Compare \& Discuss Problems

Topic 2: Functions and Graphing Linear Equations

Implementation Checklist

| Prepare to Compare | |
| :--- | :--- | :--- | :--- | :--- |

Compare \& Discuss: Algebra 1 PD Institute Discussion Resources

Why have a mathematical discussion?

$>$ To deepen students' understanding of the mathematical content.
$>$ To enhance student engagement and interest in mathematics.

What should a teacher do to have a good mathematical discussion?

> BEFORE the discussion starts:

- Thoroughly solve the problems that will be discussed.
- Anticipate student responses, errors, and difficulties.
- Plan questions to ask, as well as problem extensions to use.
> DURING the discussion:
- Ask lots of open-ended questions, using the following question stems to spark and continue conversation:
- Do you agree with Layla? Why?
- Can you summarize what Riley said?
- Can you give another example?
- Can you describe that in more detail?
- What do you mean by $X X X X$?
- How did you do that?
- What might be confusing about this example?
- Re-voice and summarize student contributions to keep the conversation going, saying things like:
- What I am hearing is XXXX. Is that what you mean?
- Are you saying $X X X X$?
- I am not sure I understand what you mean. Can you explain it again?
- Manage flow of the conversation, involving many voices from the class.
- Involve as many students in the discussion as possible.
- Be sure to solicit participation from students who do not have their hands raised, using equity sticks, note cards, spinners, or a random name generator for randomly selecting students to speak.
- Consider keeping track of which students have spoken with a clipboard of the class roster, both to remember who has spoken and to ensure equitable participation.
- Hold students accountable for listening to and understanding others' contributions, saying things like:
- Gloria thinks that XXXX. Tim, can you summarize what Gloria said, in your own words?
- Provide students credit for discussion participation as part of their grade.

Prepare to Compare \& Discuss: Teacher Prep Checklist

For each Worked Example Pair, it is important you review the problem and its associated worksheets in advance before presenting it to the class. When prepping, keep the following checklist in mind:
\checkmark Ensure you understand each method in the WEP.
\checkmark Read the Big Idea message so you know where the discussion should lead by the conclusion of the exercise.
\checkmark Review the prompt on the Discuss Connections worksheet, and:

- Add extension questions that will push your students to dig deeper during the discussion, OR
- Create additional, supporting questions that will allow struggling students to grapple with the prompt more successfully.
\checkmark Determine when in the class you plan to present the WEP.
\checkmark Make sufficient copies of the worksheet(s) for participating students.

That's it! For each WEP, we don't anticipate more than 5-10 minutes of prep. Please remember to reach out to research staff if any questions or concerns come up during planning.

Differentiating Compare \& Discuss Problems

We strongly believe, and our research supports, that Compare \& Discuss problems can be an effective way to engage in mathematics for all learners. Below, you will find a general list of recommendations to keep in mind as you consider differentiating the Compare \& Discuss problems to fit your students' needs.

DON'T:

- Change the examples such that they are a far removal from the implementation model.
- Skip whole chapters.
- Change or adapt the tests.
- For research purposes, it is important every student takes the same test, even if content on the test was not covered in your class.
- Eliminate the side-by-side comparison of the solution methods.
- Rush through/gloss over the WEPs (don't save them for the last 5 minutes of class!).
- If you are working with students and the Compare phase seems like it is moving quickly, that might not be a problem -it gives you more time to work on the Discuss phase, incorporating more extension questions for deeper discussion.

DO:

\checkmark Plan ahead with research staff.
\checkmark Adapt WEPs for content not covered, rather than skipping the examples altogether.
\checkmark Blend comparison types - types are not mutually exclusive (some can be both Why does it work? \& Which is better?).

- This may influence your extension questions for the Discuss phase.
\checkmark Address changes for later chapters with lower level classes (content in earlier chapters [1, 3, and 5] tends to be covered in all levels, but you may need to change/adapt content for later chapters [7, 9]).
\checkmark Adapt Which is correct?/How do they differ? WEPs for lower level classes.
- Some students may be overwhelmed by a comparison with two different problems; others may struggle with determining which method is incorrect. Discuss with research staff ways to adapt these two comparison types for struggling students.
Lastly, we encourage creativity! We're happy to work with you to find ways to incorporate the Compare \& Discuss problems into your class as a yearlong theme (e.g. using Holiday greeting cards, dress-up days, etc.).

