# Weird Models <br> When Things Stop Being Standard 

Hayden Jananthan

Vanderbilt University
(1) Motivation
(2) First Order Logic - Provability and Satisfiability
(3) Applications of Compactness and Lowenheim-Skolem

## (1) Motivation

## (2) First Order Logic - Provability and Satisfiability

## (3) Applications of Compactness and Lowenheim-Skolem

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.
(9) Goodstein's Theorem.

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.
(9) Goodstein's Theorem.
(3) Whether a particular integer polynomial in 9 variables has zeroes.

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.
(0) Goodstein's Theorem.
(6) Whether a particular integer polynomial in 9 variables has zeroes. Intuition would have it that we could just continue checking for the necessary object needed -

## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.
(1) Goodstein's Theorem.
(6) Whether a particular integer polynomial in 9 variables has zeroes. Intuition would have it that we could just continue checking for the necessary object needed -

- if adding some axioms to PA implied the existence of something which was originally independent of PA, then we should have found it in our earlier search.


## Incompleteness of Peano Arithmetic

There are several statements about natural numbers that can't be proven from Peano Arithemtic (PA):
(1) Godel Sentences.
(2) The consistency of PA.
(3) The Generalized Ramsey Theorem.
(9) Goodstein's Theorem.
(6) Whether a particular integer polynomial in 9 variables has zeroes. Intuition would have it that we could just continue checking for the necessary object needed -

- if adding some axioms to PA implied the existence of something which was originally independent of PA, then we should have found it in our earlier search.
Of course, this doesn't actually happen. But where is our intuition wrong?


## (1) Motivation

## (2) First Order Logic - Provability and Satisfiability

## (3) Applications of Compactness and Lowenheim-Skolem

## First Order Logic

Our setting is First Order Logic or predicate logic. Roughly speaking, this is the logic that makes sense of well-formed formulas like

$$
\forall x \forall y \forall z(f(x, f(y, z))=f(f(x, y), z))
$$

i.e. formulas in which variables are allowed to be quantified over.

- Sentences are well-formed formulas in which every variable is bound by a quantifier.
- A First-Order Theory is a set of sentences (taken to be non-logical axioms of the theory).
- Provability is defined in terms of logical axioms, hypotheses, and rules of inference.
- Satisfiability is defined in terms of structures that instantiate the functions and relations.


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:

## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$
(2) Non-Logical Symbols/Signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ :


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$
(2) Non-Logical Symbols/Signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ :
- A set $\mathscr{F}$ of Function Symbols.


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$
(2) Non-Logical Symbols/Signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ :
- A set $\mathscr{F}$ of Function Symbols.
- A set $\mathscr{R}$ of Relation Symbols.


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$
(2) Non-Logical Symbols/Signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ :
- A set $\mathscr{F}$ of Function Symbols.
- A set $\mathscr{R}$ of Relation Symbols.
- An arity function ar: $\mathscr{F} \sqcup \mathscr{R} \rightarrow \mathbb{N}$.


## First Order Logic - Language

To make the notions of provability precise, we need to define the syntactics of first order logic.
Our first order language has two parts, the logical symbols, which are present in every language, and the non-logical symbols which are specified by a signature:
(1) Logical Symbols:

- Parentheses ), ( and comma ,
- Logical Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Quantifiers: $\exists$ and $\forall$
- Equality Symbol: =
- Variable Symbols: $x_{0}, x_{1}, x_{2}, \ldots$
(2) Non-Logical Symbols/Signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ :
- A set $\mathscr{F}$ of Function Symbols.
- A set $\mathscr{R}$ of Relation Symbols.
- An arity function ar: $\mathscr{F} \sqcup \mathscr{R} \rightarrow \mathbb{N}$.
(We will assume a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar) is fixed unless specified otherwise.)


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- ( $\left.t_{1}=t_{2}\right)$ is a wff.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- $\left(t_{1}=t_{2}\right)$ is a wff.
- $R\left(t_{1}, \ldots, t_{k}\right)$ is a wff.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- $\left(t_{1}=t_{2}\right)$ is a wff.
- $R\left(t_{1}, \ldots, t_{k}\right)$ is a wff.
- $\mathrm{T}, \perp$ are wffs.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- $\left(t_{1}=t_{2}\right)$ is a wff.
- $R\left(t_{1}, \ldots, t_{k}\right)$ is a wff.
- $\mathrm{T}, \perp$ are wffs.

Non-Atomic Formulae: let $\varphi, \psi_{1}, \psi_{2}$ be wffs and $x$ a variable.

## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- $\left(t_{1}=t_{2}\right)$ is a wff.
- $R\left(t_{1}, \ldots, t_{k}\right)$ is a wff.
- $\mathrm{T}, \perp$ are wffs.

Non-Atomic Formulae: let $\varphi, \psi_{1}, \psi_{2}$ be wffs and $x$ a variable.

- $\left(\psi_{1} \vee \psi_{2}\right),\left(\psi_{1} \wedge \psi_{2}\right),\left(\psi_{1} \rightarrow \psi_{2}\right),\left(\psi_{1} \leftrightarrow \psi_{2}\right), \neg \varphi$ are wffs.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with ar $R=k$.
- $\left(t_{1}=t_{2}\right)$ is a wff.
- $R\left(t_{1}, \ldots, t_{k}\right)$ is a wff.
- $\mathrm{T}, \perp$ are wffs.

Non-Atomic Formulae: let $\varphi, \psi_{1}, \psi_{2}$ be wffs and $x$ a variable.

- $\left(\psi_{1} \vee \psi_{2}\right),\left(\psi_{1} \wedge \psi_{2}\right),\left(\psi_{1} \rightarrow \psi_{2}\right),\left(\psi_{1} \leftrightarrow \psi_{2}\right), \neg \varphi$ are wffs.
- $\forall x \varphi$ and $\exists x \varphi$ are wffs.


## First Order Logic - Well-Formed Formulas

Terms are defined recursively:

- Variable Symbols $x_{n}$ are terms.
- If $f$ is a function symbol of arity $k \geq 0$ and $t_{1}, \ldots, t_{k}$ are terms, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
A well-formed formula (wff) are strings of the above symbols built up in the following way:
Atomic Formulae: let $t_{1}, \ldots, t_{k}$ be terms and $R$ a relation symbol with

$$
\begin{aligned}
& \operatorname{ar} R=k . \\
&\left(t_{1}=t_{2}\right) \text { is a wff. } \\
& \text { - } R\left(t_{1}, \ldots, t_{k}\right) \text { is a wff. } \\
& \text { - } \mathrm{T}, \perp \text { are wffs. }
\end{aligned}
$$

Non-Atomic Formulae: let $\varphi, \psi_{1}, \psi_{2}$ be wffs and $x$ a variable.

- $\left(\psi_{1} \vee \psi_{2}\right),\left(\psi_{1} \wedge \psi_{2}\right),\left(\psi_{1} \rightarrow \psi_{2}\right),\left(\psi_{1} \leftrightarrow \psi_{2}\right), \neg \varphi$ are wffs.
- $\forall x \varphi$ and $\exists x \varphi$ are wffs.

Note that there is unique readability; a wff is built up from the above rules in exactly one way.

## First Order Logic - Logical Axioms and Rules of Inference Logical Axioms:

Rules of Inference:

## First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,

Rules of Inference:

First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,
(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$

## Rules of Inference:

First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,
(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$

## Rules of Inference:

First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,
(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$

## Rules of Inference:

First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,
(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(a) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$

## Rules of Inference:

First Order Logic - Logical Axioms and Rules of Inference Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,
(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(3) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi))$ (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi$ )

Rules of Inference:

## First Order Logic - Logical Axioms and Rules of Inference

 Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(3) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi)$ ) (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi)$
(0) $\forall x \varphi(x) \rightarrow \varphi(y)$ (where $\varphi(x)$ a wff with free variable $x, y$ a variable or constant, and no free occurence of $x$ in $\varphi(x)$ is within the scope of a $\forall y$ )

Rules of Inference:

## First Order Logic - Logical Axioms and Rules of Inference

 Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(5) $(\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi))$ (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi)$
(0) $\forall x \varphi(x) \rightarrow \varphi(y)$ (where $\varphi(x)$ a wff with free variable $x, y$ a variable or constant, and no free occurence of $x$ in $\varphi(x)$ is within the scope of a $\forall y$ )
(3) $(t=t)$ (where $t$ is a term)

Rules of Inference:

## First Order Logic - Logical Axioms and Rules of Inference

 Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(3) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi))$ (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi)$
(0) $\forall x \varphi(x) \rightarrow \varphi(y)$ (where $\varphi(x)$ a wff with free variable $x, y$ a variable or constant, and no free occurence of $x$ in $\varphi(x)$ is within the scope of a $\forall y$ )
(3) $(t=t)$ (where $t$ is a term)
(8) $((x=y) \rightarrow(\varphi \rightarrow \psi)$ ) (where $x, y$ are variables or constants, $\varphi, \psi$ wffs, and $\psi$ obtained by substituting $y$ for some free occurrences of $x$ in $\varphi$ )
Rules of Inference:

## First Order Logic - Logical Axioms and Rules of Inference

 Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(3) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi))$ (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi)$
(0) $\forall x \varphi(x) \rightarrow \varphi(y)$ (where $\varphi(x)$ a wff with free variable $x, y$ a variable or constant, and no free occurence of $x$ in $\varphi(x)$ is within the scope of a $\forall y$ )
(3) $(t=t)$ (where $t$ is a term)
(8) $((x=y) \rightarrow(\varphi \rightarrow \psi)$ ) (where $x, y$ are variables or constants, $\varphi, \psi$ wffs, and $\psi$ obtained by substituting $y$ for some free occurrences of $x$ in $\varphi$ )
Rules of Inference:
Modus Ponens: From $(\alpha \rightarrow \beta)$ and $\alpha$ conclude $\beta$.

## First Order Logic - Logical Axioms and Rules of Inference

 Logical Axioms: for wffs $\alpha, \beta, \gamma, \varphi, \psi$,(1) $(\beta \rightarrow(\alpha \rightarrow \beta))$
(2) $((\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma)))$
(3) $((\alpha \rightarrow \perp) \rightarrow(\alpha \rightarrow \beta))$
(9) $(((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha)$
(3) $\forall x(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall x \psi))$ (where $\varphi, \psi$ wffs, $x$ a variable not free in $\varphi)$
(0) $\forall x \varphi(x) \rightarrow \varphi(y)$ (where $\varphi(x)$ a wff with free variable $x, y$ a variable or constant, and no free occurence of $x$ in $\varphi(x)$ is within the scope of a $\forall y$ )
(3) $(t=t)$ (where $t$ is a term)
(8) $((x=y) \rightarrow(\varphi \rightarrow \psi)$ ) (where $x, y$ are variables or constants, $\varphi, \psi$ wffs, and $\psi$ obtained by substituting $y$ for some free occurrences of $x$ in $\varphi$ )
Rules of Inference:
Modus Ponens: From $(\alpha \rightarrow \beta)$ and $\alpha$ conclude $\beta$.
Generalization: From $\varphi$ conclude $\forall x \varphi$.

## First Order Logic - Provability

## First Order Logic - Provability

Free variable: (an instance of) $x$ in $\varphi$ is free it is not bound by a quantifier.

## First Order Logic - Provability

Free variable: (an instance of) $x$ in $\varphi$ is free it is not bound by a quantifier.
Sentence: a wff $\varphi$ with no free variables.

## First Order Logic - Provability

Free variable: (an instance of) $x$ in $\varphi$ is free it is not bound by a quantifier.
Sentence: a wff $\varphi$ with no free variables.
Let $\phi$ be a set of sentences and $\varphi$ a sentence.

## First Order Logic - Provability

Free variable: (an instance of) $x$ in $\varphi$ is free it is not bound by a quantifier.
Sentence: a wff $\varphi$ with no free variables.
Let $\Phi$ be a set of sentences and $\varphi$ a sentence. $\Phi$ proves $\varphi$

$$
\Phi \vdash \varphi
$$

if there is a sequence $\psi_{1}, \ldots, \psi_{n}$ such that
(1) $\psi_{i}$ is either

- an axiom,
- an element of $\Phi$ (hypothesis), or
- the result of Modus Ponens or Generalization applied to earlier $\psi_{j}$ 's.
(2) $\psi_{n}=\varphi$.


## First Order Theories

First Order Theory $\Phi$ is a set of sentences.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is
Consistent if $\Phi \nvdash \perp$.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is
Consistent if $\Phi \nvdash \perp$.
Inconsistent if it is not consistent.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is
Consistent if $\Phi \nvdash \perp$.
Inconsistent if it is not consistent.
Complete if for any sentence $\varphi$, either $\Phi \vdash \varphi$ or $\Phi \vdash \neg \varphi$.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is
Consistent if $\Phi \nvdash \perp$.
Inconsistent if it is not consistent.
Complete if for any sentence $\varphi$, either $\Phi \vdash \varphi$ or $\Phi \vdash \neg \varphi$.
Incomplete if it is not conplete.

## First Order Theories

First Order Theory $\Phi$ is a set of sentences.
$\varphi$ is a theorem of $\Phi$ if $\Phi \vdash \varphi$.
$\Phi$ is
Consistent if $\Phi \nvdash \perp$.
Inconsistent if it is not consistent.
Complete if for any sentence $\varphi$, either $\Phi \vdash \varphi$ or $\Phi \vdash \neg \varphi$.
Incomplete if it is not conplete.
Recursively-Enumerable (roughly) if there is an algorithm which enumerates the elements of $\Phi$.

