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Abstract Firms increasingly use open competitions to extend their innovation pro-
cess and access new diverse knowledge. The Netflix Prize case we study in this paper
is a multi-stage repeat-submission open competition involving the creation of new
knowledge from across knowledge domains, a process which benefits from knowl-
edge sharing across competing communities. The extant literature says little about the
effects of different types and levels of knowledge sharing behavior on the learning and
innovation outcomes of such a competitive system, or what the performance bound-
aries may be for the system as a result of such differences. Our research explores those
boundaries unveiling important tradeoffs involving free revealing behavior—defined
as voluntarily giving away codified knowledge and making it into a ‘public good’—
and knowledge brokering behavior—defined as using knowledge from one domain to
innovate in another—on the learning performance of competing communities. The re-
sults, analyzing the system-level average and volatility of learning outcomes, lead to
three conclusions: (i) greater knowledge sharing, as portrayed by greater free reveal-
ing and knowledge brokering, helps achieve better average learning for the system as
a whole, however, (ii) achieving the best overall outcome possible from the system
actually requires controlling the amount of knowledge brokering activity in the sys-
tem. The results further suggest that (iii) it should not be possible to simultaneously
achieve both the best overall outcome from the system and the best average learning
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for the system. The tradeoffs that ensue from these findings have important impli-
cations for innovation policy and management. This research contributes to practice
by showing how it is possible to achieve different learning performance outcomes by
managing the types and levels of knowledge sharing in open competitive systems.

Keywords Managing online communities · Free revealing · Knowledge brokering ·
Organizational learning · Crowdsourcing · Computer simulation

1 Introduction

Over the last decade, firms have increasingly sought to leverage open sources of
innovation outside of their own internal resources, some with a good deal of suc-
cess. Early on, these were best exemplified by public collective endeavors such as the
Linux operating system and the Wikipedia online encyclopedia (Lee and Cole 2003;
Giles 2005). Since then, communities of individuals beyond the formal boundaries
of the firm have been growing in importance as a source of innovation (Jeppe-
sen and Lakhani 2010; Terwiesch and Xu 2008; Schwen and Hara 2003). Simul-
taneously, open source processes, involving the free revealing and accumulation
of codified knowledge assets on the Internet, have gained momentum as an effec-
tive organizational model for innovation (Murray and O’Mahony 2007; Stam 2009;
von Hippel and von Krogh 2003). More recently, competing communities have been
successfully harnessed as an effective source of innovation in private online com-
petitive endeavors actively encouraging the free revealing of codified information,
as the Netflix Prize case illustrates (Bennett and Lanning 2007). Multi-stage repeat-
submission contests like the Netflix Prize enable knowledge brokering (Hargadon
1997), an interactive search process by which knowledge from different domains is
recombined to enact innovation.

While management scholars have argued about the individual benefits of free re-
vealing (von Hippel and von Krogh 2006) and knowledge brokering (Hargadon 1997,
1998, 2002) in different contexts, little attention has been given to exploring and un-
tangling their effects when they occur in the same context. More generally, the grow-
ing number of initiatives adopting open source processes (Pénin 2011), for profit and
not, brings communities into competition for unique and scarce knowledge resources
scattered across a finite number of prospective individual members. Little research
has been done to understand the learning dynamics across competing communities
in this finite context, particularly regarding the effects of free revealing and knowl-
edge brokering behaviors (cf. Sect. 2: Background). An important reason for this
gap is the relative novelty of combining free revealing, knowledge brokering, and
competing communities as an interactive search strategy conducive to better learn-
ing performance. In this sense, we use the Netflix Prize challenge as a relevant case
study where these concepts are unveiled through participant survey data, solution
submission data, and qualitative research. (cf. Sect. 3: Evidence). Utilizing these data
and insights hinted at by our study of the Netflix Prize case, we propose a learn-
ing model that quantitatively brings together these concepts and allows us to fur-
ther investigate—through computer simulation—their link to learning performance
(cf. Sect. 4: Model).
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Our research finds that in a competitive system combining different levels of free
revealing and knowledge brokering, different patterns of knowledge diffusion arise
and with them different learning rates for the overall system. At the outset, these
differences result in differences in innovation outcomes for the system as a whole
(cf. Sect. 5: Results). Our model’s simulation results replicate the empirical evidence
from the Netflix Prize, analyzed earlier, contributing to explain how learning per-
formance across competing communities is influenced by different levels of free re-
vealing and knowledge brokering behaviors in individuals (cf. Sect. 6: Analysis). Fi-
nally, we discuss the implications of our findings for innovation theory and practice
(cf. Sect. 7: Conclusions).

2 Background

The interest on communities as an open source of competitive advantage that the
firm can manage has increased in recent years, and with it their prominence in the
management literature (see Villarroel 2008 for an early review and discussion of this
phenomenon). As of July 2011, over 138,000 articles in Google Scholar referred to
communities in the context of “open source”, while 4,650 articles held these terms
in their title. However, little of the literature had focused on formally defining the
term itself, particularly when it comes to the firm using such a mechanism, otherwise
referred to as ‘crowdsourcing’ (Howe 2009). Only about 22 of the articles seek to
define the term community in any way (Google Scholar 2011), and when they do,
the definitions differ in substantial ways. Regarding this lack of consensus, West and
Lakhani suggest that to prevent confusion, authors should explicitly articulate what
they mean (West and Lakhani 2008, p. 224). We therefore begin by defining what we
mean by the term community, a key construct in our discussion.

Definition of community A community is a population of individuals1 that grows
in membership by virtue of having individuals successfully execute project oppor-
tunities together, developing and sharing unique knowledge on how to effectively
work well with one another. The greater the membership, the greater the knowledge
shared amongst its members, and the more influential the community. In the absence
of knowledge brokering and free revealing behaviors in individual members, once
the community is formed, it is assumed to be independent from other communities
(cf. Sect. 4.4, Sect. 5 Table 2 baseline scenario).

A central aspect of our paper discusses how individual members of disjoint ‘com-
peting communities’ hold scarce knowledge resources that could: (1) be codified and
shared with everyone (free revealing), typically using digital media over the Internet,
or (2) be carried along by certain individuals across knowledge domains (knowledge
brokering), through their interactions with others, to effectively address innovative
new project opportunities. In the next subsections we review the relevant literature to
inform our modeling of these two behaviors in the context of competing communities
(cf. Sect. 4), keeping in mind that our core contribution is to unveil the effects of their
interactions on learning performance outcomes (cf. Sect. 5).

1Individuals are also referred to as contributors to an initiative, or as agents in the model introduced later.
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2.1 Free revealing

In the last two decades we have seen the emergence of free, “libre”, and open source
software projects (FLOSS), where the principal actors of value creation are individ-
uals with no formal organizational affiliation who freely reveal software code they
produce. Prime examples are the Linux operating system, the Apache web server, and
the MySQL database system now widely used as a software system suite in the enter-
prise (Krishnamurthy 2003). Several online software code repositories, or “software
commons”, have been created to host such projects. The largest of these is source-
forge.net, with over 230,000 projects and 2 million registered users (van der Waal
2010), a number that has grown to 324,000 projects and 3.4 million developers as of
2012.2 In his investigation of these projects, Krishnamurthy (2002) found that despite
the high numbers of projects and developers, the median number of contributors per
project is only four. We later use this value to inform our model.

Over this same period, management scholars have set the foundation for the study
of free revealing by focusing on open source software (von Hippel and von Krogh
2003; Lakhani and von Hippel 2003). Users have been found to benefit from the free
revealing associated with FLOSS (Harhoff et al. 2003), while a mixed-model of de-
liberate “selective revealing” (partly sharing, partly protecting) has been found to be
advantageous to the firm (Henkel 2006). Indeed, Henkel (2006, p. 960) found empir-
ically that individual contributors to open source software projects from commercial
organizations reveal only about half of the code they produced.

Nonetheless, the free revealing phenomenon has been widely studied in the con-
text of industries other than software (e.g. Franke and Shah 2003), referred to re-
cently as “open source beyond software” (e.g. Balka et al. 2009). In this literature,
free revealing is defined as voluntarily giving up intellectual property rights on once
proprietary information and granting free access to that information to all interested
parties equally—namely making that information a public good, characterized by
non-excludability and non-rivalry (Fauchart and Von Hippel 2008, p. 191; Harhoff et
al. 2003, p. 1753; von Hippel and von Krogh 2006, p. 295).

For the remainder of this paper, unless specifically noted otherwise, we will refer
to free revealing to mean the open disclosure of codified knowledge by an individual
contributor to all others, the further consumption of which does not require direct
interaction between individuals.

2.2 Competition across communities

Large corporations such as IBM, Novell, and Sun Microsystems, among others have
been described in Austin (2004), Bagley and Lane (2006), MacCormack (2002), and
O’Mahony et al. (2005) as historically very involved in open source software initia-
tives. In turn, firm-sponsored communities standing behind those firm’s open source
corporate initiatives, such as Sun Microsystems’s OpenSolaris (a free open source
operating system), faced competition from several other open source software com-
munities. On one side, the OpenSolaris community was competing for resources with

2See: www.sourceforge.net/about (Last accessed July 24, 2012).
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self-organized communities standing behind public open source Linux-based projects
(e.g., Debian, Slackware, and Ubuntu, which are also free open source operating sys-
tems). On the other side, they were competing with other firm-sponsored commu-
nities standing behind private interests (e.g., Novell’s openSUSE, RedHat’s Fedora,
and Linspire’s Freespire).

These various operating systems are technically similar (UNIX-like) and appeal
to similar potential contributors as well. As a result, the different communities as-
sociated with each of the initiatives compete for the same (limited) pool of innova-
tive talent, namely individuals with unique and scarce knowledge, to join and con-
tribute to their community. This creates a conflicting situation for potential contrib-
utors who likely have to choose a community to which to devote their own limited
resources. Once individual contributors develop experience with a particular commu-
nity, a relationship-specific investment develops among the members of that commu-
nity who learn how to effectively work with one another over time. To the extent that
these individual contributors develop experience together in joint problem solving
and artifact creation on behalf of the initiative, they develop a sense of community
(Knorr Cetina 1999). This can make collaboration amongst members of different
communities more difficult.

