Counting to Infinity (and Beyond)

Hayden Jananthan

Vanderbilt University
September 19, 2017

The Grand Hilbert Hotel

Welcome to the Grand Hilbert Hotel!

NO VACANCY BUT WE CAN MOVE SOME PEOPLE AROUND

The Grand Hilbert Hotel

Welcome to the Grand Hilbert Hotel!

NO VACANCY BUT WE CAN MOVE SOME PEOPLE AROUND

Here at the Grand Hilbert Hotel, we have the unique feature of having infinitely-many rooms $r_{0}, r_{1}, \ldots, r_{n}, \ldots$

Finding Rooms in Hilbert's Hotel

Suppose we have...

Finding Rooms in Hilbert's Hotel

Suppose we have...

Finding Rooms in Hilbert's Hotel

Suppose we have...
... one new guest

Finding Rooms in Hilbert's Hotel

Suppose we have...

... one new guest

Ans. Move everyone up a floor, i.e. send guest n to room r_{n+1}, then put the new guest in room r_{0}.

Finding Rooms in Hilbert's Hotel

Suppose we have...
...two new guests

Finding Rooms in Hilbert's Hotel

Suppose we have...
...two new guests
Ans. Move everyone up two floors, i.e. send guest n to room r_{n+2}, then put the two new guests in rooms r_{0} and r_{1}.

Finding Rooms in Hilbert's Hotel

Suppose we have...
$\ldots k+1$ new guests

Finding Rooms in Hilbert's Hotel

Suppose we have...
$\ldots k+1$ new guests
Ans. Move everyone up k floors, i.e. send person n to room r_{n+k}, then put the k new guests in rooms $r_{0}, r_{1}, \ldots, r_{k-1}$.

Finding Rooms in Hilbert's Hotel

Suppose we have...
... infinitely-many new
guests $0^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$

Finding Rooms in Hilbert's Hotel

Suppose we have...
... infinitely-many new guests $0^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$

Ans. Move guest n to room $r_{2 n}$, then put the k^{\prime}-th new guest into room $r_{2 k+1}$.

Finding Rooms in Hilbert's Hotel

Suppose we have...
...two groups of
infinitely-many guests
$0^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$ and
$0^{\prime \prime}, 1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, \ldots$

Finding Rooms in Hilbert's Hotel

Suppose we have...
:. .two groups of
infinitely-many guests
$0^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$ and $0^{\prime \prime}, 1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, \ldots$

Ans. Move guest n to room $r_{3 n}$, then put the k^{\prime}-th new guest into room $r_{3 k+1}$ and the $k^{\prime \prime}$-th new guest into room $r_{3 k+2}$.

Finding Rooms in Hilbert's Hotel

Suppose we have...
. . . infinitely-many buses
each filled with infinitely-many guests

Finding Rooms in Hilbert's Hotel

Suppose we have...
... infinitely-many buses each filled with infinitely-many guests

Ans. Move person in room n to room 5^{n+1}, then put the j-th new guest of bus i into room $r_{2 i z}$.

How to Count

Given two bags of marbles, how could we decide which had more marbles?

How to Count

Given two bags of marbles, how could we decide which had more marbles?

Easy answer: count the number of marbles and compare them.

How to Count

Given two bags of marbles, how could we decide which had more marbles?

Easy answer: count the number of marbles and compare them.
But what if we didn't have access to the natural numbers $0,1,2,3, \ldots$?

How to Count

Instead, we will pair up marbles.

How to Count

Instead, we will pair up marbles.

The bag with leftover marbles has larger size.

Sets

Nothing was special about bags of marbles. We can do this to compare the size of any sets.

Sets

Nothing was special about bags of marbles. We can do this to compare the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X, then we write $x \in X$.

Sets

Nothing was special about bags of marbles. We can do this to compare the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X, then we write $x \in X$.

Example

\{red, yellow, blue\} is the set of primary colors.

Sets

Nothing was special about bags of marbles. We can do this to compare the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X, then we write $x \in X$.

