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Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can’t be proven
from Peano Arithemtic (PA):

1 Godel Sentences.

2 The consistency of PA.

3 The Generalized Ramsey Theorem.

4 Goodstein’s Theorem.

5 Whether a particular integer polynomial in 9 variables has zeroes.

Intuition would have it that we could just continue checking for the
necessary object needed –

– if adding some axioms to PA implied the existence of something which
was originally independent of PA, then we should have found it in our
earlier search.
Of course, this doesn’t actually happen. But where is our intuition wrong?
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First Order Logic

Our setting is First Order Logic or predicate logic.
Roughly speaking, this is the logic that makes sense of well-formed
formulas like

∀x∀y∀z(f (x , f (y , z)) = f (f (x , y), z))

i.e. formulas in which variables are allowed to be quantified over.

Sentences are well-formed formulas in which every variable is bound
by a quantifier.

A First-Order Theory is a set of sentences (taken to be non-logical
axioms of the theory).

Provability is defined in terms of logical axioms, hypotheses, and rules
of inference.

Satisfiability is defined in terms of structures that instantiate the
functions and relations.
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First Order Logic - Language
To make the notions of provability precise, we need to define the
syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are
present in every language, and the non-logical symbols which are specified
by a signature:

1 Logical Symbols:

Parentheses ), ( and comma ,
Logical Connectives: ∨, ∧, ¬, →, ↔, �, ⊺
Quantifiers: ∃ and ∀
Equality Symbol: =
Variable Symbols: x0, x1, x2, . . .

2 Non-Logical Symbols/Signature σ = (F ,R, ar):

A set F of Function Symbols.
A set R of Relation Symbols.
An arity function ar ∶ F ⊔R → N.

(We will assume a signature σ = (F ,R, ar) is fixed unless specified
otherwise.)
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First Order Logic - Well-Formed Formulas
Terms are defined recursively:

Variable Symbols xn are terms.

If f is a function symbol of arity k ≥ 0 and t1, . . . , tk are terms, then
f (t1, . . . , tk) is a term.

A well-formed formula (wff) are strings of the above symbols built up in
the following way:

Atomic Formulae: let t1, . . . , tk be terms and R a relation symbol with
arR = k .

(t1 = t2) is a wff.
R(t1, . . . , tk) is a wff.
⊺,� are wffs.

Non-Atomic Formulae: let ϕ,ψ1, ψ2 be wffs and x a variable.

(ψ1 ∨ψ2), (ψ1 ∧ψ2), (ψ1 → ψ2), (ψ1 ↔ ψ2),¬ϕ are wffs.
∀xϕ and ∃xϕ are wffs.

Note that there is unique readability; a wff is built up from the above rules
in exactly one way.
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First Order Logic - Logical Axioms and Rules of Inference
Logical Axioms:

for wffs α,β, γ,ϕ,ψ,
1 (β → (α → β))
2 ((α → β)→ ((α → (β → γ))→ (α → γ)))
3 ((α → �)→ (α → β))
4 (((α → �)→ �)→ α)
5 (∀x(ϕ→ ψ)→ (ϕ→ ∀xψ)) (where ϕ,ψ wffs, x a variable not free in
ϕ)

6 ∀xϕ(x)→ ϕ(y) (where ϕ(x) a wff with free variable x , y a variable
or constant, and no free occurence of x in ϕ(x) is within the scope of
a ∀y)

7 (t = t) (where t is a term)
8 ((x = y)→ (ϕ→ ψ)) (where x , y are variables or constants, ϕ,ψ wffs,

and ψ obtained by substituting y for some free occurrences of x in ϕ)

Rules of Inference:

Modus Ponens: From (α → β) and α conclude β.

Generalization: From ϕ conclude ∀xϕ.
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First Order Logic - Provability

Free variable: (an instance of) x in ϕ is free it is not bound by a
quantifier.
Sentence: a wff ϕ with no free variables.
Let Φ be a set of sentences and ϕ a sentence. Φ proves ϕ

Φ ⊢ ϕ

if there is a sequence ψ1, . . . , ψn such that
1 ψi is either

an axiom,
an element of Φ (hypothesis), or
the result of Modus Ponens or Generalization applied to earlier ψj ’s.

