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Background

A set is an unordered collection of elements. x ∈ A denotes that x is
an element of A.

A ⊆ B — A is a subset of B, i.e. every element of A is in B.

A ⊂−− B — A is a proper subset of B, i.e. A ⊆ B and A ≠ B.

f ∶ A→ B — a function, i.e. a set of pairs (a,b) such that for each
a ∈ A there exists exactly one b = f (a) ∈ B such that (a,b) ∈ f ,

f ∶ A→ B is an injection if f (a) = f (a′) implies a = a′, a surjection if
for every b ∈ B there is an a ∈ A such that f (a) = b, and a bijection if
it is both an injection and a surjection.

⋃X ∶= {x ∣ x ∈ y for some y ∈ X} and

⋂X ∶= {x ∣ x ∈ y for every y ∈ X}
A ∖B — the difference of B from A, i.e. the set of elements in A
not in B.
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The Axiom of Choice

Axiom of Choice

For any collection X of non-empty sets, there exists a function f (a
choice function) that assigns to each set x in X an element f (x)
of x .
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1 Cantor and His Set Theory

2 Paradoxes and a Savior

3 Applications of Choice
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The Mathematical Climate of the 1800s

Already began resembling modern day mathematics in notation and style.

Sets, even infinite sets, already considered and used implicitly and
explicitly in mathematics. Seldomly were they considered as mathematical
objects in their own right.
Bolzano had studied some subtleties of the ‘size’ of infinite sets. Dedekind
followed up on this by using those ideas to rigorously define the notion of
‘infinite’ with regards to sets.

Definition ((Dedekind) Finite and Infinite Sets)

A is (Dedekind) infinite if there is B ⊂−− A such that A and B are in
bijection.
A is (Dedekind) finite if it is not (Dedekind) infinite.
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The Major Players – Georg Cantor

Born in 1845 in St. Petersburg,
Russia.
Moved to Germany at age 11
for his father’s health.
In 1863, Cantor began studying
mathematics under
Weierstrass, Kummer, and
Kronecker, major
mathematicians of the time
period, at the University of
Berlin.
In 1867 Cantor received his
doctorate and shortly began
teaching at the University of
Halle.
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The Major Players – Leopold Kronecker

Born in 1823 in Liegnitz,
Prussia.

In 1841 he began studying at
Berlin alongside Dirichlet,
Jacobi, and Eisenstein.

Received doctorate in 1845.

In 1880, became editor of
August Leopold Crelle’s
Journal for Pure and Applied
Mathematics (Crelle’s Journal)
– one of most respected
mathematics journals.

A number theorist, held a strong position on what mathematics was.

“God made the integers, all the rest is the work of man.”
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The Minor Players
Several other mathematicians are of note in our historical account:

Karl Weierstrass – German
analyst at Berlin. Another editor
of Crelle’s Journal alongside
Kronecker. Popularized the
rigorous modern definition of a
limit (due to Bolzano) and
produced the modern definition
of continuity.

Richard Dedekind was a German
number theorist who
communicated often with Cantor
and was a large proponent of
Cantor’s set theory.
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Cantor’s work on Trigonometric Series

Heine (mathematics chair at Halle) suggested the uniqueness problem
trigonometric series:

show

a0
2
+

∞
∑
n=1

(an cos(nx) + bn sin(nx)) = 0 (∗)

for every x ∈ (−π,π) implies the coefficients ai ,bi are 0.

In Cantor’s gradual proof involved him asking the following question:

Q: If P is a certain set of exceptional points, then is the
claim true if we only assume that Equation ∗ holds for all
x ∈ (−π,π) ∖ P?
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Cantor’s work on Trigonometric Series

To describe the exceptional sets, Cantor defined

P ′ ∶= {condensation points of P}

P(n+1) ∶= {condensation points of P(n)} = (P(n))′

Cantor showed the claim is true if P(n) = ∅ for some n.
Following this, he began considering the set

P(ω) =
∞
⋂
n=1

P(n)

Cantor recognized he could then define P(ω+1) ∶= (P(ω))′ and so on.
This was Cantor’s first hint of the eventual theory of ordinal numbers.
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Cantor’s 1874 Paper

Cantor began examining the set of real algebraic numbers (the solutions to
rational-coefficient polynomials), submitting a paper with his findings to
Crelle’s Journal titled “On a Property of the Collection of All Real
Algebraic Numbers”.

