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Abstract

In this paper, we examine the motivations for research on cognitive architectures and review some

candidates that have been explored in the literature. After this, we consider the capabilities that a

cognitive architecture should support, some properties that it should exhibit related to representa-

tion, organization, performance, and learning, and some criteria for evaluating such architectures

at the systems level. In closing, we discuss some open issues that should drive future work in this

important area.
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1. Background and Motivation

A cognitive architecture specifies the underlying infrastructure for an intelligent system. Briefly,

an architecture includes those aspects of a cognitive agent that are constant over time and across

different application domains. These typically include:

• the short-term and long-term memories that store content about the agent’s beliefs, goals, and

knowledge;

• the representation of elements that are contained in these memories and their organization into

larger-scale mental structures;

• the functional processes that operate on these structures, including the performance mecha-

nisms that utilize them and the learning mechanisms that alter them.

Because the contents of an agent’s memories can change over time, one would not consider the

knowledge and beliefs encoded therein to be part of that agent’s architecture. Just as different

programs can run on the same computer architecture, so different knowledge bases and beliefs can

be interpreted by the same cognitive architecture. There is also a direct analogy with a building’s

architecture, which consists of permanent features like its foundation, roof, and rooms, rather than

its furniture and appliances, which one can move or replace.

As we will see, alternative cognitive architectures can differ in the specific assumptions they

make about these issues, just as distinct buildings differ in their layouts. In addition to making

different commitments about how to represent, use, or acquire knowledge and beliefs, alternative

frameworks may claim that more or less is built into the architectural level, just as some buildings

embed shelves and closets into their fixed structures, whereas others handle the same functions

with replaceable furniture.

Research on cognitive architectures is important because it supports a central goal of artificial

intelligence and cognitive science: the creation and understanding of synthetic agents that support

the same capabilities as humans. Some work focuses on modeling the invariant aspects of human

cognition, whereas other efforts view architectures as an effective path to building intelligent agents.

However, these are not antithetical goals; cognitive psychology and AI have a long history of building

on the other’s ideas (Langley, 2006), and research on cognitive architectures has played a key role

in this beneficial interchange.

In some ways, cognitive architectures constitute the antithesis of expert systems, which provide

skilled behavior in narrowly defined contexts. In contrast, architectural research aims for breadth of

coverage across a diverse set of tasks and domains. More important, it offers accounts of intelligent

behavior at the systems level, rather than at the level of component methods designed for specialized

tasks. Newell (1973a) has argued persuasively for systems-level research in cognitive science and

artificial intelligence, claiming “You can’t play 20 questions with nature and win”. Instead of

carrying out micro-studies that address only one issue at a time, we should attempt to unify many

findings into a single theoretical framework, then proceed to test and refine that theory.

Since that call to arms, there has been a steady flow of research on cognitive architectures. The

movement was associated originally with a specific class of architectures known as production sys-

tems (Newell, 1973b; Neches et al., 1987) and emphasized explanation of psychological phenomena,
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with many current candidates still taking this form and showing similar concerns. However, over the

past three decades, a variety of other architectural classes have emerged, some less concerned with

human behavior, that make quite different assumptions about the representation, organization,

utilization, and acquisition of knowledge. At least three invited symposia have brought together

researchers in this area (Laird, 1991; VanLehn, 1991; Shapiro & Langley, 2004), and there have been

at least two edited volumes (Sun, 2005; VanLehn, 1991). The movement has gone beyond basic

research into the commercial sector, with applications to believable agents for simulated training

environments (e.g., Tambe et al., 1995), computer tutoring systems (Koedinger, Anderson, Hadley,

& Mark, 1997), and interactive computer games (e.g., Magerko et al., 2004).

Despite this progress, there remains a need for additional research in the area of cognitive archi-

tectures. As artificial intelligence and cognitive science have matured, they have fragmented into a

number of well-defined subdisciplines, each with its own goals and its own criteria for evaluation.

Yet commercial and government applications increasingly require integrated systems that exhibit

intelligent behavior, not just improvements to the components of such systems. This demand can

be met by an increased focus on system-level architectures that support complex cognitive behavior

across a broad range of relevant tasks.

In this document, we examine some key issues that arise in the design and study of integrated

cognitive architectures. Because we cannot hope to survey the entire space of architectural the-

ories, we focus on the ability to generate intelligent behavior, rather than matching the results

of psychological experiments.1 We begin with a brief review of some sample architectures, then

discuss the capabilities and functions that such systems should support. After this, we consider a

number of design decisions that relate to the properties of cognitive architectures, followed by some

dimensions along which one should evaluate them. In closing, we note some open issues in the area

and propose some directions that future research should take to address them.

2. Example Cognitive Architectures

Before turning to abstract issues that arise in research on cognitive architectures, we should consider

some concrete examples that have been reported in the literature. Here we review four distinct

frameworks that fall at different points within the architectural space. We have selected these

architectures because each has appeared with reasonable frequency in the literature, and also

because they exhibit different degrees of concern with explaining human behavior. We have ordered

them along this dimension, with more devoted psychological models coming earlier.