Example

\{red, yellow, blue\} is the set of primary colors. $\{0,2,4,6,8, \ldots\}$ is the set of even natural numbers.

Sets

Nothing was special about bags of marbles. We can do this to compare the size of any sets.

Definition

A set is a collection of elements. If x is an element of the set X, then we write $x \in X$.

Example

\{red, yellow, blue\} is the set of primary colors.
$\{0,2,4,6,8, \ldots\}$ is the set of even natural numbers.
$\left\{\left.\frac{p}{q} \right\rvert\, p, q\right.$ integers, $\left.q \neq 0\right\}$ is the set of rational numbers.

Functions

Definition

A function $f: X \rightarrow Y$ consists of
a domain X,
a codomain Y, and
a set of pairs (x, y) of an input $x \in X$ and an output $y=f(x) \in Y$ for each $x \in X$ (the graph of f).

Functions

Definition

A function $f: X \rightarrow Y$ consists of
a domain X,
a codomain Y, and
a set of pairs (x, y) of an input $x \in X$ and an output $y=f(x) \in Y$ for each $x \in X$ (the graph of f).

Example

The set $\{(1,2),(2,5),(3,1),(4,0)\}$ is a function from $\{1,2,3,4\} \rightarrow \mathbb{N}$.

Functions

Definition

A function $f: X \rightarrow Y$ consists of
a domain X,
a codomain Y, and
a set of pairs (x, y) of an input $x \in X$ and an output $y=f(x) \in Y$ for each $x \in X$ (the graph of f).

Example

The set $\{(1,2),(2,5),(3,1),(4,0)\}$ is a function from $\{1,2,3,4\} \rightarrow \mathbb{N}$. The set $\{(n, 2 n) \mid n \in \mathbb{N}\}$ is the function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(n)=2 n$.

Subsets and Power Sets

Definition
 X is a subset of Y, written $X \subset Y$, if $x \in X$ implies $x \in Y$.

Subsets and Power Sets

DefinitionX is a subset of Y, written $X \subset Y$, if $x \in X$ implies $x \in Y$. It is a propersubset of Y if $X \subset Y$ but $X \neq Y$.

Subsets and Power Sets

Definition

X is a subset of Y, written $X \subset Y$, if $x \in X$ implies $x \in Y$. It is a proper subset of Y if $X \subset Y$ but $X \neq Y$.

Example

The subsets of $\{1,2,3\}$ are

$$
\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}
$$

Subsets and Power Sets

Definition

X is a subset of Y, written $X \subset Y$, if $x \in X$ implies $x \in Y$. It is a proper subset of Y if $X \subset Y$ but $X \neq Y$.

Example

The subsets of $\{1,2,3\}$ are

$$
\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}
$$

Definition

The set of all subsets of X is denoted $\mathcal{P}(X)$, the power set of X.

Cardinality

Given two sets X and Y :

Cardinality

Given two sets X and Y :
(1) The cardinality of X is less than or equal to the cardinality of Y,

$$
|X| \leq|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective $(f(x)=f(y)$ implies $x=y$)

Cardinality

Given two sets X and Y :
(1) The cardinality of X is less than or equal to the cardinality of Y,

$$
|X| \leq|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective $(f(x)=f(y)$ implies $x=y$)
(2) The cardinality of X is equal to the cardinality of Y,

$$
|X|=|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective and surjective.

Cardinality

Given two sets X and Y :
(1) The cardinality of X is less than or equal to the cardinality of Y,

$$
|X| \leq|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective $(f(x)=f(y)$ implies $x=y$)
(2) The cardinality of X is equal to the cardinality of Y,

$$
|X|=|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective and surjective.
(3) The cardinality of X is less than the cardinality of Y,

$$
|X|<|Y|
$$

if $|X| \leq|Y|$ and $|X| \neq|Y|$.