According to Wenger et al. (2002, p. 141), the “very qualities that make a com-
munity an ideal structure for learning—a shared perspective on a domain, trust, a
communal identity, longstanding relationships, an established practice—are the same
qualities that hold it hostage to its history and its achievements”. When special-
ists with prior disjoint experiences as members of different communities are pre-
sented with an opportunity to work together, they face an impasse situation (Han-
dley et al. 2006). While they may be able to take advantage of the opportunity to
collaborate, each specialist may also have a vested interest in the relationship de-
veloped through the experience with his or her own community. Contributors from
different communities may thus refrain from working together due to concerns that
they may give other communities increased knowledge bargaining power (Yanow
2004), lose trust from their respective communities (Lazaric and Lorenz 1998), or
they may simply do it out of habit working solely with their peers (Mutch 2003;
Roberts 2006).

2.3 Knowledge brokering, communities and the social boundaries of knowledge

Hargadon (1998, p. 214) first described knowledge brokers as individuals or orga-
nizations located between otherwise disconnected groups that profit by “transferring
ideas from where they are known to where they represent innovative new possibil-
ities”. Later, adopting a microsociological perspective, Hargadon (2002) sought to
explain the importance of the social and structural linkage in knowledge brokering
relating learning and innovation. On the one hand, the solutions learned by individu-
als are only useful when they can be applied to the right problems, but those problems
may structurally lie away from the individuals. On the other hand, for innovation
to occur individuals first need to be exposed to new situations in which to enhance
their knowledge and then they need to develop new networks to support it. As such,
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knowledge brokering behavior entails bridging knowledge from different social do-
mains and linking it to new situations while building new social networks around the
innovations created (Hargadon 2002, p. 41).

In this paper, (i) the social boundaries of knowledge domains are the communities,
(ii) the individual agents are the knowledge holders, and (iii) the individual’s bound-
ary spanning behavior is referred to as knowledge brokering. Building on Hargadon’s
qualitative concept, Hsu and Lim (2011) show quantitatively—at the firm level—that
knowledge brokering behavior can be an important organizational capability and a de-
terminant of innovation performance across competing firms. They describe knowl-
edge brokering as a recombination phenomenon, namely taking knowledge from one
(or more) domain(s) and reapplying it to another domain in order to innovate. Trans-
lating this argument to the context of our paper, we suggest knowledge brokering can
be a desirable behavior in individual contributors, likely leading to better learning
performance by recombining knowledge from across competing communities.

The spectrum of knowledge brokering comprises the following two extreme situ-
ations. On one end, a single individual knowledge holder from one given community
successfully works with individuals all belonging to another community. On the other
end of the spectrum, several individuals each belonging to a different community suc-
cessfully work together, effectively recombining their knowledge to innovate. In both
successful circumstances learning occurs that benefits all the individuals involved,
while at the same time modifying the social boundaries of knowledge.

2.4 Knowledge brokering and learning performance

The literature shows that boundary spanning search behavior of this kind has a posi-
tive association with innovation and learning performance, but falls short quantifying
the effects of knowledge brokering.

March (1991), discussing the role of exploration relative to exploitation in
learning, was among the first to highlight how local feedback—characteristic of
exploitation—produces strong path dependence and therefore suboptimal innovation
outcomes; hence the importance of exploration or search behavior. Furthering this
view, Ahuja and Lampert (2001) argued against innovation traps arising from search
favoring the familiar, mature, and local. Based on their investigation of patent and
patent citation activity in the chemical industry, they suggest experimenting with the
new and unfamiliar as a means to achieve breakthrough inventions. Rosenkopf and
Almeida (2003), studying patent data in the semiconductor industry, suggest bridg-
ing geographic and technological distance by developing alliances and encouraging
labor mobility, as a means to overcome the limitations of local search. Combining
the new and unfamiliar and integrating it in a new context defines the specific kind of
interactive search or exploration behavior we here refer to as knowledge brokering.

Brown and Eisenhardt (1997) contributed to a complex system theory in organiza-
tions by unveiling the importance of semistructures, namely organizational forms that
exhibit partial order between the very rigid and the completely chaotic, which are syn-
ergistic with boundary spanning behavior. We assimilate such semi structured organi-
zational form to the community, and use the microsociological perspective adopted by
Hargadon (2002) as a point of departure for studying the dynamic effects of bound-
ary spanning behavior on learning performance. In our model, knowledge brokering
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implies the crossing of community boundaries by a knowledge holder—an individual
learning agent holding knowledge of his own, who finds new use for it in a new sit-
uation, where the outcome is socially supported by other learning agents (from other
communities).

3 Evidence from the Netflix Prize case

The Netflix Prize challenge offers a valuable case study that makes concrete the con-
cepts studied in this research. On one side, Netflix managed to mobilize external
communities with distinct knowledge backgrounds by means of an open competition
for which it (i) freely revealed a large amount of data, and (ii) offered an online fo-
rum where participants could interact. On the other side, the competing communities
formed into teams to work with the freely revealed data using their own algorithms, as
well as with the algorithms of others, in order to develop new and improved ones. As
such, the Netflix Prize challenge offers insights on how individual participants from
different knowledge communities incurred in free revealing and knowledge broker-
ing behavior in order to find new solutions. We informed our analysis of this case
using qualitative evidence, solution submission data over a one-year period, and data
from a survey of participants conducted shortly after the challenge was over (Novem-
ber 2009). The insights from this analysis suggest an important association between
knowledge sharing behaviors of the participants and system-level patterns of learning
performance. Finally, we use these insights to inform a model which investigates this
association further (cf. Sect. 4).

3.1 The Netflix Prize challenge

Netflix is an online movie-rental company with $3.2 billion in sales and 26 million
subscribers by yearend 2011. Netflix’s interactions with its customers occur solely
online and one source of competitive advantage lies in its ability to offer its customers
with movie recommendations tailored to their individual tastes. Therefore, one of the
company’s core assets is the information it collects about its customers, particularly
their individual movie ratings. The company processes this information to turn it into
new movie recommendations using a sophisticated recommendation algorithm.3

In 2006, Netflix made a bold attempt to improve their recommendation algorithm
by massively engaging with experts from outside of their own firm through an open
challenge on the Internet. The Netflix Prize was a contest devised to attract top talent
from around the world to help Netflix improve its movie recommendation system, at

3A recommendation algorithm automatically suggests targeted products to a user based on his or her
available information and that of other people with similar information. Recommendation algorithms use
different kinds of input data, such as product and consumer attributes, and transactional data involving
consumers and products (e.g., buying, rating, browsing). Algorithms vary in implementation, including
techniques such as regression, classification, collaborative filtering, link analysis, among others. Compa-
nies such as Amazon.com rely on recommendation systems to increase online sales and improve customer
loyalty.
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a time when the company rented out movies solely on DVD.4 In this challenge, talent
was drawn from various communities, including academic communities in different
fields and industry participants.

On October 2, 2006, Netflix kicked off the contest freely revealing an unprece-
dented data set of (anonymized) customer data—it opened up 100 million entries
of its customer’s movie ratings database free for download—, and offered a $1-
million reward in exchange for a 10 % improvement to its movie recommendation
system. Netflix decided on a performance metric (RMSE, see footnote 5) to bench-
mark the solutions of others, using the company’s own solution’s RMSE as the base-
line (Netflix Cinematch RMSE score was 0.9525). The contest—meant to last at least
5 years—explicitly stated in its terms that: “to win, . . . you must share your method
with Netflix . . . and you must describe to the world how you did it and why it works”
(Netflix Prize Rules 2006). Netflix provided a dedicated website and community plat-
form to facilitate communication and interaction among participants (Netflix Prize
Community 2008).

One year after the launch of the contest, Netflix took advantage of the accumulated
effort of over 20,000 submissions originating from over 160 countries. In November
2007, the company paid a ‘progress prize’ of $50,000 (Netflix 2007) for the then best
performing solution (less than the 10 % required for the Grand Prize) from the com-
bined team KorBell which offered an 8.43 % improvement to its movie recommenda-
tion system. The amount of this reward is small given the level of computational and
mathematical skill, and compound collective effort displayed by the then over 30,000
Netflix Prize participants. On the one hand, the use of an open challenge to improve
the recommendation algorithm was cost-effective. On the other hand, of key interest
to our analysis, there were important knowledge spillovers influencing the outcomes
achieved.

3.2 Free revealing and knowledge brokering

A closer look at the Netflix Prize challenge offers empirical evidence of the two
knowledge sharing behaviors of interest in this study: free revealing and knowledge
brokering. We document these behaviors through qualitative data analysis and using
data from a survey of challenge participants.

Qualitative evidence: illustrative examples Studying the Netflix Prize forum, the
Netflix Prize leaderboard, and the anecdotal evidence surrounding the progress prize
awards, we found qualitative evidence of free revealing and knowledge brokering be-
havior. For instance, on January 7, 2007 a participant team made its entire source

4Netflix began offering streaming video content one year after the launch of the Netflix Prize challenge. At
the end of the challenge (2009), the company continued to rent out the majority of their movies on DVD,
although the ‘on demand’ streaming video business was already expanding rapidly. The new possibilities
that customers had, to instantly watch movie trailers online before renting a movie, or to instantly switch
movies half way, would soon dramatically change how customers would choose the next movie to watch.
These new behaviors were non-existent in the customer database that Netflix had cumulated during the
DVD era and shared for this challenge, likely limiting the future applicability of the solutions developed
by challenge participants.
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code freely available to everyone, which sparked an open exchange of source code,
explanations, and extensions to the code, among a number of participants in a sin-
gle forum thread with 77 postings that lasted until May 1, 2009 (Netflix Free Re-
vealing 2007). The codified information made available online constitutes a knowl-
edge commons from which all communities may benefit. In another instance, as a
progress prize milestone approached, two teams from historically different commu-
nities of practice (Dinosaurs and Gravity) joined together and combined their tech-
nologies into one which furthered their position on the Netflix Prize Leaderboard
(Netflix Knowledge Brokering 2008). In fact, knowledge brokering of this kind oc-
curred mostly before the awarding of each yearly progress prize, and with greater
frequency as the award date of the final prize got closer. At the outset of each
award, this knowledge brokering activity resulted in a better performing algorithm
judging from the achieved performance of the combined solutions on the leader-
board.