## Example: Peano Arithmetic

Peano Arithmetic is the first order theory in the signature $(\{0, S,+, \cdot\}, \varnothing)$ consisting of the sentences:
(1) $\neg \exists x(S(x)=0)$
(2) $\forall x \forall y((S(x)=S(y)) \rightarrow(x=y))$
(3) $\forall x(x+0=x)$
(9) $\forall x \forall y(x+S(y)=S(x+y))$
(5) $\forall x(x \cdot 0=0)$
(2) $\forall x \forall y(x \cdot S(y)=x \cdot y+x)$
(3) For each wff $\varphi$ with free variables $x, y_{1}, \ldots, y_{n}$, the sentence

$$
\left.\begin{array}{rl}
\forall y_{1} \cdots \forall y_{n} & (
\end{array}\right)\left(\begin{array}{l}
\left(0, y_{1}, \ldots, y_{n}\right) \\
\\
\\
\left.\wedge \forall x\left(\varphi\left(x, y_{1}, \ldots, y_{n}\right) \rightarrow \varphi\left(S(x), y_{1}, \ldots, y_{n}\right)\right)\right) \\
\rightarrow
\end{array} \forall x \varphi\left(x, y_{1}, \ldots, y_{n}\right)\right)
$$

## Example: Ordered Fields

The first order theory of ordered fields has signature ( $\{0,1,+, \cdot\},\{\leq\}$ ) and axioms
(1) $\neg(0=1)$
(2) $\forall x \forall y \forall z((x+y)+z=x+(y+z))$
(3) $\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
(9) $\forall x \forall y(x+y=y+x)$
(5) $\forall x \forall y(x \cdot y=y \cdot x)$
(6) $\forall x(x+0=x)$
(1) $\forall x(x \cdot 1=x)$
(8) $\forall x \exists y(x+y=0)$
(0) $\forall x(\neg(x=0) \rightarrow \exists y(x \cdot y=1))$
(1) $\forall x \forall y \forall z(x \cdot(y+z)=x \cdot y+x \cdot z)$
(1) $\forall x \forall y \forall z(x \leq y \rightarrow x+z \leq y+z)$
(12) $\forall x \forall y \forall z(0 \leq z \rightarrow(x \leq y \rightarrow x \cdot z \leq y \cdot z))$

## Aside - Godel's Incompleteness Theorems

One of Godel's greatest discoveries was that certain first order theories were incomplete.

## Aside - Godel's Incompleteness Theorems

One of Godel's greatest discoveries was that certain first order theories were incomplete.
Suppose $\Phi$ is
(1) consistent,
(2) recursively-enumerable, and
(3) contains a large enough fragment of Peano Arithmetic

## Aside - Godel's Incompleteness Theorems

One of Godel's greatest discoveries was that certain first order theories were incomplete. Suppose $\Phi$ is
(1) consistent,
(2) recursively-enumerable, and
(3) contains a large enough fragment of Peano Arithmetic

## Theorem (Godel's First Incompleteness Theorem)

$\Phi$ is incomplete.

## Aside - Godel's Incompleteness Theorems

One of Godel's greatest discoveries was that certain first order theories were incomplete. Suppose $\Phi$ is
(1) consistent,
(2) recursively-enumerable, and
(3) contains a large enough fragment of Peano Arithmetic

## Theorem (Godel's First Incompleteness Theorem)

$\Phi$ is incomplete.
Theorem (Godel's Second Incompleteness Theorem)
$\Phi$ cannot prove its own consistency.

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{A}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{A}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(3) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{A}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(3) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.
Assignment: a function $v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A$.

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{F}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(3) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.
Assignment: a function $v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A$.
If $v$ an assignment, $x$ a variable, $a \in A$, define

$$
v_{x, a}(y)= \begin{cases}v(y) & \text { if } x \neq y \\ a & \text { if } y=x\end{cases}
$$

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{F}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(3) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.
Assignment: a function $v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A$.
If $v$ an assignment, $x$ a variable, $a \in A$, define

$$
v_{x, a}(y)= \begin{cases}v(y) & \text { if } x \neq y \\ a & \text { if } y=x\end{cases}
$$

For a term $t, t^{v}$ is defined recursively:

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(2) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F} \mathbb{F}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(3) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.
Assignment: a function $v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A$.
If $v$ an assignment, $x$ a variable, $a \in A$, define

$$
v_{x, a}(y)= \begin{cases}v(y) & \text { if } x \neq y \\ a & \text { if } y=x\end{cases}
$$

For a term $t, t^{v}$ is defined recursively:
(1) if $t=x$ is a variable, then $t^{v}:=v(x)$,