2 ψn = ϕ.
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First Order Theories

First Order Theory Φ is a set of sentences.

ϕ is a theorem of Φ if Φ ⊢ ϕ.

Φ is

Consistent if Φ ⊬ �.

Inconsistent if it is not consistent.

Complete if for any sentence ϕ, either Φ ⊢ ϕ or Φ ⊢ ¬ϕ.

Incomplete if it is not conplete.

Recursively-Enumerable (roughly) if there is an algorithm which
enumerates the elements of Φ.
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Example: Peano Arithmetic

Peano Arithmetic is the first order theory in the signature ({0,S ,+, ⋅},∅)
consisting of the sentences:

1 ¬∃x(S(x) = 0)

2 ∀x∀y((S(x) = S(y))→ (x = y))

3 ∀x(x + 0 = x)

4 ∀x∀y(x + S(y) = S(x + y))

5 ∀x(x ⋅ 0 = 0)

6 ∀x∀y(x ⋅ S(y) = x ⋅ y + x)

7 For each wff ϕ with free variables x , y1, . . . , yn, the sentence

∀y1⋯∀yn((ϕ(0, y1, . . . , yn)

∧ ∀x(ϕ(x , y1, . . . , yn)→ ϕ(S(x), y1, . . . , yn)))

→ ∀xϕ(x , y1, . . . , yn))
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Example: Ordered Fields
The first order theory of ordered fields has signature ({0,1,+, ⋅},{≤}) and
axioms

1 ¬(0 = 1)

2 ∀x∀y∀z((x + y) + z = x + (y + z))

3 ∀x∀y∀z((x ⋅ y) ⋅ z = x ⋅ (y ⋅ z))

4 ∀x∀y(x + y = y + x)

5 ∀x∀y(x ⋅ y = y ⋅ x)

6 ∀x(x + 0 = x)

7 ∀x(x ⋅ 1 = x)

8 ∀x∃y(x + y = 0)

9 ∀x(¬(x = 0)→ ∃y(x ⋅ y = 1))

10 ∀x∀y∀z(x ⋅ (y + z) = x ⋅ y + x ⋅ z)

11 ∀x∀y∀z(x ≤ y → x + z ≤ y + z)

12 ∀x∀y∀z(0 ≤ z → (x ≤ y → x ⋅ z ≤ y ⋅ z))
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Aside - Godel’s Incompleteness Theorems

One of Godel’s greatest discoveries was that certain first order theories
were incomplete.

Suppose Φ is

1 consistent,

2 recursively-enumerable, and

3 contains a large enough fragment of Peano Arithmetic

Theorem (Godel’s First Incompleteness Theorem)

Φ is incomplete.

Theorem (Godel’s Second Incompleteness Theorem)

Φ cannot prove its own consistency.
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Structures
σ-structure: a triple A = (A,FA,RA) consisting of

1 A (non-empty) set A,

2 to each function symbol f ∈ F of arity ar f = k , a function f A ∈ FA

with f A ∶ Ak → A, and

3 to each relation symbol R ∈ R of arity arR = k , a relation RA ∈ RA

with RA ⊂ Ak .

Assignment: a function v ∶ {x0, x1, . . .}→ A.
If v an assignment, x a variable, a ∈ A, define

vx ,a(y) =

⎧⎪⎪
⎨
⎪⎪⎩

v(y) if x ≠ y

a if y = x

For a term t, tv is defined recursively:

1 if t = x is a variable, then tv ∶= v(x),

2 if t = f (t1, . . . , tn) with t1, . . . , tn terms and f a function symbol, then
tv ∶= f A(tv1 , . . . , t

v
n ).
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Satisfiability (with respect to an assignment)

A is a structure, v an assignment.

Satisfiability with respect to v :

Atomic wffs:

(t1 = t2) is satisfied iff tv1 = tv2 .
R(t1, . . . , tn) is satisfied iff RA(tv1 , . . . , t

v
n ) holds.

⊺ is satisfied. � is not.

Non-Atomic wffs:

ψ1 ∧ ψ2 is satisfied iff ψ1 and ψ2 are both satisfied.
(Likewise with ψ1 ∨ ψ2,¬ψ,ψ1 → ψ2, ψ1 ↔ ψ2.)
∀xϕ is satisfied iff ϕ is satisfied with respect to vx,a for every a ∈ A.
∃xϕ is satisfied iff there is an a ∈ A such that ϕ is satisfied with respect
to vx,a.