Topic 2: Functions and Graphing Linear Equations- Overview

Section	Table of Contents (Page \#)	WEP Type	Suggested Use
2.1	7	Why does it work?	Mid-lesson
2.2	11	Why does it work?	Mid-lesson
2.3	15	How do they differ?	Beginning of Lesson
2.4	23	Which is correct?	Mid-lesson
2.5	27	Why does it work?	Mid-lesson
2.6	31	Which is better?	End of Lesson
2.7	35	Which is better?	Beginning of Lesson
2.8			Mid-lesson

$\begin{aligned} & \underline{y} \\ & \underline{J} \\ & . \underline{n} \end{aligned}$? Prepare to Compare $>$ What is the problem asking? $>$ What is happening in the first method? $>$ What is happening in the second method?
	Make Comparisons What are the similarities and differences between the two methods? - Which method is better? - Which method is correct? - Why do both methods work? - How do the problems differ?
	Prepare to Discuss (think, pair) $>$ How does this comparison help you understand this problem? > How might you apply these methods to a similar problem?
	Discuss Connections (share) Dhat ideas would you like to share with the class?
	Identify the Big Idea > Can you summarize the Big Idea in your own words?

Topic 2.1: Functions

WEP Type: Why does it work?
Suggested Use: Mid-lesson
Problem: Riley and Gloria were given the set of ordered pairs $\{(-3,6),(2,5),(3,1),(2,4),(5,1)\}$, and asked to determine if the relation is a function.
Phase
Prepare
to Compare

How did Riley determine if the relation was a function?

How did Gloria determine if the relation was a function?

- Riley circles the 2's. Why?
- What if the two 2's had both pointed to the number 5 ?
- Why does Riley not worry that there are two 1 's in the range?
- How did Gloria know where to draw her vertical line?

Why do both methods work?
Why does the vertical line test tell us the same thing as the table of values? Both help you determine if there is a unique output (y) for every given input (x).
\qquad
Discuss
Connections
(Share)
If a vertical line intersects the graph of a relation more than once, this means that there are two (or more) points on the graph that have the same x value but different y values. When this occurs, this means that the relation is not a function.
\qquad
\qquad
\qquad

[^0]Why does the vertical line test work?
If a vertical line intersects the graph more than once, it shows that there are two points on the graph that have the same x value but different y values, so it is not a function.

Riley and Gloria were given the set of ordered pairs $\{(-3,6),(2,5),(3,1),(2,4),(5,1)\}$,
and asked to determine if the relation is a function.
made a table.

Riley's "make a table" way

x (domain)	y (range)
-3	6
2	5
2	4
3	1
5	1

I saw that 2 in the domain is paired with both a 5 and a 4 in the range.

This means the relation is not a function.

Gloria's "graph and vertical line test"
way

Discuss Connections

Why does the vertical line test work?

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and and discuss your answers. After talking with your partner, what is your answer?

Think	Pair

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Riley and Gloria were given the set of ordered pairs

$$
\{(-3,6),(2,5),(3,1),(2,4),(5,1)\}
$$

and asked to determine if the relation is a function.

How did Riley determine it the relation was a function? How did Gloria determine if the relation was a function?

Why do both methods work? Why does the vertical line test tell us the same thing as the table of values?

Topic 2.2: Linear Functions

WEP Type: Why does it work?

Suggested Use: Mid-lesson

Problem: Emma and Layla were asked if the points in the table could represent a linear function.

Phase
Prepare to Compare

Make
Comparisons

Guiding Discussion Questions and Implementation Notes
How did Layla know to write " 25 "?
What does Emma mean when she says x and y change "twice as much"? How did Emma know that the rate of change was constant?

Why do both "analyze the table" methods work?
How do Emma's and Layla's first steps both show they are thinking about "rate of change"?

Prepare to Discuss
(Think, Pair)
Fill in the empty areas in the table to create a linear function.

\mathbf{X}	$\mathbf{2}$	$\mathbf{3}$	
\mathbf{Y}		$\mathbf{1 0}$	$\mathbf{3 0}$

Discuss
Connections
(Share)
There are many possible correct answers. For example, if the missing x value is 4 , this means that as x goes up by 1, y goes up by 20 (making the missing y value to be -10). If the missing x value is 5 , this means that as x goes up by 1 , y goes up by 10 (making the missing y value to be 0).

Identify What do these examples show us about looking for constant rates of change? the Big Idea

Rate of change is a relationship between the change in y and change in x. You have to pay attention to changes in both x and y to figure out if a pattern is linear.

Emma and Layla were asked if the points in the table could represent a linear function.

x	3	5	6
y	20	30	35

How did Emma know that the rate of change was constant?
Why do both methods work? How do Emma's and Layla's first steps both show they are thinking about "rate of change"?

