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 Abstract 

Comparison is a fundamental cognitive process that supports learning in a variety of domains. To 

leverage comparison in mathematics instruction, evidence-based guidelines are needed for how 

to use comparison effectively. In this chapter, we review our classroom-based research on using 

comparison to help students learn mathematics. In five short-term experimental, classroom-based 

studies, we evaluated two types of comparison for supporting the acquisition of mathematics 

knowledge and tested whether prior knowledge moderated their effectiveness. Comparing 

different solution methods for solving the same problem was particularly effective for supporting 

procedural flexibility across students and for supporting conceptual and procedural knowledge 

among students with some prior knowledge of one of the methods. We next developed a 

supplemental Algebra 1 curriculum to foster comparison and evaluated its effectiveness in a 

randomized-control trial. Teachers used our supplemental materials much less often than 

expected, and student learning was not greater in classrooms that had been assigned to use our 

materials. Students’ procedural knowledge was positively related to greater implementation of 

the intervention, suggesting the approach has promise when used sufficiently often. This study 

suggests that teachers may need additional support in deciding what to compare and when to use 

comparison.  

 

KEYWORDS: Mathematics learning; mathematics instruction; learning processes; comparison; 

classroom-based research; algebra 
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The Power of Comparison in Mathematics Instruction: Experimental Evidence from Classrooms 

 

We often learn through comparison. For example, we compare new words, objects and 

ideas to ones we already know, and these comparisons help us recognize what features are 

important and merit more attention. Indeed, comparison aids learning across a broad array of 

topics, ranging from babies learning the distinction between dogs and cats (Oakes & Ribar, 

2005), to preschoolers learning new words (e.g., Namy & Gentner, 2002), to business-school 

students learning contract negotiation skills (Gentner, Loewenstein, & Thompson, 2003). A 

recent meta-analysis confirmed that comparison promotes learning across a range of domains 

(Alfieri, Nokes-Malach, & Schunn, 2013). As Goldstone and colleagues noted:  “Comparison is 

one of the most integral components of human thought…. Furthermore, research has 

demonstrated that the simple act of comparing two things can produce important changes in our 

knowledge” (2010, p. 103).  

In this chapter, we focus on using comparison to support mathematics learning. Comparison 

is integral to best practices in mathematics education. Having students share and compare 

solution methods for solving a particular problem (e.g., discuss the similarities and differences in 

the methods) lies at the core of reform pedagogy in many countries throughout the world 

(Australian Education Ministers, 2006; Brophy, 1999; Kultusministerkonferenz, 2004; NCTM, 

2014; Singapore Ministry of Education, 2006; Treffers, 1991), including the Common Core State 

Standards in Mathematics in the U.S. (2010). Its inclusion as a best practice was based on 

observational research that expert teachers in the U.S., as well as teachers from high-performing 

countries, have students compare multiple methods for solving problems during mathematics 

instruction (Ball, 1993; Lampert, 1990; Richland, Zur, & Holyoak, 2007).  
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Based on this convergence in the cognitive science and mathematics education literatures, 

we identified comparison as a promising instructional practice for improving mathematics 

learning. Our goal was to evaluate how comparison supports learning of school mathematics 

within a classroom setting. In this chapter, we present results from our classroom-based research 

on using comparison to improve mathematics learning, supplementing with recent research by 

others. We begin with short-term, researcher-led classroom research. Then, we describe a year-

long study on helping teachers use comparison throughout the Algebra I curriculum.  

Short-Term, Researcher-Led Classroom Research 

In our initial research on the effectiveness of comparison, we redesigned 2-3 middle-

school math lessons on a particular topic in several different ways and implemented these lessons 

during students’ mathematics classes. This approach ensured that students were accountable for 

learning the material and that the material was readily usable in a typical classroom setting. We 

evaluated two types of comparison: comparing multiple methods for solving the same problem 

(comparing methods) and comparing different problems solved with the same method 

(comparing problems).  

Typically, students in the control condition studied the same material sequentially, 

without comparison. This allowed us to isolate the effectiveness of comparison. Students worked 

with partners within the same classroom, and each pair of students was randomly assigned to a 

comparison or sequential condition. By randomly assigning pairs of students within the same 

classroom to a condition, we avoided confounding classroom effects with condition effects. 

Instructional Materials 

Before reviewing individual studies, we describe the design of the instructional materials, 

both for the comparison and control conditions. Worked examples along with prompts to explain 



Power of Comparison in Mathematics Instruction p. 5 

the examples were the core of our instructional materials across experimental and control 

conditions. Worked examples present solution methods step-by-step and are a very effective way 

to help novices learn new procedures and related concepts (Atkinson, Derry, Renkl, & Wortham, 

2000; Sweller & Cooper, 1985). They are commonly used in textbooks, so they are also familiar 

to students. Worked examples are also an effective way to introduce students to alternative, more 

efficient methods (Star & Rittle-Johnson, 2008). To improve learning from worked examples, 

students should be prompted to generate explanations while studying the examples (see Atkinson 

et al., 2000). Generating explanations aids comprehension and transfer by promoting integration 

of new information with prior knowledge (Chi, 2000) and by guiding attention to structural 

features over surface features of the to-be-learned content (McEldoon, Durkin, & Rittle-Johnson, 

2013; Siegler & Chen, 2008). Asking students to generate explanations is also a recommended 

instructional practice for mathematics (Common Core State Standards Initiative, 2010). Thus, for 

each condition, we created a packet of worked examples with appropriate explanation prompts. 

We also included practice problems, in line with findings that worked examples should be mixed 

with practice problems to solve (Atkinson et al., 2000). 