An illustrative example linking free revealing and knowledge brokering to mea-
surable performance is when the first-year progress prize was awarded to Kor-
Bell (USA). They presented their work to the Netflix Prize community at large,
revealing in verbal and in codified form how their solution actually combined
several different approaches developed by others (Bell and Koren 2007; Bell et
al. 2007). This occurred once again in reaching the second-year progress prize,
awarded to “BellKor in BigChaos”. Finally, on September 21, 2009, the win-
ning team was announced: “BellKor’s Pragmatic Chaos”. It was a combination
of three teams, “BellKor”, “BigChaos”, and “Pragmatic Theory”. This evidence
suggests that free revealing and knowledge brokering appear to have played a
significant role enabling the recombination of knowledge to achieve better out-
comes.

Survey of participants: the big picture To better understand the extent of the open
disclosure of codified knowledge (free revealing), and the importance of the need
for new knowledge and the recombination of knowledge across domains of expertise
(knowledge brokering), we surveyed a sample of 211 Netflix Prize contest partici-
pants in November 2009 (see Table 1).

The answers to the survey show that contestants appreciated that Netflix freely re-
vealed its customer preference database to facilitate their work (Table 1, Question 1).
In addition, participants recognized their need for new knowledge when preparing
a submission to the Netflix Prize (Table 1, Question 2). Specifically looking at free
revealing behavior, the survey reveals that over the course of their participation in
the Netflix Prize, 19 % of participants published the algorithms they developed and
13 % open sourced their software code, while 44 % of participants acknowledged
to have incorporated other people’s software code into their own solutions (Table 1,
Questions 3–5). As far as knowledge brokering behavior is concerned, 51 % of re-
spondents indicated that they discovered completely new fields or techniques from
other participants, 55 % said they exchanged ideas with others in the community, and
55 % of participants admitted to having incorporated completely new knowledge into
their own work (Table 1, Questions 6–8).
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Table 1 Netflix Prize survey responses on free revealing and knowledge brokering

Nr. Question Mean Min Max Obs Type

(Likert scale 1–7: 1 = strongly disagree, 4 = neutral, 7 = strongly agree)

1 The data Netflix put online for download strongly motivated my
participation

5.13 1 7 211 FR

2 While working on a submission to the NP I sometimes needed
knowledge I did not have

6.04 1 7 135 KB

(Yes or No dummies: 1 = yes, 0 = no)

Over the course of my participation in the NP:

3 I published my NP algorithms (online, conference, journal) 0.19 0 1 141 FR

4 I ‘open sourced’ my NP software (made my code available online) 0.13 0 1 141 FR

5 I incorporated other’s software code into my software 0.44 0 1 142 FR

6 I discovered a completely new math or computational technique/field
from others

0.51 0 1 142 KB

7 I shared and exchanged ideas with others in the NP community 0.55 0 1 142 KB

8 I incorporated a completely new math or computational technique/field
into my own work

0.55 0 1 141 KB

Notes: NP refers to the Netflix Prize

Not least, among the 135 complete responses to the survey we could clearly iden-
tify disjoint communities in the sense defined in Sect. 2: mathematicians, economists,
computer scientists, chemists, lawyers, physicists.

These data show that both free revealing of codified information and knowledge
brokering behavior were widespread among contest participants, and further suggest
that these behaviors played an important role in the development and improvement
of solutions submitted to the Netflix Prize.

3.3 Innovation and learning performance

In order to understand the performance implications of the evidence discussed in
Sect. 3.2, we studied 365 days of data from the Netflix Prize Leaderboard cover-
ing 7,533 valid submissions to the Netflix Prize starting from the official launch of
the contest. Each valid submission in the Netflix Prize leaderboard performed better
than the initial Netflix recommendation system, CineMatch (as measured by RMSE,
specifically used to compare performance in this contest).5 These data are depicted in
Fig. 1. Figure 1a shows the progress made by 878 registered teams during this one-
year period. We defined a reference threshold line for the best-performing first-time

5A smaller RMSE, Root Mean Square Error, means smaller predictive error for movie ratings. A movie
recommendation is more or less accurate depending on how close the algorithm’s predicted rating—based
on historical data—is for the user, relative to the actual observed rating by the user. In other words, if
a recommendation system predicts a certain user will rate the movie “Star Trek 27” 5 stars (the highest
rating) and we know the user actually rated the film 4 stars, there is a difference of 1 star. These differences
are squared and averaged across all predicted-actual pairs (Netflix keeps a separate testing database that it
uses to test the performance of proposed algorithms).
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Notes: In one year, participants in the Netflix Prize provided 7,533 unique valid submissions that reached
the leaderboard. Namely, each of these submissions outperformed the company’s own movie recommen-
dation system, Cinematch. A smaller value on the vertical axis of the graph means better performance
(i.e. smaller RMSE, Root Mean Square Error, means smaller predictive error for movie ratings).

Fig. 1 Scatter plot of Netflix Prize Leaderboard entries. (a) Color adjustment for BellKor. (b) Volatility
line and label adjusment

submission to the contest within 90 days of its launch. We assume this threshold to
represent the state-of-the-art performance (globally) available at the time the contest
was launched. We refer to it as the ‘pre-innovation performance’ threshold.

To unveil the system-level characteristics in the Netflix Prize submissions data, we
computed the weekly average of all submissions and the weekly min-max envelope
around the scatterplot of all submissions over the one-year time period. These are
depicted in Fig. 1b, and show that (i) the average performance of the submissions
made describes a system-level learning curve, and (ii) the volatility of the perfor-
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mance of the submissions made first increases and then decreases toward the end of
the period observed. In the last two months, the average performance of submissions
consistently outperforms the pre-innovation performance threshold. This shows the
importance of the introduction of this challenge as an organizational innovation that
allowed the system as a whole to learn and produce solutions that on average outper-
formed the pre-innovation performance threshold.

Taken together, the importance of free revealing and knowledge brokering un-
veiled by the survey data and the patterns of system-level performance gains just
discussed lead us to conclude that contest participants learned a great deal while de-
veloping submissions for this initiative. On the one hand, at the outset of one year
the majority of participants surpassed the once unknown state-of-the-art performance
level prevalent at the time the contest was launched. On the other, the smaller perfor-
mance volatility observed over the last four months suggests that there is system-level
convergence, in spite of having a larger number of participants and submissions over
that period.

3.4 Research question

The evidence presented in this section shows that free revealing and knowledge bro-
kering were both important elements in shaping the solutions submitted to the Netflix
Prize challenge. Our analysis of this evidence further suggests a relationship between
free revealing, knowledge brokering, and an observed systematic improvement on
average learning and a clear pattern affecting the volatility of outcomes over time.
Given these results, there is a larger question for research in this competitive context:
How do combinations of different levels of free revealing and knowledge brokering
affect system-level learning performance? In the next section, we develop a model to
explore those effects beyond the scope of this one case study, in an effort to generalize
the insights derived from it.

4 Model description

Let us begin by considering agents representing individual contributors who: (1) join
in teams to execute projects, and, as they successfully execute them, (2) form into
communities (spanning contributors to different projects). Membership in project
teams evolves in response to new project opportunities. Membership in communi-
ties evolves over time when individual contributors engage in knowledge brokering
behavior. Moreover, individual contributors may freely reveal a fraction of the knowl-
edge they possess, so that it becomes available to everyone else through a knowledge
commons. The model we describe next aims at exploring how these micro behaviors,
namely free revealing and knowledge brokering, influence the evolution of learning
patterns for the universe of contributors.

The model comprises a total of N contributors, namely {1, . . . , i, . . . ,N}, initially
assumed to be independent agents with learning capabilities (see Fig. 2). There are
M specialized roles, each denoting a specific ability, i.e., {Ri,Rj , . . . ,RM}, assumed
to be useful to execute a project. A given contributor belongs to one of M roles
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Fig. 2 Specialized contributors as agents in the model

(M � N ). In the model, we assume an even number of contributors per specialized
role, namely N/M contributors per role. Role assignments are permanent. By con-
trast, membership in a community results from executing projects with others: upon
successfully executing a project with others, a given contributor i becomes a member
of a community (e.g. Ci ). A community’s membership comprises contributors from
any role, and community membership evolves as projects opportunities are success-
fully executed.

4.1 Project opportunities

Opportunities for innovation in our model are represented by the random generation
of new project opportunities P . Some are successfully executed (hence feasible and
realized). Others cannot be executed (hence possible but not realized). A stochasti-
cally generated new project opportunity P involves M contributors who are prospec-
tive members of that project’s team—recall that there are N/M contributors per role.
Initially (at time t0), within each role, a project contributor i is chosen with uniform
probability pi(t0) = p0 = 1/(N/M) = M/N . At this point, note that if pi remained
constant, the emergent network of contributors who faced project opportunities to-
gether would be random. Nonetheless, it is now widely acknowledged that most real
networks exhibit preferential connectivity (Barabási and Albert 1999). Another way
to describe this phenomenon is that “success breeds success”. Therefore we add to
our model a “preferential attachment” policy, implemented via a probability adjust-
ment function.

