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Computing

Computers.

They do stuff for us.
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Computing

Computers.

They do a lot of stuff for us.
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Computing

Computers.

Seemingly, they can do anything we give them.
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But...

What is a computer?

Maybe... A computer is a mechanical tool for
running algorithms.
What is an algorithm? Not so obvious...
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Variations on Defining ‘Algorithm’

Many different and sometimes strange models of computation have been
proposed or created:

(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.

(2) λ-Calculus, defined by Alonzo Church in 1936.

(3) Turing Machines, defined by Alan Turing in 1936.

(4) Register Machine Programs.

(5) Minecraft.

(6) Conways Game of Life.

(7) Minesweeper.

All can be used to describe what it means for a function f ∶ Nk → N to be
computable.
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(2) λ-Calculus, defined by Alonzo Church in 1936.

(3) Turing Machines, defined by Alan Turing in 1936.

(4) Register Machine Programs.

(5) Minecraft.

(6) Conways Game of Life.

(7) Minesweeper.

All can be used to describe what it means for a function f ∶ Nk → N to be
computable.

Hayden Jananthan (Vanderbilt University) Computability and the Church-Turing Thesis March 21, 2017 4 / 37



Variations on Defining ‘Algorithm’

Many different and sometimes strange models of computation have been
proposed or created:

(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
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(2) λ-Calculus, defined by Alonzo Church in 1936.

(3) Turing Machines, defined by Alan Turing in 1936.

(4) Register Machine Programs.

(5) Minecraft.

(6) Conways Game of Life.

(7) Minesweeper.

All can be used to describe what it means for a function f ∶ Nk → N to be
computable.

Hayden Jananthan (Vanderbilt University) Computability and the Church-Turing Thesis March 21, 2017 4 / 37



Variations on Defining ‘Algorithm’

Many different and sometimes strange models of computation have been
proposed or created:

(1) Partial Recursive Functions, defined by Kurt Gödel in 1933.
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Church-Turing Thesis

In 1936, after Church and Turing came up with their respective models of
computation, they proved that the two were equivalent, in that the
functions computed by them coincide.

The same was done with Gödel ’s partial recursive functions as well, and a
general trend was noticed:

Every effectively calculable function (effectively decidable
predicate) is [partial recursive].
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Our Aim...

(a) Define what it means to be “partial recursive”.

(b) Define what it means to be “register machine computable”.

(c) Prove that they are equivalent.
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Partial Recursive Functions

We shall attempt to define the “minimal” non-trivial class of functions
which are computable.

To achieve this, we want to have some starting “simple” functions, and
then some operations that represent the ideas of computability.
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Partial Recursive Functions
Initial Functions

What are some of the simplest functions we can compute?

The zero function Z(x) = 0.

The successor function S(x) = x + 1.

The projection functions πki (x1, . . . , xk) = xi .
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Partial Recursive Functions
Generalized Composition, Primitive Recursion, and Minimization

Our operations will capture the idea of doing computations in sequence:

(1) Generalized Composition: can pre-compute some values (separately)
to use in our computation.

(2) Primitive Recursion: can iterate a function using previously computed
values repeatedly.

(3) Minimization: Unbounded search, i.e. continue testing one by one
until a condition is met.
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Partial Recursive Functions
Formal Definition of Generalized Composition

Definition

If g1, . . . ,gn are k-ary functions and h is an n-ary function, then the
generalized composition f = h ○ (g1, . . . ,gn) is defined by

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . ,gn(x1, . . . , xk))

Example

The function f (x , y) = x + 1 is given by S(π21(x , y)).
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Partial Recursive Functions
Formal Definition of Primitive Recursion

Definition

If h is a k + 2-ary function and g a k-ary function, primitive recursion
applied to g ,h returns the k + 1-ary function f defined by

f (0, x1, . . . , xk) = g(x1, . . . , xk) (Base Case)

f (y + 1, x1, . . . , xk) = h(y , f (y, x1, . . . , xk), x1, . . . , xk) (Iterative Step)
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Partial Recursive Functions
Primitive Recursion Example