When designing our experimental materials, we extracted design principles from the 

comparison literature. First, examples to be compared were presented simultaneously to facilitate 

comparison (Begolli & Richland, 2015; Gentner, 1983). Second, spatial cues (e.g., side-by-side 

presentation) and common language were used to help students align and map the solution steps, 

to facilitate noticing of important similarities and differences in the examples (Namy & Gentner, 

2002; Richland et al., 2007). Third, the explanation prompts focused on specific aspects of the 

examples to compare because this is encouraged by expert mathematics teachers (Fraivillig, 

Murphy, & Fuson, 1999; Huffred-Ackles, Fuson, & Sherin Gamoran, 2004; Lampert, 1990) and 
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improves learning from comparison relative to generic, open-ended prompts “to compare” 

(Catrambone & Holyoak, 1989; Gentner et al., 2003).  

Materials for the control condition included the same worked examples presented one at a 

time without supports for comparison. All students worked with a partner when studying the 

worked examples because working with a partner provides a familiar context for students to 

generate explanations, and students who collaborate with a partner tend to learn more than those 

who work alone (e.g., Johnson & Johnson, 1994; Webb, 1991).  

Students in all conditions received the same direct instruction after studying the worked 

examples. We provided some direct instruction at the end of the intervention because direct 

instruction has been found to improve learning from comparison (Gick & Holyoak, 1983; 

Schwartz & Bransford, 1998; VanderStoep & Seifert, 1993).   

The instructional materials often focused on multi-step equation solving. Consider the 

equation 3(x + 2) = 6.  Two possible first steps are to distribute the 3 (i.e., to get 3x + 6) or to 

divide both sides by 3. Although the former is almost universally taught as part of the algorithm 

for solving this type of equation, the latter approach is arguably more efficient because it reduces 

the number of computations and steps needed to solve the equation. Regrettably, students often 

memorize rules and do not learn flexible and meaningful methods for solving equations (Kieran, 

1992; Robinson & LeFevre, 2011; see also Robinson chapter in this volume).  They also struggle 

to understand key algebraic concepts. For example, only 59% of U.S. 8th graders were able to 

find an equation that is equivalent to n + 18 = 23 (National Assessment of Educational Progress, 

2011). Thus, improving students’ knowledge of multi-step equation solving is greatly needed. 

For student outcomes, we focused on three critical components of mathematical 

competence: procedural knowledge, procedural flexibility, and conceptual knowledge. 
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Procedural knowledge is the ability to execute action sequences to solve problems, including the 

ability to adapt known procedures to unfamiliar problems (Rittle-Johnson, Siegler, & Alibali, 

2001). Procedural flexibility includes the knowledge of multiple methods as well as the ability to 

choose the most appropriate method based on specific problem features (Kilpatrick, Swafford, & 

Findell, 2001; Star, 2005; Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009). Procedural 

flexibility supports efficient problem solving and is also associated with greater accuracy solving 

novel problems and greater understanding of domain concepts (e.g., Blöte, Van der Burg, & 

Klein, 2001; Carpenter, Franke, Jacobs, Fennema, & Empson, 1998; Hiebert et al., 1996).  

Finally, conceptual knowledge is “an integrated and functional grasp of mathematical ideas” 

(Kilpatrick et al., 2001). This knowledge is flexible and not tied to specific problem types, and is 

therefore generalizable. However, the knowledge may be implicit and not easily articulated 

(Alibali & Nathan, 2012; Prather & Alibali, 2009). Mathematics competence rests on students 

developing all three types of knowledge (Kilpatrick et al., 2001). 

Studies on Comparing Methods 

Our initial studies focused on comparing multiple methods for solving the same problem. 

Expert mathematics teachers in the U.S. (e.g. Ball, 1993; Lampert, 1990) and teachers in high 

performing countries such as Japan (Richland et al., 2007) often use this approach.  All of the 

methods presented were correct, but they varied in terms of which method most appropriate and 

efficient for solving a particular problem.  Students studied pairs of worked examples and were 

prompted to compare them (compare-methods condition) or studied the same examples one at a 

time and were prompted to reflect on them individually (sequential condition). Our comparison 

prompts focused student attention on recognizing that both methods adhered to domain 

principles, but that a particular method was more efficient for solving a particular problem.  
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We hypothesized that the compare-methods condition would support procedural 

flexibility better than the sequential condition. Comparing methods should highlight the accuracy 

and efficiency of multiple solution methods and facilitate knowledge and use of these methods.  

We also hypothesized that comparing methods would support better conceptual and procedural 

knowledge, as procedural flexibility is associated with both types of knowledge (e.g., Blöte et al., 

2001; Carpenter et al., 1998; Hiebert et al., 1996), and reflection prompts asked students why the 

methods were valid. 

In Rittle-Johnson and Star’s (2007) study, seventh-grade students (N = 70) in pre-algebra 

classes learned about solving multi-step linear equations during three class periods. Students 

completed a packet of worked examples with their partner, explaining the procedures and 

answering explanation prompts; a sample worked example for each condition is illustrated in 

Figure 1. Before and after participating in the intervention, students completed an assessment of 

our three outcome measures. The procedural knowledge measure involved solving algebra 

equations and the conceptual knowledge measure involved recognizing or explaining algebra 

concepts, such as like terms indexed. Procedural flexibility was measured in two ways.  The first 

was use of more efficient solution methods when solving equations; the second was knowledge 

of multiple ways to solve equations, including acceptance of non-standard ways to solve 

equations. As predicted, those who compared methods gained greater procedural flexibility.  

They also acquired greater procedural knowledge. The two groups did not differ in conceptual 

knowledge. 

