Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks

Elliptic Curves and Moonshine

Maryam Khaqan

Emory University

Vanderbilt Number Theory Seminar September 1st, 2020

(日)

< E

Motivation ●000000	Theorem ○	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Main Ic	lea				

Can moonshine help answer number theoretic questions?

A D > A B > A B > A B >

Motivation 0●00000	Theorem 0	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Elliptic	Curves				

Motivation 0●00000	Theorem 0	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Elliptic	Curves				

Theorem 1 (Mordell).

$$E(\mathbb{Q}) = \mathbb{Z}^r \oplus E(\mathbb{Q})_{tor}.$$

Motivation ○●○○○○○	Theorem 0	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Elliptic	Curves				

Theorem 1 (Mordell).

$$E(\mathbb{Q}) = \mathbb{Z}^r \oplus E(\mathbb{Q})_{tor}.$$

Computing the rank r of a general elliptic curve is considered a hard problem in number theory.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0●00000	O	0	000000		0000
Elliptic	Curves				

Theorem 1 (Mordell).

$$E(\mathbb{Q}) = \mathbb{Z}^r \oplus E(\mathbb{Q})_{tor}.$$

Computing the rank *r* of a general elliptic curve is considered a hard problem in number theory.

Conjecture (Birch and Swinnerton-Dyer).

The rank of an elliptic curve equals the order of vanishing of its *L*-function $L_E(s)$ at s = 1.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
o●ooooo	O	O	000000		0000
Elliptic	Curves				

Theorem 1 (Mordell).

$$E(\mathbb{Q}) = \mathbb{Z}^r \oplus E(\mathbb{Q})_{tor}.$$

Computing the rank r of a general elliptic curve is considered a hard problem in number theory.

Conjecture (Birch and Swinnerton-Dyer).

The rank of an elliptic curve equals the order of vanishing of its *L*-function $L_E(s)$ at s = 1.

It is known that if $L_E(1) \neq 0$, then r = 0.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
00●0000	O	O	000000		0000
An Ellip	otic Cur	ve			

Let *E* be the following elliptic curve over \mathbb{Q} ,

$$y^2 = x^3 + 864x - 432$$

<ロ> <同> <同> <同> <同> <同>

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
000000					
An Elli	ntic Cur	Ve			

Let *E* be the following elliptic curve over \mathbb{Q} ,

$$y^2 = x^3 + 864x - 432$$

For d < 0 a fundamental discriminant, let E^d be the quadratic twist,

$$E^d$$
: $y^2 = x^3 + 864d^2x - 432d^3$

◆□ → ◆◎ → ◆ □ → ◆ □ →

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
000000					
An Elli	ptic Cur	ve			

Let *E* be the following elliptic curve over \mathbb{Q} ,

$$y^2 = x^3 + 864x - 432$$

For d < 0 a fundamental discriminant, let E^d be the quadratic twist,

$$E^d$$
: $y^2 = x^3 + 864d^2x - 432d^3$

Question: How does $rank(E^d)$ vary with *d*?

< 同 > < 回 >

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
000●000	0	0	000000		0000
Some D)ata				

We will restrict to discriminants such that $\left(\frac{d}{19}\right) = -1$.

d	$\operatorname{rank}(E^d)$
4	0
7	0
11	0
20	0
23	2
24	0
÷	:
83	2
87	2
104	2
111	0

A = A + A = A + A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

э

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000●00	O	O	000000		0000
Modula	r Form				

Let $F(\tau)$ denote the unique (weakly holomorphic) modular form in $M_{\frac{3}{2}}^{+,!}(\Gamma_0(4))$ such that

$$F(q) = q^{-5} + O(q)$$

<ロト < 四ト < 回ト < 回ト < 回ト</p>

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000●00	0	O	000000		0000
Modula	r Form				

Let $F(\tau)$ denote the unique (weakly holomorphic) modular form in $M_{\frac{3}{2}}^{+,!}(\Gamma_0(4))$ such that

$$F(q) = q^{-5} + O(q)$$

Let c(d) denote the coefficient of q^{-d} in the *q*-expansion for *F*.

