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What recommends HDBDES as an anytime strategy?

* ”Fast” discovery of initial schedule

* Fast, predictably-paced discovery of subsequent schedules

* Worst-case space requirements are O(B*D) rather than O(B”D) for an
unbounded priority queue search

* Less space-motivated reason to ever exclude part of the search space

What are the downsides/limits of HDBDFS?

* Advances local, rather than global best paths
* Very similar solutions (schedules) are enumerated back to back (only varying
at the “end points”
* To address this, perhaps implement a kind of diversity search, where the
order of which successors are placed on the stack uses a random draw
from a probability distribution that “mirrors” the state (or path) quality