 Students’ explanations during the intervention confirmed that those who compared 

methods often compared the similarities and differences in solution steps across examples and 
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evaluated their efficiency and accuracy. In turn, frequency of making explicit comparisons 

during the intervention predicted procedural knowledge gain.  

We found similar results for 157 fifth- and sixth-grade students learning about estimating 

answers to multiplication problems (e.g., About how much is 37 x 29?) (Star & Rittle-Johnson, 

2009). Comparing methods supported greater procedural flexibility. For students with above-

average knowledge of estimation at pretest, students in the comparison condition were also more 

likely to maintain their gains in conceptual knowledge over a delay than students in the 

sequential condition. Thus, comparing methods consistently supported procedural flexibility in 

two domains that differed in numerous ways, including whether there was a single, correct 

answer and what features of the methods needed to be considered (e.g., efficiency vs. proximity 

to the correct answer). Its impact on procedural and conceptual knowledge was less consistent. 

Theories of analogical learning help to explain how comparing methods aids learning 

(Gentner, 1983; Hummel & Holyoak, 1997). In both of our studies, most students were familiar 

with one of the solution methods at pretest. When students are familiar with one method, they 

can learn new methods via analogy to the familiar one.  Students can make inferences about the 

new method by identifying its similarities and differences to a known method and making 

inferences about how the new method works based on its alignment with the known method. For 

example, students who compared methods identified how the unfamiliar methods were similar to 

and different from the method that they already knew; in turn these types of comparative 

explanations predicted learning (Rittle-Johnson & Star, 2007).  

Learning via analogy to a known method requires that students are familiar with one of 

the methods. When one method is not familiar, an alternative learning mechanism is mutual 

alignment. During mutual alignment, people notice potentially relevant features in two 
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unfamiliar examples by identifying their similarities and then focusing attention on and making 

sense of these similarities (Gentner et al., 2003; Kurtz, Miao, & Gentner, 2001). Thus, the 

analogy literature pointed to the potential importance of prior knowledge of one of the solution 

procedures when learning from comparison. 

 Our subsequent research explored the influence of prior knowledge on learning from 

comparing methods.  In one study, we worked with 236 seventh- and eighth-grade students 

whose schools did not use a pre-algebra curriculum, and thus had had limited experience solving 

equations (Rittle-Johnson, Star, & Durkin, 2009). Students who did not attempt algebraic 

methods at pretest (i.e., novices) benefited most from studying examples sequentially, rather than 

from comparing methods.  These students had higher procedural knowledge, conceptual 

knowledge and flexible use of procedures in the sequential condition than in the compare 

methods condition. The novices in the compare-methods condition seemed overwhelmed during 

the intervention – they completed less of the intervention materials and were less successful 

implementing non-standard methods when prompted (Rittle-Johnson et al., 2009).  In contrast, 

students who attempted algebraic methods at pretest learned more from comparing methods; they 

had higher procedural knowledge and flexible use of procedures in the compare methods 

condition than in the sequential condition. Further, general mathematics achievement did not 

influence the effectiveness of comparison in this study; rather, it was prior knowledge of one of 

the demonstrated methods that influenced the effectiveness of comparison. These findings are 

consistent with cognitive load theory (Sweller, 1988); simultaneous comparison of examples has 

very high working memory demands, so when both methods are unfamiliar, the working memory 

demands may be too high and impede learning. Analogical learning can be more effective when 
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comparing a new example to a known example, so instructors must be attentive to students’ prior 

knowledge.  

A follow-up study suggested that slowing the pace of instruction allowed novices to learn 

from comparing methods (Rittle-Johnson, Star, & Durkin, 2012). We worked with 198 eighth-

grade students who had little prior instruction on equation solving, so we modified the materials 

from Rittle-Johnson et al. (2009) to cover less content in more time by focusing on fewer 

problem types, cutting the number of examples and explanation prompts, and adding 30 minutes 

to the intervention time. The impact of the compare-methods condition did not interact with use 

of algebra at pretest in this study.  Regardless of students’ prior knowledge, comparing methods 

supported more flexible use of procedures than sequential study, including on a one-month 

retention test.  On other outcome measures (i.e., conceptual and procedural knowledge), the 

compare-methods and sequential conditions resulted in comparable learning (Rittle-Johnson et 

al., 2012).  

In this same study, we also explored the effectiveness of delaying comparison of methods.  

Students studied one method on the first day, and on the second day, they compared it to 

alternative methods.  The goal was to develop knowledge (although not mastery) of one solution 

method before comparing it to alternatives.  However, students learned the least in this condition, 

relative to always comparing methods or always studying the examples sequentially.  We 

expected delayed comparison of methods to be effective for novices and suspect that alternative 

instantiations of this approach could be beneficial.  For example, it may be beneficial to delay 

comparison of multiple methods, but not to delay introducing multiple methods (e.g., initially 

study multiple methods sequentially, and then compare them). 
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There were some advantages to immediately comparing methods and no disadvantages in 

this study, suggesting that novices were able to learn from comparing two unfamiliar methods 

(i.e., mutual alignment) when the pace of instruction was slowed. Indeed, novices who compared 

methods often made comparisons between the two examples in their explanations, focusing on 

comparing problem features, solution steps, answers and the relative efficiency of the methods. 

Given adequate support, novices seemed able to learn by making analogies between two 

unfamiliar methods.  However, learning via mutual alignment appears to be more difficult, and 

thus requires more instructional support, than learning an unfamiliar method via analogy to a 

known method. 

Overall, comparing methods supports procedural flexibility, and sometimes conceptual 

and procedural knowledge as well (see Table 1 for a summary of findings from our studies).  It 

can be used early in the learning process, but it must be carefully scaffolded (e.g., focusing on 

only one or two problem types and allowing ample time for study and explanation) and may 

result in less benefit than for students with some prior knowledge of a solution method.  