Cardinality

Given two sets X and Y :
(1) The cardinality of X is less than or equal to the cardinality of Y,

$$
|X| \leq|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective $(f(x)=f(y)$ implies $x=y$)
(2) The cardinality of X is equal to the cardinality of Y,

$$
|X|=|Y|
$$

if there exists a function $f: X \rightarrow Y$ which is injective and surjective.
(3) The cardinality of X is less than the cardinality of Y,

$$
|X|<|Y|
$$

$$
\text { if }|X| \leq|Y| \text { and }|X| \neq|Y| \text {. }
$$

This allows sets to be compared by their "sizes", or cardinalities.

Basic Properties of Cardinality

The relation \leq satisfies the following properties:

Basic Properties of Cardinality

The relation \leq satisfies the following properties:

Proposition

$$
\text { If } X \subset Y \text {, then }|X| \leq|Y| \text {. }
$$

Basic Properties of Cardinality

The relation \leq satisfies the following properties:

Proposition

If $X \subset Y$, then $|X| \leq|Y|$.
Reflexive: $|X| \leq|X|$ for each set X.

Basic Properties of Cardinality

The relation \leq satisfies the following properties:

Proposition

If $X \subset Y$, then $|X| \leq|Y|$.
Reflexive: $|X| \leq|X|$ for each set X.
Transitive: $|X| \leq|Y|$ and $|Y| \leq|Z|$ implies $|X| \leq|Z|$.

Basic Properties of Cardinality

The relation \leq satisfies the following properties:

Proposition

If $X \subset Y$, then $|X| \leq|Y|$.
Reflexive: $|X| \leq|X|$ for each set X.
Transitive: $|X| \leq|Y|$ and $|Y| \leq|Z|$ implies $|X| \leq|Z|$.
Antisymmetric: (Cantor-Shroeder-Bernstein) $|X| \leq|Y|$ and $|Y| \leq|X|$ implies $|X|=|Y|$.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set $\{$ red, yellow, blue $\}$ has cardinality 3.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3.
Subsets of finite sets are finite.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3.
Subsets of finite sets are finite.
Cartesian products of finite sets are finite.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3 .
Subsets of finite sets are finite.
Cartesian products of finite sets are finite.
The union of two finite sets is finite.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3.
Subsets of finite sets are finite.
Cartesian products of finite sets are finite.
The union of two finite sets is finite.
The power set of a finite set is finite.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3.
Subsets of finite sets are finite.
Cartesian products of finite sets are finite.
The union of two finite sets is finite.
The power set of a finite set is finite.
If $|X| \neq n$ for any $n \in \mathbb{N}, X$ is infinite.

Finite and Infinite Sets

If $|X|=|\{1, \ldots, n\}|$, then X is finite, and we write $|X|=n . n$ is the cardinality of X.
n is unique - if $|\{1, \ldots, n\}|=|\{1, \ldots, m\}|$, then $n=m$.

Example

The set \{red, yellow, blue\} has cardinality 3.
Subsets of finite sets are finite.
Cartesian products of finite sets are finite.
The union of two finite sets is finite.
The power set of a finite set is finite.
If $|X| \neq n$ for any $n \in \mathbb{N}, X$ is infinite.

Example

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are all infinite.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set of prime numbers, set of even numbers, set of perfect squares, etc recursively define a bijection.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set of prime numbers, set of even numbers, set of perfect squares, etc recursively define a bijection.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set of prime numbers, set of even numbers, set of perfect squares, etc recursively define a bijection.
$\mathbb{N} \cup \mathbb{N}^{\prime}-$ the map $f(n)=2 n$ and $f\left(n^{\prime}\right)=2 n+1$ gives a bijection $f: \mathbb{N} \cup \mathbb{N}^{\prime} \rightarrow \mathbb{N}$.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

Any infinite subset of a countably-infinite set is countably-infinite, e.g. set of prime numbers, set of even numbers, set of perfect squares, etc recursively define a bijection.
$\mathbb{N} \cup \mathbb{N}^{\prime}$ - the map $f(n)=2 n$ and $f\left(n^{\prime}\right)=2 n+1$ gives a bijection $f: \mathbb{N} \cup \mathbb{N}^{\prime} \rightarrow \mathbb{N}$.
\mathbb{Z} - the map $f(n)=\left\{\begin{array}{ll}2 n & \text { if } n \geq 0 \\ 2(-n)-1 & \text { if } n<0\end{array}\right.$ gives a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

