
Counting to Infinity (and Beyond)

Hayden Jananthan

Vanderbilt University

September 19, 2017

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 1 / 20



The Grand Hilbert Hotel

Welcome to the Grand Hilbert Hotel!

Here at the Grand Hilbert Hotel, we have the unique feature of having
infinitely-many rooms r0, r1, . . . , rn, . . .
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . one new guest

Ans. Move everyone up a floor, i.e.
send guest n to room rn+1, then put
the new guest in room r0.
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . two new guests

Ans. Move everyone up two floors,
i.e. send guest n to room rn+2, then
put the two new guests in rooms r0
and r1.
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and r1.
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . k + 1 new guests

Ans. Move everyone up k floors, i.e.
send person n to room rn+k , then
put the k new guests in rooms
r0, r1, . . . , rk−1.
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. . . k + 1 new guests

Ans. Move everyone up k floors, i.e.
send person n to room rn+k , then
put the k new guests in rooms
r0, r1, . . . , rk−1.

0 r0

1 r1

2 r2

3 r3

k − 1 rk−1

k rk

n rn

0′, . . . , k ′

⇒

0′ r0

1′ r1

2′ r2

3′ r3

(k − 1)′ rk−1

0 rk

n + k rn

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 3 / 20



Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . infinitely-many new
guests 0′,1′,2′,3′, . . .

Ans. Move guest n to room r2n,
then put the k ′-th new guest into
room r2k+1.
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Suppose we have. . .

. . . infinitely-many new
guests 0′,1′,2′,3′, . . .

Ans. Move guest n to room r2n,
then put the k ′-th new guest into
room r2k+1.
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . two groups of
infinitely-many guests
0′,1′,2′,3′, . . . and
0′′,1′′,2′′,3′′, . . .

Ans. Move guest n to room r3n,
then put the k ′-th new guest into
room r3k+1 and the k ′′-th new guest
into room r3k+2.
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. . . two groups of
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0′,1′,2′,3′, . . . and
0′′,1′′,2′′,3′′, . . .

Ans. Move guest n to room r3n,
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . infinitely-many buses
each filled with
infinitely-many guests

Ans. Move person in room n to
room 5n+1, then put the j-th new
guest of bus i into room r2i3j .
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Finding Rooms in Hilbert’s Hotel

Suppose we have. . .

. . . infinitely-many buses
each filled with
infinitely-many guests

Ans. Move person in room n to
room 5n+1, then put the j-th new
guest of bus i into room r2i3j .
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How to Count

Given two bags of marbles, how could we decide which had more marbles?

Easy answer: count the number of marbles and compare them.
But what if we didn’t have access to the natural numbers 0,1,2,3, . . .?
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How to Count

Instead, we will pair up marbles.

The bag with leftover marbles has larger size.
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Sets

Nothing was special about bags of marbles. We can do this to compare
the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X , then we
write x ∈ X .

Example

{red,yellow,blue} is the set of primary colors.
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Sets

Nothing was special about bags of marbles. We can do this to compare
the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X , then we
write x ∈ X .

Example

{red,yellow,blue} is the set of primary colors.
{0,2,4,6,8, . . .} is the set of even natural numbers.
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Sets

Nothing was special about bags of marbles. We can do this to compare
the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X , then we
write x ∈ X .

Example

{red,yellow,blue} is the set of primary colors.
{0,2,4,6,8, . . .} is the set of even natural numbers.
{p
q ∣ p,q integers, q ≠ 0} is the set of rational numbers.
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Functions

Definition

A function f ∶ X → Y consists of

a domain X ,

a codomain Y , and

a set of pairs (x , y) of an input x ∈ X and an output y = f (x) ∈ Y for
each x ∈ X (the graph of f ).

Example

The set {(1,2), (2,5), (3,1), (4,0)} is a function from {1,2,3,4}→ N.
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Functions

Definition

A function f ∶ X → Y consists of

a domain X ,

a codomain Y , and

a set of pairs (x , y) of an input x ∈ X and an output y = f (x) ∈ Y for
each x ∈ X (the graph of f ).

