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Theorem (Godel’s First Incompleteness Theorem)
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@ Meaning of Godel's First Incompleteness Theorem

© Proving Godel's First Incompleteness Theorem

© Generalizing Godel's First Incompleteness Theorem
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@ Meaning of Godel's First Incompleteness Theorem
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The Language of Arithmetic - Intuition

What are ‘sentences of arithmetic'?

They are certain well-formed statements in the language of arithmetic, e.g.

e “Addition is associative.”

o “Every natural number greater than one is divisible by a prime
number.”

@ "“0is not equal to n+ 1 for any natural number n."

@ “For every two natural numbers n, m, a greatest common divisor
ged(n, m) exists.”
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The Language of Arithmetic - Formal Description

Formally, we define sentences as certain strings of symbols.
There are two kinds of symbols:
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The Language of Arithmetic - Formal Description

Formally, we define sentences as certain strings of symbols.
There are two kinds of symbols:

Logical Symbols: Theory-independent symbols.

A (and), v (or),

- (implies), < (if and only if),
- (nOt)v

L (falsehood), T (truth),

v (for all), 3 (there exists),

~ (equals),

( (left parentheses), )  (right parentheses)
X0, X1, X2, -+ - (variables)

Non-Logical Symbols: Theory-dependent symbols.

0 (zero), S  (successor),
+, (addition), - (multiplication)
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Terms and Well-Formed Formulas
Terms are defined recursively:
© 0 and variables are terms.
Q If t1, tr are terms, the following are terms:
S(t1), (t+t2), (tr-t2)

Terms have unique readability: a term can be built up from earlier terms
in exactly one way.

Hayden Jananthan (Vanderbilt University) This Title is False 7 /32



Terms and Well-Formed Formulas

Terms are defined recursively:
@ 0 and variables are terms.

@ If t1, tp are terms, the following are terms:
S(t1), (t+t), (t1-t2)

Terms have unique readability: a term can be built up from earlier terms
in exactly one way.

Well-formed formulas (wff) are defined recursively:
Q If ty,tp are terms, then (t; » tp) is a wif.
@ T and L are wffs.
O If 1,7 are wffs and x a variable, the following are wffs:
(p1r@2), (p1ve2), (1= 92), (pro92), —p1, VYxpr, 3Ixpr

Wffs have unique readability: a wff can be built up from earlier wffs and
terms in exactly one way.
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Sentences

Definition
An instance of a variable x in a wff ¢ is bound if it is contained in a
substring of ¢ of the form

Vxy or 3Ixy

and free otherwise. )
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Sentences

Definition
An instance of a variable x in a wff ¢ is bound if it is contained in a
substring of ¢ of the form

Vxy or 3Ixy

and free otherwise.

Definition

A sentence is a wff with no free variables.

E.g.
o Yes: VxVyVz(((x+y)+2z)~(x+(y+2))) (associativity of +)
e No: Ix(x-x=y) (v is a perfect square)
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Sentences

Definition
An instance of a variable x in a wff ¢ is bound if it is contained in a
substring of ¢ of the form

Vxy or 3Ixy

and free otherwise.

Definition

A sentence is a wff with no free variables.

E.g.
o Yes: VxVyVz(((x+y)+2z)~(x+(y+2))) (associativity of +)
e No: Ix(x-x=y) (v is a perfect square)

Sentences are important as their variables do not need to be assigned
values to examine their truth.
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Peano Arithmetic

As an illustrative and important example: Peano Arithmetic (PA) is the
set of sentences
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Peano Arithmetic

As an illustrative and important example: Peano Arithmetic (PA) is the
set of sentences

Q Vx-(0~ S(x)) (0 is not a successor)
Q VxVy((S(x)~S(y)) = (x~y)) (S is one-to-one)
@ Vx((x+0)~x) (0 is a (right) identity for +)
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Peano Arithmetic