Contributors such as i who succeeded at innovation—namely, successfully exe-
cuted a new project opportunity P —form into a project team and see their prob-
ability of being selected again rise6 by �prob = padj • (M/N). Hence, if i is
successful at executing a project, his new probability of being chosen is adjusted

6Our model uses a probability adjustment value of padj = 0.5. We experimented with different values
for padj in the interval (0 to 0.5], with highly consistent results. Extreme values were avoided since
unrealistic. Note, for example, that a value of padj = 1 would—upon failure to execute a project involving
a first time contributor—lead to having pi(t1) = pi(t0) − padj • (M/N) = M/N − 1 • M/N = 0, which
eliminates all failing first-time contributors from immediate future project opportunities. By contrast, a
value of padj = 0 would lead to uniformly random draws of contributors for each new project opportunity,
regardless of their history of successes or failures, since padj = 0 implies no adjustments are made to the
probabilities of being chosen from one project opportunity to another.
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upwards as follows: pi(t+1) = pi(t) + �prob = pi(t) + padj • (M/N). Simultane-
ously, all others (N − M) see their likelihood of being selected again go down7 by
�prob/(N/M − 1). Conversely, if i is unsuccessful at executing a project oppor-
tunity, its probability of being chosen in the next round is adjusted downwards as
follows: pi(t+1) = pi(t) − �prob. All those outside the project team would have their
likelihood of being selected again in the future go up by �prob/(N/M − 1).

At all times, it is probabilistically possible for any contributor to be selected
again. Only the probability of this occurring varies. As some unsuccessful contribu-
tors see their probabilities reduced—to possibly zero—they become only temporar-
ily marginalized. Indeed, every subsequent project failure (not involving the already
marginalized contributors) is sufficient to bring those marginalized contributors back
under consideration, since their probabilities go up. Note that whenever a project is
executed, it is considered successful since some knowledge and learning are derived
from it. Only when the project is not executed is it considered unsuccessful.

The stochastic generation of new project opportunities is intended to model a uni-
verse of innovative opportunities; some opportunities more likely to involve success-
ful contributors from the same community, but also other opportunities involving
otherwise unrelated contributors from different communities. Whether those contrib-
utors successfully execute the opportunity depends on the context and their behavior,
as further discussed in Sect. 4.4. In the long run, more new project opportunities will
tend to be presented to historically successful contributors and to those contributors
who have not yet been involved on a project, while new project opportunities involv-
ing previously unsuccessful ones will tend to occur less often.

4.2 Independent and interdependent learning productivity and performance

Our model of learning in individual agent contributors uses an approach related to
‘learning by doing’, which Levitt and March (1988, p. 321) in their exploration of or-
ganizational learning, claimed “[t]his equation, similar in spirit and form to learning
curves in individuals and animals, has been shown to fit production costs . . . reason-
ably well in a relatively large number of products, firms . . .”. The functional form
we use represents learning as a progress function (Dutton and Thomas 1984), which
builds on the general form of the learning curve described in Yelle (1979). Consistent
with this literature on learning, we define every contributor i to have an individual
learning productivity factor Πi reflecting his individual learning ability, as a function
of the number of projects executed:

Πi = Π0 · (1 + ni)
Li (1)

where:

Π0 = initial productivity factor for individual work
ni = total number of projects executed by contributor i

7There are M contributors who are successful together, so the total upwards adjustments add up to
M • �prob. Simultaneously, there are (N − M) others who see their probability adjusted down by
�prob/(N/M − 1), so that the total downwards adjustments add up to (N − M) • �prob/(N/M − 1) =
(N − M) • M • �prob/(N − M) = M • �prob.
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Li = log2 λi = characteristic ‘learning index’ for contributor i

λi = individual ‘learning rate’8 for contributor i

This mathematical function is characteristic of the family of learning curves dis-
cussed by Yelle (1979). For illustration, given contributor i = 1, with a learning rate
λ = 0.5 and an initial productivity factor Π0 = 1, its individual learning productiv-
ity factor is Π1 = (1 + n1)

log 2(0.5) = (1 + n1)
−1 = 1/(1 + n1). This function cor-

responds to a typical rectangular hyperbola translated by one unit: intersecting the
ordinates axis at point (0,1), namely when n1 = 0 then Π1 = 1; and having a hori-
zontal asymptote on the abscissa axis at Π1 = 0. As contributor 1 executes projects,
his associated individual learning productivity factor, Π1, evolves over the path de-
scribed by this learning curve function, thereby leading to better performance from
project to project that the contributor has successfully executed, but never reaching
the asymptote. In short, a smaller value of Π1 implies better performance.

In addition, we introduce a joint learning productivity factor Πij reflecting the
learning cumulated between i, j when working on projects together:

Πij = Π00 · (1 + nij )
Lij (2)

where:

Π00 = initial productivity factor for collaborative work
nij = number of projects executed together by contributors i, j

Lij = log2 λij = characteristic learning index between contributors i, j

λij = joint learning rate between contributors i, j

For illustration, given contributors i = 1 and j = 9, with a joint learning rate
λ1,9 = 0.5 and an initial productivity factor Π00 = 1, their joint learning produc-
tivity factor is Π1,9 = (1 + n1,9)

log 2(0.5) = (1 + n1,9)
−1 = 1/(1 + n1,9). Similar to

our previous example, this function corresponds to a typical rectangular hyperbola
translated by one unit: intersecting the ordinates axis at point (0,1), namely when
n1,9 = 0 then Π1,9 = 1; and having an asymptote at Π1,9 = 0. As contributors 1 and
9 execute projects, their associated joint learning productivity factor, Π1,9 evolves
over the path described by this hyperbolic function, thereby leading to better perfor-
mance from project to project that is successfully executed, but never reaching the
asymptotic value of 0. As in the previous example, a smaller value of Π1,9 leads to
better performance.

Let’s now define TRi , a constant value representing the baseline performance of a
typical project task performed by a typical contributor in role Ri . Based on this, we
further define the actual individual productivity-adjusted performance for contributor
i executing that particular project task as:

Ti = Πi · TRi = Π0 · (1 + ni)
Li · TRi (3)

This is, Ti represents the actual individual productivity-adjusted performance rel-
ative to the constant TRi . Note, for example, that in the case where this is the first
project task (namely ni = 0) executed by contributor i, and if for simplification we

8For a thorough discussion on “learning rates” and learning curves in general, please refer to Yelle (1979).
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were to assume Π0 = 1, we would have: Ti = TRi . Continuing with this example, as i

accumulates experience through the successful execution of projects (namely ni > 0),
Ti follows a learning curve as defined by Eq. (1), amplified by the constant TRi .

Similarly, we define Tij as the joint productivity-adjusted performance of a col-
laborative task performed by i with j :

Tij = Πij · Xij · TRi = Π00 · (1 + nij )
Lij · Xij · TRi (4)

where Xij is a constant, representing the symmetric ‘dyadic affinity’9 between i

and j . From the perspective of agent i, the dyadic affinity constant Xij multiplied
by the individual baseline productivity constant TRi , yields the constant defining the
baseline productivity of i in a collaborative task with j . This is, Tij �= Tji . Note, as an
example, that in the case where this is the first project task executed by contributors
i and j (namely nij = 0), and if for simplification we were to assume Π00 = 1, we
would have from the perspective of agent i: Tij = XijTRi (and from the perspective
of j : Tji = XijTRj ). As i and j accumulate joint experience through the successful
execution of common projects (namely nij > 0), Tij follows a learning curve as de-
fined by Eq. (2) amplified by the constant XijTRi . Similarly, Tji follows a learning
curve as defined by Eq. (2) amplified by the constant XijTRj . We assume that the
accumulation of project task execution experience, individual and joint, is equiva-
lent to the accumulation of knowledge, an asset stock in the sense of Dierickx and
Cool (1989, p. 1506). As an individual agent executes independent project tasks—
requiring no interaction with others—he develops experience reflected in Eq. (3). As
an individual executes project tasks that require interaction with another agent, he
develops experience reflected in Eq. (4).

4.3 Project performance outcomes

We define a project as always having (1) an individual task component and (2) a
dyadic task component, to which the corresponding learning components—individual
and dyadic—are associated. We then further assume (1) all individual learning asso-
ciated to individual tasks to be independent of any dyadic learning component, and
(2) all different dyadic learning components to also be independent from one another.
These assumptions allow for a simple linear model of project performance. The first
assumption implies that the learning that an individual i develops from working on
independent project tasks does not transfer into that individual i being better able
to work jointly with another individual. The second assumption implies that the joint
learning that an individual i developed working jointly with another individual j does
not translate into that individual i being better able to work jointly with yet another
individual k.10

9The dyadic affinity relationships amongst i, j pairs are represented by a symmetric matrix X of all Xij

elements.
10We acknowledge that the independence assumptions introduce important limitations. For example, the
second assumption rules out the possibility that Tij could influence future dyadic interactions Tik , where
j �= k. However, we believe the simple independence model represents performance at the project-level
reasonably well, e.g., when i gains experience executing n projects with j , and then moves onto a new
project where i should work with k for the first time, the learning gained from the prior n projects is
reflected in the new project n + 1 thanks to Ti .
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Based on the above independence assumptions, the performance associated to a
project P involving M contributors is then defined by the sum of all the individual
performances as given in (3), and all the joint performances among the contributors
involved in the project as given in (4). This is:

TP =
∑

i∈P

Ti +
∑

i∈P

∑

j∈P

Tij , i �= j (5)

This formula makes it explicit that the learning performance of a project depends both
on the performance ability of each of the M individual contributors (first term in the
equation), and on the joint performance ability of each pair of contributors (second
term in the equation) who are in the team executing the project.

This has some implications. For example, a project involving one very inexperi-
enced contributor, say i = 1 that has no experience, would lead to a lesser project
performance beyond that reflected by the individual contributor’s performance T1
alone. The complete lack of experience of contributor i = 1 gets reflected also in his
lack of joint experience working with other contributors j who are also participating
in project P , through T1j (where j �= 1). Conversely, a project involving one very ex-
perienced contributor could lead to a better project performance beyond that reflected
by the individual contributor’s performance alone, whenever the experience of i com-
prises past experiences working with other members j currently in the team. When
the individual i has significant overall experience, but no relevant experience involv-
ing other members j of the current team, then his otherwise significant experience
would only be reflected in the individual performance factor (first term in Eq. (5)).