$\mathbb{N} \times \mathbb{N}$ - the map $f(n, m)=2^{n} 3^{m}$ gives an injection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Since $g(n)=(n, 0)$ gives an injection $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, Cantor Schroeder-Bernstein says that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

$\mathbb{N} \times \mathbb{N}$ - the map $f(n, m)=2^{n} 3^{m}$ gives an injection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Since $g(n)=(n, 0)$ gives an injection $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, Cantor Schroeder-Bernstein says that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$.
\mathbb{Q} - the map $f(p / q)=\left\{\begin{array}{ll}2^{p} 3^{q} & \text { for } p \geq 0, q>0, p / q \text { irreducible } \\ 2^{-p} 3^{q} 5 & \text { for } p<0, q>0, p / q \text { irreducible }\end{array}\right.$ gives an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$. Since $g(n)=n$ gives an injection $g: \mathbb{Q} \rightarrow \mathbb{N}$, Cantor-Schroeder-Bernstein says that $|\mathbb{Q}|=|\mathbb{N}|$.

Countably-Infinite Sets

If $|X|=|\mathbb{N}|$, then X is countably-infinite.

Example

$\mathbb{N} \times \mathbb{N}$ - the map $f(n, m)=2^{n} 3^{m}$ gives an injection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Since $g(n)=(n, 0)$ gives an injection $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, Cantor Schroeder-Bernstein says that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$.
\mathbb{Q} - the map $f(p / q)=\left\{\begin{array}{ll}2^{p} 3^{q} & \text { for } p \geq 0, q>0, p / q \text { irreducible } \\ 2^{-p} 3^{q} 5 & \text { for } p<0, q>0, p / q \text { irreducible }\end{array}\right.$ gives an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$. Since $g(n)=n$ gives an injection $g: \mathbb{Q} \rightarrow \mathbb{N}$, Cantor-Schroeder-Bernstein says that $|\mathbb{Q}|=|\mathbb{N}|$.

If X is infinite but not countably-infinite, then it is uncountable.

Cantor's Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Abstract

Theorem $|\mathbb{N}|<|[0,1]|$. In particular, \mathbb{R} is uncountable.

Cantor's Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

$|\mathbb{N}|<|[0,1]|$. In particular, \mathbb{R} is uncountable.
Proof. Suppose $f: \mathbb{N} \rightarrow[0,1]$ is given. Then we would have a list of real numbers written in decimal notation:

$$
\begin{aligned}
& f(0)=0 . a_{00} a_{01} a_{02} a_{03} a_{04} a_{05} \ldots \\
& f(1)=0 . a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} \ldots \\
& f(2)=0 . a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} \ldots \\
& f(3)=0 . a_{30} a_{31} a_{32} a_{33} a_{34} a_{35} \ldots \\
& f(4)=0 . a_{40} a_{41} a_{42} a_{43} a_{44} a_{45} \cdots
\end{aligned}
$$

Cantor's Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

$|\mathbb{N}|<|[0,1]|$. In particular, \mathbb{R} is uncountable.
Proof. Then $s=0 . s_{1} s_{2} s_{3} s_{4} s_{5} \ldots$ where

$$
s_{n}= \begin{cases}5 & \text { if } a_{n n} \neq 5 \\ 7 & \text { otherwise }\end{cases}
$$

does not show up in the above list - by construction it disagrees with $f(n)$ at the n-th decimal place.
This implies f cannot be surjective.

Cantor's Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

$|\mathbb{N}|<|[0,1]|$. In particular, \mathbb{R} is uncountable.
For example, given

$$
\begin{aligned}
& f(0)=0.138493 \ldots \\
& f(1)=0.583493 \ldots \\
& f(2)=0.095813 \ldots \\
& f(3)=0.028483 \ldots \\
& f(4)=0.728251 \ldots
\end{aligned}
$$

Cantor's Theorem: Natural Numbers

There exist familiar uncountable sets. . .

