
Ideas for Part 2
https://my.vanderbilt.edu/cs4269aiproject/ideas-for-project-part-2/

• Gamify the simulation
• Embed simulators into game players
• Protocol (e.g., Propose, Agree, Assert, Retract)
• Game manager

• Manage asynchronous or synchronous communication
• Carry out changes in the world due to operators of plans being executed
• Mediate encroachments/war, if relevant

• Learning
• Learning macro operators
• Learning weights
• Reinforcement learning

First Order Planning

Representation of operators: A PREcondition list and an EFFects list

pickup(?x): PRE: ONTABLE(?x), CLEAR(?x), HANDEMPTY
EFF: ~ONTABLE(?x), ~CLEAR(?x), ~HANDEMPTY,

HOLDING(?x)

putdown(?x): PRE: HOLDING(?x)
EFF: ~HOLDING(?x),

ONTABLE(?x), CLEAR(?x), HANDEMPTY

stack(?x, ?y): PRE: HOLDING(?x), CLEAR(?y)
EFF: ~HOLDING(?x), ~CLEAR(?y),

HANDEMPTY, ON(?x, ?y), CLEAR(?x)

unstack(?x, ?y): PRE: HANDEMPTY, CLEAR(?x), ON(?x,?y)
EFF: ~HANDEMPTY, ~CLEAR(?x), ~ON(?x,?y),

HOLDING(?x), CLEAR(?y)

A

B

C

D

B

A

D

C

Initial State Goal spec

ON(A,B)
ONTAB(B)
CLEAR(A)
ON(C,D)
ONTAB(D)
CLEAR(C)
HANDEMPTY

ON(B,A)
CLEAR(B)
ON(D,C)
CLEAR(D)

A Planning Problem

ON(A,B)
ONTAB(B)
CLEAR(A)
ON(C,D)
ONTAB(D)
CLEAR(C)
HANDEMPTY

ON(B,A)
CLEAR(B)
ON(D,C)
CLEAR(D)

Stack(B,A)
HOLDING(B) ~HOLDING(B)
CLEAR(A) ~CLEAR(A)

HANDEMPTY
ON(B,A)
CLEAR(B)

establishment (8 of them)

Stack(D,C)
HOLDING(D) ~HOLDING(D)
CLEAR(C) ~CLEAR(C)

HANDEMPTY
ON(C,D)
CLEAR(D)

Pickup(B)
ONTAB(B) ~ONTAB(B)
CLEAR(B) ~CLEAR(B)
HANDEMPTY ~HANDEMPTY

HOLDING(B)

Pickup(D)
ONTAB(D) ~ONTAB(D)
CLEAR(D) ~CLEAR(D)
HANDEMPTY ~HANDEMPTY

HOLDING(D)

Putdown(A)
HOLDING(A) ~HOLDING(A)

ONTAB(A)
CLEAR(A)
HANDEMPTY

Putdown(C)
HOLDING(C) ~HOLDING(C)

ONTAB(C)
CLEAR(C)
HANDEMPTY

Unstack(A,B)
HANDEMPTY ~HANDEMPTY
CLEAR(A) ~CLEAR(A)
ON(A,B) ~ON(A,B)

HOLDING(A)
CLEAR(B)

Unstack(C,D)
HANDEMPTY ~HANDEMPTY
CLEAR(C) ~CLEAR(C)
ON(C,D) ~ON(C,D)

HOLDING(C)
CLEAR(D)

Unstack(A,B)àPutDown(A)
HANDEMPTY HANDEMPTY
CLEAR(A) CLEAR(A)
ON(A,B) ~ON(AB)

CLEAR(B)
ONTAB(A)

A �macro� operator

Learning macros: Given a plan, generalize the plan so that the generalized plan
can be applied in a greater number of situations

Objective: reusing previously-developed generalized plans (aka macro-operators)
will reduce the cost (improve the “speed”) of subsequent planning

A

B

C

B

A

Start State GoalSpec

Unstack(A,B) à Putdown(A) à Unstack(B,C) à Stack(B,A)

(Generalize) è

Unstack(?x1, ?y1) à Putdown(?x1) à Unstack(?y1, ?z1) à Stack(?y1, ?x1)

Why macros?

