Computability and the Church-Turing Thesis

Hayden Jananthan

Vanderbilt University

March 21, 2017

Computing

Computers.

Computing

Computers. We love 'em.

Computing

They do stuff for us.

Computing

They do a lot of stuff for us.

Computing

Seemingly, they can do anything we give them.

But...

What is a computer?

But...

What is a computer? Maybe... A computer is a mechanical tool for running algorithms.

But...

What is a computer? Maybe... A computer is a mechanical tool for running algorithms.
What is an algorithm?

But...

What is a computer? Maybe... A computer is a mechanical tool for running algorithms.
What is an algorithm? Not so obvious...

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.
(4) Register Machine Programs.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.
(4) Register Machine Programs.
(5) Minecraft.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.
(4) Register Machine Programs.
(5) Minecraft.
(6) Conways Game of Life.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.
(4) Register Machine Programs.
(5) Minecraft.
(6) Conways Game of Life.
(7) Minesweeper.

Variations on Defining 'Algorithm'

Many different and sometimes strange models of computation have been proposed or created:
(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
(2) λ-Calculus, defined by Alonzo Church in 1936.
(3) Turing Machines, defined by Alan Turing in 1936.
(4) Register Machine Programs.
(5) Minecraft.
(6) Conways Game of Life.
(7) Minesweeper.

All can be used to describe what it means for a function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ to be computable.

Church-Turing Thesis

In 1936, after Church and Turing came up with their respective models of computation, they proved that the two were equivalent, in that the functions computed by them coincide.

Church-Turing Thesis

In 1936, after Church and Turing came up with their respective models of computation, they proved that the two were equivalent, in that the functions computed by them coincide.
The same was done with Gödel 's partial recursive functions as well, and a general trend was noticed:

Church-Turing Thesis

In 1936, after Church and Turing came up with their respective models of computation, they proved that the two were equivalent, in that the functions computed by them coincide.
The same was done with Gödel 's partial recursive functions as well, and a general trend was noticed:

Every effectively calculable function (effectively decidable predicate) is [partial recursive].

Our Aim...

(a) Define what it means to be "partial recursive".

Our Aim...

(a) Define what it means to be "partial recursive".
(b) Define what it means to be "register machine computable".

Our Aim...

(a) Define what it means to be "partial recursive".
(b) Define what it means to be "register machine computable".
(c) Prove that they are equivalent.

Partial Recursive Functions

We shall attempt to define the "minimal" non-trivial class of functions which are computable.

Partial Recursive Functions

We shall attempt to define the "minimal" non-trivial class of functions which are computable.
To achieve this, we want to have some starting "simple" functions, and then some operations that represent the ideas of computability.

Partial Recursive Functions

Initial Functions

What are some of the simplest functions we can compute?

Partial Recursive Functions

Initial Functions

What are some of the simplest functions we can compute?
The zero function $Z(x)=0$.

Partial Recursive Functions

Initial Functions

What are some of the simplest functions we can compute?
The zero function $Z(x)=0$.
The successor function $S(x)=x+1$.

Partial Recursive Functions

Initial Functions

What are some of the simplest functions we can compute?
The zero function $Z(x)=0$.
The successor function $S(x)=x+1$.
The projection functions $\pi_{i}^{k}\left(x_{1}, \ldots, x_{k}\right)=x_{i}$.

Partial Recursive Functions

Generalized Composition, Primitive Recursion, and Minimization

Our operations will capture the idea of doing computations in sequence:

Partial Recursive Functions

Generalized Composition, Primitive Recursion, and Minimization

Our operations will capture the idea of doing computations in sequence:
(1) Generalized Composition: can pre-compute some values (separately) to use in our computation.

Partial Recursive Functions

Generalized Composition, Primitive Recursion, and Minimization

Our operations will capture the idea of doing computations in sequence:
(1) Generalized Composition: can pre-compute some values (separately) to use in our computation.
(2) Primitive Recursion: can iterate a function using previously computed values repeatedly.