Example

The set {(1,2), (2,5), (3,1), (4,0)} is a function from {1,2,3,4}→ N.
The set {(n,2n) ∣ n ∈ N} is the function f ∶ N→ N with f (n) = 2n.
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Subsets and Power Sets

Definition

X is a subset of Y , written X ⊂ Y , if x ∈ X implies x ∈ Y .

Example

The subsets of {1,2,3} are

∅,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}

Definition

The set of all subsets of X is denoted P(X ), the power set of X .
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Cardinality

Given two sets X and Y :

(1) The cardinality of X is less than or equal to the cardinality of Y ,

∣X ∣ ≤ ∣Y ∣

if there exists a function f ∶ X → Y which is injective (f (x) = f (y)
implies x = y)

This allows sets to be compared by their “sizes”, or cardinalities.
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Basic Properties of Cardinality

The relation ≤ satisfies the following properties:

Proposition

If X ⊂ Y , then ∣X ∣ ≤ ∣Y ∣.
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Basic Properties of Cardinality

The relation ≤ satisfies the following properties:

Proposition

If X ⊂ Y , then ∣X ∣ ≤ ∣Y ∣.
Reflexive: ∣X ∣ ≤ ∣X ∣ for each set X .
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Basic Properties of Cardinality

The relation ≤ satisfies the following properties:

Proposition

If X ⊂ Y , then ∣X ∣ ≤ ∣Y ∣.
Reflexive: ∣X ∣ ≤ ∣X ∣ for each set X .

Transitive: ∣X ∣ ≤ ∣Y ∣ and ∣Y ∣ ≤ ∣Z ∣ implies ∣X ∣ ≤ ∣Z ∣.
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Basic Properties of Cardinality

The relation ≤ satisfies the following properties:

Proposition

If X ⊂ Y , then ∣X ∣ ≤ ∣Y ∣.
Reflexive: ∣X ∣ ≤ ∣X ∣ for each set X .

Transitive: ∣X ∣ ≤ ∣Y ∣ and ∣Y ∣ ≤ ∣Z ∣ implies ∣X ∣ ≤ ∣Z ∣.
Antisymmetric: (Cantor-Shroeder-Bernstein) ∣X ∣ ≤ ∣Y ∣ and ∣Y ∣ ≤ ∣X ∣
implies ∣X ∣ = ∣Y ∣.
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Finite and Infinite Sets

If ∣X ∣ = ∣{1, . . . ,n}∣, then X is finite, and we write ∣X ∣ = n. n is the
cardinality of X .
n is unique – if ∣{1, . . . ,n}∣ = ∣{1, . . . ,m}∣, then n = m.

Example

The set {red,yellow,blue} has cardinality 3.

If ∣X ∣ ≠ n for any n ∈ N, X is infinite.

Example

N,Z,Q,R are all infinite.
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Countably-Infinite Sets

If ∣X ∣ = ∣N∣, then X is countably-infinite.

Example
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If ∣X ∣ = ∣N∣, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set
of prime numbers, set of even numbers, set of perfect squares, etc –
recursively define a bijection.
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If ∣X ∣ = ∣N∣, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set
of prime numbers, set of even numbers, set of perfect squares, etc –
recursively define a bijection.

N ∪N′ – the map f (n) = 2n and f (n′) = 2n + 1 gives a bijection
f ∶ N ∪N′ → N.

Z – the map f (n) =
⎧⎪⎪⎨⎪⎪⎩

2n if n ≥ 0

2(−n) − 1 if n < 0
gives a bijection f ∶ Z→ N.
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Countably-Infinite Sets

If ∣X ∣ = ∣N∣, then X is countably-infinite.

Example

N ×N – the map f (n,m) = 2n3m gives an injection f ∶ N ×N→ N. Since
g(n) = (n,0) gives an injection g ∶ N→ N ×N, Cantor Schroeder-Bernstein
says that ∣N ×N∣ = ∣N∣.
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Q – the map f (p/q) =
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2−p3q5 for p < 0, q > 0, p/q irreducible
gives an

injection f ∶ Q→ N. Since g(n) = n gives an injection g ∶ Q→ N,
Cantor-Schroeder-Bernstein says that ∣Q∣ = ∣N∣.
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2−p3q5 for p < 0, q > 0, p/q irreducible
gives an

injection f ∶ Q→ N. Since g(n) = n gives an injection g ∶ Q→ N,
Cantor-Schroeder-Bernstein says that ∣Q∣ = ∣N∣.