Addition f (x , y) = x + y .

f (0, y) = y (Base Case)

f (x + 1, y) = f (x , y) + 1 (Iterative Step)
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Partial Recursive Functions
Formal Definition of Minimization

Definition

If g is a k + 1-ary function such that for all x1, . . . , xk there is y such that
g(y , x1, . . . , xk) = 0, then the minimization of g is the k-ary function
defined by

f (x1, . . . , xk) = least y such that g(y , x1, . . . , xk) = 0
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Partial Functions

Definition

A partial function f is defined only on a subset of Nk .
A function defined everywhere is a total function.

Partial Total

0

1

2

3

0

1

0

1

2

3

0

1
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Partial Recursive Functions
Definition

Definition

The class of partial recursive functions is the smallest collection of
partial functions for which

Hayden Jananthan (Vanderbilt University) Computability and the Church-Turing Thesis March 21, 2017 15 / 37



Partial Recursive Functions
Definition

Definition

The class of partial recursive functions is the smallest collection of
partial functions for which

(i) contains the initial functions Z ,S , πki

Hayden Jananthan (Vanderbilt University) Computability and the Church-Turing Thesis March 21, 2017 15 / 37



Partial Recursive Functions
Definition
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The class of partial recursive functions is the smallest collection of
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(i) contains the initial functions Z ,S , πki
(ii) closed under generalized composition
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(i) contains the initial functions Z ,S , πki
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(iii) closed under primitive recursion (of its total functions)
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Partial Recursive Functions
Definition

Definition

The class of partial recursive functions is the smallest collection of
partial functions for which

(i) contains the initial functions Z ,S , πki
(ii) closed under generalized composition

(iii) closed under primitive recursion (of its total functions)

(iv) closed under minimization (of its total functions)
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Some Partial Recursive Functions

Addition: (x , y) ↦ x + y

Multiplication: (x , y) ↦ x ⋅ y
Exponentiation: (x , y) ↦ xy

Remainder: Remainder(x , y) = remainder when dividing y by x

Prime Enumeration: n ↦ pn = n-th prime number

Prime-Power Encoding:
(z)n = least w such that Remainder(z ,pw+1n ) ≠ 0

Kronecker Delta: α(x) = 0x =
⎧⎪⎪⎨⎪⎪⎩

0 if x > 0

1 if x = 0
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Register Machine Programs

We have infinitely-many registers R1,R2, . . . which each contain a natural
number; at any give time, all but finitely-many are empty, i.e. contain 0.

Four basic instructions:

Start:
Start

Stop:
Stop

R+
i :

R+
i

R−
i :

R−
i

e

Definition

A register machine program is a finite diagram consisting of the
aforementioned instructions, with exactly one start and at least one stop
instruction.
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Register Machine Programs
A Simple Example

As an example, consider the following register machine program:

Start R−
1

R+
3

R−
2

R+
3

Stop
e e

If we imagine R1,R2 as our input values x , y and R3 as our output value,
then this register machine program computes the addition function
(x , y) ↦ x + y .
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Register Machine Computability

Definition

f ∶ Nk pÐ→ N is register machine computable if there is a register machine
program P such that

if R1, . . . ,Rk contain the values x1, . . . , xk ,

then P halts on this input with f (x1, . . . , xk) in the register Rk+1
(exactly when f is defined on the input (x1, . . . , xk)).

Church-Turing Thesis suggests this is the same as being partial recursive.
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Initial Functions are Register Machine Computable

Lemma

The functions Z ,S , πki (for 1 ≤ i ≤ k) are register machine computable.

Proof.

Zero: start stop

Successor: start R−
1

R+
2

R+
2 stop

e Projection: start R−
i

R+
k+1

stop
e
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Closure under Generalized Composition

Lemma

If h is an n-ary register machine computable function, and g1, . . . ,gn are
k-ary register machine computable functions, then the k-ary function

f (x1, . . . , xk) ≃ h(g1(x1, . . . , xk), . . . ,gn(x1, . . . , xk))

is register machine computable.