Studies on Comparing Problems 

Comparing correct methods is only one type of comparison.  Although it is the type of 

comparison most often advocated for in mathematics education reforms, research on comparison 

in the cognitive science literature focuses on a different type of comparison – comparing 

different problems solved with the same method. For example, illustrating the same solution 

method in two stories with different cover stories, and prompting for comparison, greatly 

increased adults’ spontaneous transfer of the solution to a new problem (Catrambone & Holyoak, 

1989; Gick & Holyoak, 1983). Comparing problems is thought to support transfer by helping 

people abstract the key features of the method so that it is not tied to overly-narrow problem 
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features such as the cover story. For example, adults who compared worked examples of 

different problems solved the same way were more likely to describe the solution to the example 

problems in general terms, rather than being tied to the specifics of the problem context 

(Catrambone & Holyoak, 1989; Gentner et al., 2003; Gick & Holyoak, 1983). In addition, 

explicitly stating the general method after learners had compared two example problems 

improved transfer; stating the general method without use of comparison did little to improve 

transfer (Gick & Holyoak, 1983). However, this previous research has been conducted with 

adults solving non-mathematical problems. 

To explore the potential of comparing problems for helping children learn math content, 

we implemented two versions of comparing problems solved with the same method. In our 

compare-equivalent-problems condition, students compared two equivalent equations that varied 

only in the particular numbers and variables (e.g., 3(x + 2) = 6 and 5(x + 3) = 15); the two were 

solved using the same method.  Prompts focused on the similarities in the solution steps and 

when a particular solution step could be used.  In the context of solving equations, a second 

variation of comparing problems emerged that may better focus attention on when particular 

solution steps can be used.  In the compare-problem-types condition, students compared 

problems with different features solved using similar, although not identical, methods. For 

example, they compared solutions to 3(x + 2) = 6 and 3(x + 2) + 5(x + 2) = 16.  Prompts focused 

on similarities as well as differences in the solution methods due to different problem features.  

 In Rittle-Johnson & Star (2009), we worked with 162 seventh- and eighth-grade students 

who had previous experience solving equation and were randomly assigned to the compare-

equivalent-problems, compare-problem-types, or compare-methods condition. Students worked 

on the materials with a partner during three math classes. Frequency of exposure to different 
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solution methods was the same across conditions.  We could not predict which condition would 

be more effective based on prior research. We found that students who compared methods 

gained greater procedural flexibility and conceptual knowledge than students in either compare-

problem condition.  Students in all three conditions made similar gains in procedural knowledge, 

including success transferring the methods to new problem types. These findings suggest that for 

mathematics learning, comparing methods supports transfer as well as comparing problems, and 

it supports procedural flexibility and conceptual knowledge better than comparing problems.   

We also included a compare-problem-types condition in the Rittle-Johnson, Star & 

Durkin (2009) study described in the previous section, with students randomly assigned to a 

compare-problem-types, compare-methods or sequential condition.  Students in the compare-

problem-types condition did not differ from students in the sequential condition on any outcome, 

regardless of prior knowledge (Rittle-Johnson et al., 2009). Differences between the compare-

problem-types and compare-methods condition depended on prior knowledge and mirrored the 

results for the compare-methods vs. sequential conditions. For students who attempted to use 

algebra at pretest, the compare-problem-types condition tended to be less effective than the 

compare-methods condition for procedural knowledge and flexible use of procedures.  However, 

for students who did not use algebra at pretest, the compare-problem-types condition was more 

effective than the compare-methods condition for procedural knowledge, conceptual knowledge 

and flexible use of procedures.  

Overall, our comparing problems conditions have not been especially effective in 

supporting learning relative to comparing methods or sequential study of examples (see Table 1).  

These findings corroborate concerns raised by Reed and colleagues that for complex, multi-step 

methods, comparing problems may not effectively support transfer (Reed, 1989; Reed, Stebick, 
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Comey, & Carroll, 2012). Across five experiments with college students, comparing two algebra 

word problems and their solutions did not support learning or transfer of the solution methods. 

Comparing two easier arithmetic word problems supported learning of the solution method, but 

not transfer of the method to algebra word problems (Reed et al., 2012).  In part, the lack of 

benefit for comparison arose because students often generated similarities and differences that 

were too generic or superficial to help them abstract the key features of the solution method. 

Complex multi-step methods may be more difficult to learn via problem comparison than 

simpler methods like the one learned in Gick and Holyoak (1983) for the Dunker radiation 

problem. Our findings also suggest that comparing problems solved with complex methods does 

not support procedural flexibility or conceptual understanding as well as comparing methods.   

Other variations of comparing problems show more promise. First, comparing easily 

confusable problem types helps learners distinguish between the two problem types and solve 

more problems correctly (Cummins, 1992; Day, Goldstone, & Hill, 2010; VanderStoep & Seifert, 

1993). For example, comparison of algebraic addition and multiplication examples supported 

better problem-solving accuracy than sequential study of addition examples, followed by 

multiplication examples (Ziegler & Stern, 2014, 2016). Second, comparing positive and negative 

examples of key ideas may improve conceptual knowledge. Students who compared problems 

that were positive and negative examples of each key idea (e.g., a line segment that was versus 

was not the altitude of a triangle) gained greater conceptual knowledge than students who studied 

only positive examples (Guo & Pang, 2011). Note that the control condition was not exposed to 

negative examples, making it impossible to know whether comparison was critical. Overall, 

comparing problems may be particularly useful in helping people recognize important problem 

features that differ between carefully selected problems. 
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Summary of Researcher-Led Classroom Studies and Proposed Guidelines 