As projects get successfully executed, each contributor i develops a unique knowl-
edge asset stock—individual and joint—as a result of his own independent experience
and his joint interactions with various other contributors j . The total knowledge as-
set stock for i is therefore reflected by both ni , which is knowledge developed and
held exclusively individually (individual knowledge asset stock); and all of the nij

(j �= i), which constitute knowledge developed jointly when interacting with others
and thereby held jointly with each of them (joint knowledge asset stock). Note that ni

accumulates for each and every successful project involving contributor i, whereas
nij does not.

For a given project opportunity P , comprising M contributors we define its nor-
malized performance:

Perf P =
∑

i∈P Ti + ∑
i∈P

∑
j∈P Tij∑

i∈P TRi + ∑
i∈P

∑
j∈P XijTRi

, i �= j (6)

This is the value computed for each project outcome in the model.

4.4 Community formation

Individual contributors form into communities through their execution of projects.
At first, there are N independent contributors and no communities. Independent con-
tributors, as we refer to them in this article, do not belong to any community. Then,
the simplest case of community formation is that resulting from the successful exe-
cution of a first project P0, or seed opportunity, involving a group of M independent
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contributors i. These contributors become the first members of a new community C0.
This is:

i ∈ C0, ∀i ∈ P0 (7)

Our model further assumes that members of an already existing community, such
as C0 (assuming the seed opportunity has already taken place, and therefore Eq. (7)
had already been applied to all i), will influence other independent contributors (un-
affiliated newcomers) with whom they subsequently work, by virtue of their relative
greater community experience and membership. This means that, following the suc-
cessful execution of another project Pn involving independent contributors j and
established members i of an existing community C0, the up-to-then unaffiliated new-
comers j become members of community C0 as well:

j ∈ C0, ∀j ∈ Pn (8)

As new project opportunities are executed, several disjoint communities form,
namely {C0, . . . ,Cx, . . .}. Each community represents the social boundaries of a
knowledge domain, with its own membership and experience paths (cf. Sect. 2, Defi-
nition). In our baseline model, membership in communities is strict in order to estab-
lish the existence of competing communities (cf. Table 2, Scenario 1). In this base-
line, a stochastically generated new project opportunity involving a heterogeneous
group of contributors—each already belonging to a different community—always
fails to be executed, and hence does not affect membership composition in the com-
munities facing the (failed) new project opportunity.

4.5 Competing communities

Competing communities Cx , Cy (where: Cx ∩ Cy = ∅, x �= y) arise from every new
seed project opportunity involving M independent contributors. This leads to having
several disjoint, co-existing communities each with different memberships and expe-
rience paths. The knowledge held by the community is that held by its members. To
further define our baseline model, we assume that each community as a whole com-
petes to gain exclusive experience and knowledge from executing projects, striving to
develop its own practice before that of others. Hence, in our baseline model—void of
free revealing and knowledge brokering—a project opportunity involving members
of the same community can be successfully executed, while that involving a hetero-
geneous team of contributors cannot.

Recall that from a purely modeling perspective, new project opportunities are
stochastically generated to encompass a group of M contributors (cf. Sect. 4.1). There
are no deterministic constraints forcing these M contributors to belong to the same
community when they are selected. Therefore, it is statistically possible that a new
project opportunity could involve members of different communities. This is where
conflict arises amongst strictly competing communities. For project opportunities in-
volving more than one community, the default outcome of our baseline model is to
forego the opportunity.

Foregoing the execution of new project opportunities entails foregoing the knowl-
edge and experience that could otherwise have been gained by choosing to work on
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the project. However, not only is it theoretically the case that strictly competing com-
munities may choose not to cooperate, it can also be argued that it is difficult for indi-
vidual contributors from different experienced communities to effectively work on a
project, given the significant differences in practice that may exist between commu-
nities. Both these reasons could make collaboration across communities less likely
to occur, which is what our baseline model of strictly competing communities re-
flects.

4.6 Free revealing behavior

Free revealing behavior implies the sharing of codified knowledge by an individual
contributor j through a knowledge commons. This knowledge then becomes acces-
sible to all contributors in the system regardless of their community affiliation. It
follows from this that all contributors can maintain their membership in their respec-
tive community, while benefiting from the cumulative knowledge stock shared by
other contributors from any of the communities. To model free revealing of codified
information we extend the individual learning model to account for the additional
learning a given contributor i can derive from the shared knowledge commons. This
is operationalized by modifying Eq. (1) as follows:

Π i
FR

= Π0 ·
(

ni +
∑

j,j �=i

βj · nj

)Li

= Π0 ·
(

ni +
∑

j

(βj · nj ) − βi · ni

)Li

= Π0 ·
(

(1 − βi) · ni +
∑

j

βj · nj

)Li

, 1 ≤ j ≤ N (9)

where:

βj = degree of openness of contributor j towards sharing codified knowledge,

0 ≤ βj � 1

ni = number of individual projects executed by contributor i

nj = number of individual projects executed by contributor j

In the model set forth here, βj represents the amount of codified knowledge that
j contributed into the commons. It is expressed as the percentage of the individual
knowledge gained by contributor j upon executing projects, which had been shared
with the system at large. The sum of all this shared knowledge (i.e. the summation
term in Eq. (9)), originally produced by each of the N contributors and eventually
collectively accessible by all of them, constitutes what we refer to as the knowledge
commons. The codified knowledge that is freely revealed outlasts any membership
ties of a contributor with a particular community. Note that if we had β = 0 for each
and all individual contributors in the model, then Eq. (9) would simply revert back to
Eq. (1).
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Earlier, we argued that one of the reasons preventing contributors from different
communities from working together was their widely differing knowledge. Following
the free revealing of codified knowledge into a commons, however, there is public
awareness of the knowledge developed by each community. Thus, one may safely
argue that this should diminish the knowledge gap and hence improve the likelihood
of collaboration between members from disparate communities. This is when we can
introduce knowledge brokering behavior in a systematic manner.

4.7 Knowledge brokering behavior

According to Hargadon (2002, p. 41), knowledge brokering behavior entails taking
knowledge from different domains and linking it to new situations while building
new social networks around the innovations hence created. Knowledge brokering re-
quires “intensive interactions between individuals” (Hargadon 1998, p. 270). This is
different from building a knowledge commons by assembling the individuals’ freely
revealed codified information. In our model, the knowledge broker is an individual
member of one community—e.g., i, belonging to Ci—who brings his knowledge to
execute a new project opportunity PX involving members from another more dom-
inant community (e.g. d belonging to Cd ). Cd is assumed to be a community that
is measurably more valuable than Ci , for knowledge brokering behavior to occur,
consistent with preferential attachment theory (Barabási and Albert 1999), the pref-
erential attachment policy in our model (cf. Sect. 4.1), and in line with the generally
accepted economic assumption of utility maximization.

In practical terms, knowledge brokering takes place when i—facing a new project
opportunity involving a member of another community d—joins the more dominant
community Cd , thereby expanding the social boundary of the latter—in this case,
membership of Cd increases. This behavior benefits i to the extent that he becomes
part of a relatively more valuable community Cd . To operationalize this behavior at
the level of the individual contributor we introduce an individual knowledge broker-
ing threshold k, and use a measure of community value—namely, total community
membership11—in the associated decision rule for the candidate broker i to join or
not join a dominant community Cd involved in a new project opportunity. In this
case the decision rule for the candidate knowledge broker i is based on the following
ratio of community value, r , which is to be compared to the knowledge brokering
threshold k:

ri,d = Membership(Ci)

Membership(Cd,d �=i )
, i, d ∈ PX, (10)

where:

Ci = the community to which the candidate knowledge broker i originally belongs,
Cd = the dominant community present in the project (Cd �= Ci ), as represented by
member d who belongs to Cd

11In addition to total community membership counts, we also explored total cumulated community knowl-
edge. The results were similar. The intuition behind why these measures of influence yield similar results
is because the greater the membership of a community, the larger the body of knowledge the community
holds.
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The threshold k is our proxy for the amount of knowledge brokering behavior
displayed by an individual contributor. The decision rule based on Eq. (10) is then:

if (ri,d <= k)

then i does incur in knowledge brokering behavior
(hence executes the project opportunity)

else i does not incur in knowledge brokering behavior
(hence gives up the project opportunity),

(11)

where:

k = the knowledge brokering threshold (assumed to be a constant).

0 ≤ k ≤ 1

Knowledge brokering behavior occurs when the ratio ri,d is smaller than the
threshold k. The relationship in Eq. (11) imposes that the relative value of Cd over
Ci be at least 1/k times larger for i to incur in knowledge brokering behavior. For
example, if k = 0.1, then Cd needs to be at least 1/0.1 = 10 times bigger than Ci for
i to incur in knowledge brokering behavior when faced with a project opportunity in-
volving d . Another example, if k = 0.5, then Cd needs to be at least 1/0.5 = 2 times
bigger than Ci for i to incur in knowledge brokering behavior. At the extremes: if
k = 0, then there is no knowledge brokering behavior by anyone, ever. If k = 1, then
i will always incur in knowledge brokering behavior, regardless of the value of Cd .

Knowledge brokering activity (or lack thereof) has an impact on the success (or
not) of new project opportunities PX involving contributors from competing com-
munities (e.g. i from Ci , d from Cd , etc. all involved in project PX). On the one
hand, a smaller threshold level k (i.e. closer to 0) limits the success of new project
opportunities to a subset of projects with a substantial community value differential
(when value of Cd � value of Ci ). For the individual knowledge broker i, this value
differential can be interpreted as the gain that he obtains from working with the more
valuable community. The cost to the individual knowledge broker i is the cumulated
experience working with individuals from his previous community Ci that he cannot
transfer to the new community Cd , since he has yet to develop project experience with
all new individuals like d . On the other hand, a larger threshold level k (i.e. closer
to 1) allows new project opportunities involving a more diverse pool of contributors
belonging to a greater range of communities to be successfully executed.

