
Project Part 1 requires you to complete an anytime, forward-searching, depth-bounded, utility-driven scheduler.

Project Part 1 Overview and Concepts

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Lets start with a generic
search algorithm

//initial Frontier to the start state
//while some paths remain to be expanded

//if a goal state has been reached, return solution

// generate successors

Project Part 1 requires you to complete an anytime, forward-searching, depth-bounded, utility-driven scheduler.

Project Part 1 Overview and Concepts

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

// if Frontier is a stack then depth-first search
// if Frontier is a queue then breadth-first search
// if Frontier is a priority queue, then some kind of “informed” search

Project Part 1 requires you to complete an anytime, forward-searching, depth-bounded, utility-driven scheduler.

Project Part 1 Overview and Concepts

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

In a forward search,
• the start node of the search is the initial

state of the problem
• The goal state(s) of the search are the goal

states of the problem

A stopping (or goal)
state of search and
of the problem is
“Chile”

The start node of
search and the initial
state of the problem is
“Brazil”

Problem: Find a directed route from Brazil to Chili

Brazil

FG Peru

Ecuador

Suriname Brazil

FI

FG Argentina

Columbia

Brazil Uruguay

Brazil

FG
Peru

Ecua
Peru

More
here.
What?

More
here
What?

Suppose Frontier is a stackForward search continued

A stopping (or goal)
state of search and
the initial state of
problem is “Brazil”

The start node of
search and the
goal state of the
problem is
“Chile”

Problem: Find a directed route from Brazil to Chili ChileChile

Suppose Frontier is a stackIn contrast, consider backward search

Because it’s a backward search,
expand the path with arcs that

point INTO Chile

There are none! Search
terminates with no solution

exists.

In general, its often the case
that backward search is faster
than forward search, but your
implementation should still use
forward search (and one reason
is that we are doing utility-
driven search, not goal driven
search)

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

The previous example searched an explicit graph, but in AI (and this project) its more
typical to search an implicit graph

Forward search continued

//initial Frontier to the start state
//while some paths remain to be expanded

//if a goal state has been reached, return solution

// generate successors

// N are states and arcs can be implicit in operators

Forward search continued

of an IMPLICIT graph

longish example to follow from Chapter 6 of Poole and Mackworth
(http://artint.info/2e/html/ArtInt2e.Ch6.html)

http://artint.info/2e/html/ArtInt2e.Ch6.html

6.1
6.1

(cs)

(mr) (lab)

(off)

Explicit State-Space Representation

From Poole and Mackworth

From ArtInt

6.2

~rhm
or mcc-csor mc-cs

Initial State: {cs, ~rhc, swc, mw, ~rhm}

Goal State: {~swc}

Initial state

Goal = [… ~swc …]

repeated
state

A depth-first forward search

Adapted from ArtInt

6.2

puc: Precondition {cs, ~rhc};
Effect {rhc}

mc-cs: Precondition {cs};
Effect {off}

dc: Precondition {off, rhc};
Effect {~rhc, ~swc}

State Action Resulting State

< lab, rhc, swc, mw, rhm> mc < mr, rhc, swc, mw, rhm>
< lab, rhc, swc, mw, ~rhm> mc < mr, rhc, swc, mw, ~rhm>
< lab, rhc, swc, ~mw, rhm> mc < mr, rhc, swc, ~mw, rhm>
< lab, rhc, swc, ~mw, ~rhm> mc < mr, rhc, swc, ~mw, ~rhm>
< lab, rhc, ~swc, mw, rhm> mc < mr, rhc, ~swc, mw, rhm>
< lab, rhc, ~swc, mw, ~rhm> mc < mr, rhc, ~swc, mw, ~rhm>
< lab, rhc, ~swc, ~mw, rhm> mc < mr, rhc, ~swc, ~mw, rhm>
< lab, rhc, ~swc, ~mw, ~rhm> mc < mr, rhc, ~swc, ~mw, ~rhm>
< lab, ~rhc, swc, mw, rhm> mc < mr, ~rhc, swc, mw, rhm>
…
< lab, ~rhc, ~swc, ~mw, ~rhm> mc < mr, ~rhc, ~swc, ~mw, ~rhm>

<lab, ?V1, ?V2, ?V3, ?V4> mc <mr, ?V1, ?V2, ?V3, ?V4>

Thus far we just have a tabular representation of on explicit graph
Implicit arcs (i.e., operators) are used to generate resulting (or successor) states on demand

(binary)

(binary)

(binary)

(binary)

(4-valued)

Adapted from Poole and Mackworth

STRIPS Operators , which I will typically write pre(op) è eff(op)

puc: {RHC = ~rhc, RLOC = cs} è {RHC = rhc}

dc: {RHC = rhc, RLOC = off} è {RHC = ~rhc, SWC = ~swc}

mc_cs: {RLOC = cs} è {RLOC = off}

mcc_lab = {RLOC = lab} è {RLOC = off}

. . .
Goal = { ~swc }

{ off, rhc }

dc

{ cs, rhc }

mc_cs

{cs, ~rhc }
puc

{cs, ~rhc, swc, mw, ~rhm}

{ lab, rhc }

mcc_lab

Regression or backward planning

Initial State: {cs, ~rhc, swc, mw, ~rhm}

Goal State: {~swc}

STRIPS Operators , which I will typically write pre(op) è eff(op)

puc: {RHC = ~rhc, RLOC = cs} è {RHC = rhc}

dc: {RHC = rhc, RLOC = off} è {RHC = ~rhc, SWC = ~swc}

mc_cs: {RLOC = cs} è {RLOC = off}

mcc_off = {RLOC = off} è {RLOC = cs}

. . .