Designing studies that could be conducted in classrooms pushed our thinking about 

different types of comparisons, what learning outcomes each supports, and when learners are 

prepared to learn from comparison. We have evaluated two types of comparison in mathematics 

classrooms – comparing methods and comparing problems. Comparing correct methods 

consistently supported procedural flexibility across studies (see Table 1).  For students who knew 

one of the solution methods at pretest, comparing methods sometimes supported greater 

procedural knowledge (Rittle-Johnson & Star, 2007; Rittle-Johnson et al., 2009) or greater 

conceptual knowledge (Rittle-Johnson & Star, 2009; Rittle-Johnson et al., 2009; Star & Rittle-

Johnson, 2009). For novices, who did not know one of the solution methods at pretest, 

comparing methods was only helpful after we slowed the pace of the lesson.  Overall, comparing 

methods can help a variety of students learn, but its advantages are more substantial if students 

have sufficient prior knowledge.  How best to develop this prior knowledge is an important topic 

for future research.  

Comparing problems solved with the same method has shown less promise for supporting 

mathematics learning, at least for solving equations and algebraic word problems (Reed, 1989; 

Reed et al., 2012; Rittle-Johnson & Star, 2009; Rittle-Johnson et al., 2009). It has been generally 

less effective than comparing methods, especially for students with prior knowledge in the 

domain. A different version of comparing problems has shown promise for helping novices learn 

important problem features and concepts that can be hard to learn, such as the altitude of a 

triangle (Guo & Pang, 2011); and future research is needed to investigate different versions of 

comparing problems.  
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Based on this research, we have begun to develop guidelines for effectively using 

comparison to support mathematics learning. First, what is compared matters. Comparing 

solution methods is particularly promising and can support greater math learning than other 

forms of comparison (Rittle-Johnson & Star, 2009). In addition, comparing a familiar method to 

an unfamiliar one is typically more effective than comparing two unfamiliar methods (Rittle-

Johnson et al., 2009). Second, who is learning from comparison matters. Students with some 

prior knowledge in the domain often learn more effectively from comparison than novices in the 

domain (Rittle-Johnson et al., 2009). At the same time, once students develop strong knowledge 

in the domain, explicit comparison may not be needed, as students may learn equally well 

without comparison (Guo & Pang, 2011).  This series of studies contributed significantly to a 

recent Practice Guide from the U.S. Department of Education (Woodward et al., 2012) that 

identified comparing multiple solution methods as one of five recommendations for improving 

mathematical problem solving in the middle grades.  Thus, this series of studies has provided 

important information about what to compare and when in instruction to best use different types 

of comparison. 

Year-Long Study Helping Teachers Use Comparison in Algebra I Classrooms 

Given the promise of comparison for supporting mathematics learning, we developed and 

evaluated a set of supplementary materials for incorporating comparison throughout Algebra I 

instruction. Mastery of algebra is an important milestone for students, in that algebra serves as a 

“gatekeeper” for full participation in society and also provides students with the ability to 

harness new technologies and take advantage of the job opportunities resulting from them 

(Moses & Cobb, 2001; National Mathematics Advisory Panel, 2008). Regrettably, too few 

students are graduating from high school with the algebra skills needed for college or the 
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workforce (American Diploma Project, 2004). Thus, improving algebra instruction is of great 

importance.  

Unfortunately, U.S. teachers often struggle to effectively support comparison of multiple 

methods during mathematics instruction (Stein, Engle, Smith, & Hughes, 2008). Analyses of 

video records of mathematics instruction indicate that comparison is often not well enacted in 

U.S. classrooms (Richland, Holyoak, & Stigler, 2004; Richland et al., 2007). Algebra I teachers 

reported that they introduced multiple solution methods for at least some problem types, but that 

they often did not explicitly compare the methods (Lynch & Star, 2014b). These findings 

indicate that comparison is a reasonable adaptation of current teaching practices, but that there is 

a need for materials and training to help teachers effectively use comparison in mathematics 

instruction. 

Supplemental Curriculum Materials 

Based on the promise of our worked example based approach to supporting comparison, 

we developed a set of supplementary worked example pairs that could be used in conjunction 

with any Algebra I curriculum. A team of mathematics education experts, including researchers, 

mathematicians, and Algebra I teachers, developed the materials by going through a typical 

Algebra I course syllabus, identifying core concepts, common student difficulties, and key 

misconceptions, and then creating comparison materials to attempt to address them. 

This led to a set of 141 worked example pairs (WEPs, available from: 

scholar.harvard.edu/contrastingcases). A sample WEP is shown in Figure 2.  Each WEP showed 

the mathematical work and dialogue of two hypothetical students, Alex and Morgan, as they 

attempted to solve one or more algebra problems. The curriculum contained four types of WEPs, 

with the types varying in what was being compared and the instructional goal of the comparison, 
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as outlined in Table 2. Which is better? WEPs showed the same problem solved using two 

correct, but different methods, with the goal of understanding when and why one method was 

more efficient or easier than another method for a given problem, as we did in our short-term 

research on comparing methods (e.g., Rittle-Johnson & Star, 2007). Which is correct? WEPs 

showed the same problem solved with a correct and incorrect method, with the goal of 

understanding and avoiding common errors. Comparing correct and incorrect methods supports 

gains in procedural knowledge, retention of conceptual knowledge, and a reduction in 

misconceptions (Durkin & Rittle-Johnson, 2012).    