As an illustrative and important example: Peano Arithmetic (PA) is the
set of sentences
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Peano Arithmetic

As an illustrative and important example: Peano Arithmetic (PA) is the
set of sentences

Q Vx-(0~ S(x)) (0 is not a successor)
Q@ VxVy((S(x)~»S(y)) » (x~y)) (S is one-to-one)
@ Vx((x+0)~x) (0 is a (right) identity for +)
Q VxVy((x+S(y))~»S(x+y)) (+ is repeated S)
@ Vx((x-0)=~0) (0 is a (right) annihilator for -)
Q VxVy((x-S(y))~((x-y)+x)) (- is repeated +)
@ ((9(0) A Yx((x) > $(S(x)))) > ¥xp(x))  (induction for (x))

for each wff p(x).

This will be our theory of arithmetic.
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Provability

Let & be a set of sentences (hypotheses) and ¢ a sentence.
Definition
A ®-proof, or a proof with hypotheses from &, is a finite sequence
Y1, ..., of wifs such that for each i/, either

@ 1 is a hypothesis,

@ v is an axiom of logic, or

© there is j, k < i such that v, = (¢); = ;) (i.e. an application of
Modus Ponens to previous steps).
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Provability
Let & be a set of sentences (hypotheses) and ¢ a sentence.
Definition
A ®-proof, or a proof with hypotheses from &, is a finite sequence
Y1, ..., of wifs such that for each i/, either

@ 1 is a hypothesis,

@ v is an axiom of logic, or

© there is j, k < i such that v, = (¢); = ;) (i.e. an application of
Modus Ponens to previous steps).

Definition

@ is provable from ® or ¢ proves ¢

(ONER0)

if there exists a ®-proof 11, ...,1, such that ¢ = ,.
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‘True’ Sentences of Arithmetic and Implications to PA

Definition
A sentence is true if it is true when interpreted in the standard model, i.e.
when

@ quantifiers range over N and

@ 0,5, +,- are the usual zero, successor, addition, and multiplication

operations on N.
v
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@ quantifiers range over N and
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operations on N.
Proposition
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Godel’s First Incompleteness Theorem states the converse does not hold.
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‘True’ Sentences of Arithmetic and Implications to PA

Definition
A sentence is true if it is true when interpreted in the standard model, i.e.
when

@ quantifiers range over N and

@ 0,5, +,- are the usual zero, successor, addition, and multiplication

operations on N.
Proposition
If PA+~ @, then ¢ is true.

Godel's First Incompleteness Theorem states the converse does not hold.
== PA is not strong enough to capture everything about N.
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© Proving Godel's First Incompleteness Theorem
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Arithmetization of Logic - Godel numbers of Terms
To give a proof, we internalize our logic into arithmetic.
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Arithmetization of Logic - Godel numbers of Terms

To give a proof, we internalize our logic into arithmetic.
We recursively assign to each term t a natural number #(t) as follows:

#(x;) =223 5
#(0) =2°-3! 4(S(11)) = 2032 . 5#(®)
H((t + 1)) = 2033 . 5#(7#(R) (4. 1,)) = 20. 3% 5# () 7#(%)
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We recursively assign to each term t a natural number #(t) as follows:

#(x;):=2°-3%.5

#(0):=2°.3 4(S(11)) = 2032 . 5#(®)
H((t + 1)) = 2033 . 5#(7#(R) (4. 1,)) = 20. 3% 5# () 7#(%)
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For a term t, #(t) is the Godel number of ¢. J
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Arithmetization of Logic - Godel numbers of Terms

To give a proof, we internalize our logic into arithmetic.
We recursively assign to each term t a natural number #(t) as follows:

#(x;) =223 5
#(0) =2°-3! 4(S(11)) = 2032 . 5#(®)
H((t + 1)) = 2033 . 5#(7#(R) (4. 1,)) = 20. 3% 5# () 7#(%)

Definition
For a term t, #(t) is the Godel number of ¢. J

E.g., the Godel number of the term

(- (x2 +x3))