Proof.
Let H be a register machine program computing h with registers H1, . . .
and Gi be register machine programs computing gi with registers Gi ,1, . . ..
Then consider the register machine program...
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Closure under Generalized Composition

start

F−1

G+
1,1

⋮

G+
m,1

⋯ F−k

G+
1,k

⋮

G+
m,k

G1 G−
1,k+1

H+
1

⋯ Gm G−
m,k+1

H+
m

H

H−
m+1F+k+1

stop

e e e e e e

e
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Closure under Primitive Recursion

Lemma

If g is a k-ary total register machine computable function and h is a
k + 2-ary total register machine computable function, then the k + 1-ary
function

f (0, x1, . . . , xk) = g(x1, . . . , xk)
f (n + 1, x1, . . . , xk) = h(n, f (n, x1, . . . , xk), x1, . . . , xk)

is register machine computable.

Proof.
Let G be a register machine program computing g with registers G1, . . .
and H be a register machine program computing h with registers H1, . . .,
and let U,V be two other registers. Then consider the register machine
program...
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Closure under Primitive Recursion

Start

F−2

V +

G+
1

V −

F+2

⋯ F−k+1

V +

G+
k

V −

F+k+1

G

F−1

G−
k+1F+k+2

Stop

G−
k+1

H+
2

⋮

e e e e e

e

e
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Closure under Primitive Recursion

⋮

U− V −

U+

V +

H+
1

U+

F−2

V +

H+
3

V −

F+2

⋯ F−k+1

V +

H+
k+2

V −

F+k+1

H

F−1

H−
k+3 F+k+2

Stop

H−
1

H−
2

H−
k+3

H+
2

H−
3H−

4⋯

e e e e e e e

e

e

e

e

eee
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Closure under Minimization

Lemma

Suppose g is a k + 1-ary total register machine computable function. Then
the partial function

f (x1, . . . , xk) = least y such that g(y , x1, . . . , xk) = 0

is partial recursive.

Proof.
Let G be a register machine program computing g with registers G1, . . ..
Then consider the register machine program...
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Closure under Minimization

Start

F−1

V +

G+
1

V −

F+1

⋯ F−k+1

V +

G+
k+1

V −

F+k+1

G G−
k+2

Stop

G−
1G−

2⋯F+k+2

e e e

e

ee
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Gödel Numbering of Instructions

Want to encode the instructions of a register machine program.

We number each of the instructions in our register machine program E by
I1, . . . , I`, with I1 the first instruction, and halting when we reach the
(non-existent) instruction I0.
Instructions take two forms:

(i) increment Ri and go to instruction In0
(ii) if Ri is empty (0) go to In0 , otherwise decrement Ri and go to In1 .

Definition

#(Im) =
⎧⎪⎪⎨⎪⎪⎩

3i ⋅ 5n0 if Im is of the form given in (i)

2 ⋅ 3i ⋅ 5n0 ⋅ 7n1 if Im is of the form given in (ii)
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Gödel Numbering of Register Machine Programs

Prime-power encoding of instructions gives Gödel numbering of register
machine programs:

Definition

Then we define the Gödel Numbering of E by

#(E) =
`

∏
m=1

p
#(Im)
m

where p0,p1,p2, . . . are the prime numbers 2,3,5, . . . in increasing order.

(Technically depends on how we order the instructions, so will have
multiple Gödel numbers that correspond to the same register machine
program.)
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Gödel Numbering Example

α(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x = 0

0 if x > 0
is computed by the register machine program E

start R−
1

R+
2

stop

I1

I2

e

Then

#(I1) = 2 ⋅ 31 ⋅ 52 ⋅ 70 = 150

#(I2) = 32 ⋅ 50 = 9

so that

#(E) = 2150 ⋅ 39
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Definition

If e is the Gödel number of a register machine program E and k ≥ 1, we
define

ϕk
e (x1, . . . , xk)

to be the value in register Rk+1 when R1, . . . ,Rk are given x1, . . . , xk and E
is run and halts (assuming it halts).

