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Theorem (Gödel’s First Incompleteness Theorem)

There are true sentences of arithmetic which are not provable.

1 What do we mean by ‘sentences of arithmetic’?

2 What do we mean by ‘true’?

3 What do we mean by ‘provable’?
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Theorem (Gödel’s First Incompleteness Theorem)

There are true sentences of arithmetic which are not provable.

1 What do we mean by ‘sentences of arithmetic’?

2 What do we mean by ‘true’?

3 What do we mean by ‘provable’?

Hayden Jananthan (Vanderbilt University) This Title is False 2 / 32
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3 Generalizing Gödel’s First Incompleteness Theorem
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The Language of Arithmetic - Intuition

What are ‘sentences of arithmetic’?

They are certain well-formed statements in the language of arithmetic, e.g.

“Addition is associative.”

“Every natural number greater than one is divisible by a prime
number.”

“0 is not equal to n + 1 for any natural number n.”

“For every two natural numbers n,m, a greatest common divisor
gcd(n,m) exists.”
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The Language of Arithmetic - Formal Description

Formally, we define sentences as certain strings of symbols.
There are two kinds of symbols:

Non-Logical Symbols: Theory-dependent symbols.

0 (zero), S (successor),
+, (addition), ⋅ (multiplication)
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Logical Symbols: Theory-independent symbols.

∧ (and), ∨ (or),
→ (implies), ↔ (if and only if),
¬ (not),
� (falsehood), ⊺ (truth),
∀ (for all), ∃ (there exists),
≈ (equals),
( (left parentheses), ) (right parentheses)
x0, x1, x2, . . . (variables)
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Terms and Well-Formed Formulas

Terms are defined recursively:

1 0 and variables are terms.

2 If t1, t2 are terms, the following are terms:

S(t1), (t1 + t2), (t1 ⋅ t2)

Terms have unique readability: a term can be built up from earlier terms
in exactly one way.

Well-formed formulas (wff) are defined recursively:

1 If t1, t2 are terms, then (t1 ≈ t2) is a wff.

2 ⊺ and � are wffs.

3 If ϕ1, ϕ2 are wffs and x a variable, the following are wffs:

(ϕ1∧ϕ2), (ϕ1∨ϕ2), (ϕ1 → ϕ2), (ϕ1 ↔ ϕ2), ¬ϕ1, ∀xϕ1, ∃xϕ1

Wffs have unique readability: a wff can be built up from earlier wffs and
terms in exactly one way.
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Sentences

Definition

An instance of a variable x in a wff ϕ is bound if it is contained in a
substring of ϕ of the form

∀xψ or ∃xψ

and free otherwise.

Definition

A sentence is a wff with no free variables.

E.g.

Yes: ∀x∀y∀z(((x + y) + z) ≈ (x + (y + z))) (associativity of +)

No: ∃x(x ⋅ x = y) (y is a perfect square)

Sentences are important as their variables do not need to be assigned
values to examine their truth.
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Peano Arithmetic

As an illustrative and important example: Peano Arithmetic (PA) is the
set of sentences

1 ∀x¬(0 ≈ S(x)) (0 is not a successor)

2 ∀x∀y((S(x) ≈ S(y))→ (x ≈ y)) (S is one-to-one)

3 ∀x((x + 0) ≈ x) (0 is a (right) identity for +)

4 ∀x∀y((x + S(y)) ≈ S(x + y)) (+ is repeated S)

5 ∀x((x ⋅ 0) ≈ 0) (0 is a (right) annihilator for ⋅)

6 ∀x∀y((x ⋅ S(y)) ≈ ((x ⋅ y) + x)) (⋅ is repeated +)

7 ((ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x))))→ ∀xϕ(x)) (induction for ϕ(x))
for each wff ϕ(x).

This will be our theory of arithmetic.
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Provability
Let Φ be a set of sentences (hypotheses) and ϕ a sentence.

Definition

A Φ-proof, or a proof with hypotheses from Φ, is a finite sequence
ψ1, . . . , ψn of wffs such that for each i , either

1 ψi is a hypothesis,

2 ψi is an axiom of logic, or

3 there is j , k < i such that ψk = (ψj → ψi) (i.e. an application of
Modus Ponens to previous steps).

Definition

ϕ is provable from Φ or Φ proves ϕ

Φ ⊢ ϕ

if there exists a Φ-proof ψ1, . . . , ψn such that ϕ = ψn.
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‘True’ Sentences of Arithmetic and Implications to PA

Definition

A sentence is true if it is true when interpreted in the standard model, i.e.
when

1 quantifiers range over N and

2 0,S ,+, ⋅ are the usual zero, successor, addition, and multiplication
operations on N.

Proposition

If PA ⊢ ϕ, then ϕ is true.

