Comments on Anderson’s paper

The rational analysis (Bayesian)
* Base rate
* Coupling probability
* Independence (of features) assumption
* Relationship to mechanistic models

Categories based on overlapping features and based on shared function

The iterative algorithm
* Ordering effects

Hierarchical categorizations
Possibility of overlapping categories
A research proposal (optimization along paths rather than partitions) — DI’s



Modeling basic level, typicality, and fan effects

Category learning over data through unsupervised learning

See references on slide 8, as well as

Knowledge Acquisition Via Incremental Conceptual Clustering” (Fisher, 1987)
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Fig. 2. A sample probabilistic concept tree over congressional voting records.
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Fig. 3. Learning curves for three attributes in the congressional domain.
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Table 5. Descriptions of the ‘Charcoal Rot’ cluster from the soybean tree. The
predictability and predictiveness for each normative value are given in
brackets, i.e., [P(value|Charcoal Rot), P(Charcoal Rot|value)].

Nz (‘Charcoal Rot’)
[P{value|Nz), P(Nz|value)

Precipitation = below-normal [1.0, 1.0
Temperature = above-normal [0.60, 1.0
Stem-cankers = absent [1.0, 1.0|

Normative || Fruit-pod-condition = normal [1.0, 0.50)
values Canker-lesion-color = tan [1.0, 1.0]
Outer-stem-decay = absent [1.0,0.48]
Internal-stem-discoloration = black {1.0, 1.0}
Sclerotia-internal-external = present |1.0, 1.0]
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Figure 6. Classification tree of soybean case histories.
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Figure 9. Increase in correct soybean inference as a function of dependence.



Category Match

P(COSIP(V,|C,)* = P(V)’)

C, 1s category k in a set of categories (e.g., a level in a categorization tree)
V;is an observation’s value along the jth attribute

The category match score is highly, positively correlated with behavior
variables like response time across a large number of studies
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Table 2. Probabilistic representation of {fish, amphibian, mammal}.

Attributes Values and probabilities
BodyCover scales [0.33], moist-skin [0.33], hair [0.33]
HeartChamber || two [0.33], three [0.33], four [0.33]
BodyTemp unregulated [0.67], regulated [0.33]
Fertilization external [0.67], internal [0.33]




The incremental (iterative) algorithm

* C(lassifying an object in an existing class
* Creating a new class
150 D. 1. FISHER * Combining two classes into a single class
* Dividing a class into several classes

P(Co) = 1.0

(a) e
P(scales|Co) = 0.5 INCREMENTAL CONCEPTUAL CLUSTERING 151

P(Cy) =05

P(C3) =105

P(moist|C;) = 1.0

P(scales|Cy) = 1.0

P(Co) =1.0

(b) add ‘mammal’

P(scales|Co) = 0.33

P(C) =0.33

P(C3)=10.33

P(Cs) = 0.33

P(scales|Cy) = 1.0 P(moist|C3) = 1.0 P(hair|C3) = 1.0

Figure 4. The effect of node merging.

(c) add *bird’

P(scales|Co) = 0.25 152 D. H. FISHER

P(Cy)=.25

P(scales|Cy) = 1.0

P(Cy) = .25

P(C3)=.5

P(moist|C;) = 1.0 P(hair|C3) = 0.5

P(Cy)=.5 P(Cs) =5

P(hair|Cy) = 1.0

P(feath|Cs) = 1.0

Figure 3. Adding ‘mammal’ and ‘bird’ to an existing classification tree. Each node
represents an object class, C;, that is summarized by a set of probabili-
ties, P(value|Cy).

Figure 5. The effect of node splitting.



https:/ /jair.org/index.php/jair/article/view/10162

OPTIMIZATION OF HIERARCHICAL CLUSTERINGS

Figure 3: Hierarchical redistribution: the left subfigure indicates that cluster J has just
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OPTIMIZATION OF HIERARCHICAL CLUSTERINGS

_____________ = frontier of A,

Figure 4: Frontiers for three variables in a hypothetical clustering. From Fisher (1995).
Figure reproduced with permission from Proceedings of the First International

Conference on Knowledge Discovery in Data Mining, Copyright ©)1995 American
Association for Artificial Intelligence.
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