His two main theorems in his 1874 paper:

(1) The set of real algebraic numbers can be written as a sequence
a0, a1, a2, . . .. In other words, the set of real algebraic numbers is
countable.

(2) No open interval (a,b) can be written as such a sequence. In other
word, open intervals of real numbers are uncountable. As a Corollary,
every open interval contains a transcendental number.

This was the birth of set theory; never before had mathematicians
considered that infinite sets could have different ‘sizes’.
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This was the birth of set theory; never before had mathematicians
considered that infinite sets could have different ‘sizes’.
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Cantor’s Notion of Size

Motivated by his findings, Cantor defined the size of a set in terms of
injections and bijections:

Definition

Suppose A and B are sets. Then

∣A∣ = ∣B ∣ if. . . there exists a bijection f ∶ A→ B, read “A and B have equal
size/cardinality.”

∣A∣ ≤ ∣B ∣ if. . . there exists an injection f ∶ A→ B.

∣A∣ < ∣B ∣ if. . . ∣A∣ ≤ ∣B ∣ but ∣A∣ ≠ ∣B ∣.

Thus, Cantor’s 1874 findings can be subsumed as

∣{real algebraic numbers}∣ = ∣N∣ < ∣R∣
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Cantor’s 1878 Paper

In search of sets which were even larger than R, in 1874, Cantor wrote to
Dedekind,

“Can a surface (say, a square that includes the boundaries) be
uniquely referred to a line (say, a straight-line segment that
includes the end points) so that for every point of the surface
there is a corresponding point of the line and conversely, for
every point of the line there is a corresponding point on the
surface? Methinks that answering this question would be no easy
job, despite the fact that the answer seems so clearly to be ‘no’
that proof appears almost unnecessary.”

Ultimately, the answer was ‘yes’: Cantor showed that ∣[0,1]∣ = ∣[0,1]2∣,
and this extended to higher dimensions as well.

“I see it, but I don’t believe it.”
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Cantor’s Later Years

From 1879 to 1884, Cantor published a series of six papers expanding on
his new set theory. It was in these papers that Cantor properly presented
his theory of ordinals and cardinals, using well-ordered sets as an essential
tool.

His two principal goals during this time were the following:

(1) Show that every set fit into his linear hierarchy of sizes (the cardinal
numbers).

(2) Cantor’s Continuum Hypothesis: Show that there is no
intermediate set A such that ∣N∣ < ∣A∣ < ∣R∣.

To establish the first, Cantor made use of a result called the
Well-Ordering Theorem, which states that every set can be well-ordered.
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Well-Orders

The set of natural numbers, N = {0,1,2,3, . . .}, has the property that
every non-empty subset has a least element, a property that is very closely
related with the property of mathematical induction.

Well-orders generalize this notion:

Definition (Well-Order)

A well-order on a set W is a binary relation ≤ satisfying

Reflexitivity: For all x ∈W , x ≤ x .

Transitivity: For all x , y , z ∈W , x ≤ y and y ≤ z implies x ≤ z .

Antisymmetry: For all x , y ∈W , if x ≤ y and y ≤ x , then x = y .

Totality: For any x , y ∈W , either x ≤ y or y ≤ x .

