0.7

Heuristic depth-bounded depth-first search
where B 1s branching factor and D is depth bound

Quality (of state or path) (g

0.2|

[N
[N

SO (0.5

0.3

Heuristic depth-bounded depth-first search
where B 1s branching factor and D is depth bound

@)

0.4 0.7
5
0.7 0.5 0.6 0.4/ 0.3
5 S 5
0.3/ 02l| |o.6 0.7 0.4]] 0.4 o.zj_ 08! [0.9/l0.7|
1 1 16 @ 1 2 2

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

O

0.7
S2

S10
S8

S9
S3

S1

0.5
0.4

0.3
0.6

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.5

0.7

0.2

S24
S25

S8

S9
S3

S1

0.7
0.2

0.4

0.3
0.6

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.6

S25
S8

S9
S3

S1

0.2
0.4

0.3
0.6

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

o
TN

(®s

0.6

S8

S9
S3

S1

0.4

0.3
0.6

0.4

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.6

S21
S20
S9
S3
S1

0.8
0.7
0.3
0.6
0.4

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.7

(@

0.3

0.6

S20
S9
S3

S1

0.7
0.3
0.6
0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.4

S9
S3

S1

0.3
0.6

0.4

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

/

0.9/ 0.7

0.6

S22

S23
S3

S1

0.9

0.7
0.6
0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

/

0.9/ 0.7

0.6

S23
S3

S1

0.7
0.6

0.4

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

0.6

S3
S1

0.6
0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

S11
S12
S13
S1

1.0
0.6
0.3

0.4

Heuristic depth-bounded depth-first search
where B is branching factor and D is depth bound

What recommends HDBDES as an anytime strategy?

* ”Fast” discovery of initial schedule

* Fast, predictably-paced discovery of subsequent schedules

* Worst-case space requirements are O(B*D) rather than O(B”D) for an
unbounded priority queue search

* Less space-motivated reason to ever exclude part of the search space

What are the downsides/limits of HDBDFS?

* Advances local, rather than global best paths
* Very similar solutions (schedules) are enumerated back to back (only varying
at the “end points”
* To address this, perhaps implement a kind of diversity search, where the
order of which successors are placed on the stack uses a random draw
from a probability distribution that “mirrors” the state (or path) quality