◆□ ▶ ◆쪧 ▶ ◆臣 ▶ ◆臣 ▶

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
00000●0	O	O	000000		0000
More D	Data				

d	c(d)	$\operatorname{rank}(E^d)$
4	- 565760	0
7	52756480	0
11	5874905295	0
20	- 19691491018752	0
23	191346871173120	2
24	- 394919975761920	0
÷	: :	:
83	2785957292415739748496579900	2
87	12789100785793929041912463360	2
104	-5795391541224855221729145169920	2
111	62099872645859114904016024043520	0

Motivation 000000●	Theorem O	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
More D	ata				

d	<i>c</i> (<i>d</i>) mod 19	$\operatorname{rank}(E^d)$
4	3	0
7	16	0
11	16	0
20	3	0
23	0	2
24	13	0
÷	:	:
83	0	2
87	0	2
104	0	2
111	13	0

Motivation 0000000	Theorem •	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Theorer	n				

Let *Th* denote *Thompson's group*, the sporadic simple group of order $2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Motivation 0000000	Theorem •	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Theorer	n				

Let *Th* denote *Thompson's group*, the sporadic simple group of order $2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$

Theorem 2.

There exists an infinite-dimensional graded Th-module $W = \oplus_{n \in \mathbb{Z}} W_n$ such that if

 $\dim(W_{|d|}) \not\equiv 0 \pmod{19},$

then the Mordell–Weil group $E^d(\mathbb{Q})$ is finite for each elliptic curve E of conductor 19, and each d < 0 as above.

< □ > < 同 > < 回 > <</p>

0000000		•	000000	000000000000000	0000
	-				

Plan for the rest of the talk

- ✓ Motivation+Statement of Theorem 2.
 - What is moonshine?
 - (Sketch of) Proof of Theorem 2.
 - Step 1: Existence of module.
 - Step 2: Elliptic Curves.
 - Other results.

Image: A matrix

-∢ ≣ →

The complete classification of finite simple groups is one of the greatest achievements of 20th-century mathematics.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	○	0		0000000000000	0000
The M	onster is	shorn			

• The Monster group is the largest of the sporadic simple groups.

 $|\mathbb{M}| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

(日)

э.

Motivation 000000	Theorem 0	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks
The Mo	onster is	born			

• The Monster group is the largest of the sporadic simple groups.

 $|\mathbb{M}| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

• Fischer and Griess first conjectured the existence of the Monster group in 1973, and Griess announced a construction in 1981.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

• The Monster group is the largest of the sporadic simple groups.

 $|\mathbb{M}| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

- Fischer and Griess first conjectured the existence of the Monster group in 1973, and Griess announced a construction in 1981.
- In the interim, Conway and Norton conjectured that the smallest non-trivial M-irrep is 196883-dimensional, and Fischer, Livingstone, and Thorne computed the character table for the Monster based on this assumption (1978).

・ロット (雪) (日) (日)

• The Monster group is the largest of the sporadic simple groups.

 $|\mathbb{M}| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

- Fischer and Griess first conjectured the existence of the Monster group in 1973, and Griess announced a construction in 1981.
- In the interim, Conway and Norton conjectured that the smallest non-trivial M-irrep is 196883-dimensional, and Fischer, Livingstone, and Thorne computed the character table for the Monster based on this assumption (1978).

・ロット (雪) (日) (日)

John McKay: Consider the normalized elliptic modular invariant

$$J(\tau) = q^{-1} + \frac{196884}{9}q + 21493760q^2 + 864299970q^3 + O(q^4),$$

1 + 196883 = 196884

э

John McKay: Consider the normalized elliptic modular invariant

$$J(\tau) = q^{-1} + 196884q + 21493760q^2 + 864299970q^3 + O(q^4),$$

1 + 196883 = 196884

イロト イポト イヨト イヨト

John Thompson:

1 + 196883 + 21296876 = 214937602 \cdot 1 + 2 \cdot 196883 + 21296876 + 842609326 = 864299970. dimensions of M-irreps = coefficients of J

John McKay: Consider the normalized elliptic modular invariant

$$J(\tau) = q^{-1} + 196884q + 21493760q^2 + 864299970q^3 + O(q^4),$$

1 + 196883 = 196884

(日)

John Thompson:

1 + 196883 + 21296876 = 21493760 $2 \cdot 1 + 2 \cdot 196883 + 21296876 + 842609326 = 864299970.$ dimensions of M-irreps = coefficients of J

This gets weirder.