Now that we have established the individual-level rules of behavior governing
community membership, free revealing, and knowledge brokering, we can proceed
to analyze how these contribute to overall system-level learning.

5 Experimental design and simulation results

Our experimental design comprises four model scenarios depicted in Table 2.
The baseline experiment, or Scenario 1, highlights agents implementing a basic

learning model (see Eqs. (1), (2)) and forming into strictly competing communities
(see Eqs. (6), (7)). This baseline serves as a benchmark with which to compare the
scenarios introducing the independent variables of interest, namely free revealing
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Table 2 Experimental design

Model scenarios No free revealing Free revealing (FR)

No knowledge
brokering

• Scenario 1
Baseline model of competing commu-
nities emerging from seed project op-
portunities, each evolving in an en-
vironment of shared purpose where
individual contributors seek to build
their own community

• Scenario 2
Competing communities emerging,
each evolving in an environment of
shared purpose, with individual mem-
bers incurring in free revealing of
codified knowledge devoted to build-
ing a system-wide knowledge com-
mons

Knowledge
brokering (KB)

• Scenario 3
Competing communities emerging
and evolving in an environment of
shared purpose, with individual con-
tributors displaying knowledge bro-
kering behavior

• Scenario 4
Competing communities emerging
and evolving in an environment of
shared purpose, with individual con-
tributors simultaneously incurring in
FR and KB behavior

Notes: Four model scenarios exploring competing communities

(Scenario 2) and knowledge brokering (Scenario 3). Baseline Scenario 1 depicts a
situation where from the onset individual contributors attempt to share in the cre-
ation and nurturing of a common community (see Eqs. (7), (8)). Yet, several com-
peting communities emerge, as different subsets of independent contributors are pre-
sented with their first common project, referred earlier as seed project opportunity
(cf. Sects. 4.4 and 4.5).

Model Scenario 2 builds on baseline Scenario 1 (expanding Eq. (1) into Eq. (9)).
In Scenario 2, we introduce free revealing (whereby individual contributors share part
of their knowledge with everyone else via a knowledge commons). The knowledge
thusly shared by all contributors is assumed to be codified and cumulative in nature,
and available to the system at large. The amount of knowledge shared by each indi-
vidual depends on the free revealing parameter β (see Eq. (9)). Sticking to the strictly
competitive nature of the baseline model, individual contributors from different com-
munities forego opportunities to collaborate when facing a joint project opportunity
(cf. Sect. 4.5).

Model Scenario 3 builds on baseline Scenario 1 and introduces knowledge broker-
ing behavior (see Eq. (10) and decision rule (11)). In Scenario 3, knowledge brokers
from different communities can each decide to collaborate on a project opportunity in
spite of their knowledge domain differences. Such a decision depends on the knowl-
edge brokering parameter k (see decision rule (11)). Finally, Model Scenario 4 ex-
plores the effects of simultaneously having free revealing and knowledge brokering
behavior.

Informed by our study of the Netflix Prize challenge (cf. Sect. 3), we assume in
our simulation that there is a perturbation to the system in the form of the introduction
of an innovation (Taylor and Levitt 2007; Taylor et al. 2009). In our model, the in-
novation is the introduction of an organizational change involving communities, free
revealing, and knowledge brokering. As we observed from the Netflix Prize data,
there was a (unknown existing best) pre-innovation performance level Πpre before
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the contest was launched, which was revealed through the initial wave of submissions
in the first 90 days (cf. Sect. 3.3 and Fig. 1a). For practical purposes, in our simula-
tion we assume Πpre to be 1, and in our discussion we refer to it as the reference
performance threshold. Similarly, we assume the (initial best) post-innovation pro-
ductivity Πpost = Π0 to be 1.5. Other simplifying assumptions we made, which do
not affect the main findings of our study, are described in the next section along with
the results.

We implemented the model described in Sect. 4 as an agent-based model written
in the Python object-oriented scripting language, version 2.6.1. For each of the sce-
narios in our experimental design, we examine the patterns of simulation results for
a sequence of project performance outcomes (cf. Eq. (6)). In each scenario, when the
average system-level learning productivity improves to 1, we assume the system at
large has benefited from the innovation or organizational change introduced (analo-
gous to what was observed in the analysis of the Netflix Prize submissions data. Cf.
Sect. 3.3 Fig. 1b). Note that while the model specification in Sect. 4 does not impose
a limitation with regard to learning that could take place in parallel to a particular
project, our simulation implementation assumes a sequential execution of project op-
portunities in each simulation run. A large number of simulation runs of each model
setup unveil the patterns of results that are possible.

5.1 Results

The performance results we report for the nth project opportunity Pn, are the sta-
tistical average and variance of the normalized performance outcomes resulting from
1,000 simulation runs as measured by Eq. (6). The aggregate result for all projects un-
veils a distinct pattern of evolution of project performance outcomes. The discussion
of the model’s results focuses on the statistical patterns, mean and variance, observed
from these simulations. This is analogous to the analysis that we developed for the
Netflix Prize’s project submissions data (cf. Sect. 3.3).

The results of 9,000 simulation runs, 1,000 for each combination of parame-
ters, with M = 4 (cf. Sect. 2.1), are summarized in Fig. 3 (we also ran the simu-
lations with M = 2, 4, and 8 and found similar patterns of results). Each plot sum-
marizes the range of project performance outcomes observed after n project itera-
tions (n = 1, . . . ,100), with a reference performance threshold line defined at 1.0
for comparison purposes. The simulations address the four scenarios in our experi-
mental design (Table 2). As in our empirical analysis of the Netflix Prize case data
(cf. Sect. 3.3), we focus on the system-level average learning rate and learning rate
volatility. These are the central dependent constructs in our theoretical arguments. We
evaluate and compare each result according to three criteria: (1) how soon the aver-
age performance surpasses the reference threshold (after how many projects), (2) the
percentage of performance outcomes above (or below) that threshold, and (3) the best
performance outcome reached at the end of 100 projects.

Model Scenario 1, depicted in Fig. 3a, constitutes the baseline to which we com-
pare all other model variations. This scenario examines strictly competing communi-
ties (namely, no free revealing and no knowledge brokering behaviors in individual
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Fig. 3 Simulation results of system-level learning performance across competing communities.
(a) Scenario 1: β = 0, k = 0; (d) Scenario 2.1: β = 0.1, k = 0; (g) Scenario 2.2: β = 0.2, k = 0; (b) Sce-
nario 3.1: β = 0, k = 0.3; (e) Scenario 4.1: β = 0.1, k = 0.3; (h) Scenario 4.2: β = 0.2, k = 0.3; (c) Sce-
nario 3.2: β = 0, k = 0.6; (f) Scenario 4.3: β = 0.1, k = 0.6; (i) Scenario 4.4: β = 0.2, k = 0.6. Parame-
ter values used are informed by empirical studies and are fixed in the simulations. N = 40 contributors,
M = 4 roles, pinitial = 0.1, TRi = 1, Xij = 0.2, λ = 0.8 (typically between 0.7 and 0.9), Π0 = 1.5 (initial
post-innovation performance). Normalized pre-innovation performance is 1.0. There are 1,000 simulation
runs per parameter combination. The interval between dotted-lines covers 95 % of all simulation outcomes

contributors) that are formed of individual contributors who take every seed opportu-
nity (cf. Sect. 4.4) to create a common community. In spite of the individual contrib-
utors seeking to form a common community, a number of concurrent communities—
unaware of each other—arise from independent seed opportunities. The strictly com-
peting communities that emerge in this baseline case prevent project opportunities
involving contributors from disjoint communities from being pursued. Given this sce-
nario, the resulting average learning curve for the system does not cross the reference
performance threshold even after 100 project iterations. On the one hand, over 50 %
of the simulation outcomes end above the reference performance threshold. On the
other hand, the volatility of the resulting paths is fairly large (Fig. 3a illustrates the
spread of outcomes [μ−2σ,μ+2σ ] which is 0.67 units wide12 on the vertical axis at
the end of 100 project iterations). This latter result suggests that there is an important

12This 0.67 spread is used as a benchmark against which to compare the results in the subsequent model
scenarios.
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gap between the best and the worst performers when there is (a) no social interaction
amongst the contributors, and (b) no knowledge exchange across communities.

Model Scenario 2 examines the effects of free revealing and is represented by
Figs. 3d and 3g. These figures explore two levels of free revealing, 10 % and 20 %
respectively, which is based on and consistent with observed estimates from the open
source literature (Miller et al. 2006; Henkel 2006; Morrison et al. 2000). When free
revealing behavior is introduced in the model, the average learning curve for the sys-
tem not only consistently crosses the reference threshold at the end of 100 project
iterations, but it does so after 56 and 41 projects, respectively. This is an important
learning performance improvement over the results from model Scenario 1, where
the average did not reach the threshold after 100 projects. Nonetheless, the volatility
of the results remains quite high. For all levels of free revealing, the spread of out-
comes [μ−2σ,μ+2σ ] is at least 0.6 units wide on the vertical axis at the end of 100
project iterations. Furthermore, a non-negligible 25 % (Fig. 3g) to 35 % (Fig. 3d) of
project outcomes still end above the reference threshold. The spread of these results
quantitatively show—in a competitive setting—that free revealing alone, while gen-
erally beneficial for everyone in terms of the average learning achieved, does little to
reduce the gap between outperformers and underperformers.