20 . 34 ' 520,30,51 ' 720.33,520,30.52,720.30.53 _ 34 ' 55 . 733,525,7125
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Arithmetization of Logic - Godel numbers of Wffs

Likewise, to each wff (:

#((t1~ 1)) =23
#((1h1 Atp)) = 21 3L 5# (V1) L 7# (1)

o

5#(t) | 7#(t2)

#(—p) =21 3% 57#(¥)
#(Vx) = 2430 .57 7#(¥)
#(3x) =237 .51 7#W)

#(1)=2!.38
#(1)=2".3°
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Arithmetization of Logic - Godel numbers of Wffs

Likewise, to each wff (:

#((t1~ 1)) =23
#((1h1 Atp)) = 21 3L 5# (V1) L 7# (1)

o

5#(t) | 7#(t2)

#(—p) =21 3% 57#(¥)
#(Vxpap) = 2130 .57 . 7#(¥)
#(3xjap) := 21 .37 .57 7#(W)

#(1):=2"-3°
#(1):=21-3°
Definition
For a wff ¢, #(¢) is the Godel number of . J
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Arithmetization of Logic - Godel numbers of proofs

Given a finite sequence

Y1, %n

of wffs, we define

#(17/}17 . 'a¢n) = pO #(1/11) p#("l)2)pn#(1/1n)

where
2=pp<3=p1<b=pp << py

are the first n+ 1 prime numbers.
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Arithmetization of Logic - Godel numbers of proofs

Given a finite sequence
Y1, ¥n

of wffs, we define

#(17/}17 . 'a¢n) = pO #(1/11) p#("l)2)pn#(1/1n)

where
2=pp<3=p1<b=pp << py

are the first n+ 1 prime numbers.

Definition
Given a finite seugence ¥1,...,1¥,, #(¥1,...,1,) is the Godel number
Ofl/}l,...,'(/)n.
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Arithmetization of Logic - Godel numbers of proofs

Given a finite sequence
Y1, ¥n

of wffs, we define

#(17/}17 . 'a¢n) = pO #(1/11) p#(w2)pn#(1/1n)

where
2=pp<3=p1<b=pp << py

are the first n+ 1 prime numbers.

Definition

Given a finite seugence ¥1,...,1¥,, #(¥1,...,1,) is the Godel number

Ofl/}l,...,'(/)n.

In particular, we may Godel number proofs.
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Provability Formula

There is a wff

Proof(x, y) = ( x is (the Godel number of) a proof of )

the sentence ¢ with #(¢) =y
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Provability Formula

There is a wff

Proof(x, y) = ( x is (the Godel number of) a proof of )

the sentence ¢ with #(¢) =y
allowing us to define

Provable(y) := 3xProof(x, y)
= (there exists a proof of ¢, where #(¢) = y)
= (¢ is provable from PA, where #(¢) = y)
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Diagonalization

Theorem (Diagonal Lemma)
Suppose T proves a sufficient fragment of PA . If o(x) is a wif in the

language of arithmetic, then there exists a sentence 1) such that

T = (Y < o(#(¥)))

(The Diagonal Lemma is constructive: it actually gives a method for
constructing 1.)
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Diagonalization

Theorem (Diagonal Lemma)

Suppose T proves a sufficient fragment of PA . If o(x) is a wif in the
language of arithmetic, then there exists a sentence 1) such that

T = (Y < o(#(¥)))

(The Diagonal Lemma is constructive: it actually gives a method for
constructing 1.)

Definition

G, the Godel sentence, is the sentence satisfying

PA + (G < =Provable(#(G)))
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Diagonalization

Theorem (Diagonal Lemma)

Suppose T proves a sufficient fragment of PA . If o(x) is a wif in the
language of arithmetic, then there exists a sentence 1) such that

T = (Y < o(#(¥)))

(The Diagonal Lemma is constructive: it actually gives a method for
constructing 1.)