Coincidence? I think not.								
			000000					
Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks			

Dimensions of $\mathbb M\text{-}\mathrm{irreps}$ are the entries in the first coloumn of the character table.

э

Dimensions of \mathbb{M} -irreps are the entries in the first coloumn of the character table.

Look at the second coloumn instead:

1 + 4371 = 43721 + 4371 + 91884 = 96256 $2 \cdot 1 + 2 \cdot 4371 + 91884 + 1139374 = 1240002$ Traces of element of order 2 on M-irreps = ?

イロト イポト イヨト イヨト

Dimensions of \mathbb{M} -irreps are the entries in the first coloumn of the character table.

Look at the second coloumn instead:

1 + 4371 = 4372 1 + 4371 + 91884 = 96256 $2 \cdot 1 + 2 \cdot 4371 + 91884 + 1139374 = 1240002$ Traces of element of order 2 on M-irreps = ?

 $T_{2A}(\tau) = q^{-1} + 4372q + 96256q^2 + 1240002q^3 + O(q^4).$

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
			000000		

Monstrous Moonshine

Conjecture (Thompson 1979).

There exists an infinite-dimensional M-module V whose graded dimension is $J(\tau)$ and each of whose McKay–Thompson series,

$$\mathcal{T}_g(au) := \sum_{n \geq -1} \operatorname{trace}(g|V_n)q^n$$

is a normalized principle modulus for a genus-zero subgroup Γ_g of $SL_2(\mathbb{R})$.

This conjecture was proven by Borcherds (building on work by Conway–Norton, Frenkel–Lepowsky–Meurmann) in 1992.

< D > < P > < P > < P >

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
			000000		

Monstrous Moonshine

Conjecture (Thompson 1979).

There exists an infinite-dimensional M-module V whose graded dimension is $J(\tau)$ and each of whose McKay–Thompson series,

$$\mathcal{T}_g(au) := \sum_{n \ge -1} \operatorname{trace}(g|V_n)q^n$$

is a normalized principle modulus for a genus-zero subgroup Γ_g of $SL_2(\mathbb{R})$.

This conjecture was proven by Borcherds (building on work by Conway–Norton, Frenkel–Lepowsky–Meurmann) in 1992.

▲ 同 ▶ ▲ 国 ▶

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	O	00000●		0000
Genus-	Zero Pr	operty			

Fact.

A normalized principle modulus is uniquely determined by its invariance group.

< ロ > < 同 > < 回 > < 回 > .

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	O	0	00000●		0000
~					

Genus-Zero Property

Fact.

A normalized principle modulus is uniquely determined by its invariance group.

Thus the assignment $g \to \Gamma_g$ determines each of the traces trace $(g|V_n)$ for $g \in \mathbb{M}$ and $n \in \mathbb{Z}$.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
			000000		

Genus-Zero Property

Fact.

A normalized principle modulus is uniquely determined by its invariance group.

Thus the assignment $g \to \Gamma_g$ determines each of the traces $\operatorname{trace}(g|V_n)$ for $g \in \mathbb{M}$ and $n \in \mathbb{Z}$. In particular, this allows us to compute the structure of V as an \mathbb{M} -module without doing any computations with the Monster itself.

・ロト ・ 御 ト ・ 臣 ト ・ 臣

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	O	0	000000	●000000000000000000000000000000000000	0000
Theore	m				

Let *T h* denote the *Thompson's group*, the sporadic simple group of order $2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$

Theorem.

There exists an infinite-dimensional graded *Th*-module $W = \bigoplus_{n \in \mathbb{Z}} W_n$ such that if

 $\dim(W_{|d|}) \not\equiv 0 \pmod{19},$

then the Mordell–Weil group $E^d(\mathbb{Q})$ is finite for each elliptic curve E of conductor 19, and each d < 0 as above.