Well-foundedness: Any non-empty subset V of W has a ≤-least element.
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Ordinals - Motivation

Cantor found that there was a standard way of enumerating the elements
of a well-ordered set W :

w0

,w1,w2,⋯,wn,⋯,wω,wω+1,⋯,wω+n,⋯,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

By well-foundedness, W has a least element w0.
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If W ∖ {w0} is non-empty, then it has a least element w1.
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Hayden Jananthan (Vanderbilt University) What’s Yellow and Equivalent to the Axiom of Choice? 17 / 35



Ordinals - Motivation

Cantor found that there was a standard way of enumerating the elements
of a well-ordered set W :

w0,w1,w2,⋯,wn,⋯

,wω,wω+1,⋯,wω+n,⋯,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

Continuing in this way, we may define w3,w4,w5, . . . ,wn, . . . corresponding
to each natural number.
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If W ∖ {w0,w1, . . .} is non-empty, it has a least element, which we denote
wω.
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,⋯,wω+n,⋯,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

But then we may consider W ∖ {w0,w1, . . . ,wω}; if it is non-empty, it has
a least element, which we denote wω+1.

Hayden Jananthan (Vanderbilt University) What’s Yellow and Equivalent to the Axiom of Choice? 17 / 35



Ordinals - Motivation

Cantor found that there was a standard way of enumerating the elements
of a well-ordered set W :

w0,w1,w2,⋯,wn,⋯,wω,wω+1,⋯,wω+n,⋯

,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

We can continue in this way, defining wω+2,wω+3,wω+4, . . . ,wω+n, . . ..

Hayden Jananthan (Vanderbilt University) What’s Yellow and Equivalent to the Axiom of Choice? 17 / 35



Ordinals - Motivation

Cantor found that there was a standard way of enumerating the elements
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w0,w1,w2,⋯,wn,⋯,wω,wω+1,⋯,wω+n,⋯,wω⋅2

,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

Then, as before, we may considering the next element bigger than all of
these, wω+ω = wω⋅2. As long as possible, we can continue even further, to
wω⋅3,wω⋅4, . . . ,wω⋅n, . . ..
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w0,w1,w2,⋯,wn,⋯,wω,wω+1,⋯,wω+n,⋯,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

Past each of the elements of wω⋅n is the least element above all of them,
wω⋅ω = wω2 .
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Ordinals - Motivation

Cantor found that there was a standard way of enumerating the elements
of a well-ordered set W :

w0,w1,w2,⋯,wn,⋯,wω,wω+1,⋯,wω+n,⋯,wω⋅2,⋯,wω⋅3,⋯,wω⋅n,⋯,wω2 ,⋯

And nothing stops us from continuing from there, at least until we run out
of elements.
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Ordinals - Cantor’s and Modern Definitions

Cantor defined his ordinal numbers by starting with 0 (today, we define
0 ∶= ∅) and defining two generation rules:

Definition

Cantor’s Intuitive Definition Modern Definition

(1) Given an ordinal α, form its successor or-
dinal α + 1.

α + 1 ∶= α ∪ {α}

(2) Given a set of ordinals S with no maximum,
form its limit ordinal supS .

supS ∶= ⋃S

Note that in the modern definition, an ordinal is the set of all smaller
ordinals.
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Cardinals

The finite ordinal numbers 0,1,2,3, . . . and the first countably-infinite
ordinal N = ω = {0,1,2,3, . . .} have the property that no smaller ordinal
has equal size.

However, the ordinals ω + 1, ω ⋅ 2, ω2, . . . are all still countable.
The so-called initial ordinals can serve as canonical representatives for
different sizes of sets.
An essential result that was only formalized latter is the following, which
guarantees that ‘enough’ ordinals exist:

Lemma (Hartogs’ Lemma)

For every set S , there exists an ordinal γ that does not inject into S .

Without it, uncountable ordinals need not exist.
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Cardinals - Alephs

Definition

Cantor defined the alephs by transfinite recursion:

ℵ0 ∶= ω
ℵα+1 ∶= least ordinal which does not inject into ℵα
ℵλ ∶= sup{ℵα ∣ α < λ} λ ≠ 0 limit

Definition

The alephs, together with the finite ordinals 0,1,2,3, . . ., are called the
cardinal numbers.