Discuss Connections

Fill in the empty areas in the table to create a linear function. Use Emma and Layla's ways to justify a constant rate of change.

X	2	3	
Y		10	30

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and	
and discuss your answers. After talking with your partner, what is your answer?	
Think	Pair

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Emma and Layla were asked if the points in the table could represent a

How did Emma know that the rate of change was constant?
Why do both methods work? How do Emma's and Layla's first steps both show they are thinking about "rate of change"?

Topic 2.3: Function Notation

WEP Type: How do they differ?
Suggested Use: Beginning of lesson
Problem: Gloria and Tim were solving the problem $f(x)=4 x+1$ to find $f(2)$.

Phase

Prepare
 to Compare

Comparisons
How did Gloria know to find 2 on the x-axis instead of the y-axis?
\qquad
\qquad
\qquad

Make Did Gloria and Tim get the same answer? How do you know?

\qquad
\qquad
\qquad

Prepare Use Gloria's "graphing" way and Tim's "function notation" way to find where $f(x)=13$ to Discuss using the same equation $f(x)=4 x+1$.
(Think, Pair) \qquad
\qquad
\qquad
Discuss Using Tim's way, I would plug 13 in for x in the function $f(x)$, and the answer $f(13)$ would

Connections

(Share) give me the y-value for when the x-value is 13. If I used Gloria's way, I would graph the line $f(x)=4 x+1$ and find the corresponding y-value for the ordered pair when x is 13.

Identify What do we learn from comparing the two ways?
the Big Idea We can use function notation as well as x's and y's to write and graph linear functions. Both $f(x)$ and y refer to the output of the function, when x is the input.

Gloria and Tim were solving the problem
 $f(x)=4 x+1$
 to find $\mathfrak{f}(2)$.

| Tim's "function notation" way |
| :---: | :---: |
| $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+1$ |
| $\mathrm{f}(2)=4(2)+1$ |
| $\mathrm{f}(2)=8+1$ |

Discuss Connections

Use Gloria's "graphing" and Tim's "function notation" ways to find where $f(x)=13$.

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and and discuss your answers. After talking with your partner, what is your answer?

Think	Pair

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Gloria and Tim were solving the problem

$$
f(x)=4 x+1
$$

to find $f(2)$.

How did Gloria know to mnd
Did Gloria and Tim get the sam nswer? How do you R w?

Topic 2.4: Graphing Linear Equations in Standard Form

WEP Type: Which is correct?
Suggested Use: Mid-lesson
Problem: Layla and Riley were asked to graph $x=5$ and $y=2$.

Phase
Guiding Discussion Questions and Implementation Notes
How did Layla decide where to draw her lines? What does she mean when she says she "just moved up 5 on the x-axis"?
How did Riley decide where to draw his lines?
Why is Layla's method called the "move the axis" way?
Why is Riley's method called the "think of points" way?

Make Which method is correct?

Comparisons

How could you convince Layla or Riley that their way is not right?
What can you do to help yourself remember not to make the same mistake as Layla?

Prepare (Think, Pair)Discuss Connections (Share)

Where do the lines $x=4$ and $y=3$ intersect? Explain how you can find where they cross both by graphing and without graphing.
\qquad
\qquad
\qquad

To find the point of intersection by graphing, we can graph the vertical line $x=4$ and the horizontal line $y=3$ and note that they cross where x is 4 and y is 3 , or (4,3). Without graphing, the point that lies on both $x=4$ and $y=3$ is where x is 4 and y is 3 , or (4,3).
\qquad
\qquad

Identify the Big Idea

How did Layla's mistake happen?
Layla moved the x - or y-axis, but instead she should have thought about what an equation of a line means. The equation $x=5$ means that every point on the line has an x-coordinate of 5 .

Layla and Riley were asked to graph $x=5$ and $y=2$.

Discuss Connections

Where do the lines $x=4$ and $y=3$ intersect? Explain how you can find where they cross both by graphing and without graphing.

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and	
and discuss your answers. After talking with your partner, what is your answer?	
Think	Pair

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Why is Layla's method called the "move the axis" way? Why is Riley's called the "think of points" way?

Which method is correct?

Topic 2.5: Graphing Linear Equations in Slope-Intercept Form

WEP Type: Why does it work?
Suggested Use: Mid-lesson
Problem: Tim and Emma were asked to find the slope of the line passing through $(3,4)$ and $(2,-1)$.

Phase

Guiding Discussion Questions and Implementation Notes

(2) Prepare
 to Compare

Make Why do both methods work?
 Comparisons
 How does each method show that slope is "rise over run"?

