 (continued).

Each transformation formula induces a map T : Xk → Xk.

The group generated by {T} is isomorphic to S4 and acts on Xk.

3F2

(
~t | 1

)
q,k

is constant for all ~t in each orbit.

Use Theorem 3 for each orbit representative with k = 2, 3, 4.

If K` (Gk(q)) = 0 for some q, then q < Rk(`).
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Theorem 1

K4 (Gk(q)) =
q3(q − 1)

24 · k6
∑

(t1,t2,t3,t4,t5)∈(Zk)5
3F2

(
χt1k , χt2k , χt3k

χt4k , χt5k

∣∣∣∣∣ λ
)
q

Theorem 2

K3 (Gk(q)) =
q(q − 1)

6 · k3

q − 3k + 1 +
k−1∑
s,t=1

s+t6≡0 (mod k)

J
(
χsk, χ

t
k

)
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Corollary 1

18 ≤ R(4, 4)

128 ≤ R3(4)

458 ≤ R4(4)

Corollary 2

6 ≤ R(3, 3)

17 ≤ R3(3)

42 ≤ R4(3)

Corollary 3

Let p ≡ 1 (mod 4) be prime. Then

K4(G(p)) =
p(p− 1)

(
(p− 9)2 − 2p+ α(p)

)
29 · 3

.
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Conjecture 1

Let p ≡ 1 (mod 6) be prime. Then

K4 (G3(p)) =
p(p− 1)

23 · 37
[
p2 − 5p (β1(p) + 11) + 10β1(p)2

+ 85β1(p) + 316 + 12β2(p)
]
.

Conjecture 2

Let p ≡ 1 (mod 8) be prime. Then

K4 (G4(p)) =
p(p− 1)

215 · 3

[
p2 − p (15γ1(p) + 142) + 76γ1(p)2 + 465γ1(p)

+ 801 + 10γ1(p)γ2(p) + 30γ3(p) + 30γ4(p) + 12γ5(p)
]
.
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