In each case, we discuss the manner in which the architecture represents, organizes, utilizes, and

acquires knowledge, along with its accomplishments. Because we review only a small sample of

extant architectures, we summarize a variety of other frameworks briefly in the Appendix. Nev-

ertheless, this set should give readers some intuitions about the space of cognitive architectures,

which later sections of the paper discuss more explicitly.

One common feature of the architectures we examine is that, although they have some theoretical

commitment to parallelism, especially in memory retrieval, they also rely on one or a few decision

modules. We have not included connectionist approaches in our treatment because, to our knowl-

1. Sun (2007) provides another treatment of cognitive architectures that discusses the second topic in greater detail.
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edge, they have not demonstrated the broad functionality associated with cognitive architectures

in the sense we discuss here. However, they have on occasion served as important components in

larger-scale architectures, as in Sun, Merrill, and Peterson’s (2001) CLARION framework.

2.1 ACT

ACT-R (Anderson & Lebiere, 1998, Anderson et al., 2004) is the latest in a family of cognitive

architectures, concerned primarily with modeling human behavior, that has seen continuous devel-

opment since the late 1970s. ACT-R 6 is organized into a set of modules, each of which processes

a different type of information. These include sensory modules for visual processing, motor mod-

ules for action, an intentional module for goals, and a declarative module for long-term declarative

knowledge. Each module has an associated buffer that holds a relational declarative structure

(often called ‘chunks’, but different from those in Soar). Taken together, these buffers comprise

ACT-R’s short-term memory.

A long-term production memory coordinates the processing of the modules. The conditions

of each production test chunks in the short-term buffers, whereas its actions alter the buffers

upon application. Some changes modify existing structures, whereas others initiate actions in the

associated modules, such as executing a motor command or retrieving a chunk from long-term

declarative memory. Each declarative chunk has an associated base activation that reflects its past

usage and influences its retrieval from long-term memory, whereas each production has an expected

cost (in terms of time needed to achieve goals) and probability of success.

On every cycle, ACT determines which productions match against the contents of short-term

memory. This retrieval process is influenced by the base activation for each chunk it matches. ACT

computes the utility for each matched production as the difference between its expected benefit

(the desirability of its goal times its probability of success) and its expected cost. The system

selects the production with the highest utility (after adding noise to this score) and executes its

actions. The new situation leads new productions to match and fire, so that the cycle continues.

Learning occurs in ACT-R at both the structural and statistical levels. For instance, the base

activation for declarative chunks increases with use by productions but decays otherwise, whereas

the cost and success probability for productions is updated based on their observed behavior. The

architecture can learn entirely new rules from sample solutions through a process of production

compilation that analyzes dependencies of multiple rule firings, replaces constants with variables,

and combines them into new conditions and actions (Taatgen, 2005).

The ACT-R community has used its architecture to model a variety of phenomena from the

experimental psychology literature, including aspects of memory, attention, reasoning, problem

solving, and language processing. Most publications have reported accurate fits to quantiative data

about human reaction times and error rates. More recently, Anderson (2007) has related ACT-R

modules to different areas of the brain and developed models that match results from brain-imaging

studies. One the more applied front, the framework has played a central role in tutoring systems

that have seen wide use in schools (Koedinger et al., 1997), and it has also been used to control

mobile robots that interact with humans (Trafton et al., 2005).
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2.2 Soar

Soar (Laird, 2008; Laird, Newell, & Rosenbloom, 1987; Newell, 1990) is a cognitive architecture

that has been under continuous development since the early 1980s. Procedural long-term knowledge

in Soar takes the form of production rules, which are in turn organized in terms of operators

associated with problem spaces. Some operators describe simple, primitive actions that modify the

agent’s internal state or generate primitive external actions, whereas others describe more abstract

activities. For many years, Soar represented all long-term knowledge in this form, but recently

separate episodic and semantic memories have been added. The episodic memory (Nuxoll & Laird,

2007) holds a history of previous states, while semantic memory contains previously known facts.

All tasks in Soar are formulated as attempts to achieve goals. Operators perform the basic

deliberative acts of the system, with knowledge used to dynamically determine their selection and

application. The basic processing cycle repeatedly proposes, selects, and applies operators of the

current problem space to a problem state, moving ahead one decision at a time. However, when

knowledge about operator selection is insufficient to determine the next operator to apply or when

an abstract operator cannot be implemented, an impasse occurs; in response, Soar creates a new

goal to determine which operator it should select or how it should implement the abstract operator.