How did Emma know where to plug in each number in the slope formula?
Could Emma have used $(3,4)$ as $\left(x_{2}, y_{2}\right)$ instead of $\left(x_{1}, y_{1}\right)$?
Tim counted the spaces between the two points, beginning at the point (2, -1).
Would Tim have gotten the same answer by starting from the other point, $(3,4)$?
\qquad
\qquad

- Prepare to Discuss (Think, Pair)

Graph a line with a zero slope, then use Tim's "graph" way and Emma's "formula" way to show why the slope is zero.
\qquad

Discuss Connections (Share)

Horizontal lines have zero slope. Looking at a graph of a horizontal line using Tim's way, the "rise" is always 0 , regardless of the "run." So the slope, rise/run, is always $0 / r u n$ or just 0 . Using Emma's way and the slope formula, any two points on a horizontal line have the same y value. So computing the change in y values would always be zero, which makes the slope zero.
\qquad
\qquad
\qquad
Identify Why does graphing the points work? the Big Idea Counting how far up and over it is from one point to the next point is the same as finding the change in y over the change in x in the slope formula.

Tim and Emma were asked to find the slope of the line passing through $(3,4)$ and $(2,-1)$.

Discuss Connections

Graph a line with zero slope, then use Tim's "graph" way and Emma's "formula" way to show why the slope is 0 .

| Think, Pair. First, think about the question(s) above independently. Then, get with a partner and
 and discuss your answers. After talking with your partner, what is your answer?
 Think

 |
| :---: | :---: |

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Tim and Emma were asked to find the slope of the line passing through

Tim counted the spaces between the two points, beginning at the point $(2,-1)$. Would Tim have gotten the same answer by starting from the other point, $(3,4)$?

Why do both methods work? How does each method show that slope is "rise over run"?

Topic 2.6: Graphing Linear Equations in Slope-Intercept Form

WEP Type: Which is better?
Suggested Use: End of lesson
Problem: Riley and Gloria were asked to graph the equation $3 x-2 y=6$.
Phase
Guiding Discussion Questions and Implementation Notes
How did Riley graph the line?
to Compare

Make Comparisons

Which method is better?
For this problem, it is better to use Riley's " x and y intercepts" method. If the equation is given in standard form, it is easier to find the x and y-intercepts, plot those two points, and then connect them with a line.

- Prepare
 to Discuss (Think, Pair)

If the original problem had been to graph $3 x-2 y=3$, would you use Riley's " x and y intercepts" way or Gloria's "slope-intercept" way? Why?
\qquad
\qquad
\qquad

Connections
In the line $3 x-2 y=3$, Riley's way would tell us that the x-intercept is 1 and the y-intercept is $-3 / 2$. Given that it is easy to graph these two values, Riley's way might be easier.
(Share)

How do you know if finding the x - and y-intercepts is a good way to graph this equation? The equation is in standard form, and 6 is divisible by 3 and -2 , so finding the intercepts is easy.

Riley and Gloria were asked to graph the equation $3 x-2 y=6$.

$$
3 x-2 y=6
$$

$$
\begin{gathered}
3 x-2(0)=6 \\
3 x=6 \\
x=2
\end{gathered}
$$

x-intercept: $(2,0)$

$3(0)-2 y=6$

$$
-2 y=6
$$

$$
y=-3
$$

$$
\text { y-intercept: }(0,-3)
$$

$$
3 x-2 y=6
$$

Discuss Connections

If the original problem had been to graph $3 x-2 y=3$, would you use Riley's " x - and y intercepts" way or Gloria's "slope-intercept" way? Why?

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and	
and discuss your answers. After talking with your partner, what is your answer?	
Think	Pair

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Riley and Gloria were asked to graph the equation $3 x-2 y=6$.

How did Riley graph the line? Why did Gloria solve the equation for y as a first step?
Which method is better?

Topic 2.7: Writing Equations in Slope-Intercept Form

WEP Type: Which is better?
Suggested Use: Beginning of lesson
Problem: Gloria and Tim were asked to find the y-intercept of the line connecting the two points $(-3,1)$ and $(-4,-1)$.

Phase

? Prepare

to Compare

Guiding Discussion Questions and Implementation Notes

Why did Tim use the point $(-4,-1)$ in the equation to find b ? What if he had used $(-3,1)$?

- What does Gloria mean when she says she "followed the up 2, right 1 pattern"?

Make Comparisons

Which method is better?
Even though Gloria and Tim did different steps, why did they both get the same answer?

- Where does the slope of 2 show up in Gloria's " graphing" method?