Forward search in Project Part 1

// generate successors

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23’ 1)),
preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

Alloys Template

Electronics Template

Housing Template

. . .

. . .

. . .

. . .
State, nk

Possible Pseudocode for Generate Successors

Successors ß { }

For each (skeletal, variablized) operator (i.e., TRANSFER and each TRANSFORM template), ?Op {

For each variable ?X in ?Op {

For each constant, K, of the appropriate type (i.e., country, resource, amount) {

Substitute K for ?X in ?Op

}

} // when done, all variables in ?Op replaced by constants, yielding Op

If preconditions of Op satisfied, apply Op to current world, and add successor to set of successors

}

How many successors (ballpark) will there be: (P ?ops) * (M vars per ?op) * (N vals per var) = P*M*N
So, in our toy problem of 6 countries, 9 resources, and assuming only 3 possible values per resource (lets say and
average of 6 values per variable), that’s

4 templates * 4 variables per template * 6 values per variable, or say 4 * 4 * 6, on the order of 100 successors

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23’ 1)),
preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

Alloys Template

Electronics Template

Housing Template

. . .

. . .

. . .

. . .
State, nk

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23’ 1)),
preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

(TRANSFORM A (INPUTS (R1 50*1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’ 50)),
preconditions 50 <= 500, 100 <= 700

(TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1 30)),
preconditions 30 <= 500, 20 <= 700, 20 !<= 0

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1 10*5) (R23, 10*1) (R23’ 10*1)),
preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

Alloys Template

Electronics Template

Housing Template

. . .

. . .

. . .

. . .

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),
preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23’ 1)),
preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

(TRANSFORM A (INPUTS (R1 50*1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’ 50)),
preconditions 50 <= 500, 100 <= 700

(TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1 30)),
preconditions 30 <= 500, 20 <= 700, 20 !<= 0

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1 10*5)
(R23, 10*1) (R23’ 10*1)),
preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

A(tlantis)
R1: 500
R2: 600
R3: 100
R21: 50
R21’: 50
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 10
R2: 40
R3: 1950
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 10
R23’: 10

Alloys Template

Electronics Template

Housing Template

A(tlantis)
R1: 500
R2: 700
R3: 600
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 1500
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

X
. . .

. . .

. . .

. . .
This shows only a few of the many successors in our domain

No successor

Other thoughts

• The nested-loops pseudocode I outline might be made more efficient by checking preconditions earlier

• Generate successors is needed for any of the AI search variants you might use; the function is not mentioned
by name using the generic search algorithm found in Poole and Mackworth, but it is implicit in line 16 of figure
3.4 where they reference a (generated) set that is unioned with the frontier
(https://artint.info/2e/html/ArtInt2e.Ch3.S4.html). In Russell and Norvig, Section 3.3 (and Figure 3.7) they
refer to this as generating or expanding nodes.

• ASIDE: Generate successor states of a node all at once as specified, but an alternative (and one that Russell
and Norvig refers to, albeit inconsistently) is rather than generating the successor states all at once, form pairs
of form (current state, Op), where Op is a grounded (constants only Op), and apply the Op to the current state
to get a successor state “as needed” . This can be more efficient. Note this (e.g., for the next quiz), but don’t
implement it it for the pre-break deliverable.

• There are still issues/ambiguities that you must address

• More generally, you will be faced with issues about the spec that you will have to decide upon. For
example, in generating successors, you might decide that generating successors for every possible integer value
of various resource amounts, and combinations thereof, might be way too expensive, and you might consider
binning the value domains of each country’s resources (e.g., 10%, 25%, 50%, 100% would be four bins).
or using

https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Project Part 1 requires you to complete an anytime, forward-searching, depth-bounded, utility-driven scheduler.

This is changed from a
termination step, to a
step that adds the
solution to a set of
solutions and continues
searching

; Solutions: Priority Queue of solutions organized by solution “quality”

; Solutions := Empty Priority Queue

; add <n0,…,nk> to Solutions using solution
“quality”else

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Project Part 1 requires you to complete an anytime, forward-searching, depth-bounded, utility-driven scheduler.

; Solutions: Priority Queue of solutions organized by solution “quality”, presumably by U

; Solutions := Empty Priority Queue

; add <n0,…,nk> to Solutions using solution “quality”, presumably by U

else

Adapted from http://artint.info/2e/html/ArtInt2e.Ch3.S4.html

U: utility function (applied to a path, not a single node)

D: depth bound

depth(nk) >= D then