This process can lead to the dynamic generation of a goal hierarchy, in that problems are de-

composed into subproblems as necessary. The ‘state’ of a specific goal includes all features of its

supergoals, plus any additional cognitive structures necessary to select and apply operators in the

subgoal. Processing in a subgoal involves the same basic processing cycle of selecting and applying

operators. Subgoals can also deliberately access episodic or semantic memory to retrieve knowledge

relevant to resolving the impasse. The top state includes all sensor data obtained from the external

environment, so this information is also available to all subgoals. On any cycle, the states at various

levels of the goal hierarchy can change, typically due to changes in sensor values or as the result

of operator applications in subgoals. When the system resolves the impasse that generated a goal,

that goal disappears, along with all the subgoals below it.

Soar has multiple learning mechanisms for different types of knowledge: chunking and reinforce-

ment learning acquire procedural knowledge, whereas episodic and semantic learning acquire their

corresponding types of declarative knowledge. Chunking occurs when one or more result is pro-

duced in a subgoal (Laird, Rosenbloom, & Newell, 1986). When this happens, Soar learns a new

chunk , represented as a production rule which summarizes the processing that generated the re-

sults. A chunk’s actions are based on the results, whereas its conditions are based on those aspects

of the goals above the subgoal that were relevant to determining the results. Once the agent has

learned a chunk, it fires in new situations that are similar along relevant dimensions, often giving

the required results directly and thus avoiding the impasse that led to its formation. Reinforcement

learning adjusts numeric values associated with rules that help select operators (Nason & Laird,

2004). Episodic learning records the contents of working memory in snapshots, while semantic

learning stores individual elements of working memory for later retrieval.

Researchers have used Soar to develop a variety of sophisticated agents that have demonstrated

impressive functionality. The most visible has been TAC-Air-Soar (Tambe et al., 1995), which

modeled fighter pilots in military training exercises that involved air combat scenarios. More

recently, Soar has supported a number of intelligent agents that control synthetic characters in
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interactive computer games (Margerko et al., 2004). Another thrust has involved using Soar to

model the details of human language processing (Lewis, 1993), categorization (Miller & Laird, 1996),

and other facets of cognition, but the emphasis has been on demonstrating high-level functionality

rather than on fits to quantitative measurements.

2.3 ICARUS

Icarus is a more recent architecture (Langley, Cummings, & Shapiro, 2004) that stores two distinct

forms of knowledge. Concepts describe classes of environmental situations in terms of other con-

cepts and percepts, whereas skills specify how to achieve goals by decomposing them into ordered

subgoals. Both concepts and skills involve relations among objects, and both impose a hierarchical

organization on long-term memory, with the former grounded in perceptions and the latter in ex-

ecutable actions. Moreover, skills refer to concepts in their heads, their initiation conditions, and

their continuation conditions.

The basic Icarus interpreter operates on a recognize-act cycle. On each step, the architecture

deposits descriptions of visible objects into a perceptual bufffer. The system compares primitive

concepts to these percepts and adds matched instances to short-memory as beliefs. These in

turn trigger matches of higher-level concepts, with the process continuing until Icarus infers all

deductively implied beliefs. Next, starting from a top-level goal, it finds a path downward through

the skill hierarchy in which each subskill has satisfied conditions but an unsatisfied goal. When a

path terminates in a primitive skill with executable actions, the architecture applies these actions

to affect the environment. This leads to new percepts, changes in beliefs, and reactive execution of

additional skill paths to achieve the agent’s goals.

However, when Icarus can find no applicable path through the skill hierarchy that is relevant to

a top-level goal, it resorts to problem solving using a variant of means-ends analysis. This module

chains backward off either a skill that would achieve the current goal or off the goal concept’s

definition, and it interleaves problem solving with execution in that it carries out selected skills

when they become applicable. Whenever problem solving achieves a goal, Icarus creates a new

skill with that goal as its head and with one or more ordered subgoals that are based on the problem

solution. If the system encounters similar problems in the future, it executes the learned skills to

handle them reactively, without need for deliberative problem solving (Langley & Choi, 2006b).

Researchers have used Icarus to develop agents for a number of domains that involve a combi-

nation of inference, execution, problem solving, and learning. These have included tasks like the

Tower of Hanoi, multi-column subtraction, FreeCell solitaire, and logistics planning. They have also

used the architecture to control synthetic characters in simulated virtual environments, including

ones that involve urban driving (Langley & Choi, 2006a) and first-person shooter scenarios (Choi

et al., 2007). Ongoing work aims to link Icarus to physical robots that carry out joint activities

with humans.

2.4 PRODIGY

Prodigy (Carbonell, Knoblock, & Minton, 1990) is another cognitive architecture that saw ex-

tensive development from the middle 1980s to the late 1990s. This framework incorporates two

main kinds of knowledge. Domain rules encode the conditions under which actions have certain
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effects, where the latter are described as the addition or deletion of first-order expressions. These

refer both to physical actions that affect the environment and to inference rules, which are purely

cognitive. In contrast, control rules specify the conditions under which the architecture should

select, reject, or prefer a given operator, set of operator bindings, problem state, or goal during the

search process.