◆□ ▶ ◆쪧 ▶ ◆臣 ▶ ◆臣 ▶

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
				000000000000000000000000000000000000000	

Plan for the rest of the talk

- ✓ Motivation+Statement of Theorem 2.
- ✓ What is moonshine?
 - (Sketch of) Proof of Theorem 2.
 - Step 1: Existence of module.
 - 2 Step 2: Elliptic Curves.
 - Other results.

Image: A matrix

- ∢ ⊒ →
| Motivation | Theorem | Outline | Monstrous Moonshine | Proof of Theorem | Final Remarks |
|------------|---------|---------|---------------------|------------------|---------------|
| 0000000 | 0 | 0 | | ○○●○○○○○○○○○ | 0000 |
| Sketch | of proo | f | | | |

The proof of Theorem 2 consists of two distinct parts.

1) **Existence of module**. Prove that there exists an infinitedimensional, graded *Th*-module $W = \bigoplus_{n \in \mathbb{Z}} W_n$ such that the graded trace

$$\mathscr{F}_g(au) = 6q^{-5} + \sum_{n>0} \operatorname{trace}(g|W_n)q^n$$

for each *g* is a weakly holomorphic modular form in $M_{\frac{3}{2}}^{+,!}(\Gamma_0(4|g|), \psi_g)$ which has a specific behaviour at the cusps.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0		○○●○○○○○○○○○	0000
Sketch	of proo	f			

The proof of Theorem 2 consists of two distinct parts.

1) **Existence of module**. Prove that there exists an infinitedimensional, graded *Th*-module $W = \bigoplus_{n \in \mathbb{Z}} W_n$ such that the graded trace

$$\mathscr{F}_g(au) = 6q^{-5} + \sum_{n>0} \operatorname{trace}(g|W_n)q^n$$

for each *g* is a weakly holomorphic modular form in $M_{\frac{3}{2}}^{+,!}(\Gamma_0(4|g|), \psi_g)$ which has a specific behaviour at the cusps.

2) Connection to elliptic curves. For $g \in 19A$, and *d* as above,

$$\dim(W_{|d|}) = \operatorname{trace}(g|W_{|d|}) \pmod{19}.$$

< □ > < 同 > < 回 > < 回 >

Motivation 0000000	Theorem 0	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Exister	nce of T	<i>h</i> -modu	le		

$$f_g^{wh}(\tau) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(\tau)$$

ヘロト 人間 とくほとくほとう

Existence of *Th*-module

For each rational conjugacy class $g \notin \{21A, 30AB\}$, define

$$f_g^{wh}(au) = 6 R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(au) = \lim_{K o\infty}\sum_{\gamma\in\Gamma_\infty\setminus\Gamma_K(4|g|)} q^{-5}|_{rac{3}{2},\psi_g}\gamma$$

where $\Gamma_{\infty} := \{\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z}\}$ is the stabilizer of ∞ in $\Gamma_0(N)$, and

$$\Gamma_{\mathcal{K}}(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) : |c| < \mathcal{K} \text{ and } |d| < \mathcal{K}^2 \right\}$$

(日)

ъ

0000000	o I neorem	o	Monstrous Moonshine	Proof of Theorem ○○○○●○○○○○○○○○	Final Remarks
Radem	hacher S	11m			

$$f_g^{wh}(au) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(au)$$

<ロト < 四ト < 回ト < 回ト < 回ト</p>

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000			000000	000000000000000000000000000000000000000	0000
Radem	achar S	11m			

$$f_g^{wh}(au) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(au)$$

Then, $f_g^{wh}(\tau)$ converges,

◆□ → ◆◎ → ◆ □ → ◆ □ → ○

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	O	000000		0000
Radem	acher S	11m			

$$f_g^{wh}(\tau) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(\tau)$$

Then, $f_g^{wh}(\tau)$ converges, has vanishing shadow,

◆□ ▶ ◆쪧 ▶ ◆臣 ▶ ◆臣 ▶

0000000	0		000000	00000000000000	0000				
Rademacher Sum									

$$f_g^{wh}(\tau) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(\tau)$$

Then, $f_g^{wh}(\tau)$ converges, has vanishing shadow, and

$$\mathscr{F}_g(au)-f_g^{wh}(au)\in \mathcal{S}_g:=\mathcal{S}^+_{3/2}(\mathsf{\Gamma}_0(4|g|),\psi_g)$$