Partial Recursive Functions

Generalized Composition, Primitive Recursion, and Minimization

Our operations will capture the idea of doing computations in sequence:
(1) Generalized Composition: can pre-compute some values (separately) to use in our computation.
(2) Primitive Recursion: can iterate a function using previously computed values repeatedly.
(3) Minimization: Unbounded search, i.e. continue testing one by one until a condition is met.

Partial Recursive Functions

Formal Definition of Generalized Composition

Definition

If g_{1}, \ldots, g_{n} are k-ary functions and h is an n-ary function, then the generalized composition $f=h \circ\left(g_{1}, \ldots, g_{n}\right)$ is defined by

$$
f\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

Partial Recursive Functions

Formal Definition of Generalized Composition

Definition

If g_{1}, \ldots, g_{n} are k-ary functions and h is an n-ary function, then the generalized composition $f=h \circ\left(g_{1}, \ldots, g_{n}\right)$ is defined by

$$
f\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

Example

The function $f(x, y)=x+1$ is given by $S\left(\pi_{1}^{2}(x, y)\right)$.

Partial Recursive Functions

Definition

If h is a $k+2$-ary function and g a k-ary function, primitive recursion applied to g, h returns the $k+1$-ary function f defined by

$$
\begin{array}{rlr}
f\left(\mathbf{0}, x_{1}, \ldots, x_{k}\right) & =g\left(x_{1}, \ldots, x_{k}\right) & \text { (Base Case) } \\
f\left(\mathbf{y}+\mathbf{1}, x_{1}, \ldots, x_{k}\right) & =h\left(y, f\left(\mathbf{y}, x_{1}, \ldots, x_{k}\right), x_{1}, \ldots, x_{k}\right) & \text { (Iterative Step) }
\end{array}
$$

Partial Recursive Functions

Primitive Recursion Example

Addition $f(x, y)=x+y$.

Partial Recursive Functions

Primitive Recursion Example

Addition $f(x, y)=x+y$.

$$
f(0, y)=y
$$

(Base Case)

Partial Recursive Functions

Primitive Recursion Example

Addition $f(x, y)=x+y$.

$$
\begin{aligned}
f(0, y) & =y \\
f(x+1, y) & =f(x, y)+1
\end{aligned}
$$

(Base Case)
(Iterative Step)

Partial Recursive Functions

Formal Definition of Minimization

Definition

If g is a $k+1$-ary function such that for all x_{1}, \ldots, x_{k} there is y such that $g\left(y, x_{1}, \ldots, x_{k}\right)=0$, then the minimization of g is the k-ary function defined by

$$
f\left(x_{1}, \ldots, x_{k}\right)=\text { least } y \text { such that } g\left(y, x_{1}, \ldots, x_{k}\right)=0
$$

Partial Functions

Definition

A partial function f is defined only on a subset of \mathbb{N}^{k}. A function defined everywhere is a total function.

Partial Functions

Definition

A partial function f is defined only on a subset of \mathbb{N}^{k}. A function defined everywhere is a total function.

Partial Functions

Definition

A partial function f is defined only on a subset of \mathbb{N}^{k}. A function defined everywhere is a total function.

Partial Recursive Functions

Definition

Definition

The class of partial recursive functions is the smallest collection of partial functions for which

Partial Recursive Functions

Definition

Definition

The class of partial recursive functions is the smallest collection of partial functions for which
(i) contains the initial functions Z, S, π_{i}^{k}

Partial Recursive Functions

Definition

Definition

The class of partial recursive functions is the smallest collection of partial functions for which
(i) contains the initial functions Z, S, π_{i}^{k}
(ii) closed under generalized composition

Partial Recursive Functions

Definition

Definition

The class of partial recursive functions is the smallest collection of partial functions for which
(i) contains the initial functions Z, S, π_{i}^{k}
(ii) closed under generalized composition
(iii) closed under primitive recursion (of its total functions)