As in Icarus, Prodigy’s basic problem-solving module involves search through a problem space

to achieve one or more goals, which it also casts as first-order expressions. This search relies on

means-ends analysis, which selects an operator that reduces some difference between the current

state and the goal, which in turn can lead to subproblems with their own current states and

goals. On each cycle, Prodigy uses its control rules to select an operator, binding set, state, or

goal, to reject them out of hand, or to prefer some over others. In the absence of such control

knowledge, the architecture makes choices at random and carries out depth-first means-ends search

with backtracking.

Prodigy’s explanation-based learning module constructs control rules based on its problem-

solving experience (Minton, 1990). Successful achievement of a goal after search leads to creation

of selection or preference rules related to that goal and to the operators whose application achieved

it. Failure to achieve a goal leads to creation of rejection or preference rules for operators, goals,

and states that did not produce a solution. To generate these control rules, Prodigy invokes a

learning method that analyzes problem-solving traces and proves the reasons for success or failure.

The architecture also collects statistics on learned rules and retains only those whose inclusion,

over time, leads to more efficient problem solving.

In addition, Prodigy includes separate modules for controlling search by analogy with earlier

solutions (Veloso & Carbonell, 1993), learning operator descriptions from observed solutions or

experimentation (Wang, 1995), and improving the quality of solutions (Pérez & Carbonell, 1994).

Although most research in this framework has dealt exclusively with planning and problem solving,

Prodigy also formed the basis for an impressive system that interleaved planning and execution

for a mobile robot that accepted asychronous requests from users (Haigh & Veloso, 1996).

3. Capabilities of Cognitive Architectures

Any intelligent system is designed to engage in certain activities that, taken together, constitute

its functional capabilities. In this section, we discuss the varied capabilities that a cognitive archi-

tecture can support. Although only a few abilities, such as recognition and decision making, are

strictly required to support a well-defined architecture, the entire set seems required to cover the

full range of human-level intelligent activities.

A central issue that confronts the designer of a cognitive architecture is how to let agents access

different sources of knowledge. Many of the capabilities we discuss below give the agent access

to such knowledge. For example, knowledge about the environment comes through perception,

knowledge about implications of the current situation comes through planning, reasoning, and

prediction, knowledge from other agents comes via communication, and knowledge from the past

comes through remembering and learning. The more such capabilities an architecture supports,

the more sources of knowledge it can access to inform its behavior.
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Another key question is whether the cognitive architecture supports a capability directly, using

embedded processes, or whether it instead provides ways to implement that capability in terms

of knowledge. Design decisions of this sort influence what the agent can learn from experience,

what the designers can optimize at the outset, and what functionalities can rely on specialized

representations and mechanisms. In this section, we attempt to describe functionality without

referring to the underlying mechanisms that implement them, but this is an important issue that

deserves more attention in the future.

3.1 Recognition and Categorization

An intelligent agent must make some contact between its environment and its knowledge. This

requires the ability to recognize situations or events as instances of known or familiar patterns. For

example, a reader must recognize letters and the words they make up, a chess player must identify

meaningful board configurations, and an image analyst must detect buildings and vehicles in aerial

photographs. However, recognition need not be limited to static situations. A fencing master can

identify different types of attacks and a football coach can recognize the execution of particular

plays by the opposing team, both of which involve dynamic events.

Recognition is closely related to categorization, which involves the assignment of objects, situ-

ations, and events to known concepts or categories. However, research on cognitive architectures

typically assumes recognition is a primitive process that occurs on a single cycle and that underlies

many higher-level functions, whereas categorization is sometimes viewed as a higher-level function.

Recognition and categorization are closely linked to perception, in that they often operate on out-

put from the perceptual system, and some frameworks view them as indistinguishable. However,

they can both operate on abstract mental structures, including those generated internally, so we

will treat them as distinct.

To support recognition and categorization, a cognitive architecture must provide some way to

represent patterns and situations in memory. Because these patterns must apply to similar but

distinct situations, they must encode general relations that hold across these situations. An archi-

tecture must also include some recognition process that lets it identify when a particular situation

matches a stored pattern or category and, possibly, measure the degree to which it matches. In

production system architectures, this mechanism determines when the conditions of each produc-

tion rule match and the particular ways they are instantiated. Finally, a complete architecture

should include some means to learn new patterns or categories from instruction or experience, and

to refine existing patterns when appropriate.

3.2 Decision Making and Choice

To operate in an environment, an intelligent system also requires the ability to make decisions and

select among alternatives. For instance, a student must decide which operation will simplify an

integration problem, a speaker must select what word to use next in an utterance, and a baseball

player must decide whether or not to swing at a pitch. Such decisions are often associated with the

recognition of a situation or pattern, and most cognitive architectures combine the two mechanisms

in a recognize-act cycle that underlies all cognitive behavior.