Gödel’s First Incompleteness Theorem states the converse does not hold.
Ô⇒ PA is not strong enough to capture everything about N.
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1 Meaning of Gödel’s First Incompleteness Theorem

2 Proving Gödel’s First Incompleteness Theorem

3 Generalizing Gödel’s First Incompleteness Theorem
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Arithmetization of Logic - Gödel numbers of Terms
To give a proof, we internalize our logic into arithmetic.

We recursively assign to each term t a natural number #(t) as follows:

#(xi) ∶= 20 ⋅ 30 ⋅ 5i

#(0) ∶= 20 ⋅ 31 #(S(t1)) ∶= 20 ⋅ 32 ⋅ 5#(t1)

#((t1 + t2)) ∶= 20 ⋅ 33 ⋅ 5#(t1)7#(t2) #((t1 ⋅ t2)) ∶= 20 ⋅ 34 ⋅ 5#(t1)7#(t2)

Definition

For a term t, #(t) is the Gödel number of t.

E.g., the Gödel number of the term

(x1 ⋅ (x2 + x3))

is

20 ⋅ 34 ⋅ 52
0
⋅30⋅51

⋅ 72
0
⋅33⋅52

0
⋅30 ⋅52

⋅72
0
⋅30 ⋅53

= 34 ⋅ 55 ⋅ 73
3
⋅525⋅7125
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To give a proof, we internalize our logic into arithmetic.
We recursively assign to each term t a natural number #(t) as follows:

#(xi) ∶= 20 ⋅ 30 ⋅ 5i

#(0) ∶= 20 ⋅ 31 #(S(t1)) ∶= 20 ⋅ 32 ⋅ 5#(t1)

#((t1 + t2)) ∶= 20 ⋅ 33 ⋅ 5#(t1)7#(t2) #((t1 ⋅ t2)) ∶= 20 ⋅ 34 ⋅ 5#(t1)7#(t2)

Definition

For a term t, #(t) is the Gödel number of t.
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Arithmetization of Logic - Gödel numbers of Wffs

Likewise, to each wff ϕ:

#((t1 ≈ t2)) ∶= 21 ⋅ 30 ⋅ 5#(t1) ⋅ 7#(t2)

#((ψ1 ∧ ψ2)) ∶= 21 ⋅ 31 ⋅ 5#(ψ1)
⋅ 7#(ψ2)

⋮ ⋮

#(¬ψ) ∶= 21 ⋅ 35 ⋅ 5#(ψ)

#(∀xiψ) ∶= 21 ⋅ 36 ⋅ 5i ⋅ 7#(ψ)

#(∃xiψ) ∶= 21 ⋅ 37 ⋅ 5i ⋅ 7#(ψ)

#(�) ∶= 21 ⋅ 38

#(⊺) ∶= 21 ⋅ 39

Definition

For a wff ϕ, #(ϕ) is the Gödel number of ϕ.
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Arithmetization of Logic - Gödel numbers of proofs

Given a finite sequence
ψ1, . . . , ψn

of wffs, we define

#(ψ1, . . . , ψn) ∶= p20 ⋅ p
#(ψ1)

1 ⋅ p
#(ψ2)

2 ⋯p
#(ψn)
n

where
2 = p0 < 3 = p1 < 5 = p2 < ⋯ < pn

are the first n + 1 prime numbers.

Definition

Given a finite seuqence ψ1, . . . , ψn, #(ψ1, . . . , ψn) is the Gödel number
of ψ1, . . . , ψn.

In particular, we may Gödel number proofs.
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Provability Formula

There is a wff

Proof(x , y) ≡ (
x is (the Gödel number of) a proof of
the sentence ϕ with #(ϕ) = y

)

allowing us to define

Provable(y) ∶= ∃xProof(x , y)

≡ (there exists a proof of ϕ, where #(ϕ) = y)

≡ (ϕ is provable from PA, where #(ϕ) = y)
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Diagonalization

Theorem (Diagonal Lemma)

Suppose T proves a sufficient fragment of PA . If ϕ(x) is a wff in the
language of arithmetic, then there exists a sentence ψ such that

T ⊢ (ψ↔ ϕ(#(ψ)))

(The Diagonal Lemma is constructive: it actually gives a method for
constructing ψ.)

Definition

G , the Gödel sentence, is the sentence satisfying

PA ⊢ (G ↔ ¬Provable(#(G)))

In other words,
G ≡ (I am not provable)
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Truth and Unprovability of the Gödel Sentence

By definition, PA ⊢ (G ↔ ¬Provable(#(G))).

Unprovable: Suppose G were provable, with ψ1, . . . , ψn a proof. Then
#(ψ1, . . . , ψn) realizes that Provable(#(G)) is true and
hence provable. But then ¬G is provable, a contradiction.