We write
A ⊧v ϕ
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Satisfiability for Sentences

If ϕ is a sentence, then we write A ⊧ ϕ if A ⊧v ϕ for every assignment v
(equivalently, any one of them).

If Φ is a set of sentences, then A ⊧ Φ means A ⊧ ϕ for every ϕ ∈ Φ.

Φ is satisfiable if there is a structure A for which A ⊧ Φ.
A is a model of Φ.
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Examples of Models

N is a model of Peano Arithmetic with 0,S ,+, ⋅ given their standard
definitions.

Q,Qalg ∩R,R, ∗R are all models of the theory of ordered fields with
0,1,+, ⋅,≤ given their standard definitions.
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Godel’s Completeness Theorem

Theorem (Completeness Theorem for First Order Logic)

If Φ is a set of sentences, then Φ is consistent if and only if Φ is satisfiable.
Equivalently, Φ ⊢ ϕ if and only if A ⊧ ϕ for every model A of Φ.

This gives some insight into why provability of something one way or the
other can be difficult: a theory can have nonstandard models.
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Infinite Models of all Sizes

If A is a model of Φ, then B is an elementary submodel of A (and A an
elementary extension of B) if

1 B ⊂ A,

2 f B = f A∣Bar f for each f ∈ F ,

3 RB = RA ∩BarR for each R ∈ R, and

4 for every wff ϕ(x1, . . . , xn) and b1, . . . ,bn ∈ B then

A ⊧ ϕ(b1, . . . ,bn) if and only if B ⊧ ϕ(b1, . . . ,bn)

Theorem (Lowenheim-Skolem Theorem)

Suppose κ is an infinite cardinal with κ ≥ ∣F ∪R∣. Suppose A is an
infinite model of Φ. Then there exists a model B of Φ with ∣B ∣ = κ and

B is an elementary submodel of A if κ ≤ ∣A∣

B is an elementary extension of A if κ ≥ ∣A∣
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B is an elementary extension of A if κ ≥ ∣A∣
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Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:

Theorem (Compactness Theorem)

Φ is satisfiable if and only if every finite subset of Φ is satisfiable.

Proof.
By contradiction: assume every finite subset of Φ is satisfiable but Φ is
not.
Completeness implies Φ is inconsistent, so there is a proof of � from Φ.
This proof uses only finitely-many elements of Φ as hypotheses, implying a
finite subset of Φ is inconsistent.
Completeness implies there is a finite subset of Φ which is not satisfiable.
Contradiction.
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1 Motivation

2 First Order Logic - Provability and Satisfiability

3 Applications of Compactness and Lowenheim-Skolem
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Skolem’s Paradox

Proposition (Skolem’s Paradox)

Assuming ZFC is consistent, there exist countable models of ZFC.

This is called a paradox since models of ZFC claim that they contain
uncountable elements, which themselves are sets.

Resolution: countability is not an absolute property. Just because the
model things its element is uncountable doesn’t mean it is in reality.

Remark: In fact, countable models of ZFC are some of the most wildly
studied since they can be used with forcing.
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Nonstandard Models of PA

Let Φ be the axioms of PA, and add a new constant c to our signature.

Consider the sentences

ϕn ≡ ¬(S⋯S
±
n times

(0) = c)

Every finite subset of Φ′ = Φ∪ {ϕn ∣ n ∈ N} is satisfiable, so Φ′ is satisfiable
by Compactness.
A model of Φ′ gives a model of PA but which contains “infinite” elements.
Lowenheim-Skolem implies that we have such models that are countable.
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Nonstandard Models of R

Consider R.

We create a signature σ = (F ,R, ar) where

F = {fF ∣ F ∶ Rk → R, k ∈ N} ∪ {c}

R = {PR ∣ R ⊂ Rk , k ∈ N}

Let Φ be the set of sentences in this language satisfied by R and

Φ′ = Φ ∪ {P<(fr , c) ∣ r ∈ R}

Compactness and Lowenheim-Skolem imply that Φ′ has a model of
cardinality ∣R∣; call it ∗R - the hyperreals!.
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Thank you!

Questions?
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