Douglas Fisher

Douglas Fisher



Page 8 Cognitive Architectures

Such one-step decision making has much in common with higher-level choice, but differs in its

complexity. For example, consider a consumer deciding which brand of detergent to buy, a driver

choosing which route to drive, and a general selecting which target to bomb. Each of these decisions

can be quite complex, depending on how much time and energy the person is willing to devote.

Thus, we should distinguish between decisions that are made at the architectural level and more

complex ones that the architecture enables.

To support decision making, a cognitive architecture must provide some way to represent alter-

native choices or actions, whether these are internal cognitive operations or external ones. It must

also offer some process for selecting among these alternatives, which most architectures separate

into two steps. The first determines whether a given choice or action is allowable, typically by

associating it with some pattern and considering it only if the pattern is matched. For instance, we

can specify the conditions under which a chess move is legal, then consider that move only when

the conditions are met. The second step selects among allowable alternatives, often by computing

some numeric score and choosing one or more with better scores. Such conflict resolution takes

quite different forms in different architectures.

Finally, an ideal cognitive architecture should incorporate some way to improve its decisions

through learning. Although this can, in principle, involve learning new alternatives, most mecha-

nisms focus on learning or revising either the conditions under which an existing action is considered

allowable or altering the numeric functions used during the conflict resolution stage. The resulting

improvements in decision making will then be reflected in the agent’s overall behavior.

3.3 Perception and Situation Assessment

Cognition does not occur in isolation; an intelligent agent exists in the context of some external

environment that it must sense, perceive, and interpret. An agent may sense the world through

different modalities, just as a human has access to sight, hearing, and touch. The sensors may

range from simple devices like a thermometer, which generates a single continuous value, to more

complex mechanisms like stereoscopic vision or sonar that generate a depth map for the local

environment within the agent’s field of view. Perception can also involve the integration of results

from different modalities into a single assessment or description of the environmental situation,

which an architecture can represent for utilization by other cognitive processes.

Perception is a broad term that covers many types of processing, from inexpensive ones that

an architecture can support automatically to ones that require limited resources and so must be

invoked through conscious intentions. For example, the human visual system can detect motion in

the periphery without special effort, but the fovea can extract details only from the small region at

which it is pointed. A cognitive architecture that includes the second form of sensor must confront

the issue of attention, that is, deciding how to allocate and direct its limited perceptual resources

to detect relevant information in a complex environment.

An architecture that supports perception should also deal with the issue that sensors are often

noisy and provide at most an inaccurate and partial picture of the agent’s surroundings. Dynamic

environments further complicate matters in that the agent must track changes that sometimes occur

at a rapid rate. These challenges can be offset with perceptual knowledge about what sensors to
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invoke, where and when to focus them, and what inferences are plausible. An architecture can also

acquire and improve this knowledge by learning from previous perceptual experiences.

An intelligent agent should also be able to move beyond perception of isolated objects and events

to understand and interpret the broader environmental situation. For example, a fire control

officer on a ship must understand the location, severity, and trajectory of fires in order to respond

effectively, whereas a general must be aware of an enemy’s encampments, numbers, and resources

to defend against them successfully. Thus, situation assessment requires an intelligent agent to

combine perceptual information about many entities and events, possibly obtained from many

sources, to compose a large-scale model of the current environment. As such, it relies both on the

recognition and categorization of familiar patterns in the environment, which we discussed earlier,

and on inferential mechanisms, which we will consider shortly.

3.4 Prediction and Monitoring

Cognitive architectures exist over time, which means they can benefit from an ability to predict

future situations and events accurately. For example, a good driver knows approximately when his

car will run out of gas, a successful student can predict how much he must study to ace a final, and

a skilled pilot can judge how close he can fly to the ground without crashing. Perfect prediction

may not be possible in many situations, but perfection is seldom necessary to make predictions

that are useful to an intelligent system.

Prediction requires some model of the environment and the effect actions have on it, and the

architecture must represent this model in memory. One general approach involves storing some

mapping from a description of the current situation and an action onto a description of the re-

sulting situation. Another approach encodes the effects of actions or events in terms of changes

to the environment. In either case, the architecture also requires some mechanism that uses these

knowledge structures to predict future situations, say by recognizing a class of situations in which

an action will have certain effects. An ideal architecture should also include the ability to learn

predictive models from experience and to refine them over time.

Once an architecture has a mechanism for making predictions, it can also utilize them to monitor

the environment. For example, a pilot may suspect that his tank has a leak if the fuel gauge goes

down more rapidly than usual, and a commander may suspect enemy action if a reconnaissance

team fails to report on time. Because monitoring relates sensing to prediction, it raises issues of

attentional focus when an architecture has limited perceptual resources. Monitoring also provides

natural support for learning, since errors can help an agent improve its model of the environment.