The cardinal numbers form a linear hierarchy of sizes

0 < 1 < 2 < ⋯ < ℵ0 < ℵ1 < ℵ2 < ⋯ < ℵn < ⋯ < ℵω < ℵω+1 < ⋯ < ℵω2 < ⋯⋯
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Cardinals and the Well-Ordering Theorem

Every well-ordered set can be put into a one-to-one correspondence with
an ordinal number.

Cantor thus concluded that if every set could be well-ordered, then he
would get an affirmative answer to his first question, i.e. every set is in
bijection with a cardinal number.

Theorem (Well-Ordering Theorem)

Suppose S is a set. Then there exists a binary relation ≤ which is a
well-ordering of S .

Cantor, unfortunately, failed to find a proof.
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Trichotomy

Lemma

For every ordinal β, there exists an ordinal α such that β and ℵα are in
one-to-one correspondence.

Proof.

Assume without loss of generality that β does not inject into any γ < β.
(Such an ordinal is an initial ordinal.)
By construction of the alephs, β ≤ ℵβ. Let α be the least ordinal such that
β injects into ℵα. Two observations:

β is initial, so β ≤ ℵα.

β does not inject into ℵγ for any γ < α, so ℵγ < β for all γ < α.

Then ℵα = ⋃γ<α ℵγ ≤ β ≤ ℵα, so β = ℵα.
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Trichotomy

Corollary (Trichotomy Theorem)

Suppose S is an infinite set. Then there exists an ordinal α such that S is
in one-to-one correspondence with ℵα.

Proof.

Well-order S , so that ∣S ∣ = ∣β∣ for some ordinal β. Then ∣S ∣ = ∣β∣ = ∣ℵα∣ for
some ordinal α.
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1 Cantor and His Set Theory

2 Paradoxes and a Savior

3 Applications of Choice
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Growing Paradoxes

In the late 1800s and early 1900s, paradoxes were beginning to be
discovered that shook the foundations of the fledgling set theory.

Burali-Forti Paradox: Let O ∶= {ordinals}.
Then O is also an ordinal – a largest ordinal. But its
successor O + 1 is larger, a contradiction.

Cantor’s Paradox: Let C ∶= {cardinals}.
Then supS = ⋃C is also a cardinal – a largest cardinal.
supS = ⋃C = ℵα for some ordinal α, but then ℵα+1 is larger,
a contradiction.

Russell’s Paradox: Let S ∶= {x ∣ x ∉ x}. Does S contain itself?
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A Newcomer - Ernst Zermelo

Born in 1871 in Berlin,
Germany.

Studied at Berlin, Halle, and
Freiburg.

Doctorate from the University
of Berlin in 1894 and lectured
at Gottingen by 1899.

Large proponent of Cantor’s set theory, though recognized that Cantor had
used haphazard techniques to prove his theorems – particularly in what
was considered allowable in the creation of sets.

In 1904, he formulated the Axiom of Choice and produced a proof of the
Well-Ordering Theorem.
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Proof of the Well-Ordering Theorem

Lemma (Principle of General Recursion)

For every set S , ordinal α, and function F ∶ {h ∶ β → S ∣ β < α}→ S , there
is a function f ∶ α → S such that

f (β) = F (restriction of f to β)

Proof of Well-Ordering Theorem.

Let γ be an ordinal which does not inject into S , and let f be a choice
function for P(S)∖ {∅}. Define a bijection of an initial segment of γ onto
S as follows:

Stage 0: Associate 0 with f (S).

Stage α: Associate α with f (S ∖ {sβ ∣ β < α}) if that set is non-empty.

At some point in this process, we must run out of elements of S
(otherwise instead run out of elements of γ and have an injection of γ into
S , a contradiction).
The procedure well-orders the elements of S .
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Equivalence of Well-Ordering and Choice

Theorem

The Well-Ordering Theorem implies the Axiom of Choice.

Proof.

Suppose X is a set not containing ∅.
Let S = ⋃X , and well-order S .
Then define f ∶ X → S by the rule

f (x) ∶= least element of x ⊆ S
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Zermelo’s Axiomatization of Set Theory
Zermelo’s second article sought to put set theory on firm logical grounds,
giving a rigorous axiomatization of set theory that would avoid the
paradoxes that had been raised.