## Structures

$\sigma$-structure: a triple $\mathbb{A}=\left(A, \mathscr{F}^{\mathbb{A}}, \mathscr{R}^{\mathbb{A}}\right)$ consisting of
(1) A (non-empty) set $A$,
(O) to each function symbol $f \in \mathscr{F}$ of arity ar $f=k$, a function $f^{\mathbb{A}} \in \mathscr{F}^{\mathbb{A}}$ with $f^{\mathbb{A}}: A^{k} \rightarrow A$, and
(0) to each relation symbol $R \in \mathscr{R}$ of arity ar $R=k$, a relation $R^{\mathbb{A}} \in \mathscr{R}^{\mathbb{A}}$ with $R^{\mathbb{A}} \subset A^{k}$.
Assignment: a function $v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A$.
If $v$ an assignment, $x$ a variable, $a \in A$, define

$$
v_{x, a}(y)= \begin{cases}v(y) & \text { if } x \neq y \\ a & \text { if } y=x\end{cases}
$$

For a term $t, t^{v}$ is defined recursively:
(1) if $t=x$ is a variable, then $t^{v}:=v(x)$,
(2) if $t=f\left(t_{1}, \ldots, t_{n}\right)$ with $t_{1}, \ldots, t_{n}$ terms and $f$ a function symbol, then $t^{v}:=f^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$.

## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment. Satisfiability with respect to $v$ :

## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{\nu}, \ldots, t_{n}^{v}\right)$ holds.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:
- $\psi_{1} \wedge \psi_{2}$ is satisfied iff $\psi_{1}$ and $\psi_{2}$ are both satisfied.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:
- $\psi_{1} \wedge \psi_{2}$ is satisfied iff $\psi_{1}$ and $\psi_{2}$ are both satisfied.
(Likewise with $\psi_{1} \vee \psi_{2}, \neg \psi, \psi_{1} \rightarrow \psi_{2}, \psi_{1} \leftrightarrow \psi_{2}$.)


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:
- $\psi_{1} \wedge \psi_{2}$ is satisfied iff $\psi_{1}$ and $\psi_{2}$ are both satisfied.
(Likewise with $\psi_{1} \vee \psi_{2}, \neg \psi, \psi_{1} \rightarrow \psi_{2}, \psi_{1} \leftrightarrow \psi_{2}$.)
- $\forall x \varphi$ is satisfied iff $\varphi$ is satisfied with respect to $v_{x, a}$ for every $a \in A$.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:
- $\psi_{1} \wedge \psi_{2}$ is satisfied iff $\psi_{1}$ and $\psi_{2}$ are both satisfied.
(Likewise with $\psi_{1} \vee \psi_{2}, \neg \psi, \psi_{1} \rightarrow \psi_{2}, \psi_{1} \leftrightarrow \psi_{2}$.)
- $\forall x \varphi$ is satisfied iff $\varphi$ is satisfied with respect to $v_{x, a}$ for every $a \in A$.
- $\exists x \varphi$ is satisfied iff there is an $a \in A$ such that $\varphi$ is satisfied with respect to $v_{x, a}$.


## Satisfiability (with respect to an assignment)

$\mathbb{A}$ is a structure, $v$ an assignment.

## Satisfiability with respect to $v$ :

- Atomic wffs:
- $\left(t_{1}=t_{2}\right)$ is satisfied iff $t_{1}^{v}=t_{2}^{v}$.
- $R\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff $R^{\mathbb{A}}\left(t_{1}^{v}, \ldots, t_{n}^{v}\right)$ holds.
- $T$ is satisfied. $\perp$ is not.
- Non-Atomic wffs:
- $\psi_{1} \wedge \psi_{2}$ is satisfied iff $\psi_{1}$ and $\psi_{2}$ are both satisfied.
(Likewise with $\psi_{1} \vee \psi_{2}, \neg \psi, \psi_{1} \rightarrow \psi_{2}, \psi_{1} \leftrightarrow \psi_{2}$.)
- $\forall x \varphi$ is satisfied iff $\varphi$ is satisfied with respect to $v_{x, a}$ for every $a \in A$.
- $\exists x \varphi$ is satisfied iff there is an $a \in A$ such that $\varphi$ is satisfied with respect to $v_{x, a}$.

We write

$$
\mathbb{A} \vDash_{v} \varphi
$$

## Satisfiability for Sentences

If $\varphi$ is a sentence, then we write $\mathbb{A} \vDash \varphi$ if $\mathbb{A} \vDash_{v} \varphi$ for every assignment $v$ (equivalently, any one of them).