(日)

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks						
				000000000000000000000000000000000000000							
D 1	1 0										
Rodom	Rademacher Sum										

$$f_g^{wh}(\tau) = 6R^{[-5],+}_{rac{3}{2},4|g|,\psi_g}(\tau)$$

Then, $f_g^{wh}(\tau)$ converges, has vanishing shadow, and

$$\mathscr{F}_{\mathsf{g}}(au) - f^{wh}_{\mathsf{g}}(au) \in \mathcal{S}_{\mathsf{g}} := \mathcal{S}^+_{3/2}(\mathsf{F}_0(4|g|), \psi_{\mathsf{g}})$$

Which (if any) cusp forms $f_g \in S_g$ are "allowed"?

▲□→ ▲ 三→ ▲ 三→

Criteria for Existence of a Module

W is a *Th*-module iff there exist $m_1, m_2, \ldots, m_{39}(n) \in \mathbb{Z}$ such that

$$\mathsf{trace}(g|W_n) = \sum_{j=1}^{39} m_j(n)\chi_j(g)$$

where χ_i are the irreducible rational characters of *T h*.

(日)

Criteria for Existence of a Module

W is a *Th*-module iff there exist $m_1, m_2, \ldots, m_{39}(n) \in \mathbb{Z}$ such that

$$trace(g|W_n) = \sum_{j=1}^{39} m_j(n)\chi_j(g)$$

where χ_j are the irreducible rational characters of *Th*. Thus, the cusp forms that work are the ones that make these multiplicities integral.

イロト イポト イヨト イヨト

2) Connection to elliptic curves

From the proof of the first part, we have,

$$egin{split} \mathcal{F}_{19A}(au) &= 6R^{[-5],+}_{rac{3}{2},76}(au) + 18f^{cusp}_{19A}(au) \ &= 6q^{-5} + \sum_{n>0} \left(6r(n) + 18b_{19A}(n)
ight) q^n \end{split}$$

where f_{19A}^{cusp} is the unique normalized cusp form in $S_{\frac{3}{2}}^+(\Gamma_0(76))$.

(日)

From the proof of the first part, we have,

$$egin{split} \mathscr{F}_{19A}(au) &= 6R^{[-5],+}_{rac{3}{2},76}(au) + 18f^{cusp}_{19A}(au) \ &= 6q^{-5} + \sum_{n>0} \left(6r(n) + 18b_{19A}(n)
ight) q^n \end{split}$$

where f_{19A}^{cusp} is the unique normalized cusp form in $S_{\frac{3}{2}}^+(\Gamma_0(76))$. Furthermore,

$$\dim(W_n) \equiv 6r(n) + 18b_{19A}(n) \mod 19$$

(1)

2) Connection to elliptic curves

From the proof of the first part, we have,

$$egin{split} \mathscr{F}_{19A}(au) &= 6R^{[-5],+}_{rac{3}{2},76}(au) + 18f^{cusp}_{19A}(au) \ &= 6q^{-5} + \sum_{n>0} \left(6r(n) + 18b_{19A}(n)
ight) q^n \end{split}$$

where f_{19A}^{cusp} is the unique normalized cusp form in $S_{\frac{3}{2}}^+(\Gamma_0(76))$. Furthermore,

$$\dim(W_n) \equiv \frac{6r(n)}{18b_{19A}(n)} \mod 19$$

(1)

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
				0000000000000	

The Rademacher Sum part

For $g \in 19A$ and d as above,

Lemma 3.r(|d|) = 0

"Proof:"

$$r(n) = ext{const.} * \sum_{Q \in \mathfrak{Q}_{5n}^{(19)} / \Gamma_0(19)} \chi_5(Q) rac{J_{19}^+(au_Q)}{\omega^{(19)}(Q)}$$

where $\mathfrak{Q}_D^{(N)}$ is the set of positive definite quadratic forms $Q = ax^2 + bxy + cy^2$ of discriminant $-D = b^2 - 4ac < 0$ such that N|a.