Model Scenario 3 studies the effects of knowledge brokering as depicted in
Figs. 3b (30 %) and 3c (60 %). Knowledge brokering has a positive effect on the
average learning curve for the system, which surpasses the reference threshold af-
ter 63 and 43 projects, respectively. However, the most important effect is on the
volatility of the learning curve outcomes, which is significantly reduced as a result of
increasing knowledge brokering. For knowledge brokering at 60 %, the spread of out-
comes [μ−2σ,μ+2σ ] is 0.4 units wide on the vertical axis at the end of 100 project
iterations. Furthermore, all simulation outcomes consistently end below the reference
threshold (Fig. 3c). Hence, as most contributors share the system-level benefits that
ensue from knowledge brokering, it appears as a desirable behavior to promote across
communities. In turn, this would suggest that weaker competition amongst commu-
nities may be more desirable when the goal is that everyone achieve similarly good
results (through knowledge spill-overs resulting from knowledge brokering activity).

Model Scenario 4 explores the effects of combining free revealing and knowledge
brokering at different levels (Figs. 3e, 3f, 3h, and 3i). First, the average learning rate
improves for all combinations of free revealing and knowledge brokering (compared
to all previous scenarios). Second, the conclusions regarding the volatility of the per-
formance outcomes remain the same as in previous scenarios. On the one hand, this
means that having higher levels of free revealing, while leaving knowledge brokering
unchanged, leads to a negligible change in volatility (e.g., contrast Figs. 3e and 3h).
On the other hand, increasing knowledge brokering, while leaving free revealing un-
changed, leads to a significant decrease in volatility (e.g., contrast Figs. 3e and 3f).
Third, for every level of knowledge brokering, higher levels of free revealing consis-
tently lead to superior best performance outcomes (e.g., compare the lower bound,
μ − 2σ , across Figs. 3b, 3e and 3h).

Considering the nine simulation results (Fig. 3) of the four scenarios, it becomes
apparent that the best performance outcome attainable at the end of 100 project it-
erations follows an inflexion point as knowledge brokering increases for each level
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Fig. 4 An important trade-off is unveiled when combining different levels of knowledge brokering and
free revealing: to achieve the best average performance for the system vs. to achieve the best overall
performance outcome from the system

of free revealing (e.g. compare the best performance outcomes for the 100th project
in Figs. 3d, 3e and 3f). For any given level of free revealing, initially an increase in
knowledge brokering leads to a superior best performance outcome (compare Figs. 3d
and 3e); later, a further increase in knowledge brokering leads to an inferior best
performance outcome (compare Figs. 3e and 3f). This shows that the reduction in
volatility that accompanies higher levels of knowledge brokering ultimately reduces
the likelihood of reaching superior best performance outcomes. This last observation
suggests that there is a tradeoff between reaching better average system performance
and reaching best overall performance outcomes from the system.

To explore this phenomenon in greater detail, we ran an additional series of simu-
lations to plot—for all values of free revealing (between 0 and 20 %) and all values
of knowledge brokering (between 0 and 100 %)—both (a) the best performance out-
come and (b) the average performance outcome attained at the 100th project iteration.
The plot of results for best performance outcomes (Fig. 4a) show that—for each level
of free revealing—increasing levels of knowledge brokering initially enhance the best
possible performance outcomes attainable; followed by a tipping point after which an
increase in knowledge brokering actually reduces the best performance outcomes that
can be achieved. The plot of results for the average performance outcomes (Fig. 4b)
show how both free revealing and knowledge brokering always contribute to achieve
better average performance outcomes for the system.

6 Analysis and discussion

The experimental design (cf. Table 2) guiding the results discussed here first intro-
duces a baseline model scenario where individual contributors are presented with
new project opportunities (as described in Sect. 4.1) while they attempt to grow a
common community. In spite of this, several disjoint communities emerge. In this
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context, without knowledge brokering behavior and without free revealing behavior,
members of one community default to non-cooperation with members of another.
The simulation results for this baseline model scenario could well represent learning
performance across a traditional setting of strictly competing firms: namely, individ-
ual members of one firm taking on new project opportunities involving members of
the same firm, while dismissing new project opportunities that, to be executed, would
require the involvement of individuals from other strictly competing firms.

While reality may be more nuanced than our baseline model scenario, this baseline
ensures that we have a clear benchmark against which we can compare the relative
effects of free revealing and knowledge brokering behavior. We observe that each
of these two behaviors have clearly distinct effects from those of contributors in a
strictly competitive setting. The most relevant results from our simulation scenarios
of competing communities, summarized in Figs. 3 and 4, show that, at the system-
level:

Proposition 1 Free revealing behavior

(a) has a positive effect on the average learning rate, while
(b) having little if any effect on the volatility of the learning rate.

Proposition 2 Knowledge brokering behavior

(a) reduces learning rate volatility, and
(b) has a (moderately) positive effect on the average learning rate.

Proposition 3 There is a trade-off involving knowledge brokering and free revealing
behaviors, whereby:

(a) knowledge brokering initially enhances the best possible performance outcome
attainable by the system, and later penalizes it, and

(b) free revealing positively moderates the effect of knowledge brokering leading to
better outcomes in general, both for average and best performance.

Proposition 1(a) is in line with theoretical arguments on the benefits of free reveal-
ing. von Hippel and von Krogh (2006) argue that free revealing of detailed product in-
formation, etc., can make good economic sense for innovators and society alike, since
users can not only learn, but also improve upon what is revealed. Henkel argues that
selective revealing offers business firms “considerable potential for efficiency gains”
(Henkel 2006, p. 967), by reducing the duplication of effort and avoiding transaction
costs of commercial licensing. Our model of free revealing implements the partial
sharing of codified knowledge of individual project contributors (cf. Eq. (9)), and the
simulation results explicitly show the efficiency gains that are possible at varying lev-
els of revealing (contrast Figs. 3d and 3g relative to Fig. 3a). Through our simulation
results, we observe that introducing free revealing (e.g. consider Fig. 3d with free re-
vealing at 10 % relative to Fig. 3a without revealing) substantially reduces the number
of project iterations required for the system-level average performance to reach the
reference performance threshold. As the literature conceptually predicts (von Hippel
and von Krogh 2006), our model quantitatively shows how free revealing is good (i)
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for individuals (innovators) who learn and build upon what is revealed, and (ii) for
the overall system (society) that benefits from system-level learning efficiencies.

Furthermore, Proposition 1(b) offers an additional insight not found in empirical
investigations of free revealing, nor in the extant literature in open source (to the
best of our knowledge). Proposition 1(b) implies that free revealing, by virtue of not
significantly affecting learning rate volatility, does little to reduce the gap between
outperformers and underperformers (compare Figs. 3c and 3b with Fig. 3a). Asso-
ciated with this gap is the existence of far reaching outperformers—typically from
a dominant community, our model suggests—who benefit from the free-revealing of
all others—particularly from communities that are not dominant. Empirically, our
survey of Netflix Prize participants (cf. Sect. 3.2) shows that 38 % of respondents ad-
mitted to having incorporated software code from others without having themselves
open sourced any code. In our simulation results, the bulk of contributors who un-
derperform are typically from non-dominant communities. In fact, the volatility of
outcomes observed results from situations of non-cooperation leading to failure to
execute a project opportunity—which is more likely to occur among communities
that are valued similarly.

The results summarized in Proposition 2(a) and 2(b) are generally in line with
the qualitative findings of Hargadon (1997, 1998, 2002) in that knowledge brokering
has a positive effect on average performance. More importantly, however, our model
brings a more nuanced understanding of the nature of its effects. Our simulation
results show that the main effect of knowledge brokering is in reducing the volatility
of learning performance, as opposed to achieving faster learning on average. Indeed,
when contrasting the results of Figs. 3e and 3f, we observe that although the level
of knowledge brokering is increased substantially, the average learning curve for the
system improves only marginally. At the same time, the volatility of the learning
curves diminishes significantly, which is a new insight these results contribute to the
literature on knowledge brokering.

Propositions 3(a) and 3(b) result from our study of an identified phenomenon
involving Propositions 1 and 2 in achieving desirable performance outcomes for
the system, either focusing on achieving (i) best overall performance outcomes or
(ii) good overall average performance. Our results show that different combinations
of free revealing and knowledge brokering affect the performance outcomes attain-
able by the system in important ways. Figure 4 depicts the effects of various lev-
els of free revealing and knowledge brokering on both (i) best system-level perfor-
mance (Fig. 4a) and (ii) average system-level performance (Fig. 4b). Interestingly,
the results of our simulations show that there is a tipping point after which an in-
crease in knowledge brokering behavior is worse from an innovation performance
standpoint—where the focus is in achieving the best overall performance possible.
This knowledge-brokering inflection point is consistent with evidence from patent
citations found by Hsu and Lim (2011). In addition, for any level of knowledge bro-
kering behavior, higher levels of free revealing only mildly contribute to reducing the
gap between (i) best possible system-level performance and (ii) average system-level
performance.

The results presented in Fig. 4a, corresponding to Proposition 3(a), are more in-
tuitive if we consider the properties of the model underlying the simulation. In the



70 J.A. Villarroel et al.

extreme theoretical case of no knowledge brokering (KB = 0), all cross-community
project opportunities fail to be executed and learning is therefore limited to success-
ful intra-community project opportunities only. Given limited learning opportunities,
the best performance that can be achieved after a finite number of projects remains
similarly limited, hence poor on average. As some knowledge brokering is intro-
duced (0 < KB � 1), a number of cross-community projects become viable and are
successfully executed. Additional learning materializes through the projects involv-
ing the individual knowledge brokers. In turn, these successful projects contribute
to the growth of dominant communities, which—by virtue of being successful—
concentrate more learning opportunities than other less dominant communities. Bet-
ter project performance can be achieved amongst successful individuals in dominant
communities than amongst less successful individuals in less dominant communities.
Beyond a certain point (as KB gets closer to 1), however, too widespread knowledge
brokering behavior has the effect of making cross-community projects no different
from intra-community projects. While there are additional learning opportunities,
knowledge is increasingly distributed across the general population of contributors.
All project performance outcomes converge towards the system-level average.