## Satisfiability for Sentences

If $\varphi$ is a sentence, then we write $\mathbb{A} \vDash \varphi$ if $\mathbb{A} \vDash_{v} \varphi$ for every assignment $v$ (equivalently, any one of them).

If $\Phi$ is a set of sentences, then $\mathbb{A} \vDash \Phi$ means $\mathbb{A} \vDash \varphi$ for every $\varphi \in \Phi$.

## Satisfiability for Sentences

If $\varphi$ is a sentence, then we write $\mathbb{A} \vDash \varphi$ if $\mathbb{A} \vDash_{v} \varphi$ for every assignment $v$ (equivalently, any one of them).

If $\Phi$ is a set of sentences, then $\mathbb{A} \vDash \Phi$ means $\mathbb{A} \vDash \varphi$ for every $\varphi \in \Phi$.
$\Phi$ is satisfiable if there is a structure $\mathbb{A}$ for which $\mathbb{A} \vDash \Phi$.

## Satisfiability for Sentences

If $\varphi$ is a sentence, then we write $\mathbb{A} \vDash \varphi$ if $\mathbb{A} \vDash_{v} \varphi$ for every assignment $v$ (equivalently, any one of them).

If $\Phi$ is a set of sentences, then $\mathbb{A} \vDash \Phi$ means $\mathbb{A} \vDash \varphi$ for every $\varphi \in \Phi$.
$\Phi$ is satisfiable if there is a structure $\mathbb{A}$ for which $\mathbb{A} \vDash \Phi$. $\mathbb{A}$ is a model of $\Phi$.

## Examples of Models

$\mathbb{N}$ is a model of Peano Arithmetic with $0, S,+, \cdot$ given their standard definitions.

## Examples of Models

$\mathbb{N}$ is a model of Peano Arithmetic with $0, S,+, \cdot$ given their standard definitions.
$\mathbb{Q}, \mathbb{Q}^{\text {alg }} \cap \mathbb{R}, \mathbb{R},{ }^{*} \mathbb{R}$ are all models of the theory of ordered fields with $0,1,+, \cdot, \leq$ given their standard definitions.

## Godel's Completeness Theorem

Theorem (Completeness Theorem for First Order Logic)
If $\Phi$ is a set of sentences, then $\Phi$ is consistent if and only if $\Phi$ is satisfiable. Equivalently, $\Phi \vdash \varphi$ if and only if $\mathbb{A} \vDash \varphi$ for every model $\mathbb{A}$ of $\Phi$.

## Godel's Completeness Theorem

Theorem (Completeness Theorem for First Order Logic)
If $\Phi$ is a set of sentences, then $\Phi$ is consistent if and only if $\Phi$ is satisfiable. Equivalently, $\Phi \vdash \varphi$ if and only if $\mathbb{A} \vDash \varphi$ for every model $\mathbb{A}$ of $\Phi$.

This gives some insight into why provability of something one way or the other can be difficult: a theory can have nonstandard models.

## Infinite Models of all Sizes

If $\mathbb{A}$ is a model of $\Phi$, then $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ (and $\mathbb{A}$ an elementary extension of $\mathbb{B}$ ) if

## Infinite Models of all Sizes

If $\mathbb{A}$ is a model of $\Phi$, then $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ (and $\mathbb{A}$ an elementary extension of $\mathbb{B}$ ) if
(1) $B \subset A$,

## Infinite Models of all Sizes

If $\mathbb{A}$ is a model of $\Phi$, then $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ (and $\mathbb{A}$ an elementary extension of $\mathbb{B}$ ) if
(1) $B \subset A$,
(2) $f^{\mathbb{B}}=\left.f^{\mathbb{A}}\right|_{B^{\text {arf }}}$ for each $f \in \mathscr{F}$,

## Infinite Models of all Sizes

If $\mathbb{A}$ is a model of $\Phi$, then $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ (and $\mathbb{A}$ an elementary extension of $\mathbb{B}$ ) if
(1) $B \subset A$,
(2) $f^{\mathbb{B}}=\left.f^{\mathbb{A}}\right|_{B^{\text {arf }}}$ for each $f \in \mathscr{F}$,
(3) $R^{\mathbb{B}}=R^{\mathbb{A}} \cap B^{\text {ar } R}$ for each $R \in \mathscr{R}$, and