Definition

G, the Godel sentence, is the sentence satisfying

PA + (G <> —Provable(#(G)))

In other words,
G = (I am not provable)
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Truth and Unprovability of the Godel Sentence

By definition, PA + (G < =Provable(#(G))).

Unprovable: Suppose G were provable, with v1,...,%, a proof. Then
#(11,...,1,) realizes that Provable(#(G)) is true and
hence provable. But then =G is provable, a contradiction.
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Truth and Unprovability of the Godel Sentence

By definition, PA + (G < =Provable(#(G))).

Unprovable: Suppose G were provable, with v1,...,%, a proof. Then

#(11,...,1,) realizes that Provable(#(G)) is true and
hence provable. But then =G is provable, a contradiction.

True: If G was not true when interpreted in N, then it cannot be
provable, so

-Prove(n,#(G)) for each neN.
is true for each n. Thus,
Vn-Proof(n, #(G))

is true, which is equivalent to G. Contradiction.
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© Generalizing Godel's First Incompleteness Theorem
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Looking Forward

If G is true but unprovable, why not accept

T:=PAu{G}
as our new theory of arithmetic?
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Looking Forward

If G is true but unprovable, why not accept
T:=PAu{G}

as our new theory of arithmetic?
Our method of proving Godel's First Incompleteness Theorem would work

to show that there is a new sentence G’ which is true but unprovable from
T:=PAuU{G}.
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Our method of proving Godel's First Incompleteness Theorem would work
to show that there is a new sentence G’ which is true but unprovable from
T:=PAuU{G}.

Likewise, there is a sentence G” which is true but unprovable from
T:=PAuU{G,G'}, and so on.

Hayden Jananthan (Vanderbilt University) This Title is False 20 / 32



Looking Forward

If G is true but unprovable, why not accept
T:=PAuU{G}

as our new theory of arithmetic?

Our method of proving Godel's First Incompleteness Theorem would work
to show that there is a new sentence G’ which is true but unprovable from
T:=PAuU{G}.

Likewise, there is a sentence G” which is true but unprovable from
T:=PAuU{G,G'}, and so on.

Even if we considered T := PAU{G,G’,G",...}, there would exist a G
which is true but unprovable from T.
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Analysis of Our Proof Sketch

Want to repeat the proof of Godel's First Incompleteness Theorem in more

general theories of arithmetic. Let T be a theory (set of sentences) of
arithmetic.
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@ Existence of Provable(x) (to encode provability in arithmetic)
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Analysis of Our Proof Sketch

Want to repeat the proof of Godel's First Incompleteness Theorem in more

general theories of arithmetic. Let T be a theory (set of sentences) of
arithmetic.

What were the essential ingredients in our proof in the case of PA?
@ Existence of Provable(x) (to encode provability in arithmetic)
@ Diagonal Lemma (to build the Godel sentence G)

© PA does not prove a contradiction (to show G is not provable)
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Analysis of Our Proof Sketch

Want to repeat the proof of Godel's First Incompleteness Theorem in more

general theories of arithmetic. Let T be a theory (set of sentences) of
arithmetic.

What were the essential ingredients in our proof in the case of PA?
@ Existence of Provable(x) (to encode provability in arithmetic)
@ Diagonal Lemma (to build the Godel sentence G)
© PA does not prove a contradiction (to show G is not provable)

@ If PA does not simultaneously prove —p(n) for every ne N and
Ixp(x) (to show -G is not provable and G is true)
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Primitive-Recursiveness

Definition

A function f : NK > N is primitive-recursive if it is computable by an
algorithm which does not use any unbounded searches (no while loops).
A subset R c N is primitive-recursive if the function

( ) 1 if(Xl,...,Xk)ER
X1y.0.,XK) = ]
AR k 0 otherwise

is primitive-recursive.
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Primitive-Recursiveness

