Does Calling it 'Morgan's Way' Reduce Strategy Generalization?

Abbey Loehr, Washington University in St. Louis CDS October 2019

Bethany Rittle-Johnson Vanderbilt University Kelley Durkin Peabody Research Institute Jon Star Harvard University

Importance of Generalization

Person-Presentation Harms Generalization

Presenting strategies as belonging to a specific individual (person-presentation) can harm transfer (Riggs, Alibali, & Kalish, 2015; 2017)

Strategies evaluated as less generalizable (Riggs et al., 2017)

Person-presentation vs. Here is **Morgan's strategy**:

vs. Strategy-label Here is the **multiplicative strategy**:

Benefits of Person-Presentation

- Intended to enhance educational materials
 - Found in U.S. middle-school math textbooks (Riggs et al., 2015)
 - Common when presenting multiple strategies in Japanese middle-school textbooks (Rittle-Johnson, 2019)
- In line with best practices in math instruction
 - Class discussions of student-generated examples (NCTM, 2014)
 - Teachers encouraged to use names (NCTM, 2000)

Comparison and Explanation Aid Generalization

Comparison

- In math, comparing worked examples supports transfer and flexibility (Rittle-Johnson & Star, 2007; Star & Rittle-Johnson, 2009)
- Focus on problem structure instead of surface features (Gentler & Medina, 1998; Gick & Holyoak, 1983)

Explanation

- Prompts to explain worked examples aid learning (Chi et al., 1994)
- Broadens conditional knowledge (Chi et al., 1989; Siegler & Chen, 2008)

Research Question

Does person-presentation harm generalization when used with effective learning techniques in a classroom context?

Current Study

- Tested impact of person-presentation during regular classroom instruction
- Algebra I teachers used supplemental curriculum during a multi-week unit on linear equation solving
 - Students compared and explained strategies presented either with or without characters and their names

Method

Participants

Five 9th grade Algebra I teachers and their 168 students from 2 schools in suburban Massachusetts

Design

Person-presentation condition (n = 76 students)

 $\blacksquare Strategy-label condition (n = 92 students)$

Supplemental curriculum

- 9 Worked example pairs
 - Which is better?
 - Which is correct?
 - Why does it work?

Which is better?

Person-presentation Condition Riley and Gloria were asked to solve 5(n + 6) = 2(n + 6) + 6.

Which is better? Strategy-label Condition

Two students were asked to solve 5(n + 6) = 2(n + 6) + 6.

Generalization Ratings

- After comparing and explaining each strategy, rated generalizability
 - How likely would you, another high school student, and a teacher be to use the strategy in the future?

1	2	3	4	5
Very	Somewhat	Neutral	Somewhat	Very
Unlikely	Unlikely		Likely	Likely

Assessment

Developed 16-item assessment (α = .78)

- Conceptual Knowledge
 - Identify equivalent equations
- Procedural Knowledge
 - □ 45 = 2(x + 8) + 7(x + 8), solve for x
- Procedural Flexibility
 - On a timed test, which would be the BEST way to solve the problem below?

Student Learning

Student Learning

No differences in posttest scores by knowledge type, p's > .27

Generalization Ratings

No differences in generalization ratings, p's > .10

Results Summary

- No negative (or positive) effects of person-presentation on learning
 - Including conceptual, procedural, and flexibility sub-scores
- No negative (or positive) effects of person-presentation on evaluations of generalizability of strategies

Discussion

- Possibility that comparison and explanation played a protective role
 - Both guide attention to important problem features and away from surface features (Gentner & Medina, 1998; Siegler & Chen, 2008)
- Expansive framing helps students develop generalizable knowledge (Engle et al., 2011; 2012)
 - Integrated throughout unit, multiple strategies and characters

Limitations

- Could not control for teacher differences
- Broader assessment
 - Less focused on transfer of strategy to specific problem types

Conclusion

- Findings reduce concerns about the potential negative effects of person-presentation on knowledge generalization
 - When effective instructional supports were in place
 - Integrated into classroom instruction

Acknowledgements

E-mail: abbey.loehr@wustl.edu

- Thanks to Stephanie Fine and the Children's Learning Lab at Vanderbilt University
- Funded by grants from the National Science Foundation
 - Opinions expressed are those of the authors only!