Both methods are correct, so they will result in the same answer

Prepare
 to Discuss (Think, Pair)

If the points were changed to $(3,-4)$ and (4,2), find the y-intercept. Did you use Gloria's "graphing" way or Tim's "algebraic" way, and which is better?
\qquad
\qquad
\qquad Connections (Share)

For the points $(3,-4)$ and $(4,2)$, if we tried to use Gloria's graphing way, we would find that it is difficult to find the y-intercept using graphing. (It is ($0,-22$)). So Riley's algebraic way is easier.

Is there a better way to find the y-intercept than Gloria's "graphing" way? While graphing always works, sometimes it is hard because the numbers are big and not whole numbers. It might be better to use the algebraic way instead.

Gloria and Tim were asked to find the y-intercept of the line connecting the two points $(-3,1)$ and $(-4,-1)$.

(2) Why did Tim use the point $(-4,-1)$ in the equation to find b ? What if he had used $(-3,1)$?

Which method is better? Even though Gloria and Tim did different steps, why did they both get the same answer?

Discuss Connections

If the points were changed to $(3,-4)$ and $(4,2)$ find the y-intercept. Did you use Gloria's "graphing" way or Tim's "algebraic" way, and which is better?

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and and discuss your answers. After talking with your partner, what is your answer?	
Think	

Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Gloria and Tim were asked to find the y-intercept of the line connecting

Why did Tim use the point $(-4,-1)$ in the equation to find b ? What if he had used $(-3,1)$?
Which method is better? Even though Gloria and Tim did different steps, why did they both get the same answer?

Topic 2.8: Writing Equations in Point-Slope Form

WEP Type: Which is correct?
Suggested Use: Mid-lesson
Problem: Layla and Riley were asked to write an equation for the line through $(-2,5)$ and $(6,1)$ using point-slope form.

Guiding Discussion Questions and Implementation Notes
Does it matter which point is (x_{1}, y_{1}) versus (x_{2}, y_{2}) when finding the slope?
Could they have switched the order of the points in their slope calculation?

Make Which method is correct?

Comparisons

- What is the x-intercept and y-intercept of Layla's line?
- What is the x-intercept and y-intercept of Riley's line?

Layla's and Riley's methods are both correct. There are many ways of verifying this. The most straightforward way to verify is to rewrite both of these equations in slope-intercept form.
\qquad
Prepare Write two (or more) different equations for the line that goes through (4, 1) and (2, -4). to Discuss (Think, Pair)

Discuss
Connections
(Share)
The slope of the line through these two points is $5 / 2$. Using the point $(4,1)$ in point-slope form, the equation of the line is $y-1=5 / 2(x-4)$. Using the point ($2,-4$), the equation of the line is $y+4=5 / 2(x-2)$. Both of these equations are equivalent to the slope-intercept form of this line, $y=(5 / 2) x-9$.

Identify Why do both ways work?
the Big Idea
Given two points, we can always draw a unique line. So, it doesn't matter which point you use in finding the equation in point-slope form-you will get the same line either way.

Layla and Riley were asked to write an equation for the line through $(-2,5)$ and $(6,1)$ using point-slope form.

First I found

$$
m=\frac{1-5}{6-(-2)}=\frac{-4}{8}=\frac{-1}{2}
$$

$$
\begin{gathered}
\downarrow \\
y-y_{1}= \\
m\left(x-x_{1}\right)
\end{gathered}
$$

$$
y-5=\frac{-1}{2}(x-(-2))
$$

$$
y-5=\frac{-1}{2}(x+2)
$$

$$
\downarrow
$$

The equation is
$y-5=\frac{-1}{2}(x+2)$

Riley's "using $(6,1)$ " way

$$
\begin{gathered}
m=\frac{1-5}{6-(-2)}=\frac{-4}{8}=\frac{-1}{2} \\
\downarrow \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=\frac{-1}{2}(x-6)
\end{gathered}
$$

Does it matter which point is $\left(x_{1}, y_{1}\right)$ versus $\left(x_{2}, y_{2}\right)$ when finding the slope? Could they have switched the order of the points in their slope calculation?

Which method is correct?

Discuss Connections

Write two (or more) different equations for the line that goes through (4, 1) and (2, 4).

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and	
discuss your answers. After talking with your partner, what is your answer?	
Think	Pair

[^1]Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words:

Layla and Riley were asked to write an equation for the line through $(-2,5)$ and

Which method is correct?

[^0]: Identify the Big Idea

[^1]: Share. After reviewing the worksheet as a class, summarize the answer(s) your class agrees on. Was this different from your original response?