Definition

A function f : NK > N is primitive-recursive if it is computable by an
algorithm which does not use any unbounded searches (no while loops).
A subset R c N is primitive-recursive if the function

1 if(Xl,...,Xk)ER_ .. o
XR(X1, .oy Xk) = ) is primitive-recursive.
0 otherwise

Proposition
If R ¢ N¥ is primitive-recursive, there exists a wff ¢(xi,...,xi) such that
for every (ny,...,ng)

PA+ o(n,...,ng) ifandonlyif (ni,...,ng)€R
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Effectively-Generated Theories

The definability of provability from PA depended on the fact that, given a
natural number, we can determine whether it is a valid proof in PA .
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Effectively-Generated Theories

The definability of provability from PA depended on the fact that, given a
natural number, we can determine whether it is a valid proof in PA .

Definition
A theory of arithmetic T is effectively-generated if there is a

primitive-recursive function which enumerates the (Godel numbers of)
elements of T. (Equivalently, can drop ‘primitive’.)
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Effectively-Generated Theories

The definability of provability from PA depended on the fact that, given a
natural number, we can determine whether it is a valid proof in PA .

Definition
A theory of arithmetic T is effectively-generated if there is a

primitive-recursive function which enumerates the (Godel numbers of)
elements of T. (Equivalently, can drop ‘primitive’.)

PA is effectively-generated (our listing of its elements outlines a procedure
for enumerating those elements), as are PAU{G}, PAU{G, G}, etc.
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Modifying our Proof

of proofs:

To support being only effectively-generated, we must modify our encoding
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Modifying our Proof

To support being only effectively-generated, we must modify our encoding
of proofs:

Definition

Say that n is (the Gédel number of) a T-proof if

2 im
n = po . pll...p
where

@ ecach i is either the Godel number of a formula or equal is iy = 23 - 5
and

Q U1,...,¥m is a proof with hypotheses from T, where either
#(1bk) = ik or Py is the ji-th element of T.
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Modifying our Proof

To support being only effectively-generated, we must modify our encoding
of proofs:

Definition
Say that n is (the Godel number of) a T-proof if

2 im
n = po . pll...pm
where

@ ecach i is either the Godel number of a formula or equal is iy = 23 - 5
and

Q U1,...,¥m is a proof with hypotheses from T, where either
#(1k) = ik of Yy is the ji-th element of T.

With this modification and T being effectively-generated, the relation

Provabler(x) := (there is a proof of x from T)

is primitive-recursive.
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How much arithmetic do we need?

To construct G, it remains to show that Provabler(x) can be defined by
a wif.

To both finish the proof of existence of the wff Provable(x) as well as
prove the Diagonal Lemma, we need our theory T to contain enough
arithmetical truths to show that every primitive-recursive predicate is
definable.

One such benchmark for this is Q, Robinsin Arithmetic, which drops the
induction axioms from PA.

Proposition
If R € N¥ s primitive-recursive, there exists a wff p(xi,...,xx) such that

for every (ni,...,nk)

Qr@(nm,...,nx) ifandonly if (ni,...,nx)eR
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w-Consistency

To conclude that neither G nor =G are provable, we need some
consistency properties for T.
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w-Consistency

To conclude that neither G nor =G are provable, we need some
consistency properties for T.

@ To show G was unprovable we only needed that PA did not prove a
contradiction.
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w-Consistency

To conclude that neither G nor =G are provable, we need some
consistency properties for T.

@ To show G was unprovable we only needed that PA did not prove a
contradiction.

@ To show that G was true (which showed -G was not provable) we

needed something stronger: that PA could not simultaneously prove
—@(n) for each neN and also prove Ixp(x).

Definition

A set of sentences T is consistent if it does not prove a contradiction.
A set of sentences T is w-consistent if it does not simultaneously prove
—p(n) for each ne N and Ixp(x).

