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The setting is R2.

Ruler and compass constructions involve the following tools:

Given constructed points A,B, we can draw the line
←→

AB or the line
segment AB.

Given constructed points A,B, we can draw the circle C with center
A which passes through B.

What are “constructed points”? We define them inductively:

We start by letting (0,0) and (0,1) be constructed.

If lines `1, `2 have been constructed already, then their intersection
point have been constructed.

If (distinct) circles C1,C2 have been constructed already, then their
intersection points have been constructed.

If the line ` and circle C have been constructed already, then their
intersection points have been constructed.
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Construct Perpendicular Line `⊥ to line ` =
←→
AB through

point C
Case 1: C incident to `
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Draw Parallel Line Through Given Point
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Translate Line Segment
Case 1: Non-collinear
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Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a
compass. There were three problems the ancient Greeks couldn’t seem to
solve though:

Squaring the Circle: constructing a circle with Area π. Equivalently,
constructing a line segment of length

√

π.

Doubling the Cube: Constructing a line segment of length 3
√

2 (a cube
with side length 3

√

2 has volume 2).

Angle trisection: Showing that any angle which can be constructed can
also be trisected, e.g. a 60○ angle can be constructed, so can
a 20○ angle be constructed as well?

It wasn’t until the 1800s that these constructions were proven to not be
possible.
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Constructible Numbers

A point (a,b) is constructible if it can be constructed in a finite number
of steps starting with the constructed points (0,0) and (1,0).

A real number r is constructible if (r ,0) is constructible.

Lemma

Let r be a real number. The following are equivalent:

1 r is constructible.

2 A line segment of length ∣r ∣ can be constructed in a finite number of
steps starting with the constructed points (0,0) and (1,0).

Proof.

1 ⇒ 2 : If r is constructible, then the line segment from (0,0) to
(∣r ∣,0) has length ∣r ∣.

2 ⇐ 1 : Suppose AB is a line segment of length ∣r ∣. Translate AB to
OC , where O = origin. Draw circle centered at O going
through C . This intersects the x-axis at the point (∣r ∣,0).
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Properties of Constructible Numbers
Closure under Negation

Consider below diagram:

(0,0) (∣r ∣,0)(−∣r ∣,0)

−r is one of ∣r ∣ or −∣r ∣.



Properties of Constructible Numbers
Closure under Addition

(0,0) (r ,0)

A

(r + s,0)(r − s,0)

For r , s ≥ 0, the above construction shows r + s and r − s are constructible.
If r is negative, then

r + s = −((−r) + (−s))



Properties of Constructible Numbers
Closure under Multiplication

(0,0) (1,0) (r ,0)

(1, s)

(r , r ⋅ s)

For r , s ≥ 0, the above construction shows there is a line segment of length
r ⋅ s.
If either r or s are negative, then

r ⋅ s = −((−r) ⋅ s) = −(r ⋅ (−s)) = (−r) ⋅ (−s)



Properties of Constructible Numbers
Closure under Reciprocation

(0,0) (1,0) (r ,0)

(1,1/r)

(r ,1)

For r > 0, the above construction shows there is a line segment of length
1/r .
If r < 0, then

1

−r
= −

1

r



Properties of Constructible Numbers
Closure under Square Roots

(0,0) (r ,0)(−1,0)

A

B

( r−1
2
,0)

(0,√r)

We construct the circle of radius 1+r
2 centered at ( r−12 ,0).

This circle intersects the y -axis at (0,±
√

r).



The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:

1 r is constructible.

2 r is the result of starting with 0 and 1 and applying the operations of
addition, subtraction, multiplication, division, and taking square roots.

Proof.

2 ⇒ 1 Previously shown that the set of constructible numbers is
closed under the given operations. 0,1 are defined to be
constructible.

1 ⇒ 2 Must analyze three kinds of intersections:

two lines
a circle and a line
two circle
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How Constructed Points Arise
Intersection of two Lines

Suppose `1, `2 are the lines

`1a1x + b1y = c1

`2a2x + b2y = c2

At least one of a1,b1 are ≠ 0, say a1 ≠ 0. Then

a1x + b1y = c1⇔ x =
c1
a1
−

b1
a1

y

so

a2 (
c1
a1
−

b1
a1

y) + b2y = c2

This is linear in y .
Thus, x and y are obtained from a1,b1, c1, a2,b2, c2 using the operations
of addition, subtraction, multiplication, and division.
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How Constructed Points Arise
Intersection of a Circle and Line

Suppose C is the circle

C ∶ (x − h)2 + (y − k)2 = r2

and ` is the line
` ∶ ax + by = c

where h, k , r , a,b, c are numbers which have already been constructed.
Then either a ≠ 0 or b ≠ 0. Say a ≠ 0, so

ax + by = c ⇔ x =
c

a
−

b

a
y

Substituting into the equation for C gives a quadratic equation in y .
Thus, x and y are obtainable from h, k , r , a,b, c using the operations of
addition, subtraction, multiplication, division, and taking square roots.
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Some Algebra Background

Proposition

Suppose r is a root of the irreducible polynomial

anx
n
+ an−1xn−1 +⋯ + a2x2 + a1x + a0

where each ak is a root of an irreducible polynomial pk with rational
coefficients. Then r is the root of an irreducible polynomial with rational
coefficients.

Moreover, the degree of that irreducible polynomial divides
n ⋅ deg(p0)⋯deg(pn).
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Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial
with rational coefficients of degree 2n for some n.

Proof.
Induction on the number k of square roots used to construct r .
If k = 0, r is rational. Hence root of linear equation (degree 1 = 20).
Induction hypothesis: assume true for constructible numbers using k
square roots.
Suppose r uses k + 1 square roots, so r = a + b

√

c where a,b, c use at
most k square roots. Then r is a root of the quadratic

(x − a)2 − b2c

Proposition implies r is root of an irreducible polynomial with rational
coefficients with degree dividing

2 ⋅ 2k ⋅ 2k ⋅ 2k = 23k+1
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Impossibility of Squaring the Circle

Corollary

Using ruler-and-compass constructions, it is not possible to square the
circle, i.e. create a square with the same area as a unit circle.

Proof.
Squaring the circle is possible if and only if

√

π is constructible.

But if
√

π is constructible, it is the root of a polynomial.

π is transcendental, not the root of any polynomial, so neither is
√

π.
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Impossibility of Doubling the Cube

Corollary

Using ruler-and-compass constructions, it is not possible to construct a
main diagonal of a unit cube.

Proof.
Doubling the cube is possible if and only if 3

√

2 is constructible.

If 3
√

2 is constructible, it is the root of a polynomial p(x) with rational
coefficients of degree 2n for some n.

But 3
√

2 is also the root of the irreducible polynomial x3 − 2, so x3 − 2
must divide p(x). This is impossible since 3 does not divide 2n.
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Impossibility of Trisecting Arbitrary Angles

Corollary

Using ruler-and-compass constructions, it is not always possible to trisect
an arbitrary constructible angle.

Proof.

If trisecting arbitrary angles is possible,
then a 20○ angle in primary position
can be constructed since a 60○ angle in
primary position can be constructed.
This angle intersects the unit circle at
(cos π

9
, sin π

9
). Suffices to show cos π

9
is

not constructible.

(0,0) (1,0)

(√3/2,1/2)

(cosπ/9, sinπ/9)
60○

20○

The triple angle formula cos 3θ = 4 cos3 θ − 3 cos θ implies that cos π
9

is a root of

the cubic 4x3 − 3x − 1
2

. But 3 does not divide 2n for any n, so cos π
9

cannot be
constructible.
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