Partial Recursive Functions

Definition

Definition

The class of partial recursive functions is the smallest collection of partial functions for which
(i) contains the initial functions Z, S, π_{i}^{k}
(ii) closed under generalized composition
(iii) closed under primitive recursion (of its total functions)
(iv) closed under minimization (of its total functions)

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$
Exponentiation: $(x, y) \mapsto x^{y}$

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$
Exponentiation: $(x, y) \mapsto x^{y}$
Remainder: Remainder $(x, y)=$ remainder when dividing y by x

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$
Exponentiation: $(x, y) \mapsto x^{y}$
Remainder: Remainder $(x, y)=$ remainder when dividing y by x
Prime Enumeration: $n \mapsto p_{n}=n$-th prime number

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$
Exponentiation: $(x, y) \mapsto x^{y}$
Remainder: Remainder $(x, y)=$ remainder when dividing y by x
Prime Enumeration: $n \mapsto p_{n}=n$-th prime number
Prime-Power Encoding:
$(z)_{n}=$ least w such that Remainder $\left(z, p_{n}^{w+1}\right) \neq 0$

Some Partial Recursive Functions

Addition: $(x, y) \mapsto x+y$
Multiplication: $(x, y) \mapsto x \cdot y$
Exponentiation: $(x, y) \mapsto x^{y}$
Remainder: Remainder $(x, y)=$ remainder when dividing y by x
Prime Enumeration: $n \mapsto p_{n}=n$-th prime number
Prime-Power Encoding:
$(z)_{n}=$ least w such that $\operatorname{Remainder}\left(z, p_{n}^{w+1}\right) \neq 0$
Kronecker Delta: $\alpha(x)=0^{x}= \begin{cases}0 & \text { if } x>0 \\ 1 & \text { if } x=0\end{cases}$

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0 .

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Register Machine Programs

We have infinitely-many registers R_{1}, R_{2}, \ldots which each contain a natural number; at any give time, all but finitely-many are empty, i.e. contain 0. Four basic instructions:

Definition

A register machine program is a finite diagram consisting of the aforementioned instructions, with exactly one start and at least one stop instruction.

Register Machine Programs

A Simple Example

As an example, consider the following register machine program:

Register Machine Programs

A Simple Example

As an example, consider the following register machine program:

Register Machine Programs

A Simple Example

As an example, consider the following register machine program:

If we imagine R_{1}, R_{2} as our input values x, y and R_{3} as our output value, then this register machine program computes the addition function $(x, y) \mapsto x+y$.

Register Machine Computability

Register Machine Computability

Definition

$f: \mathbb{N}^{k} \xrightarrow{p} \mathbb{N}$ is register machine computable if there is a register machine program \mathcal{P} such that
if R_{1}, \ldots, R_{k} contain the values x_{1}, \ldots, x_{k},
then \mathcal{P} halts on this input with $f\left(x_{1}, \ldots, x_{k}\right)$ in the register R_{k+1} (exactly when f is defined on the input $\left(x_{1}, \ldots, x_{k}\right)$).

Register Machine Computability

Definition

$f: \mathbb{N}^{k} \xrightarrow{p} \mathbb{N}$ is register machine computable if there is a register machine program \mathcal{P} such that
if R_{1}, \ldots, R_{k} contain the values x_{1}, \ldots, x_{k},
then \mathcal{P} halts on this input with $f\left(x_{1}, \ldots, x_{k}\right)$ in the register R_{k+1}
(exactly when f is defined on the input $\left(x_{1}, \ldots, x_{k}\right)$).
Church-Turing Thesis suggests this is the same as being partial recursive.

Initial Functions are Register Machine Computable

Lemma

The functions Z, S, π_{i}^{k} (for $1 \leq i \leq k$) are register machine computable.
Proof.

Zero:

Successor:

Projection:

Closure under Generalized Composition

Lemma

If h is an n-ary register machine computable function, and g_{1}, \ldots, g_{n} are k-ary register machine computable functions, then the k-ary function

$$
f\left(x_{1}, \ldots, x_{k}\right) \simeq h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

is register machine computable.
Proof.
Let \mathcal{H} be a register machine program computing h with registers H_{1}, \ldots and \mathcal{G}_{i} be register machine programs computing g_{i} with registers $G_{i, 1}, \ldots$. Then consider the register machine program...