Two new comparison types were also included. The new types first emerged during a 

classroom study by Newton et al. (2010) and were further developed by mathematics educators 

on the research team. Why does it work? WEPs showed the same problem solved with two 

different correct solution methods with the goal of illuminating the conceptual rationale in one 

method that is less apparent in the other method. This is in contrast to the Which is better? 

comparisons, where the goal was to learn when and why one method was better for solving 

particular types of problems. How do they differ? WEPs showed two different problems solved 

in related ways, with an interest in illustrating what the relationship between problems and 

answers of the two problems revealed about an underlying mathematical concept. This 

emergence of new comparison types is one clear benefit of bridging between cognitive science 

and education, and highlights that the benefits are not unidirectional from theory to practice.   

The WEPs were designed to maximize their potential impact on student learning based 

on previous research. As before, the two worked examples were presented side-by-side.  To 

facilitate processing of the examples, we included thought bubbles where two students (Alex and 

Morgan) described their solution methods.  We used common language in these descriptions as 
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much as possible to help facilitate alignment of the examples.  We also formalized an 

instructional routine to help improve the effectiveness of using our comparison materials.  Each 

WEP had three types of reflection prompts (understand, compare, and make connections) meant 

to culminate in a discussion of the learning goal for the pairs of WEPs.  First, Understand 

prompts, such as, “How did Morgan solve the equation?” were intended to provide students the 

opportunity to understand each worked example individually, prior to comparing them. Second, 

Compare prompts, such as “What are some similarities and differences between Alex’s and 

Morgan’s ways?” were meant to encourage comparison of the two worked examples. 

Understand and Compare prompts were very similar across WEP types and were intended to 

prepare students to engage in productive reflection on the final, Make Connections prompts, such 

as “On a timed test, would you rather use Alex’s way or Morgan’s way? Why?” and “Even 

though Alex and Morgan did different first steps, why did they both get the same answer?” Our 

pilot work revealed that sometimes teachers skipped or inadequately addressed the Make 

Connection prompts, so we supplemented each WEP with an additional “take-away” page. On 

this page, the fictitious students Alex and Morgan identify the learning goal for that WEP. Our 

intent was that the teacher would use the take-away page to provide an explicit summary 

statement of the instructional goal of the WEP. Prior research suggests that direct instruction is 

needed to supplement student-generated comparisons (Schwartz & Bransford, 1998), and a 

feature of high-quality instruction is that teachers summarize the instructional goals of a lesson 

(Brophy, 1999). 

Teachers were asked to use our materials once or twice a week as a supplement to their 

usual curriculum. Teachers were given complete latitude in deciding which WEPs to use, when 

to use them, and for how long to use them.  
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In collaboration with Kristie Newton, we also designed a one-week, 35-hour professional 

development institute to familiarize teachers with the materials and approach (Newton & Star, 

2013). Teachers read through and discussed the supplemental curriculum materials and viewed 

videotaped exemplars of other teachers using the curriculum. In addition, teachers worked in 

groups to plan and teach sample lessons to their peers using the materials, which were 

implemented and then debriefed by the group.  

Implementation and Evaluation 

We first piloted our materials with 13 Algebra I teachers. We then conducted a year-long 

randomized controlled trial that explored the effectiveness of implementing our Algebra I 

supplemental curriculum in typical classrooms, i.e., its impact on teachers’ instruction and 

students’ mathematical knowledge (Star, Pollack, et al., 2015). Initially, 141 Algebra I teachers 

from public schools were randomly assigned to either implement the comparison curriculum as a 

supplement to their regular curriculum (treatment condition) or to continue using their existing 

curriculum and methods (‘business as usual’ control condition). However, there was large 

attrition between the spring when teachers volunteered to participate and the fall when 

implementation began, due to a range of factors, such as teachers no longer being assigned to 

teach Algebra 1. Such attrition reflects the difficulties of conducting research in public high 

schools, but is a limitation of the study. The final sample consisted of 76 teachers and their 

students (39 treatment teachers with 781 students and 29 control teachers with 586 students).  

Before the school year began, treatment teachers completed the 35-hour professional 

development institute. Observations, surveys, and interviews indicated that the professional 

development was successful in familiarizing teachers with our approach (Lynch & Star, 2014a). 

During the school year, treatment teachers implemented the materials on their own, without 
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researcher involvement. Each time teachers used our materials, they were asked to call and report 

on what WEP they had used, how they had used it, and their impressions on the strengths and 

weaknesses of the materials.  Teachers were also asked to videotape their use of our materials 

every other week, and teachers in both conditions were asked to videotape their instruction 

(without use of our materials) once a month. 

Implementation results. Analysis of the videotapes indicated that treatment teachers were 

able to implement our materials as intended (Star, Pollack, et al., 2015). Further, control teachers 

did not frequently use specific instructional practices that were integral to the intervention; they 

rarely presented multiple methods side-by-side or explicitly compared examples. However, there 

was large variation in how frequently treatment teachers used our curriculum, and many 

treatment teachers used the supplemental materials much less frequently than intended, using our 

materials an average of 19 class periods during the 180-day school year (range: 0 to 56 days). In 

fact, 18% of participating treatment teachers did not report using the materials even once; 30% of 

them reported using them 5 times or fewer. Overall, treatment teachers used our supplemental 

materials much less often than intended (i.e., low degree of implementation), but when they 

chose to use the materials, it was with high fidelity (i.e., high quality of implementation). 

Student outcomes. To assess student learning, teachers administered a standardized algebra 

readiness test, the Acuity™ Algebra Diagnostic Readiness Exam (CBT/McGraw Hill, 2007), as 

well as a researcher-designed assessment of algebra knowledge to their students at the beginning 

and end of the school year. Students in the two conditions did not differ in algebra knowledge at 

the beginning of the year. At the end of the school year, students’ algebra knowledge was not 

higher in classrooms in which our materials were available (see Star, Pollack, et al., 2015 for full 



Power of Comparison in Mathematics Instruction p. 23 

results). This was not surprising given how infrequently our supplemental curriculum was used 

in many classrooms.  