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
				0000000000000	

The Rademacher Sum part

For $g \in 19A$ and d as above,

Lemma 3.r(|d|) = 0

"Proof:"

$$r(n) = ext{const.} * \sum_{Q \in \mathfrak{Q}_{5n}^{(19)} / \Gamma_0(19)} \chi_5(Q) rac{J_{19}^+(au_Q)}{\omega^{(19)}(Q)}$$

where $\mathfrak{Q}_D^{(N)}$ is the set of positive definite quadratic forms $Q = ax^2 + bxy + cy^2$ of discriminant $-D = b^2 - 4ac < 0$ such that N|a. For n = |d|, $\left(\frac{5d}{19}\right) = -1$, so this set is empty.

・ コ マ チ (雪 マ チ (雪 マ ー)

Motivation 0000000	Theorem 0	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Final S	teps				

Т

$\dim(W_{|d|}) \equiv 18b_{19A}(|d|) \mod 19$

i.e., if dim $(W_{|d|}) \neq 0 \pmod{19}$ then $19 \nmid b_{19A}(|d|)$.

<ロ> <同> <同> <同> <同> <同>

Motivation 0000000	Theorem O	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Final S	teps				

$$\dim(W_{|d|}) \equiv 18b_{19A}(|d|) \mod 19$$

i.e., if dim $(W_{|d|}) \neq 0 \pmod{19}$ then $19 \nmid b_{19A}(|d|)$.

We will show that this means that $19 \nmid L_{E^d}(1)$, for each elliptic curve *E* of order 19.

(日本)(日本)

Motivation 0000000	Theorem O	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
Final S	teps				

$$\dim(W_{|d|}) \equiv 18b_{19A}(|d|) \mod 19$$

i.e., if dim $(W_{|d|}) \neq 0 \pmod{19}$ then $19 \nmid b_{19A}(|d|)$.

We will show that this means that $19 \nmid L_{E^d}(1)$, for each elliptic curve *E* of order 19.

In particular, $L_{E^d}(1) \neq 0$ and thus, r = 0.

Motivation 0000000	Theorem 0	Outline O	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
19 <i>1</i> /	a(1)				

By the modularity theorem, for each *E* of conductor 19, there exists a unique weight 2 newform $G_E = \sum_{n=1}^{\infty} a_E(n)q^n$ of level 19 such that,

$$L_E(s) = \sum_{n=1}^{\infty} a_E(n) n^{-s}.$$

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000		0000
10/1-	(1)				

By the modularity theorem, for each *E* of conductor 19, there exists a unique weight 2 newform $G_E = \sum_{n=1}^{\infty} a_E(n)q^n$ of level 19 such that,

$$L_E(s) = \sum_{n=1}^{\infty} a_E(n) n^{-s}.$$

We let $g_E(\tau) = \sum_{n=3}^{\infty} b_E(n)q^n \in S^+_{\frac{3}{2}}(\Gamma_0(76))$ be the weight $\frac{3}{2}$ cusp form associated to \mathcal{G}_E under the Shintani lift.

Motivation 0000000	Theorem 0	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks 0000
10 / / -					

By the modularity theorem, for each *E* of conductor 19, there exists a unique weight 2 newform $G_E = \sum_{n=1}^{\infty} a_E(n)q^n$ of level 19 such that,

$$L_E(s) = \sum_{n=1}^{\infty} a_E(n) n^{-s}.$$

We let $g_E(\tau) = \sum_{n=3}^{\infty} b_E(n)q^n \in S^+_{\frac{3}{2}}(\Gamma_0(76))$ be the weight $\frac{3}{2}$ cusp form associated to \mathcal{G}_E under the Shintani lift.

Lemma 4 (Agashe, Kohnen, Duncan-Mertens-Ono).

$$\operatorname{ord}_{19}\left(\frac{L_{E^d}(1)}{\Omega(E^d)}\right) = \operatorname{ord}_{19}\left(\frac{L_{E^{d_0}}(1)}{\Omega(E^{d_0})}\right) + \operatorname{ord}_{19}\left(b_E(|d|)^2\right)$$

where $d_0 = -4$ is the smallest possible *d* and a quick MAGMA calculation shows that $L_{E^{(-4)}}(1) = 0$.