3.5 Problem Solving and Planning

Because intelligent systems must achieve their goals in novel situations, the cognitive architectures

that support them must be able to generate plans and solve problems. For example, an unmanned

air vehicle benefits from having a sensible flight plan, a project manager desires a schedule that

allocates tasks to specific people at specific times, and a general seldom moves into enemy territory

without at least an abstract course of action. When executed, plans often go awry, but that does

not make them any less useful to an intelligent agent’s thinking about the future.

Douglas Fisher

Douglas Fisher
A basic prediction capability used in larger tasks like planning

Douglas Fisher

Douglas Fisher
a part 2 game manager can enable monitoring

Douglas Fisher

Douglas Fisher
how related to 3.1 on recognition and categorization



Page 10 Cognitive Architectures

Planning is only possible when the agent has an environmental model that predicts the effects of

its actions. To support planning, a cognitive architecture must be able to represent a plan as an (at

least partially) ordered set of actions, their expected effects, and the manner in which these effects

enable later actions. The plan need not be complete to guide behavior, in that it may extend only

a short time into the future or refer to abstract actions that can be expanded in different ways.

The structure may also include conditional actions and branches that depend on the outcome of

earlier events as noted by the agent.

An intelligent agent should also be able to construct a plan from components available in memory.

These components may refer to low-level motor and sensory actions but, often, they will be more

abstract structures, including prestored subplans. There exist many mechanisms for generating

plans from components, as well as ones for adapting plans that have been retrieved from memory.

What these methods have in common is that they involve problem solving or search. That is, they

carry out steps through a space of problem states, on each step considering applicable operators,

selecting one or more operator, and applying it to produce a new problem state. This search process

continues until the system has found an acceptable plan or decides to give up.

The notion of problem solving is somewhat more general than planning, though they are typically

viewed as closely related. In particular, planning usually refers to cognitive activities within the

agent’s head, whereas problem solving can also occur in the world. Especially when a situation is

complex and the architecture has memory limitations, an agent may carry out search by applying

operators or actions in the environment, rather than trying to construct a plan internally. Problem

solving can also rely on a mixture of internal planning and external behavior, but it generally

involves the multi-step construction of a problem solution. Like planning, problem solving is often

characterized in terms of search through a problem space that applies operators to generate new

states, selects promising candidates, and continues until reaching a recognized goal.

Planning and problem solving can also benefit from learning. Naturally, improved predictive

models for actions can lead to more effective plans, but learning can also occur at the level of

problem space search, whether this activity takes place in the agent’s head or in the physical world.

Such learning can rely on a variety of information sources. In addition to learning from direct

instruction, an architecture can learn from the results of problem-space search (Sleeman et al.,

1982), by observing another agent’s behavior or behavioral cloning (Sammut, 1996), and from

delayed rewards via reinforcement learning (Sutton & Barto, 1998). Learning can aim to improve

problem solving behavior in two ways (Langley, 1995a). One focuses on reducing the branching

factor of search, either through adding heuristic conditions to problem space operators or refining a

numeric evaluation function to guide choice. Another focuses on forming macro-operators or stored

plans that reduce the effective depth of search by taking larger steps in the problem space.

Intelligent agents that operate in and monitor dynamic environments must often modify existing

plans in response to unanticipated changes. This can occur in several contexts. For instance, an

agent should update its plan when it detects a changed situation that makes some planned activities

inapplicable, and thus requires other actions. Another context occurs when a new situation suggests

some more desirable way of accomplishing the agent’s goal; such opportunistic planning can take

advantage of these unexpected changes. Monitoring a plan’s execution can also lead to revised

estimates about the plan’s effectiveness, and, ultimately, to a decision to pursue some other course
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of action with greater potential. Replanning can draw on the same mechanisms as generating a

plan from scratch, but requires additional operators for removing actions or replacing them with

other steps. Similar methods can also adapt to the current situation a known plan the agent has

retrieved from memory.

3.6 Reasoning and Belief Maintenance

Problem solving is closely related to reasoning , another central cognitive activity that lets an agent

augment its knowledge state. Whereas planning is concerned primarily with achieving objectives in

the world by taking actions, reasoning draws mental conclusions from other beliefs or assumptions

that the agent already holds. For example, a pilot might conclude that, if another plane changes

its course to intersect his own, it is probably an enemy fighter. Similarly, a geometry student might

deduce that two triangles are congruent because they share certain sides and vertices, and a general

might infer that, since he has received no recent reports of enemy movement, a nearby opposing

force is still camped where it was the day before.

To support such reasoning, a cognitive architecture must first be able to represent relationships

among beliefs. A common formalism for encoding such relationships is first-order logic, but many

other notations have also been used, ranging from production rules to neural networks to Bayesian

networks. The relations represented in this manner may be logically or probabilistically sound,

but this is not required; knowledge about reasoning can also be heuristic or approximate and still

prove quite useful to an intelligent agent. Equally important, the formalism may be more or less

expressive (e.g., limited to propositional logic) or computationally efficient.

Naturally, a cognitive architecture also requires mechanisms that draw inferences using these

knowledge structures. Deductive reasoning is an important and widely studied form of inference

that lets one combine general and specific beliefs to conclude others that they entail logically.