Given the large variability in use of our curriculum, we evaluated whether increased use 

of our materials was associated with increased algebra knowledge in treatment classrooms. We 

calculated the “dosage” of curriculum given by each treatment teacher by multiplying the 

number of reported days each teacher used our materials by how long on average that teacher 

spent using our materials in a single lesson (based on the videos). Dosage ranged from 0 to 864 

minutes (M = 140). We used an instrumental variable estimation (IVE) approach to analyze the 

data because it can account for a variety of potential factors that might teacher-level decisions 

about dosage (Murnane & Willett, 2011). Simply including dosage as an additional predictor in a 

multi-level model would create bias in the estimate of the dose-response relationship, but an IVE 

approach adjusts for this bias.  

Increased dosage was predictive of greater procedural knowledge of algebra at the end of 

the school year (Star, Pollack, et al., 2015). This included solving equations, graphing equations, 

and factoring expressions. Dosage did not have a significant effect on conceptual knowledge, 

procedural flexibility or scores on the standardized algebra test. This may be because all 

comparison materials focused attention on procedural knowledge, whereas attention to flexibility 

and conceptual knowledge varied by comparison type.   

We also explored whether frequency of using particular comparison types was associated 

with increased algebra knowledge. Frequency of using the Why does it work? comparisons was 

positively correlated with the amount of gain in students’ algebra knowledge; correlations for the 

other types of comparison were positive but not significant.  
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Discussion 

 Overall, providing our supplemental materials to teachers did not significantly affect 

students’ algebra knowledge. However, many teachers used our materials infrequently. Increased 

use of our materials had a positive effect on procedural knowledge, although not on other student 

knowledge outcomes. These findings suggest a potential role for comparison in supporting 

aspects of algebra learning, but also point to the challenges of supporting teachers’ integration of 

this approach into the curriculum.  

The largest limitation was that teachers used our materials much less than intended. 

Almost half of the sample reported using our materials on 5 or fewer occasions across the entire 

school year; on average, teachers used our materials for 19 class periods for a total of 140 

minutes across the entire school year. We intentionally chose to give teachers a great deal of 

choice in which materials to use and when to use them, but this freedom seemed to lead to a 

substantial number of teacher not using the materials or using them only infrequently. Interest, 

training, and carefully designed materials were not enough for many teachers to adopt our 

materials with much regularity. It is time consuming and potentially challenging to select, plan, 

and integrate supplemental materials with the existing curriculum. Teachers would likely benefit 

from more clear structure and direction for which materials to use when.  

Further, teachers could use additional supports to implement higher-quality instruction. 

Too frequently in our study, teachers were providing the explanations, with little student 

explanation or discussion (Star, Newton, et al., 2015; Star, Pollack, et al., 2015). In addition, our 

professional development only occurred over the summer, but effective mathematics teacher 

professional development typically provides teachers with multiple, intensive opportunities to 

establish meaningful connections between existing instructional practices and the practices and 
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beliefs advocated by the new approach across the school year (Garet, Porter, Desimone, Birman, 

& Yoon, 2001). More sustained professional development is likely needed to increase high-

quality instruction that emphasizes student explanation and discussion when integrating our 

materials. 

Conclusions 

 Comparison is a promising instructional approach for supporting mathematics learning.  

In short-term classroom studies, comparing different solution methods for solving the same 

problem often promoted procedural flexibility and sometimes promoted conceptual and 

procedural knowledge.  Further, because comparison requires substantial cognitive effort, it is 

often more effective when learners have some prior domain knowledge; novices can become 

overwhelmed by comparison without adequate support. In addition, comparison can be infused 

throughout curriculum materials for an entire course, and some teachers are able to implement 

comparison-based materials in their instruction. However, providing comparison-based materials 

and professional development in the summer was not sufficient for many teachers to incorporate 

comparison throughout the school year or to reliably improve student outcomes. A variety of 

changes to the supplemental materials and professional development may be needed.  

 Future research is needed to advance both theory and practice. First, research is needed 

on how different types of comparison support different learning outcomes.  For example, the 

Why does it work? comparison type that emerged from our classroom research is particularly 

promising for supporting knowledge of critical math concepts and procedures. Do Why does it 

work? comparisons support greater student learning than sequential study of the same materials? 

We predict that they will. More generally, theories of analogical learning need to explicitly 

consider what is being compared. For example, structure-mapping theory (Gentner, 1983, 2010) 
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should be refined to consider how comparing problems vs. methods impacts alignment and 

mapping of elements between two examples. Second, research is needed on the supports teachers 

need to effectively integrate comparison in their instruction, including the features of the 

supplemental materials (e.g., use of worked examples vs. student-generated solutions) and the 

importance of student explanation and discussion. Comparison is an effective practice for 

improving mathematics learning, and future research should further refine theory and practice to 

maximize its potential benefits. 
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Table 1 
Design Features and Outcomes From Our Experimental Studies on Using Comparison to 
Support Mathematics Learning 

 Rittle-Johnson 
& Star (2007) 

Star & Rittle-
Johnson (2009) 

Rittle-Johnson, 
Star & Durkin 

(2009) 

 Rittle-Johnson, 
Star & Durkin 

(2012) 

Rittle-Johnson 
& Star (2009) 