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000	○○○○○○○○○○	0000
Final S	Stens				

$$\operatorname{ord}_{19}\left(rac{L_{E^d}(1)}{\Omega(E^d)}
ight) = \operatorname{ord}_{19}\left(b_E(|d|)^2
ight)$$

where $b_E(|d|)$ is the q^d coefficient of $g_E(\tau) \in S^+_{\frac{3}{2}}(\Gamma_0(76))$.

◆□ → ◆檀 → ◆ 三 → ◆ 三 →

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks				
0000000	0	0	000000		0000				
Final S	Final Stone								

$$\operatorname{ord}_{19}\left(rac{L_{E^d}(1)}{\Omega(E^d)}
ight) = \operatorname{ord}_{19}\left(b_E(|d|)^2
ight)$$

where $b_E(|d|)$ is the q^d coefficient of $g_E(\tau) \in \frac{S_{\frac{3}{2}}^+(\Gamma_0(76))}{S_{\frac{3}{2}}^+(\Gamma_0(76))}$. Since $S_{\frac{3}{2}}^+(\Gamma_0(76))$ is one-dimensional, $b_E(|d|) = b_{19A}(|d|)$.

・ロト ・ 同ト ・ モト ・ モト

э

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	O	O	000000		●000
Theore	m				

Let *T h* denote the *Thompson's group*, the sporadic simple group of order $2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$

Theorem.

There exists an infinite-dimensional graded *Th*-module $W = \bigoplus_{n \in \mathbb{Z}} W_n$ such that if

 $\dim(W_{|d|}) \not\equiv 0 \pmod{19},$

then the Mordell–Weil group $E^d(\mathbb{Q})$ is finite for each elliptic curve of conductor 19, and each d < 0 as above.

< □ > < □ > < □ > < □ >

Each $c(d) = \dim(W_d)$ is given by the finite sum

$$c(d) = rac{-1}{\sqrt{5}} \sum_{Q \in \mathfrak{Q}_{5d}^{(1)}} \chi(Q) j(au_Q)$$

where

 $\mathfrak{Q}_{5d}^{(1)}$:= set of positive definite quadratic forms with discriminant 5*d*, τ_Q := the unique root of *Q* in \mathbb{H} ,

and $j(\tau)$ is the usual elliptic modular invariant.

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	O	0	000000		00●0
Other re	esults				

Now consider d < 0 a fundamental discriminant for which $\left(\frac{d}{7}\right) = -1$ and $\left(\frac{d}{2}\right) = 1$.

▲ロト ▲圖 ト ▲ 国ト ▲ 国ト

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000		00●0
Other re	esults				

Now consider d < 0 a fundamental discriminant for which $\left(\frac{d}{7}\right) = -1$ and $\left(\frac{d}{2}\right) = 1$. Let *E* be an elliptic curve of conductor 14.

(日)

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000		00●0
Other re	esults				

Now consider d < 0 a fundamental discriminant for which $\left(\frac{d}{7}\right) = -1$ and $\left(\frac{d}{2}\right) = 1$. Let *E* be an elliptic curve of conductor 14. Let *g* denote an element of order 14 in *Th*.

(日)

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000		00●0
Other re	esults				

Now consider d < 0 a fundamental discriminant for which $\left(\frac{d}{7}\right) = -1$ and $\left(\frac{d}{2}\right) = 1$. Let *E* be an elliptic curve of conductor 14. Let *g* denote an element of order 14 in *Th*.

Theorem 5.

If trace $(g|W_{|d|}) \neq 0 \pmod{49}$, then the Mordell–Weil group $E^d(\mathbb{Q})$ is finite and $\operatorname{III}(E^d)[7]$ is trivial.

・ ロ ト ・ 雪 ト ・ 目 ト

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
0000000	0	0	000000		00●0
Other re	esults				

Now consider d < 0 a fundamental discriminant for which $\left(\frac{d}{7}\right) = -1$ and $\left(\frac{d}{2}\right) = 1$. Let *E* be an elliptic curve of conductor 14. Let *g* denote an element of order 14 in *Th*.

Theorem 5.