If X is infinite but not countably-infinite, then it is uncountable.
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Cantor’s Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

∣N∣ < ∣[0,1]∣. In particular, R is uncountable.
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There exist familiar uncountable sets. . .

Theorem

∣N∣ < ∣[0,1]∣. In particular, R is uncountable.

Proof. Suppose f ∶ N→ [0,1] is given. Then we would have a list of real
numbers written in decimal notation:

f (0) = 0.a00a01a02a03a04a05 . . .

f (1) = 0.a10a11a12a13a14a15 . . .

f (2) = 0.a20a21a22a23a24a25 . . .

f (3) = 0.a30a31a32a33a34a35 . . .

f (4) = 0.a40a41a42a43a44a45 . . .

⋮ ⋮
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Cantor’s Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

∣N∣ < ∣[0,1]∣. In particular, R is uncountable.

Proof. Then s = 0.s1s2s3s4s5 . . . where

sn =
⎧⎪⎪⎨⎪⎪⎩

5 if ann ≠ 5

7 otherwise

does not show up in the above list – by construction it disagrees with f (n)
at the n-th decimal place.
This implies f cannot be surjective.
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f (1) = 0.583493 . . .
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f (1) = 0.583493 . . .

f (2) = 0.095813 . . .

f (3) = 0.028483 . . .

f (4) = 0.728251 . . .

⋮ ⋮
Then s = 0.55757 . . . does not show up in the above list.
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Cantor’s Theorem: General Case

More generally. . .

Theorem (Cantor’s Theorem)

For any set X , ∣X ∣ < ∣P(X )∣.

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 14 / 20



Cantor’s Theorem: General Case

More generally. . .

Theorem (Cantor’s Theorem)

For any set X , ∣X ∣ < ∣P(X )∣.

Proof. Given any function f ∶ X → P(X ), we show that f is not surjective.

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 14 / 20



Cantor’s Theorem: General Case

More generally. . .

Theorem (Cantor’s Theorem)

For any set X , ∣X ∣ < ∣P(X )∣.

Proof. Given any function f ∶ X → P(X ), we show that f is not surjective.

We claim
Y = {x ∈ X ∣ x ∉ f (x)}
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Proof. Given any function f ∶ X → P(X ), we show that f is not surjective.

We claim
Y = {x ∈ X ∣ x ∉ f (x)}

is not in the image of f .
If f (x) = Y for some x , then ask the question: “Is x ∈ Y ?”
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We claim
Y = {x ∈ X ∣ x ∉ f (x)}

is not in the image of f .
If f (x) = Y for some x , then ask the question: “Is x ∈ Y ?”

If not. . . then by definition x ∈ Y , a contradiction.
If so. . . then by definition x ∉ f (x) = Y , another contradiction.
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Cantor’s Theorem: General Case

More generally. . .

Theorem (Cantor’s Theorem)

For any set X , ∣X ∣ < ∣P(X )∣.

Proof. Given any function f ∶ X → P(X ), we show that f is not surjective.

We claim
Y = {x ∈ X ∣ x ∉ f (x)}

is not in the image of f .
If f (x) = Y for some x , then ask the question: “Is x ∈ Y ?”

If not. . . then by definition x ∈ Y , a contradiction.
If so. . . then by definition x ∉ f (x) = Y , another contradiction.

Thus, there is no such x , so f is not surjective.
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The Role of the Axiom of Choice

Some intriguing questions:

Do we necessarily have

∣X ∣ ≤ ∣Y ∣ or ∣Y ∣ ≤ ∣X ∣

for any two sets X and Y ?

Is a set infinite if and only if it has a proper subset of equal size?

Both of these questions are answered in the affirmative by the Axiom of
Choice, which roughly states that you can simultaneously make many
choices at once.
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Well-Orders

To outline the proof, we need the following notion:

Definition

A well-order on a set X is a binary relation ≤ satisfying

Reflexive: x ⪯ x for every x ∈ X .

Antisymmetric: x ⪯ y and y ⪯ x implies x = y .

Transitive: x ⪯ y and y ⪯ z implies x ⪯ z .