Design Features 

Instructional 
Conditions 

Compare-
methods or 
sequential 

Compare-
methods or 
sequential 

Compare-
methods, 

sequential or 
compare- 

problem-types 

Compare-
methods, 

sequential, or 
delayed-
compare-
methods 

Compare-
methods, 
compare-

equivalent-
problems or 

compare-
problem-types 

 
Target Task Linear equations Computational 

Estimation 
Linear equations Linear 

Equations 
Linear equations 

Most children 
familiar with a 
target method at 
pretest 

Yes Yes Mixed Mixed Yes 

Condition(s) with highest performance 

Conceptual 
Knowledge 

Same (poor 
measure) 

Depends on 
prior knowledge 

for retention 
 

Depends on 
prior knowledge 

Same Compare-
methods 

Procedural 
Knowledge  

Compare-
methods 

Same Depends on 
prior knowledge 

 

Similar  
 

Same 

Flexibility  Compare-
methods 

Compare-
methods 

Depends on 
prior knowledge 

Compare-
methods 

 

Compare-
methods 
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Table 2 
Four Types of Comparisons Used in Our Year-Long Algebra I Classroom Study 

Comparison Type 

Comparison 
goal 

Which is 
better? 

 

Which is 
correct? 

 

Why does it 
work? 

How do they 
differ? 

Features of 
examples 

Same 
problem 

solved with 
two different, 

correct 
methods. 

Same 
problem 

solved with a 
correct and an 

incorrect 
method. 

Same 
problem 

solved with 
two different, 

correct 
methods. 

Different 
problems. 

Focus is not 
on solution 
methods. 

Focus of 
comparison 

When and 
why a method 

is more 
efficient or 

easier. 

Why one 
method 

works and 
one does not. 

Conceptual 
rationale 

revealed in 
one method 
that is less 
apparent in 

other method. 

What 
relations 
between 

problems and 
answers 

reveal about 
underlying 
concept. 

Sample 
worked 
example  
pair 

Solving the 
proportion 

4/5 = 24/n by 
finding 

equivalent 
fractions or 
by cross-

multiplying. 

Solving 45y + 
90 = 60y by 

first 
subtracting 

45y from both 
sides or by 
incorrectly 
combining 
45y + 60. 

Expanding 
the 

expression 
(x^4)^2 by 

applying the 
power rule (x 
^(4*2)) or by 

expanding 
and then 
squaring.  

Graphing the 
equations 
 y = x2 and  

y = -x2. 

Sample Make 
Connections 
prompt  

Can you 
make up a 

general rule 
for when 

Alex’s way is 
better and 

when 
Morgan’s 

way is better? 

Can you state 
a general rule 

about 
combining 
like terms? 

Even though 
Alex and 

Morgan did 
different first 

steps, why 
did they get 

the same 
answer? 

How does 
changing the 
sign of the 

coefficient of 
x2 affect the 
graph of the 

quadratic 
function? 
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A.  Compare-Methods Condition 
 

Jessica’s Solution: 
   

2(t – 1) + 3(t – 1) = 10 
2t – 2 + 3t – 3 = 10 

5t – 5 = 10                    
5t = 15 

t = 30 
         

 
 
 

______________ 
Combine 

Add on Both 
Divide on Both 

Mary’s Solution:  
 

2(t – 1) + 3(t – 1) = 10 
 5(t – 1) = 10 

t – 1 = 20                    
t = 30 

 
  

 
 
 

______________ 
Divide on Both 

Add on Both 

Label the first step for each solution in the blank space provided above.   
   
1. Jessica and Mary did different first steps.  Is it OK to do either step first in this problem?  

Explain your reasoning. 
 
2.  Why might it be helpful to know two different ways to solve equations like this one? 
 
B.  Sequential Condition 
 

Jessica’s Solution: 
   

2(t – 1) + 3(t – 1) = 10 
2t – 2 + 3t – 3 = 10 

5t – 5 = 10                    
5t = 15 

t = 30 
         

 
 
 

______________ 
Combine 

Add on Both 
Divide on Both 

Label the first step in the blank space provided above. 
1. Why did Jessica divide as her last step? 

 
-----NEXT PAGE----- 
 

Mary’s Solution:  
 

4(t – 5) + 3(t – 5) = 14 
 7(t – 5) = 14 

t – 5 = 20                    
t = 70 

 

 
 
 

______________ 
Divide on Both 

Add on Both 

Label the first step in the blank space provided above. 
1. Do you think the solution method used on this problem is a good one?  Why? 

 
 

Figure 1.  Sample pages from the compare-methods and sequential conditions from Rittle-Johnson & 
Star (2007). 
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Figure 2.  Sample worked example pair from our Algebra I scale-up project, illustrating a Why 
does it work? comparison (Star, Pollack, et al., 2015). 

 

Alex and Morgan were asked to simplify 

Alex’s “divide first” way 

First I rewrote the 
division problem 

in fraction 
notation.  

* How did Alex simplify the expression? 
* How did Morgan simplify the expression? 

* Why do the terms in the denominator cancel out in Alex's second step? 
* What are some similarities and differences between Alex’s and Morgan’s ways? 

* Even though Alex and Morgan did different first steps, why did they both get the same answer? 
11.2.2 

Morgan’s “multiply by the reciprocal” way

  

7

a
÷

b

c

First I rewrote the 
problem as 

multiplication by 
the reciprocal of  

b/c, which is c/b.  

I multiplied the 
terms in the 

numerator and 
denominator 

together, and I 
got my answer.  

I multiplied the 
terms in the 

numerator to get    
 my answer.  

Then I multiplied 
the numerator 

and the 
denominator by 

the reciprocal of 
the denominator, 
c/b. The terms in 

the denominator 
canceled out.  

  

7

a
÷

b

c

  

7

a

b

c

  

7

a
⋅
c

b

b

c
⋅
c

b

  

7c

ab

  

7

a
÷

b

c

  

7

a
⋅
c

b

  

7c

ab

Why does it work? 