Closure under Generalized Composition

Closure under Primitive Recursion

Lemma

If g is a k-ary total register machine computable function and h is a $k+2$-ary total register machine computable function, then the $k+1$-ary function

$$
\begin{aligned}
f\left(0, x_{1}, \ldots, x_{k}\right) & =g\left(x_{1}, \ldots, x_{k}\right) \\
f\left(n+1, x_{1}, \ldots, x_{k}\right) & =h\left(n, f\left(n, x_{1}, \ldots, x_{k}\right), x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

is register machine computable.

Proof.

Let \mathcal{G} be a register machine program computing g with registers G_{1}, \ldots and \mathcal{H} be a register machine program computing h with registers H_{1}, \ldots, and let U, V be two other registers. Then consider the register machine program...

Closure under Primitive Recursion

Closure under Primitive Recursion

Closure under Minimization

Lemma

Suppose g is a $k+1$-ary total register machine computable function. Then the partial function

$$
f\left(x_{1}, \ldots, x_{k}\right)=\text { least } y \text { such that } g\left(y, x_{1}, \ldots, x_{k}\right)=0
$$

is partial recursive.

Proof.

Let \mathcal{G} be a register machine program computing g with registers G_{1}, \ldots. Then consider the register machine program...

Closure under Minimization

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program.

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program.

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program. We number each of the instructions in our register machine program \mathcal{E} by I_{1}, \ldots, I_{ℓ}, with I_{1} the first instruction, and halting when we reach the (non-existent) instruction I_{0}.

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program. We number each of the instructions in our register machine program \mathcal{E} by I_{1}, \ldots, I_{ℓ}, with I_{1} the first instruction, and halting when we reach the (non-existent) instruction I_{0}.
Instructions take two forms:

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program. We number each of the instructions in our register machine program \mathcal{E} by I_{1}, \ldots, I_{ℓ}, with I_{1} the first instruction, and halting when we reach the (non-existent) instruction I_{0}.
Instructions take two forms:
(i) increment R_{i} and go to instruction $I_{n_{0}}$

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program.
We number each of the instructions in our register machine program \mathcal{E} by I_{1}, \ldots, I_{ℓ}, with I_{1} the first instruction, and halting when we reach the (non-existent) instruction I_{0}.
Instructions take two forms:
(i) increment R_{i} and go to instruction $I_{n_{0}}$
(ii) if R_{i} is empty (0) go to $I_{n_{0}}$, otherwise decrement R_{i} and go to $I_{n_{1}}$.

Gödel Numbering of Instructions

Want to encode the instructions of a register machine program.
We number each of the instructions in our register machine program \mathcal{E} by I_{1}, \ldots, I_{ℓ}, with I_{1} the first instruction, and halting when we reach the (non-existent) instruction I_{0}.
Instructions take two forms:
(i) increment R_{i} and go to instruction $I_{n_{0}}$
(ii) if R_{i} is empty (0) go to $I_{n_{0}}$, otherwise decrement R_{i} and go to $I_{n_{1}}$.

Definition

$$
\#\left(I_{m}\right)= \begin{cases}3^{i} \cdot 5^{n_{0}} & \text { if } I_{m} \text { is of the form given in (i) } \\ 2 \cdot 3^{i} \cdot 5^{n_{0}} \cdot 7^{n_{1}} & \text { if } I_{m} \text { is of the form given in (ii) }\end{cases}
$$

Gödel Numbering of Register Machine Programs

Prime-power encoding of instructions gives Gödel numbering of register machine programs:

Gödel Numbering of Register Machine Programs

Prime-power encoding of instructions gives Gödel numbering of register machine programs:

Definition

Then we define the Gödel Numbering of \mathcal{E} by

$$
\#(\mathcal{E})=\prod_{m=1}^{\ell} p_{m}^{\#\left(I_{m}\right)}
$$

where $p_{0}, p_{1}, p_{2}, \ldots$ are the prime numbers $2,3,5, \ldots$ in increasing order.