Theorem

$|\mathbb{N}|<|[0,1]|$. In particular, \mathbb{R} is uncountable.
For example, given

$$
\begin{aligned}
& f(0)=0.138493 \ldots \\
& f(1)=0.583493 \ldots \\
& f(2)=0.095813 \ldots \\
& f(3)=0.028483 \ldots \\
& f(4)=0.728251 \ldots
\end{aligned}
$$

Then $s=0.55757 \ldots$ does not show up in the above list.

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)
 For any set $X,|X|<|\mathcal{P}(X)|$.

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)
For any set $X,|X|<|\mathcal{P}(X)|$.
Proof. Given any function $f: X \rightarrow \mathcal{P}(X)$, we show that f is not surjective.

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)
 For any set $X,|X|<|\mathcal{P}(X)|$.

Proof. Given any function $f: X \rightarrow \mathcal{P}(X)$, we show that f is not surjective.

We claim

$$
Y=\{x \in X \mid x \notin f(x)\}
$$

is not in the image of f.

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)
 For any set $X,|X|<|\mathcal{P}(X)|$.

Proof. Given any function $f: X \rightarrow \mathcal{P}(X)$, we show that f is not surjective.

We claim

$$
Y=\{x \in X \mid x \notin f(x)\}
$$

is not in the image of f.
If $f(x)=Y$ for some x, then ask the question: "Is $x \in Y$?"

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)

For any set $X,|X|<|\mathcal{P}(X)|$.
Proof. Given any function $f: X \rightarrow \mathcal{P}(X)$, we show that f is not surjective.

We claim

$$
Y=\{x \in X \mid x \notin f(x)\}
$$

is not in the image of f.
If $f(x)=Y$ for some x, then ask the question: "Is $x \in Y$?"
If not... then by definition $x \in Y$, a contradiction.
If so. .. then by definition $x \notin f(x)=Y$, another contradiction.

Cantor's Theorem: General Case

More generally...

Theorem (Cantor's Theorem)

For any set $X,|X|<|\mathcal{P}(X)|$.
Proof. Given any function $f: X \rightarrow \mathcal{P}(X)$, we show that f is not surjective.

We claim

$$
Y=\{x \in X \mid x \notin f(x)\}
$$

is not in the image of f.
If $f(x)=Y$ for some x, then ask the question: "Is $x \in Y$?"
If not... then by definition $x \in Y$, a contradiction.
If so. .. then by definition $x \notin f(x)=Y$, another contradiction.
Thus, there is no such x, so f is not surjective.

The Role of the Axiom of Choice

Some intriguing questions:

The Role of the Axiom of Choice

Some intriguing questions:
Do we necessarily have

$$
|X| \leq|Y| \quad \text { or } \quad|Y| \leq|X|
$$

for any two sets X and Y ?

The Role of the Axiom of Choice

Some intriguing questions:
Do we necessarily have

$$
|X| \leq|Y| \quad \text { or } \quad|Y| \leq|X|
$$

for any two sets X and Y ?
Is a set infinite if and only if it has a proper subset of equal size?

The Role of the Axiom of Choice

Some intriguing questions:
Do we necessarily have

$$
|X| \leq|Y| \quad \text { or } \quad|Y| \leq|X|
$$

for any two sets X and Y ?
Is a set infinite if and only if it has a proper subset of equal size?
Both of these questions are answered in the affirmative by the Axiom of Choice, which roughly states that you can simultaneously make many choices at once.

Well-Orders

To outline the proof, we need the following notion:

Well-Orders

To outline the proof, we need the following notion:

Definition

A well-order on a set X is a binary relation \leq satisfying
Reflexive: $x \leq x$ for every $x \in X$.
Antisymmetric: $x \leq y$ and $y \leq x$ implies $x=y$.
Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
Total: for any $x, y \in X$, either $x \leq y$ or $y \leq x$.
Well-Founded: A non-empty subset of X has a least element.
A well-ordered set is a pair (X, \leq) of a set X and well-order \leq on X.