Axiom I: Axiom of Extensionality. A set is determined uniquely by its elements.

Axiom II: Axiom of Elementary Sets. For any objects in our domain a,b, the sets
∅, {a}, and {a,b} exist.

Axiom III: Axiom of Separation. For a property of sets P(x) and a set X , there is
a set Y containingly the elements x of X satisfying P(x).

Axiom IV: Axiom of Power Set. For every set X , there is a set Y = P(X )
consisting exactly of all of the subsets of X .

Axiom V: Axiom of Union. For every set X , there is a set Y = ⋃X consisting
exactly of all elements of elements of X .

Axiom VI: Axiom of Choice. If X is a set not containing ∅, then there is a
function f ∶ X → ⋃X assigning to x ∈ X an element f (x) ∈ x .

Axiom VII: Axiom of Infinity. There exists in the domain at least Z that contains
∅ and for every x ∈ Z also contains {x}.
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Developments in the Axiomatization of Set Theory
Morris Kline writes:

The axiom became a serious bone of contention.
Despite this, however, many mathematicians continued to use it
as mathematics expanded in the succeeding decades. A conflict
continued to rage among mathematics about whether it was
legitimate, acceptable mathematics. It became the most
discussed axiom next to Euclid’s parallel axiom. As Lebesgue
remarked, the opponents could do no better than insult each
other because there was no agreement. He himself, despite his
negative and distrustful attitude toward the axiom, employed it,
as he put it, audaciously and cautiously. He maintained that
future developments would help us decide.

Meanwhile, Zermelo’s theory evolved. Abraham Fraenkel found
short-comings in the theory, and added his Axiom of Replacement.
With some additional minor modifications, the resulting theory became
known as Zermelo-Fraenkel Set Theory, or ZF. (Which did not include
Choice.)
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Enter Gödel

1930 – Completeness Theorem
for First-Order Logic

1931 – Incompleteness
Theorems

1938 – Constructible Universe

Gödel’s Incompleteness Theorems mostly laid to rest the question of the
consistency (the inability to derive a contradiction) of the
Zermelo-Fraenkel Set Theory.
His Constructible Universe showed that if ZF was consistent, ZFC (ZF
plus the Axiom of Choice) is also consistent.
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1930 – Completeness Theorem
for First-Order Logic

1931 – Incompleteness
Theorems

1938 – Constructible Universe
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1 Cantor and His Set Theory

2 Paradoxes and a Savior

3 Applications of Choice
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Equivalents of Choice

The Cartesian product of any family of non-empty sets is non-empty.

Every surjective function has a right inverse.

For every infinite set A, ∣A∣ = ∣A ×A∣.
Hausdorff Maximal Principle: Every poset has a maximal chain.

Zorn’s Lemma: Every non-empty poset in which every chain has an
upper bound has a maximal element.

Antichain Principle: Every poset has a maximal antichain.

Every vector space has a basis.

Krull’s Theorem: Every non-zero unital ring has a maximal ideal.

The closed unit ball of the dual of a normed vector space over the
reals has an extreme point.

Tychonoff’s Theorem: Every product of compact topological spaces is
compact.

Every connected graph has a spanning tree.
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Weaker Forms of Choice

A countable union of countable sets is countable.

Every infinite set has an injection of N into it.

There exist non-measurable sets.

Banach-Tarski Paradox.

The Lebesgue measure is σ-additive.

Every field has an algebraic closure.

Every field extension has a transcendence basis.

Boolean Prime Ideal Theorem.

Nielsen-Schreier Theorem.

The additive groups of R and C are isomorphic.

Hahn-Banach Theorem.

Every Hilbert Space has an orthonormal basis.

Banach-Alaoglu Theorem.

Baire Category Theorem.

Existence of Stone-Cech Compactification.

Godel’s Completeness Theorem.
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