True: If G was not true when interpreted in N, then it cannot be
provable, so

¬Prove(n,#(G)) for each n ∈ N.

is true for each n. Thus,

∀n¬Proof(n,#(G))

is true, which is equivalent to G . Contradiction.
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1 Meaning of Gödel’s First Incompleteness Theorem

2 Proving Gödel’s First Incompleteness Theorem

3 Generalizing Gödel’s First Incompleteness Theorem
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Looking Forward

If G is true but unprovable, why not accept

T ∶= PA ∪ {G}

as our new theory of arithmetic?

Our method of proving Gödel’s First Incompleteness Theorem would work
to show that there is a new sentence G ′ which is true but unprovable from
T ∶= PA ∪ {G}.
Likewise, there is a sentence G ′′ which is true but unprovable from
T ∶= PA ∪ {G ,G ′

}, and so on.
Even if we considered T ∶= PA ∪ {G ,G ′,G ′′, . . .}, there would exist a G̃
which is true but unprovable from T .
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Analysis of Our Proof Sketch

Want to repeat the proof of Gödel’s First Incompleteness Theorem in more
general theories of arithmetic. Let T be a theory (set of sentences) of
arithmetic.

What were the essential ingredients in our proof in the case of PA?

1 Existence of Provable(x) (to encode provability in arithmetic)

2 Diagonal Lemma (to build the Gödel sentence G )

3 PA does not prove a contradiction (to show G is not provable)

4 If PA does not simultaneously prove ¬ϕ(n) for every n ∈ N and
∃xϕ(x) (to show ¬G is not provable and G is true)
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Primitive-Recursiveness

Definition

A function f ∶ Nk
→ N is primitive-recursive if it is computable by an

algorithm which does not use any unbounded searches (no while loops).
A subset R ⊆ Nk is primitive-recursive if the function

χR(x1, . . . , xk) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if (x1, . . . , xk) ∈ R

0 otherwise
is primitive-recursive.

Proposition

If R ⊆ Nk is primitive-recursive, there exists a wff ϕ(x1, . . . , xk) such that
for every (n1, . . . ,nk)

PA ⊢ ϕ(n1, . . . ,nk) if and only if (n1, . . . ,nk) ∈ R

Hayden Jananthan (Vanderbilt University) This Title is False 22 / 32



Primitive-Recursiveness

Definition

A function f ∶ Nk
→ N is primitive-recursive if it is computable by an

algorithm which does not use any unbounded searches (no while loops).
A subset R ⊆ Nk is primitive-recursive if the function

χR(x1, . . . , xk) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if (x1, . . . , xk) ∈ R

0 otherwise
is primitive-recursive.

Proposition

If R ⊆ Nk is primitive-recursive, there exists a wff ϕ(x1, . . . , xk) such that
for every (n1, . . . ,nk)

PA ⊢ ϕ(n1, . . . ,nk) if and only if (n1, . . . ,nk) ∈ R

Hayden Jananthan (Vanderbilt University) This Title is False 22 / 32



Effectively-Generated Theories

The definability of provability from PA depended on the fact that, given a
natural number, we can determine whether it is a valid proof in PA .

Definition

A theory of arithmetic T is effectively-generated if there is a
primitive-recursive function which enumerates the (Gödel numbers of)
elements of T . (Equivalently, can drop ‘primitive’.)

PA is effectively-generated (our listing of its elements outlines a procedure
for enumerating those elements), as are PA ∪ {G}, PA ∪ {G ,G ′

}, etc.
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Modifying our Proof
To support being only effectively-generated, we must modify our encoding
of proofs:

Definition

Say that n is (the Gödel number of) a T -proof if

n = p20 ⋅ p
i1
1⋯pimm

where

1 each ik is either the Gödel number of a formula or equal is ik = 23 ⋅ 5jk

and

2 ψ1, . . . , ψm is a proof with hypotheses from T , where either
#(ψk) = ik or ψk is the jk -th element of T .

With this modification and T being effectively-generated, the relation

ProvableT (x) ∶= (there is a proof of x from T )

is primitive-recursive.
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How much arithmetic do we need?

To construct G , it remains to show that ProvableT (x) can be defined by
a wff.
To both finish the proof of existence of the wff Provable(x) as well as
prove the Diagonal Lemma, we need our theory T to contain enough
arithmetical truths to show that every primitive-recursive predicate is
definable.
One such benchmark for this is Q, Robinsin Arithmetic, which drops the
induction axioms from PA.

Proposition

If R ⊆ Nk is primitive-recursive, there exists a wff ϕ(x1, . . . , xk) such that
for every (n1, . . . ,nk)

Q ⊢ ϕ(n1, . . . ,nk) if and only if (n1, . . . ,nk) ∈ R
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ω-Consistency

To conclude that neither G nor ¬G are provable, we need some
consistency properties for T .

To show G was unprovable we only needed that PA did not prove a
contradiction.