Well-Orders

To outline the proof, we need the following notion:

Definition

A well-order on a set X is a binary relation \leq satisfying
Reflexive: $x \leq x$ for every $x \in X$.
Antisymmetric: $x \leq y$ and $y \leq x$ implies $x=y$.
Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
Total: for any $x, y \in X$, either $x \leq y$ or $y \leq x$.
Well-Founded: A non-empty subset of X has a least element.
A well-ordered set is a pair (X, \leq) of a set X and well-order \leq on X.

Example

\mathbb{N} is well-ordered by the standard ordering.

Comparing Well-Ordered Sets

Definition

If X and Y are ordered by $\leq X$ and \leq_{Y}, then a order-isomorphism is a bijection $f: X \rightarrow Y$ such that

$$
x_{1} \leq x_{2} \quad \text { if and only if } f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

Comparing Well-Ordered Sets

Definition

If X and Y are ordered by $\leq X$ and \leq_{Y}, then a order-isomorphism is a bijection $f: X \rightarrow Y$ such that

$$
x_{1} \leq x_{2} \quad \text { if and only if } f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

If $\left(X, \leq_{X}\right)$ and $\left(Y, \leq_{Y}\right)$ are well-ordered sets, recursively build up a map

$$
f(x)=\text { least } y \in Y \text { not in }\{f(z) \mid z<x x\}
$$

either until we run out of elements in Y or we run out of elements in X.

Comparing Well-Ordered Sets

Definition

If X and Y are ordered by \leq_{X} and \leq_{Y}, then a order-isomorphism is a bijection $f: X \rightarrow Y$ such that

$$
x_{1} \leq x_{2} \quad \text { if and only if } f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

If $\left(X, \leq_{X}\right)$ and $\left(Y, \leq_{Y}\right)$ are well-ordered sets, recursively build up a map

$$
f(x)=\text { least } y \in Y \text { not in }\{f(z) \mid z<x x\}
$$

either until we run out of elements in Y or we run out of elements in X. Thus, either $\left(X, \leq_{X}\right)$ is order-isomorphic to an initial segment of $\left(Y, \leq_{Y}\right)$, or vice-a-versa.

Comparing Well-Ordered Sets

Definition

If X and Y are ordered by \leq_{X} and \leq_{Y}, then a order-isomorphism is a bijection $f: X \rightarrow Y$ such that

$$
x_{1} \leq x_{2} \quad \text { if and only if } f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

If $\left(X, \leq_{X}\right)$ and $\left(Y, \leq_{Y}\right)$ are well-ordered sets, recursively build up a map

$$
f(x)=\text { least } y \in Y \text { not in }\{f(z) \mid z<x x\}
$$

either until we run out of elements in Y or we run out of elements in X. Thus, either $\left(X, \leq_{X}\right)$ is order-isomorphic to an initial segment of $\left(Y, \leq_{Y}\right)$, or vice-a-versa.
Write

$$
(X, \leq X) \leq_{w o}\left(Y, \leq_{Y}\right)
$$

if $\left(X, \leq_{X}\right)$ is order-isomorphic to an initial segment of $\left(Y, \leq_{Y}\right)$.

Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Theorem (Well-Ordering Theorem)

Every set X can be well-ordered.

Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Theorem (Well-Ordering Theorem)

Every set X can be well-ordered.

Corollary (Trichotomy)

Given any two sets X and Y, then either $|X| \leq|Y|$ or $|Y| \leq|X|$.

Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Theorem (Well-Ordering Theorem)

Every set X can be well-ordered.

Corollary (Trichotomy)

Given any two sets X and Y, then either $|X| \leq|Y|$ or $|Y| \leq|X|$.

Proof.