Gödel Numbering of Register Machine Programs

Prime-power encoding of instructions gives Gödel numbering of register machine programs:

Definition

Then we define the Gödel Numbering of \mathcal{E} by

$$
\#(\mathcal{E})=\prod_{m=1}^{\ell} p_{m}^{\#\left(I_{m}\right)}
$$

where $p_{0}, p_{1}, p_{2}, \ldots$ are the prime numbers $2,3,5, \ldots$ in increasing order.
(Technically depends on how we order the instructions, so will have multiple Gödel numbers that correspond to the same register machine program.)

Gödel Numbering Example

$\alpha(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { if } x>0\end{array}\right.$ is computed by the register machine program \mathcal{E}

Gödel Numbering Example

$\alpha(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { if } x>0\end{array}\right.$ is computed by the register machine program \mathcal{E}

Gödel Numbering Example

$$
\alpha(x)=\left\{\begin{array}{ll}
1 & \text { if } x=0 \\
0 & \text { if } x>0
\end{array} \text { is computed by the register machine program } \mathcal{E}\right.
$$

Then

$$
\begin{aligned}
& \#\left(I_{1}\right)=2 \cdot 3^{1} \cdot 5^{2} \cdot 7^{0}=150 \\
& \#\left(I_{2}\right)=3^{2} \cdot 5^{0}=9
\end{aligned}
$$

so that

$$
\#(\mathcal{E})=2^{150} \cdot 3^{9}
$$

Definition

If e is the Gödel number of a register machine program \mathcal{E} and $k \geq 1$, we define

$$
\varphi_{e}^{k}\left(x_{1}, \ldots, x_{k}\right)
$$

to be the value in register R_{k+1} when R_{1}, \ldots, R_{k} are given x_{1}, \ldots, x_{k} and \mathcal{E} is run and halts (assuming it halts).

Definition

If e is the Gödel number of a register machine program \mathcal{E} and $k \geq 1$, we define

$$
\varphi_{e}^{k}\left(x_{1}, \ldots, x_{k}\right)
$$

to be the value in register R_{k+1} when R_{1}, \ldots, R_{k} are given x_{1}, \ldots, x_{k} and \mathcal{E} is run and halts (assuming it halts).
φ_{e}^{k} is a register machine computable function by definition.

Some Lemmas

Say that the predicate $P \subset \mathbb{N}^{k}$ is recursive if its characteristic function χ_{P} is recursive.

Lemma

The 1-ary predicate
Program $(e) \equiv e$ a Gödel number of a register machine program is recursive.

Lemma

If $P_{1}, P_{2} \subset \mathbb{N}^{k}$ are recursive predicates with $P_{1} \cap P_{2}=\varnothing$ and $P_{1} \cup P_{2}=\mathbb{N}^{k}$. Suppose f_{1}, f_{2} are k-ary recursive functions. Then

$$
f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}f_{1}\left(x_{1}, \ldots, x_{k}\right) & \text { if } P_{1}\left(x_{1}, \ldots, x_{k}\right) \text { holds } \\ f_{2}\left(x_{1}, \ldots, x_{k}\right) & \text { if } P_{2}\left(x_{1}, \ldots, x_{k}\right) \text { holds }\end{cases}
$$

is recursive.

Enumeration Theorem (Statement)

Theorem (Enumeration Theorem)

The $k+1$-ary function

$$
\Phi\left(e, x_{1}, \ldots, x_{k}\right) \simeq \begin{cases}\varphi_{e}^{k}\left(x_{1}, \ldots, x_{k}\right) & \text { if Program }(e) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

is partial recursive.

Enumeration Theorem (Proof)

e a Gödel number of a register machine program \mathcal{E}.