(Note that w-consistency implies consistency.)
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Godel's First Incompleteness Theorem, revisited

Theorem (Godel's First Incompleteness Theorem)

If T is an effectively-generated, w-consistent theory in the language of
arithmetic and Q € T, then there exists a sentence G such that neither G
nor =G are provable from T, i.e. T is incomplete.
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Rosser's Trick

We can weaken the hypothesis of w-consistency to that of consistency by
replacing Provable(x) with a different wff.

Hayden Jananthan (Vanderbilt University) This Title is False 28 / 32



Rosser's Trick

We can weaken the hypothesis of w-consistency to that of consistency by
replacing Provable(x) with a different wff.

Let neg(y) be the Godel number of —p, where #(p) = y.
Define

Proof(x,y) := Proof r(x,y) A ~3z(z < x A Proof 7 (z,neg(y)))

x encodes a proof of ¢ and
=| there is no shorter proof of -y,
where #(p) =y

and

Provable(y) := 3xProof ¥ (x, y)
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Rosser's Trick, Continued

Using the Diagonal Lemma with ~Provablef (x) yields:
Definition

p, the Godel-Rosser Sentence for T, is the sentence satisfying

T~ (p <~ —.Provable?—(#(ﬂ)))
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Rosser's Trick, Continued

Using the Diagonal Lemma with —Provable’;(x) yields:
Definition

p, the Godel-Rosser Sentence for T, is the sentence satisfying

T~ (p <~ —.Provable?—(#(ﬂ)))

T, only under the hypothesis of consistency and the other hypotheses of
Godel's First Incompleteness Theorem, neither proves p nor —p.
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Rosser's Trick, Continued

Using the Diagonal Lemma with —Provable";(x) yields:

Definition
p, the Godel-Rosser Sentence for T, is the sentence satisfying

T~ (p <~ ﬁProvables?-(#(P)))

T, only under the hypothesis of consistency and the other hypotheses of
Godel's First Incompleteness Theorem, neither proves p nor —p.
Theorem (Godel-Rosser Incompleteness Theorem)

If T is an effectively-generated, consistent theory in the language of
arithmetic and Q € T, then T is incomplete.
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Thank you!

Questions?

=] & = E DA
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Proof of Diagonal Lemma

Consider the primitive recursive function

diag(n) := {f(X(”)) if #(x)=n

otherwise
Since T 2 Q, there exists a wff Diag(x, y) such that
diag(x) =y if and only if T + Diag(x,y)

Let
x(x) = 3y (Diag(x,y) A ¢(y))
and

Y= x(# (X))
Claim: T+ (¢ < o(#())).
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Proof of Diagonal Lemma

Claim: T+ (¢ < @(F()))-
—: By definition,
Tu{Y} - x(#(X)) [=3y(Diag(#(x),y) A e(y))]

But y = #(%)) is the only number such that
T + Diag(#(x), ), so

Tu{yg} - e(#(4))
The Deduction Theorem then proves T + (¢ - o(#(¥))).
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Proof of Diagonal Lemma

Claim: T+ (¢ < o(#(v))).
< T + Diag(#(x), #(%)), so

T u{p(#())} + (Diag(#(x), #(v)) A p(#(¥)))

and hence

Tule(#()} - Iy(Diag(#(x),y) A e(y))  [=¢]
The Deduction Theorem then proves T + (o(#(v)) = ).
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Godel-Rosser Sentence — More Details

That T does not prove p is analogous to our original proof.
Now suppose for the sake of a contradiction that T proves —p. Let

e := a natural number encoding a proof of —p from T
Since T is consistent, there is no code for a proof of p in T, so
Proof (e, neg(#(p)))
Then T proves (since T 2Q)
Vx(e < x - 3z < xProofr(z,-(#(p))))
and (using consistency)
—3x < eProof 1(x, #(p))

Then T proves
Vx(Proof r(x,#(p)) - e < x)

so that T proves
Vx(Proof 1(x,#(p)) = 3z < xProof 1(z,-~(#(p))))
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