There are well-orderings \leq_{X} and \leq_{Y} of X and Y, respectively. Then either $\left(X, \leq_{X}\right) \leq_{w o}\left(Y, \leq_{Y}\right)$ or $\left(Y, \leq_{Y}\right) \leq_{w 0}\left(X, \leq_{X}\right)$. In particular, $|X| \leq|Y|$ or $|Y| \leq|X|$.

Cardinals and the Axiom of Choice

An equivalent form of the Axiom of Choice is the following:

Theorem (Well-Ordering Theorem)

Every set X can be well-ordered.

Corollary (Trichotomy)

Given any two sets X and Y, then either $|X| \leq|Y|$ or $|Y| \leq|X|$.

Proof.

There are well-orderings \leq_{X} and \leq_{Y} of X and Y, respectively. Then either $\left(X, \leq_{X}\right) \leq_{w o}\left(Y, \leq_{Y}\right)$ or $\left(Y, \leq_{Y}\right) \leq_{w 0}\left(X, \leq_{X}\right)$. In particular, $|X| \leq|Y|$ or $|Y| \leq|X|$.

Corollary

A set is infinite if and only if it is in bijection with a proper subset.

Ordinals and Cardinals

Ordinals are "canonical" well-ordered sets.

Ordinals and Cardinals

Ordinals are "canonical" well-ordered sets. They satisfy the following properties:

An ordinal α is the set of all ordinals β such that $\beta<{ }_{w o} \alpha$.
Each well-ordered set is order-isomorphic to a unique ordinal.
Every set of ordinals is well-ordered by $\leq_{w o}$.

Ordinals and Cardinals

Ordinals are "canonical" well-ordered sets. They satisfy the following properties:

An ordinal α is the set of all ordinals β such that $\beta<{ }_{w o} \alpha$.
Each well-ordered set is order-isomorphic to a unique ordinal.
Every set of ordinals is well-ordered by $\leq_{w o}$.

Definition

Given a ordinal α, the set $\{\beta||\alpha|=|\beta|\}$ has a least element. Such ordinals which arise in this way are called cardinals.

Ordinals and Cardinals

Ordinals are "canonical" well-ordered sets. They satisfy the following properties:

An ordinal α is the set of all ordinals β such that $\beta<{ }_{w o} \alpha$.
Each well-ordered set is order-isomorphic to a unique ordinal.
Every set of ordinals is well-ordered by $\leq_{w o}$.

Definition

Given a ordinal α, the set $\{\beta||\alpha|=|\beta|\}$ has a least element. Such ordinals which arise in this way are called cardinals.

Since any set X can be well-ordered, to each set there is a unique cardinal in bijection with X. Hence, the cardinals give canonical representative of the cardinalities.

The Number of Cardinalities

Just how many cardinalities are there?

The Number of Cardinalities

Just how many cardinalities are there? So many that there is no set of representatives of all the cardinalities.

The Number of Cardinalities

Just how many cardinalities are there?
So many that there is no set of representatives of all the cardinalities.
Theorem (Cantor's Paradox)
There is no set of whose elements represent all cardinalities.

The Number of Cardinalities

Just how many cardinalities are there?
So many that there is no set of representatives of all the cardinalities.

Theorem (Cantor's Paradox)

There is no set of whose elements represent all cardinalities.

Proof.
Suppose X is a given set. Let $Y=\cup X$. Then $|x| \leq|Y|$ for each $x \in X$. But then $|x|<|\mathcal{P}(Y)|$, so X cannot contain an element with the same cardinality as $\mathcal{P}(Y)$.

The Number of Cardinalities

Just how many cardinalities are there?
So many that there is no set of representatives of all the cardinalities.

Theorem (Cantor's Paradox)

There is no set of whose elements represent all cardinalities.

Proof.
Suppose X is a given set. Let $Y=\cup X$. Then $|x| \leq|Y|$ for each $x \in X$. But then $|x|<|\mathcal{P}(Y)|$, so X cannot contain an element with the same cardinality as $\mathcal{P}(Y)$.

There is a beyond infinite number of cardinalities.