However, an agent can also engage in inductive reasoning, which moves from specific beliefs to

more general ones and which can be viewed as a form of learning. An architecture may also

support abductive inference, which combines general knowledge and specific beliefs to hypothesize

other specific beliefs, as occurs in medical diagnosis. In constrained situations, an agent can simply

draw all conclusions that follow from its knowledge base, but more often it must select which

inferential knowledge to apply. This raises issues of search closely akin to those in planning tasks,

along with issues of learning to make that search more effective.

Reasoning plays an important role not only when inferring new beliefs but when deciding whether

to maintain existing ones. To the extent that certain beliefs depend on others, an agent should track

the latter to determine whether it should continue to believe the former, abandon it, or otherwise

alter its confidence. Such belief maintenance is especially important for dynamic environments in

which situations may change in unexpected ways, with implications for the agent’s behavior. One

general response to this issue involves maintaining dependency structures in memory that connect

beliefs, which the architecture can use to propagate changes as they occur.

Douglas Fisher

Douglas Fisher
Piazza question. There will be more

Douglas Fisher
what kinds of reasoning methods did you learn in CS x260?



Page 12 Cognitive Architectures

3.7 Execution and Action

Cognition occurs to support and drive activity in the environment. To this end, a cognitive archi-

tecture must be able to represent and store motor skills that enable such activity. For example,

a mobile ground robot or unmanned air vehicle should have skills or policies for navigating from

one place to another, for manipulating its surroundings with effectors, and for coordinating its

behavior with other agents on its team. These may be encoded solely in terms of primitive or

component actions, but they may also specify more complex multi-step skills or procedures. The

latter may take the form of plans that the agent has generated or retrieved from memory, especially

in architectures that have grown out of work on problem solving and planning. However, other

formulations of motor skill execution, such as closed-loop controllers, have also been explored.

A cognitive architecture must also be able to execute skills and actions in the environment. In

some frameworks, this happens in a completely reactive manner, with the agent selecting one or

more primitive actions on each decision cycle, executing them, and repeating the process on the

next cycle. This approach is associated with closed-loop strategies for execution, since the agent

can also sense the environment on each time step. The utilization of more complex skills supports

open-loop execution, in which the agent calls upon a stored procedure across many cycles without

checking the environment. However, a flexible architecture should support the entire continuum

from fully reactive, closed-loop behavior to automatized, open-loop behavior, as can humans.

Ideally, a cognitive architecture should also be able learn about skills and execution policies from

instruction and experience. Such learning can take different forms, many of which parallel those

that arise in planning and problem solving. For example, an agent can learn by observing another

agent’s behavior, by successfully achieving its goals, and from delayed rewards. Similarly, it can

learn or refine its knowledge for selecting primitive actions, either in terms of heuristic conditions

on their application or as a numeric evaluation function that reflects their utility. Alternatively, an

agent can acquire or revise more complex skills in terms of known skills or actions.

3.8 Interaction and Communication

Sometimes the most effective way for an agent to obtain knowledge is from another agent, making

communication another important ability that an architecture should support. For example, a

commander may give orders to, and receive reports from, her subordinates, while a shopper in a

flea market may dicker about an item’s price with its owner. Similarly, a traveler may ask and

receive directions on a street corner, while an attorney may query a defendant about where he

was on a particular night. Agents exist in environments with other agents, and there are many

occasions in which they must transfer knowledge from one to another.

Whatever the modality through which this occurs, a communicating agent must represent the

knowledge that it aims to convey or that it believes another agent intends for it. The content so

transferred can involve any of the cognitive activities we have discussed so far. Thus, two agents

can communicate about categories recognized and decisions made, about perceptions and actions,

about predictions and anomalies, and about plans and inferences. One natural approach is to

draw on the representations that result from these activities as the input to, and the output from,

interagent communication.
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A cognitive architecture should also support mechanisms for transforming knowledge into the

form and medium through which it will be communicated. The most common form is spoken

or written language, which follows established conventions for semantics, syntax, and pragmatics

onto which an agent must map the content it wants to convey. Even when entities communicate

with purely artificial languages, they do not have exactly the same mental structures and they must

translate content into some external format. One can view language generation as a form of planning

and execution, whereas language understanding involves inference and reasoning. However, the

specialized nature of language processing makes these views misleading, since the task raises many

additional issues.

An important form of communication occurs in conversational dialogues, which require both

generation and understanding of natural language, as well as coordination with the other agent

in the form of turn taking. Learning is also an important issue in language and other forms of

communication, since an architecture should be able to acquire syntactic and semantic knowledge

for use at both the sentence and dialogue levels. Moreover, some communicative tasks, like question

answering, require access to memory for past events and cognitive activities, which in turn benefits

from episodic storage.