Total: for any x , y ∈ X , either x ⪯ y or y ⪯ x .

Well-Founded: A non-empty subset of X has a least element.

A well-ordered set is a pair (X ,≤) of a set X and well-order ≤ on X .

Example

N is well-ordered by the standard ordering.

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 16 / 20



Well-Orders

To outline the proof, we need the following notion:

Definition

A well-order on a set X is a binary relation ≤ satisfying

Reflexive: x ⪯ x for every x ∈ X .

Antisymmetric: x ⪯ y and y ⪯ x implies x = y .

Transitive: x ⪯ y and y ⪯ z implies x ⪯ z .

Total: for any x , y ∈ X , either x ⪯ y or y ⪯ x .

Well-Founded: A non-empty subset of X has a least element.

A well-ordered set is a pair (X ,≤) of a set X and well-order ≤ on X .

Example

N is well-ordered by the standard ordering.

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 16 / 20



Well-Orders

To outline the proof, we need the following notion:

Definition

A well-order on a set X is a binary relation ≤ satisfying

Reflexive: x ⪯ x for every x ∈ X .

Antisymmetric: x ⪯ y and y ⪯ x implies x = y .

Transitive: x ⪯ y and y ⪯ z implies x ⪯ z .

Total: for any x , y ∈ X , either x ⪯ y or y ⪯ x .

Well-Founded: A non-empty subset of X has a least element.

A well-ordered set is a pair (X ,≤) of a set X and well-order ≤ on X .

Example

N is well-ordered by the standard ordering.

Hayden Jananthan (Vanderbilt University) Counting to Infinity (and Beyond) September 19, 2017 16 / 20



Comparing Well-Ordered Sets

Definition

If X and Y are ordered by ≤X and ≤Y , then a order-isomorphism is a
bijection f ∶ X → Y such that

x1 ≤ x2 if and only if f (x1) ≤ f (x2)

If (X ,≤X ) and (Y ,≤Y ) are well-ordered sets, recursively build up a map

f (x) = least y ∈ Y not in {f (z) ∣ z <X x}

either until we run out of elements in Y or we run out of elements in X .
Thus, either (X ,≤X ) is order-isomorphic to an initial segment of (Y ,≤Y ),
or vice-a-versa.
Write

(X ,≤X ) ≤wo (Y ,≤Y )

if (X ,≤X ) is order-isomorphic to an initial segment of (Y ,≤Y ).
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Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Theorem (Well-Ordering Theorem)

Every set X can be well-ordered.

Corollary (Trichotomy)

Given any two sets X and Y , then either ∣X ∣ ≤ ∣Y ∣ or ∣Y ∣ ≤ ∣X ∣.

Proof.
There are well-orderings ≤X and ≤Y of X and Y , respectively.
Then either (X ,≤X ) ≤wo (Y ,≤Y ) or (Y ,≤Y ) ≤w0 (X ,≤X ). In particular,
∣X ∣ ≤ ∣Y ∣ or ∣Y ∣ ≤ ∣X ∣.

Corollary

A set is infinite if and only if it is in bijection with a proper subset.
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Ordinals and Cardinals

Ordinals are “canonical” well-ordered sets.

They satisfy the following
properties:

An ordinal α is the set of all ordinals β such that β <wo α.

Each well-ordered set is order-isomorphic to a unique ordinal.

Every set of ordinals is well-ordered by ≤wo .

Definition

Given a ordinal α, the set {β ∣ ∣α∣ = ∣β∣} has a least element. Such ordinals
which arise in this way are called cardinals.

Since any set X can be well-ordered, to each set there is a unique cardinal
in bijection with X . Hence, the cardinals give canonical representative of
the cardinalities.
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The Number of Cardinalities

Just how many cardinalities are there?

So many that there is no set of representatives of all the cardinalities.

Theorem (Cantor’s Paradox)

There is no set of whose elements represent all cardinalities.

Proof.
Suppose X is a given set. Let Y = ⋃X . Then ∣x ∣ ≤ ∣Y ∣ for each x ∈ X . But
then ∣x ∣ < ∣P(Y )∣, so X cannot contain an element with the same
cardinality as P(Y ).

There is a beyond infinite number of cardinalities.
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