Enumeration Theorem (Proof)

e a Gödel number of a register machine program \mathcal{E}.
Want to show that the $k+2$-ary function

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

is (total) recursive, where z_{i} is the number in register R_{i} and I_{m} is the next instruction to be executed.

Enumeration Theorem (Proof)

e a Gödel number of a register machine program \mathcal{E}.
Want to show that the $k+2$-ary function

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

is (total) recursive, where z_{i} is the number in register R_{i} and I_{m} is the next instruction to be executed.
Then $(z)_{0}=m$ and $(z)_{i}=z_{i}$ for $i \geq 1$.

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

We define it using primitive recursion:

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

We define it using primitive recursion:

$$
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, 0\right)=p_{0}^{1} \cdot\left(p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}\right)
$$

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

We define it using primitive recursion:

$$
\begin{aligned}
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, 0\right) & =p_{0}^{1} \cdot\left(p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}\right) \\
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n+1\right) & =\operatorname{NextState}\left(e, \operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)\right)
\end{aligned}
$$

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

We define it using primitive recursion:

$$
\begin{aligned}
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, 0\right) & =p_{0}^{1} \cdot\left(p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}\right) \\
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n+1\right) & =\operatorname{NextState}\left(e, \operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)\right)
\end{aligned}
$$

with $m=(z)_{0}, i=\left((e)_{m}\right)_{1}, n_{0}=\left((e)_{m}\right)_{2}$, and $n_{1}=\left((e)_{m}\right)_{3}$,

Enumeration Theorem (Proof)

$$
z=\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)=p_{0}^{m} \cdot \prod_{i=1}^{\infty} p_{i}^{z_{i}}
$$

We define it using primitive recursion:

$$
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, 0\right)=p_{0}^{1} \cdot\left(p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}\right)
$$

$$
\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n+1\right)=\operatorname{NextState}\left(e, \operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)\right)
$$

with $m=(z)_{0}, i=\left((e)_{m}\right)_{1}, n_{0}=\left((e)_{m}\right)_{2}$, and $n_{1}=\left((e)_{m}\right)_{3}$, where

$$
\operatorname{NextState}(e, z)= \begin{cases}z \cdot p_{i} \cdot p_{0}^{-m+n_{0}} & \text { if }\left((e)_{m}\right)_{0}=0 \\ z \cdot p_{0}^{-m+n_{0}} & \text { if }\left((e)_{m}\right)_{0}=1 \text { and }(z)_{i}=0 \\ z \cdot p_{i}^{-1} \cdot p_{0}^{-m+n_{1}} & \text { if }\left((e)_{m}\right)_{0}=1 \text { and }(z)_{i}>0 \\ z & \text { otherwise }\end{cases}
$$

(which is recursive.)

Enumeration Theorem (Proof)

Then define

$$
\operatorname{Stop}\left(e, x_{1}, \ldots, x_{k}\right) \simeq \begin{gathered}
\text { least } n \text { such that } \\
\left(\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)\right)_{0}+\alpha\left(\chi_{\operatorname{Program}}(e)\right)=0
\end{gathered}
$$

which is partial recursive.

Enumeration Theorem (Proof)

Then define

$$
\operatorname{Stop}\left(e, x_{1}, \ldots, x_{k}\right) \simeq \begin{gathered}
\text { least } n \text { such that } \\
\left(\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, n\right)\right)_{0}+\alpha\left(\chi_{\operatorname{Program}}(e)\right)=0
\end{gathered}
$$

which is partial recursive.
Then

$$
\varphi_{e}^{k}\left(x_{1}, \ldots, x_{k}\right) \simeq\left(\operatorname{State}\left(e, x_{1}, \ldots, x_{k}, \operatorname{Stop}\left(e, x_{1}, \ldots, x_{k}\right)\right)\right)_{k+1}
$$

is partial recursive.

A Corollary to Enumeration Theorem

The proof of the Enumeration Theorem shows the following:

Theorem

A partial function $f: \mathbb{N}^{k} \xrightarrow{p} \mathbb{N}$ is partial recursive if and only if it is register machine computable.