• decrease effective depth (good)
• but increase effective breadth (bad)
• so macros have to be accompanied by better search control – that is, better ways of choosing

operators to apply

But what are the mechanisms by which an AI (or human) might learn macros?

• Form a macro from frequently applied operator sequences (the frequency reason)
• Form a macro that bridges a “misleading” region of the search space (the informedness reason)

– see graph next slide
• These two reasons can be simultaneously important in a macro’s formation

Time (steps)

U
til

ity
(m

ax
im

iz
ed

)

a
b c

d
e

Must get worse (operators a, b)
before it gets better (operators c, d, e)

Time (steps)
U

til
ity

(m
ax

im
iz

ed
)

a
b c

d
e

Must get worse (operators a, b)
before it gets better (operators c, d, e)

‘abc
de’

Add macro ‘abcde’ that bridges the search valley
(either “hand code” macro from human developer domain knowledge, and/or machine learn it with “experience”)

Don’t get rid of individual ops a, b, c, d, e – may need/want them in other circumstances

(
(TRANSFER ?C_i ?C_k (RESOURCES (?R_1j ?X_1j)))
(TRANSFER ?C_k ?C_i (RESOURCES (?R_1l ?Y_1l)))

)

(
(TRANSFER self ?C_k (RESOURCES (?R_1j ?X_1j)))
(TRANSFER ?C_k self (RESOURCES (?R_1l ?Y_1l)))

)

(
(TRANSFER self ?C_k (RESOURCES (Timber ?X_1j)))
(TRANSFER ?C_k self (RESOURCES (MetallicElements ?Y_1l)))

)

(
(TRANSFER self Camria (RESOURCES (Timber ?X_1j)))
(TRANSFER Camria self (RESOURCES (MetallicElements ?Y_1l)))

)

Trade macros at varying levels of specificity
You can ”hand-code” this for Part 1, but can learn it for Part 2

“For part 1, consider using only singleton TRANSFERs, with composite TRANSFERs potentially being used in
Part 2 to implement macro operators (more later).”

“(TRANSFER C_i C_k ((R_1j X_1j) … (R_mj, X_mj))) : C_i gives various amounts (X) of resources (R) to
country C_k. These amounts are subtracted and added from the respective stores of resources in C_i and C_k.
The TRANSFER of a list of resources is actually just shorthand for a list of one resource TRANSFERs, as shown
below. That is there is no relationship between the amounts of different resources in a list.

The shorthand above can be written as a set of singleton transfers.

•(TRANSFER C_i C_k ((R_1j X_1j)))
•…
•(TRANSFER C_i C_k ((R_mj, X_mj))) ”

From https://my.vanderbilt.edu/cs4269aiproject/project-description-and-logistics/

Packages of transfers can also be used to implement “alliances”. Two countries might collaborate to pool their
resources so as to enable one country (the recipient) to make trades on behalf of itself and one or more other
countries.

•(TRANSFER ?C_i ?C_k (RESOURCES (Timber …)))
•(TRANSFER ?C_k self (RESOURCES (MetalicElements ….)))
•(TRANSFORM self (MetalicElements … to MetalicAlloys …)
•(TRANSFORM self (Timber … to Housing …)
•(TRANSFER self ?C_i (RESOURCES (MetalicAlloys …)))
•(TRANSFER self ?C_k (RESOURCES (Housing …)))

In this example, C_i gives resources to C_k, which then transfers resources to C_p, which then transforms
distributes resources back to C_i and C_k. There are other ways to write this, which in theory are equivalent.

A larger alliance