If trace $(g|W_{|d|}) \not\equiv 0 \pmod{49}$, then the Mordell–Weil group $E^d(\mathbb{Q})$ is finite and $\operatorname{III}(E^d)[7]$ is trivial. If, on the other hand, trace $(g|W_{|d|}) \equiv 0 \pmod{49}$ and trace $(g|W_4) \not\equiv 43 \pmod{56}$, then $\operatorname{Sel}_7(E^d)$ is non-trivial, and if $L_{E^d}(1)$ is non-zero then so is $\operatorname{III}(E^d)[7]$.

(日)

Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
					0000

Thank you for your attention.

Maryam Khaqan Elliptic Curves and Moonshine

(日)

Details	for Len	nma 4.			
0000000	o	o	000000	000000000000000000000000000000000000000	
Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Romarke

Let g_E , G_E and d as above.

Lemma 6 (Kohnen+Modularity Theorem).

$$L_{E^d}(1) = \frac{\pi}{2} \frac{\langle \mathcal{G}_E, \mathcal{G}_E \rangle}{|d|^{\frac{1}{2}} \langle g_E, g_E \rangle} \cdot |b_E(|d|)|^2,$$

Detaile	for I on	ama A			
Motivation 0000000	Theorem 0	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks

Let g_E , G_E and d as above.

Lemma 6 (Kohnen+Modularity Theorem).

$$L_{E^d}(1) = \frac{\pi}{2} \frac{\langle G_E, G_E \rangle}{|d|^{\frac{1}{2}} \langle g_E, g_E \rangle} \cdot |b_E(|d|)|^2,$$

Lemma 7 (Agashe).

$$\Omega(E^d) = c_E \cdot c_\infty(E^d) \cdot \omega_-(E)/\sqrt{|d|}$$

イロト 人間 ト イヨト イヨト

э

Detaile	for I on	ama A			
Motivation 0000000	Theorem 0	Outline 0	Monstrous Moonshine	Proof of Theorem	Final Remarks

Let g_E , \mathcal{G}_E and d as above.

Lemma 6 (Kohnen+Modularity Theorem).

$$L_{E^d}(1) = \frac{\pi}{2} \frac{\langle G_E, G_E \rangle}{|d|^{\frac{1}{2}} \langle g_E, g_E \rangle} \cdot |b_E(|d|)|^2,$$

Lemma 7 (Agashe).

$$\Omega(E^d) = c_E \cdot c_{\infty}(E^d) \cdot \omega_{-}(E) / \sqrt{|d|}$$

$$\frac{L_{E^d}(1)}{\Omega(E^d)} = \frac{\pi}{2} \frac{\langle \mathcal{G}_E, \mathcal{G}_E \rangle}{|d|^{\frac{1}{2}} \langle g_E, g_E \rangle c_E \omega_-(E)} \frac{\sqrt{|d|}}{c_{\infty}(E^d)} \cdot |b_E(|d|)|^2$$

イロト 人間 ト イヨト イヨト

э
Motivation	Theorem	Outline	Monstrous Moonshine	Proof of Theorem	Final Remarks
					0000

Tate–Shafarevich Group

Definition 6.

For *E* an elliptic curve over \mathbb{Q} , the Tate-Shafarevich group is the subgroup of elements in $H^1(\mathbb{Q}, E)$ which map to zero under every global-to-local restriction map $H^1(\mathbb{Q}, E) \to H^1(\mathbb{Q}_{\nu}, E)$, one for each place ν of \mathbb{Q} .

Conjecture (The Birch and Swinnerton–Dyer conjecture).

The rank *r* of an elliptic curve *E* over \mathbb{Q} equals the order of vanishing of $L_E(s)$ at s = 1. Moreover, we have

$$\frac{L_E^{(r)}(1)}{r!\Omega(E)} = \#\mathrm{III}(E) \ \frac{\mathrm{Reg}(\mathsf{E}) \prod_{\ell} \mathsf{c}_{\ell}(\mathsf{E})}{\left(\#E(\mathbb{Q})_{\mathsf{tor}}\right)^2},$$

where $L_E^{(r)}(s)$ is the r^{th} derivative of $L_E(s)$.