3.9 Remembering, Reflection, and Learning

A cognitive architecture can also benefit from capabilities that cut across those described in the

previous sections, in that they operate on mental structures produced or utilized by them. Such

abilities, which Sloman (2001) refers to as metamanagement mechanisms, are not strictly required

for an intelligent agent, but their inclusion can extend considerably the flexibility and robustness

of an architecture.

One capacity of this sort involves remembering – the ability to encode and store the results

of cognitive processing in memory and to retrieve or access them later. An agent cannot directly

remember external situations or its own physical actions; it can only recall cognitive structures that

describe those events or inferences about them. This idea extends naturally to memories of problem

solving, reasoning, and communication. To remember any cognitive activity, the architecture must

store the cognitive structures generated during that activity, index them in memory, and retrieve

them when needed. The resulting content is often referred to as episodic memories.

Another capability that requires access to traces of cognitive activity is reflection. This may

involve processing of either recent mental structures that are still available or older structures that

the agent must retrieve from its episodic store. One type of reflective activity concerns the justifi-

cation or explanation of an agent’s inferences, plans, decisions, or actions in terms of cognitive steps

that led to them. Another revolves around meta-reasoning about other cognitive activities, which

an architecture can apply to the same areas as explanation, but which emphasizes their generation

(e.g., forming inferences or making plans) rather than their justification. To the extent that reflec-

tive processes lay down their own cognitive traces, they may themselves be subject to reflection.

However, an architecture can also support reflection through less transparent mechanisms, such as

statistical analyses, that are not themselves inspectable by the agent.
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A final important ability that applies to many cognitive activities is learning . We have discussed

previously the various forms this can take, in the context of different architectural capacities, but we

should also consider broader issues. Learning usually involves generalization beyond specific beliefs

and events. Although most architectures carry out this generalization at storage time and enter

generalized knowledge structures in memory, some learning mechanisms store specific situations

and generalization occurs at retrieval time through analogical or case-based reasoning. Either

approach can lead to different degrees of generalization or transfer, ranging from very similar tasks,

to other tasks within the same domain, and even to tasks within related but distinct domains. Many

architectures treat learning as an automatic process that is not subject to inspection or conscious

control, but they can also use meta-reasoning to support learning in a more deliberate manner. The

data on which learning operates may come from many sources, including observation of another

agent, an agent’s own problem solving behavior, or practice of known skills. But whatever the source

of experience, all involve processing of memory structures to improve the agent’s capabilities.

4. Properties of Cognitive Architectures

We can also characterize cognitive architectures in terms of the internal properties that produce

the capabilities described in the previous section. These divide naturally into the architecture’s

representation of knowledge, the organization it places on that knowledge, the manner in which

the system utilizes its knowledge, and the mechanisms that support acquisition and revision of

knowledge through learning. Below we consider a number of design decisions that arise within

each of these facets of an intelligent system, casting them in terms of the data structures and

algorithms that are supported at the architectural level. Although we present most issues in terms

of oppositions, many of the alternatives we discuss are complementary and can exist within the

same framework.

4.1 Representation of Knowledge

One important class of architectural properties revolves around the representation of knowledge.

Recall that knowledge itself is not built into an architecture, in that it can change across domains

and over time. However, the representational formalism in which an agent encodes its knowledge

constitutes a central aspect of a cognitive architecture.

Perhaps the most basic representational choice involves whether an architecture commits to a

single, uniform notation for encoding its knowledge or whether it employs a mixture of formalisms.

Selecting a single formalism has advantages of simplicity and elegance, and it may support more

easily abilities like learning and reflection, since they must operate on only one type of structure.

However, as we discuss below, different representational options have advantages and disadvantages,

so that focusing on one framework can force an architecture into awkward approaches to certain

problems. On the other hand, even mixed architectures are typically limited to a few types of

knowledge structures to avoid complexity.

One common tradition distinguishes declarative from procedural representations. Declarative

encodings of knowledge can be manipulated by cognitive mechanisms independent of their content.

For instance, a notation for describing devices might support design, diagnosis, and control. First-

order logic (Genesereth & Nilsson, 1987) is a classic example of such a representation. Generally
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We will also need an experimental method that recognizes the fact that cognitive architectures

involve integration of many components which may have synergistic effects, rather than consisting

of independent but unrelated modules (Langley & Messina, 2004). Experimental comparisons

among architectures have an important role to play, but these must control carefully for the task

being handled and the amount of knowledge encoded, and they must measure dependent variables

in unbiased and informative ways. Systematic experiments that are designed to identify sources of

power will tell us far more about the nature of cognitive architectures than simplistic competitions.

Our field still has far to travel before we understand fully the space of cognitive architectures

and the principles that underlie their successful design and utilization. However, we now have over

two decades’ experience with constructing and using a variety such architectures for a wide range

of problems, along with a number of challenges that have arisen in this pursuit. If the scenery

revealed by these initial steps are any indication, the journey ahead promises even more interesting

and intriguing sites and attractions.
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