To show that G was true (which showed ¬G was not provable) we
needed something stronger: that PA could not simultaneously prove
¬ϕ(n) for each n ∈ N and also prove ∃xϕ(x).

Definition

A set of sentences T is consistent if it does not prove a contradiction.
A set of sentences T is ω-consistent if it does not simultaneously prove
¬ϕ(n) for each n ∈ N and ∃xϕ(x).

(Note that ω-consistency implies consistency.)
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Gödel’s First Incompleteness Theorem, revisited

Theorem (Gödel’s First Incompleteness Theorem)

If T is an effectively-generated, ω-consistent theory in the language of
arithmetic and Q ⊆ T , then there exists a sentence G such that neither G
nor ¬G are provable from T , i.e. T is incomplete.
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Rosser’s Trick

We can weaken the hypothesis of ω-consistency to that of consistency by
replacing Provable(x) with a different wff.

Let neg(y) be the Gödel number of ¬ϕ, where #(ϕ) = y .
Define

ProofRT (x , y) ∶= ProofT (x , y) ∧ ¬∃z(z ≤ x ∧ProofT (z ,neg(y)))

≡

⎛

⎜

⎝

x encodes a proof of ϕ and
there is no shorter proof of ¬ϕ,
where #(ϕ) = y

⎞

⎟

⎠

and
ProvableRT (y) ∶= ∃xProofRT (x , y)
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Rosser’s Trick, Continued

Using the Diagonal Lemma with ¬ProvableRT (x) yields:

Definition

ρ, the Gödel-Rosser Sentence for T , is the sentence satisfying

T ⊢ (ρ↔ ¬ProvableRT (#(ρ)))

T , only under the hypothesis of consistency and the other hypotheses of
Gödel’s First Incompleteness Theorem, neither proves ρ nor ¬ρ.

Theorem (Gödel-Rosser Incompleteness Theorem)

If T is an effectively-generated, consistent theory in the language of
arithmetic and Q ⊆ T , then T is incomplete.
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ρ, the Gödel-Rosser Sentence for T , is the sentence satisfying

T ⊢ (ρ↔ ¬ProvableRT (#(ρ)))

T , only under the hypothesis of consistency and the other hypotheses of
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Thank you!

Questions?
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Proof of Diagonal Lemma

Consider the primitive recursive function

diag(n) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

#(χ(n)) if #(χ) = n

0 otherwise

Since T ⊇ Q, there exists a wff Diag(x , y) such that

diag(x) = y if and only if T ⊢ Diag(x , y)

Let
χ(x) ∶= ∃y(Diag(x , y) ∧ ϕ(y))

and
ψ ∶= χ(#(χ))

Claim: T ⊢ (ψ↔ ϕ(#(ψ))).
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Proof of Diagonal Lemma

Claim: T ⊢ (ψ↔ ϕ(#(ψ))).

→: By definition,

T ∪ {ψ} ⊢ χ(#(χ)) [≡ ∃y(Diag(#(χ), y) ∧ ϕ(y))]

But y = #(ψ) is the only number such that
T ⊢ Diag(#(χ), y), so

T ∪ {ψ} ⊢ ϕ(#(ψ))

The Deduction Theorem then proves T ⊢ (ψ → ϕ(#(ψ))).
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Proof of Diagonal Lemma

Claim: T ⊢ (ψ↔ ϕ(#(ψ))).

←∶ T ⊢ Diag(#(χ),#(ψ)), so

T ∪ {ϕ(#(ψ))} ⊢ (Diag(#(χ),#(ψ)) ∧ ϕ(#(ψ)))

and hence

T ∪ {ϕ(#(ψ))} ⊢ ∃y(Diag(#(χ), y) ∧ ϕ(y)) [≡ ψ]

The Deduction Theorem then proves T ⊢ (ϕ(#(ψ))→ ψ).
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Gödel-Rosser Sentence – More Details
That T does not prove ρ is analogous to our original proof.
Now suppose for the sake of a contradiction that T proves ¬ρ. Let

e ∶= a natural number encoding a proof of ¬ρ from T

Since T is consistent, there is no code for a proof of ρ in T , so

ProofRT (e,neg(#(ρ)))

Then T proves (since T ⊇ Q)

∀x(e ≤ x → ∃z ≤ xProofT (z ,¬(#(ρ))))

and (using consistency)

¬∃x < eProofT (x ,#(ρ))

Then T proves
∀x(ProofT (x ,#(ρ))→ e ≤ x)

so that T proves

∀x(ProofT (x ,#(ρ))→ ∃z ≤ xProofT (z ,¬(#(ρ))))

∀x(ProofT (x ,#(ρ))→ ∃z ≤ xProofT (z ,¬(#(ρ))))

But this last formula is provably equivalent to ρ in T by the definition of
ρ, so T proves ρ, a contradiction. Since T is consistent, T cannot have
proven ¬ρ.
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