The above propositions contribute new insights to the literature in open source
(von Hippel and von Krogh 2003) and knowledge brokering (Hargadon 1997, 1998,
2002; Hsu and Lim 2011), which have thus far evolved mostly independently from
each other. In particular, each research stream has independently shown that higher
levels of free revealing on the one hand and knowledge brokering on the other hand,
would positively contribute to enhance learning performance, on average. By using
a simulation approach our research simultaneously explored the effects of free re-
vealing and knowledge brokering on both the average and the volatility of learning
performance outcomes. Finally, the findings of this research extend previous results
and offer new insights into the tradeoffs involved in combining free revealing with
knowledge brokering behavior to achieve best overall performance outcomes across
competing communities, a matter of fundamental interest in the pursuit of innovation
at the system-level (society).

6.1 Model validity

There is agreement, for validation purposes, that computational models of social sys-
tems be rooted on established theoretical grounds and that they can be compared
against real life data or other models (Burton 2003; Carley 1996; Davis et al. 2007).
The model developed in this article is based on established learning curve theory (Ar-
gote and Ingram 2000; Wright 1936; Yelle 1979), situated learning theory (Brown and
Duguid 1991; Lave and Wenger 1991), and the literature on open source (von Hippel
and von Krogh 2003; Harhoff et al. 2003; Henkel 2006), which addresses Burton’s
notion of informal docking, a first step toward model validation (Burton 2003, p. 102).
The model’s independent parameter values used are informed by empirical studies of
open source communities (Henkel 2006; Krishnamurthy 2002, 2003), and the perfor-
mance outcomes produced by the model reproduce patterns of learning performance
found in case data from the Netflix Prize competition. Hence, the simulation has face
validity. These arguments, linking our model to empirically observed data, further
contribute towards achieving internal validity.
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The model also follows Handley et al. (2006, p. 64), who argue that “individual
learning (in communities) should be thought of as emergent, involving opportuni-
ties to participate in the practices of the community as well as the development of
an identity which provides a sense of belonging and commitment”. Furthermore, the
model is in line with the empirical findings of Harhoff et al. (2003) and Henkel (2006)
in that individuals and the overall system simultaneously benefit from free revealing.
Our simulation results further show that, even when contributors from competing
communities forego opportunities to cooperate, free revealing behavior has a strong
positive effect on average system-level learning performance. Our model’s results on
learning brought about by knowledge brokering behavior resonate with empirical re-
sults found in the literature (Hargadon 1997, 1998, 2002; Hsu and Lim 2011). Finally,
also consistent with our findings, Miller et al. (2006)—building upon March’s (1991)
work—find that “as distant learning becomes more common, population-wide diver-
sity dissipates quickly” (Miller et al. 2006, p. 714). Knowledge brokering and free
revealing enable distant learning across communities, dissipating diversity.

6.2 Limitations

The model presented in this article strives for simplicity and generality (Carley 1996;
Weick 1979, 1995). Simplicity allows us to study the modeled constructs more care-
fully and derive clear propositions that inform our understanding of the phenomena
modeled. Consequently, our model results offer a quantitative and qualitative under-
standing of the dynamic interplay of free revealing and knowledge brokering behavior
in the context of emergent competing communities.

First, in our model of open source (see Eq. (9)), the β parameter representing
free revealing is a coefficient that indicates how much knowledge each individual
contributor shares with everyone else. On one hand, this parameter does not accu-
rately reflect the ‘selective revealing’ concept discussed in the open source literature
(Henkel 2006), which entails some “selection” criterion for what to reveal and what
to keep private. On the other hand, the partial revealing implemented by this parame-
ter in our model illustrates the middle-ground between private knowledge held by the
individual contributor, and collective knowledge shared with the community at large
(von Hippel and von Krogh 2006).

Second, in our model of knowledge brokering behavior, the decision parameter k

(see Eq. (10)) used to determine whether to collaborate or not on a project depends
only on the size of the community. Whenever contributors from disjoint communi-
ties are presented with an opportunity involving a highly dominant community, they
resort to collaboration and thus contribute to the growth of the dominant commu-
nity. This is consistent with models of preferential attachment, leading to empiri-
cally observed power-law distributions of membership (Barabási and Albert 1999;
Clauset et al. 2007). Another possibility we tried in Sect. 4.7 with similar results was
to consider a decision parameter based on the relative experience of the individual
contributors facing the opportunity. A more accurate model would account for other
individual-level differences, such as incompatibility of resources available or incon-
gruity of principles and beliefs, on the decision to collaborate.

Third, the granularity of our model involves homogeneous and short-lived project
opportunities providing the same amount of learning each time. Successful projects
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are considered equally in terms of the additional experience they provide to their
contributors, without accounting for differences among projects or contributors. In
the Netflix Prize case used to inform our model (cf. Sect. 3), submissions consistently
address the same problem using the same data and it seems reasonable to consider
such projects as homogeneous. Research on online social relationships shows that
these social ties are typically weak (Cummings et al. 2002). And there is evidence
that online projects are relatively short in duration (Krishnamurthy 2002). Hence,
we found it acceptable to assume project collaborations that were short-lived and
not substantially different on average. While it is possible to introduce additional
heterogeneity into our model, we purposely chose to keep our model simple to avoid
deviations resulting from added complexity.

7 Conclusions and implications

Drawing on a study of the Netflix Prize challenge we developed a formal model
articulating the effects of combining different levels of free revealing and knowledge
brokering on the learning performance of competing communities. We find that ever-
increasing levels of free revealing do not imply optimal learning outcomes for all
participants in the system (i.e. this does not lead to achieving better learning rates for
all), nor do ever-increasing levels of knowledge brokering lead to achieving the best
possible outcomes from the system (i.e. this does not automatically lead to achieving
the best possible solutions). Rather, combining different levels of free revealing and
knowledge brokering lead to different system-level learning patterns, which unveil
important tradeoffs for innovation.

Our main findings show that, at the system level: (1) free revealing has a positive
effect on the average learning rate, while having a negligible impact on learning rate
volatility, (2) knowledge brokering reduces learning rate volatility, while having a
moderately positive effect on the average learning rate. In addition, when looking at
the best performance outcomes achieved by the system, we find that (3) knowledge
brokering has an inverted-U effect on performance where higher levels of knowledge
brokering initially enhance learning performance, but beyond a certain level penalize
it. Thus, there is an important tradeoff regarding the relative amounts of free re-
vealing and knowledge brokering that yield the best learning performance for either
a few individual contributors or for the system at large (see Figs. 3 and 4). Taken
separately, free revealing benefits some individual outperformers the most (relatively
high volatility of outcomes), while knowledge brokering makes the system at large
consistently more efficient (relatively low volatility of outcomes). Taken together, an
appropriate combination of free revealing and—particularly—knowledge brokering
can help achieve best overall learning performance outcomes from the system, hence
leading to more effective innovation.

These findings provide managers who are strategically considering running an
open competition with new insights regarding the importance of managing the knowl-
edge brokering process, as well as details about how different types and levels of
knowledge sharing are likely to affect the innovation outcomes from the system. Man-
agers should specifically consider the usefulness of combining (or not): (1) the imple-



Free revealing and knowledge brokering in competing communities 73

mentation of free revealing, or open source knowledge repositories, as a means to ac-
celerate average learning for all, while keeping high volatility of learning outcomes,
and (2) the risk mitigating effects of knowledge brokering facilitation, to embrace
and consolidate learning from across communities, effectively reducing the volatility
of learning outcomes. The informed manager should be aware of (3) the tradeoff of
systematically supporting the crossing of knowledge boundaries which would lead to
a tipping point, after which: an increase in knowledge brokering behavior is worse
from an innovation performance standpoint, effectively yielding sub-optimal learning
outcomes (see Fig. 4a). Hence, if the goal is to achieve the best possible learning per-
formance outcome from the competitive system (as in the Netflix Prize challenge),
then knowledge brokering needs to be actively managed.

The implications of this research go beyond that of the formal setting of the spe-
cific challenge discussed in this paper—even beyond the conscious implementation
of free revealing or knowledge brokering. In the Internet-connected world we live in
today, it is increasingly common for firms and individuals to have an online presence
where valuable codified information is freely revealed online. This freely revealed
codified knowledge quickly becomes accessible to everyone, customers and com-
petitors alike, a process that is facilitated by search engines (e.g. Google, Bing). The
Internet itself is the world’s largest repository of codified knowledge as well as an in-
creasingly important vehicle for mass interaction (e.g. Facebook, Twitter). Individu-
als and firms are actively searching for the most current codified knowledge—in other
domains or from other communities—that could potentially be incorporated into their
own, essentially incurring in knowledge brokering behavior with increasing intensity.
Competing online communities are particularly important to an emergent category of
‘online distributed organizations’13 (Villarroel 2011; Villarroel and Gorbatai 2011),
that rely heavily on the new knowledge generated from the managed interactions
across these communities. These new organizations would benefit from developing
mechanisms to actively manage the levels of knowledge brokering activity across the
communities they work with to achieve the desired innovation outcomes.

Finally, the comparison of the four model scenarios and the three induced proposi-
tions outlined in this paper contribute to the theoretical conversation on organizational
learning in general, and on competing communities in particular. We identified the
existence of learning performance trade-offs in competing communities by exploring
and comparing the effects of varying levels of free revealing and knowledge broker-
ing behavior. With growing numbers of crowdsourcing initiatives, self-organized and
firm-sponsored, our findings should offer valuable insights for managers involved in
the orchestration of the innovation activities of the associated online communities.
Future research should explore the comparative impact on learning performance of
sources of heterogeneity such as differences in problem complexity and individual
motivations, and types of competing communities (e.g., public and private), to name
some. The results of such comparative research should expand our understanding of
learning performance across competing communities, and contribute to the effective
organization of online distributed innovation (Villarroel 2011).

13Firms whose core business is built upon a crowdsourcing platform.
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