ϕk
e is a register machine computable function by definition.
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Some Lemmas

Say that the predicate P ⊂ Nk is recursive if its characteristic function
χP is recursive.

Lemma

The 1-ary predicate
Program(e) ≡ e a Gödel number of a register machine program is
recursive.

Lemma

If P1,P2 ⊂ Nk are recursive predicates with P1 ∩ P2 = ∅ and P1 ∪ P2 = Nk .
Suppose f1, f2 are k-ary recursive functions. Then

f (x1, . . . , xk) =
⎧⎪⎪⎨⎪⎪⎩

f1(x1, . . . , xk) if P1(x1, . . . , xk) holds

f2(x1, . . . , xk) if P2(x1, . . . , xk) holds

is recursive.

Hayden Jananthan (Vanderbilt University) Computability and the Church-Turing Thesis March 21, 2017 32 / 37



Enumeration Theorem (Statement)

Theorem (Enumeration Theorem)

The k + 1-ary function

Φ(e, x1, . . . , xk) ≃
⎧⎪⎪⎨⎪⎪⎩

ϕk
e (x1, . . . , xk) if Program(e)

undefined otherwise

is partial recursive.
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Enumeration Theorem (Proof)

e a Gödel number of a register machine program E .

Want to show that the k + 2-ary function

z = State(e, x1, . . . , xk ,n) = pm0 ⋅
∞
∏
i=1

pzii

is (total) recursive, where zi is the number in register Ri and Im is the next
instruction to be executed.
Then (z)0 = m and (z)i = zi for i ≥ 1.
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Enumeration Theorem (Proof)

z = State(e, x1, . . . , xk ,n) = pm0 ⋅
∞
∏
i=1

pzii

We define it using primitive recursion:

State(e, x1, . . . , xk ,0) = p10 ⋅ (px11 ⋯pxkk )
State(e, x1, . . . , xk ,n + 1) = NextState(e,State(e, x1, . . . , xk ,n))

with m = (z)0, i = ((e)m)1, n0 = ((e)m)2, and n1 = ((e)m)3,
where

NextState(e, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z ⋅ pi ⋅ p−m+n00 if ((e)m)0 = 0

z ⋅ p−m+n00 if ((e)m)0 = 1 and (z)i = 0

z ⋅ p−1i ⋅ p−m+n10 if ((e)m)0 = 1 and (z)i > 0

z otherwise

(which is recursive.)
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z = State(e, x1, . . . , xk ,n) = pm0 ⋅
∞
∏
i=1

pzii

We define it using primitive recursion:

State(e, x1, . . . , xk ,0) = p10 ⋅ (px11 ⋯pxkk )
State(e, x1, . . . , xk ,n + 1) = NextState(e,State(e, x1, . . . , xk ,n))

with m = (z)0, i = ((e)m)1, n0 = ((e)m)2, and n1 = ((e)m)3,
where

NextState(e, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z ⋅ pi ⋅ p−m+n00 if ((e)m)0 = 0

z ⋅ p−m+n00 if ((e)m)0 = 1 and (z)i = 0

z ⋅ p−1i ⋅ p−m+n10 if ((e)m)0 = 1 and (z)i > 0

z otherwise

(which is recursive.)
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Enumeration Theorem (Proof)

Then define

Stop(e, x1, . . . , xk) ≃
least n such that

(State(e, x1, . . . , xk ,n))0 + α(χProgram(e)) = 0

which is partial recursive.

Then

ϕk
e (x1, . . . , xk) ≃ (State(e, x1, . . . , xk ,Stop(e, x1, . . . , xk)))k+1

is partial recursive.
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A Corollary to Enumeration Theorem

The proof of the Enumeration Theorem shows the following:

Theorem

A partial function f ∶ Nk pÐ→ N is partial recursive if and only if it is register
machine computable.
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