Comments on MacLellan, Harpstead, Alevan, and Koedinger

Multiple attribute and relation types (nominal, numeric, component, relational)
* Can components include components as well as base attributes?

The incremental (iterative) algorithm (again)

Predicting missing attributes (again)

The matching problem (next slides)

Flattening
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Game State Instance Description

{ Successful: "False",
Component1: { type: "ufo”,
angle: 0.0,
left: 0.1,
right: 2.8,
bottom: 4.1,
top: 5.6 },
Component2: { type: "rectangle”,
angle: 90.0,
left: 0.9, —
right: 1.9,
bottom: 1.1,
top: 4.1 },
Component3: { type: "rectangle”,
angle: 0.0,

right: 3.0,

bottom: 0.0,

top: 1.0 },
(On Component1 Component2): "True",
(On Component2 Component3): “True}

Concept Description

{ # instances = 10,

P(Successful) = {"False": 7/10, "True": 3/10},
P(C4.type) = {"ufo": 10/10},
P(C4.angle) ~ N(0.0, 0.1),
P(C4.left) ~ N(0.1, 0.2),
P(C4.right) ~ N(2.8, 0.2),
P(C4.bottom) ~ N(4.1, 0.1),
| P(C4.top) ~ N(5.6, 0.1),
P(C8.type) = {"rectangle": 10/10},
P(C8.angle) ~ N(90.0,0.1),
P(C8.left) ~ N(0.9, 0.3),
P(C8.right) ~ N(1.9, 0.3),
P(C8.bottom) ~ N(1.1, 0.1),
LP(C8.top) ~ N(4.1, 0.1),
[P(C1.type) = {"rectangle": 10/10},
P(C1.angle) ~ N(0.0, 0.1),

left: 0.0, | P(C1.left) ~ N(0.0, 0.2),

P(C1.right) ~ N(3.0, 0.2),
P(C1.bottom) ~ N(0.0, 0.1),

| P(C1.top) ~ N(1.0, 0.1),

P((On C4 C8)) = {"True": 10/10},
P((On C8 C1)) = {"True": 10/10}}

Figure 2. A tower in RumbleBlocks, its representation as an instance in TRESTLE using the four attribute-



Relational (e.g,, first-order) representations, such as:

IF R(?cl, 7r1) A REc2, 7r1) A R(c3, 7r2) A R(c4, ?t2) A R(3c5, ?2)
A #@cl, 2c2) A #(3c3, 2cd) A #(2c3, 2c5) A #(3c4, 2c5)

THEN FullHouse(?c1, ?c2, ?c3, ?c4, °c5)
K K 5 5 5 2 9 2 2
H C ) C D D H C H
6 6 7 7 7 A 3 3 A 3
) H C D H C C D H H

The matching problem (on sets of feature vectors)




Back to Trestle

* Is Trestle limited to a one-to-one matching of components?

* How would Trestle handle towers of different heights (1.e., a different number of composite blocks)?
* Are one or more components (e.g., blocks, cards) left unmatched?
* Are one or more components double (multiply) matched (i.e., a many to one matching)

* How does Trestle’s matching strategy compare to human matching strategies?



Fit to human behavior
* Compared Trestle end-results to human end-results
* No comparisons on HOW these end-results results were obtained
* e.g, no comparison of Trestle matching with human matching
* Supervised: Just end-result accuracies
* Supervised: No response time predictions
* Unsupervised: only (two =) one human clustering for compatison
* A lab colleague at that
* In addition to comparing human and Trestle behavior without functional knowledge,
* Could functional knowledge be encoded into Trestle too?

* Trestle would have to be extended to use background knowledge



Interesting observations
Categorization during problem solving (p. 131)
Can ordering effects be exploited — “how best to order practice problems” (p. 132)
Supervised and unsupervised together (p. 132 ...)

Aside: CFE converts parse trees to feature vectors (p. 134). Why not cluster parse trees directly?

* Fisher and Yoo: “Categorization, Concept Learning, and Problem Solving: A Unifying View”


http://dts-web1.it.vanderbilt.edu/~fisherdh/Papers/EmpiricalAndAnalyticHybrids/PsycLearnMotiv93.pdf

Difficulties in understanding
* I (Doug) doesn’t understand how CART was used (pp. 140-141)
* and why it went unmentioned in discussion of the supervised learning results
* Why was CART needed at all since CFE can do prediction (p. 134)?

* CFE insufficiently described