## Infinite Models of all Sizes

If $\mathbb{A}$ is a model of $\Phi$, then $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ (and $\mathbb{A}$ an elementary extension of $\mathbb{B}$ ) if
(1) $B \subset A$,
(2) $f^{\mathbb{B}}=\left.f^{\mathbb{A}}\right|_{B^{\text {arf }}}$ for each $f \in \mathscr{F}$,
(3) $R^{\mathbb{B}}=R^{\mathbb{A}} \cap B^{\text {ar } R}$ for each $R \in \mathscr{R}$, and
(9) for every wff $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $b_{1}, \ldots, b_{n} \in B$ then

$$
\mathbb{A} \vDash \varphi\left(b_{1}, \ldots, b_{n}\right) \quad \text { if and only if } \quad \mathbb{B} \vDash \varphi\left(b_{1}, \ldots, b_{n}\right)
$$

## Theorem (Lowenheim-Skolem Theorem)

Suppose $\kappa$ is an infinite cardinal with $\kappa \geq|\mathscr{F} \cup \mathscr{R}|$. Suppose $\mathbb{A}$ is an infinite model of $\Phi$. Then there exists a model $\mathbb{B}$ of $\Phi$ with $|B|=\kappa$ and

- $\mathbb{B}$ is an elementary submodel of $\mathbb{A}$ if $\kappa \leq|A|$
- $\mathbb{B}$ is an elementary extension of $\mathbb{A}$ if $\kappa \geq|A|$


## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:
Theorem (Compactness Theorem)
$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:
Theorem (Compactness Theorem)
$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

Proof.
By contradiction: assume every finite subset of $\Phi$ is satisfiable but $\Phi$ is not.

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:
Theorem (Compactness Theorem)
$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

Proof.
By contradiction: assume every finite subset of $\Phi$ is satisfiable but $\Phi$ is not.
Completeness implies $\Phi$ is inconsistent, so there is a proof of $\perp$ from $\Phi$.

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:
Theorem (Compactness Theorem)
$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

Proof.
By contradiction: assume every finite subset of $\Phi$ is satisfiable but $\Phi$ is not.
Completeness implies $\Phi$ is inconsistent, so there is a proof of $\perp$ from $\Phi$. This proof uses only finitely-many elements of $\Phi$ as hypotheses, implying a finite subset of $\Phi$ is inconsistent.

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:

## Theorem (Compactness Theorem)

$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

Proof.
By contradiction: assume every finite subset of $\Phi$ is satisfiable but $\Phi$ is not.
Completeness implies $\Phi$ is inconsistent, so there is a proof of $\perp$ from $\Phi$. This proof uses only finitely-many elements of $\Phi$ as hypotheses, implying a finite subset of $\Phi$ is inconsistent.
Completeness implies there is a finite subset of $\Phi$ which is not satisfiable.

## Compactness Theorem

Another useful fact is a corollary of the Completeness Theorem:

## Theorem (Compactness Theorem)

$\Phi$ is satisfiable if and only if every finite subset of $\Phi$ is satisfiable.

Proof.
By contradiction: assume every finite subset of $\Phi$ is satisfiable but $\Phi$ is not.
Completeness implies $\Phi$ is inconsistent, so there is a proof of $\perp$ from $\Phi$. This proof uses only finitely-many elements of $\Phi$ as hypotheses, implying a finite subset of $\Phi$ is inconsistent.
Completeness implies there is a finite subset of $\Phi$ which is not satisfiable. Contradiction.

## (1) Motivation

(2) First Order Logic - Provability and Satisfiability
(3) Applications of Compactness and Lowenheim-Skolem

## Skolem's Paradox

## Proposition (Skolem's Paradox)

Assuming ZFC is consistent, there exist countable models of ZFC.

## Skolem's Paradox

## Proposition (Skolem's Paradox)

Assuming ZFC is consistent, there exist countable models of ZFC.
This is called a paradox since models of ZFC claim that they contain uncountable elements, which themselves are sets.

## Skolem's Paradox

## Proposition (Skolem's Paradox)

Assuming ZFC is consistent, there exist countable models of ZFC.
This is called a paradox since models of ZFC claim that they contain uncountable elements, which themselves are sets.

Resolution: countability is not an absolute property. Just because the model things its element is uncountable doesn't mean it is in reality.

## Skolem's Paradox

## Proposition (Skolem's Paradox)

Assuming ZFC is consistent, there exist countable models of ZFC.
This is called a paradox since models of ZFC claim that they contain uncountable elements, which themselves are sets.

Resolution: countability is not an absolute property. Just because the model things its element is uncountable doesn't mean it is in reality.

Remark: In fact, countable models of ZFC are some of the most wildly studied since they can be used with forcing.

## Nonstandard Models of PA

Let $\Phi$ be the axioms of PA, and add a new constant $c$ to our signature.

## Nonstandard Models of PA

Let $\Phi$ be the axioms of PA, and add a new constant $c$ to our signature. Consider the sentences

$$
\varphi_{n} \equiv \neg(\underbrace{S \cdots S}_{n \text { times }}(0)=c)
$$

## Nonstandard Models of PA

Let $\Phi$ be the axioms of PA, and add a new constant $c$ to our signature. Consider the sentences

$$
\varphi_{n} \equiv \neg(\underbrace{S \cdots S}_{n \text { times }}(0)=c)
$$

Every finite subset of $\Phi^{\prime}=\Phi \cup\left\{\varphi_{n} \mid n \in \mathbb{N}\right\}$ is satisfiable, so $\Phi^{\prime}$ is satisfiable by Compactness.

## Nonstandard Models of PA

Let $\Phi$ be the axioms of PA, and add a new constant $c$ to our signature. Consider the sentences

$$
\varphi_{n} \equiv \neg(\underbrace{S \cdots S}_{n \text { times }}(0)=c)
$$

Every finite subset of $\Phi^{\prime}=\Phi \cup\left\{\varphi_{n} \mid n \in \mathbb{N}\right\}$ is satisfiable, so $\Phi^{\prime}$ is satisfiable by Compactness.
A model of $\Phi^{\prime}$ gives a model of PA but which contains "infinite" elements. Lowenheim-Skolem implies that we have such models that are countable.

## Nonstandard Models of $\mathbb{R}$

## Consider $\mathbb{R}$.

## Nonstandard Models of $\mathbb{R}$

Consider $\mathbb{R}$. We create a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ where

## Nonstandard Models of $\mathbb{R}$

Consider $\mathbb{R}$. We create a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ where

$$
\begin{aligned}
\mathscr{F} & =\left\{f_{F} \mid F: \mathbb{R}^{k} \rightarrow \mathbb{R}, k \in \mathbb{N}\right\} \cup\{c\} \\
\mathscr{R} & =\left\{P_{R} \mid R \subset \mathbb{R}^{k}, k \in \mathbb{N}\right\}
\end{aligned}
$$

## Nonstandard Models of $\mathbb{R}$

Consider $\mathbb{R}$. We create a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ where

$$
\begin{aligned}
& \mathscr{F}=\left\{f_{F} \mid F: \mathbb{R}^{k} \rightarrow \mathbb{R}, k \in \mathbb{N}\right\} \cup\{c\} \\
& \mathscr{R}=\left\{P_{R} \mid R \subset \mathbb{R}^{k}, k \in \mathbb{N}\right\}
\end{aligned}
$$

Let $\Phi$ be the set of sentences in this language satisfied by $\mathbb{R}$ and

$$
\Phi^{\prime}=\Phi \cup\left\{P_{<}\left(f_{r}, c\right) \mid r \in \mathbb{R}\right\}
$$

## Nonstandard Models of $\mathbb{R}$

Consider $\mathbb{R}$. We create a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ where

$$
\begin{aligned}
& \mathscr{F}=\left\{f_{F} \mid F: \mathbb{R}^{k} \rightarrow \mathbb{R}, k \in \mathbb{N}\right\} \cup\{c\} \\
& \mathscr{R}=\left\{P_{R} \mid R \subset \mathbb{R}^{k}, k \in \mathbb{N}\right\}
\end{aligned}
$$

Let $\Phi$ be the set of sentences in this language satisfied by $\mathbb{R}$ and

$$
\Phi^{\prime}=\Phi \cup\left\{P_{<}\left(f_{r}, c\right) \mid r \in \mathbb{R}\right\}
$$

Compactness and Lowenheim-Skolem imply that $\Phi^{\prime}$ has a model of cardinality $|\mathbb{R}|$;

## Nonstandard Models of $\mathbb{R}$

Consider $\mathbb{R}$. We create a signature $\sigma=(\mathscr{F}, \mathscr{R}$, ar $)$ where

$$
\begin{aligned}
& \mathscr{F}=\left\{f_{F} \mid F: \mathbb{R}^{k} \rightarrow \mathbb{R}, k \in \mathbb{N}\right\} \cup\{c\} \\
& \mathscr{R}=\left\{P_{R} \mid R \subset \mathbb{R}^{k}, k \in \mathbb{N}\right\}
\end{aligned}
$$

Let $\Phi$ be the set of sentences in this language satisfied by $\mathbb{R}$ and

$$
\Phi^{\prime}=\Phi \cup\left\{P_{<}\left(f_{r}, c\right) \mid r \in \mathbb{R}\right\}
$$

Compactness and Lowenheim-Skolem imply that $\Phi^{\prime}$ has a model of cardinality $|\mathbb{R}| ;$ call it * $\mathbb{R}$ - the hyperreals!.

Thank you!

## Questions?

