The Limitations of Ruler-and-Compass Constructions

Hayden Jananthan

Vanderbilt University

The setting is \mathbb{R}^{2}.

The setting is \mathbb{R}^{2}. Ruler and compass constructions involve the following tools:

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.
What are "constructed points"? We define them inductively:

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.
What are "constructed points"? We define them inductively:
- We start by letting $(0,0)$ and $(0,1)$ be constructed.

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.
What are "constructed points"? We define them inductively:
- We start by letting $(0,0)$ and $(0,1)$ be constructed.
- If lines ℓ_{1}, ℓ_{2} have been constructed already, then their intersection point have been constructed.

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.
What are "constructed points"? We define them inductively:
- We start by letting $(0,0)$ and $(0,1)$ be constructed.
- If lines ℓ_{1}, ℓ_{2} have been constructed already, then their intersection point have been constructed.
- If (distinct) circles C_{1}, C_{2} have been constructed already, then their intersection points have been constructed.

The setting is \mathbb{R}^{2}.
Ruler and compass constructions involve the following tools:

- Given constructed points A, B, we can draw the line $\overleftrightarrow{A B}$ or the line segment $\overline{A B}$.
- Given constructed points A, B, we can draw the circle C with center A which passes through B.
What are "constructed points"? We define them inductively:
- We start by letting $(0,0)$ and $(0,1)$ be constructed.
- If lines ℓ_{1}, ℓ_{2} have been constructed already, then their intersection point have been constructed.
- If (distinct) circles C_{1}, C_{2} have been constructed already, then their intersection points have been constructed.
- If the line ℓ and circle C have been constructed already, then their intersection points have been constructed.

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C
 Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C
 Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 1: C incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C
 Case 2: C not incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 2: C not incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 2: C not incident to ℓ

Construct Perpendicular Line ℓ_{\perp} to line $\ell=\overleftrightarrow{A B}$ through point C

Case 2: C not incident to ℓ

Draw Parallel Line Through Given Point

Draw Parallel Line Through Given Point

Draw Parallel Line Through Given Point

Translate Line Segment

Case 1: Non-collinear

Translate Line Segment

Case 1: Non-collinear

Translate Line Segment

Case 1: Non-collinear

Translate Line Segment

Case 1: Non-collinear

Translate Line Segment

Case 2: Collinear

$A B$

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Translate Line Segment

Case 2: Collinear

Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a compass. There were three problems the ancient Greeks couldn't seem to solve though:

Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a compass. There were three problems the ancient Greeks couldn't seem to solve though:
Squaring the Circle: constructing a circle with Area π. Equivalently, constructing a line segment of length $\sqrt{\pi}$.

Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a compass. There were three problems the ancient Greeks couldn't seem to solve though:
Squaring the Circle: constructing a circle with Area π. Equivalently, constructing a line segment of length $\sqrt{\pi}$.
Doubling the Cube: Constructing a line segment of length $\sqrt[3]{2}$ (a cube with side length $\sqrt[3]{2}$ has volume 2).

Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a compass. There were three problems the ancient Greeks couldn't seem to solve though:
Squaring the Circle: constructing a circle with Area π. Equivalently, constructing a line segment of length $\sqrt{\pi}$.
Doubling the Cube: Constructing a line segment of length $\sqrt[3]{2}$ (a cube with side length $\sqrt[3]{2}$ has volume 2).
Angle trisection: Showing that any angle which can be constructed can also be trisected, e.g. a 60° angle can be constructed, so can a 20° angle be constructed as well?

Limitations of Ruler and Compass Constructions

It seems like we can construct a lot using only an unmarked ruler and a compass. There were three problems the ancient Greeks couldn't seem to solve though:
Squaring the Circle: constructing a circle with Area π. Equivalently, constructing a line segment of length $\sqrt{\pi}$.
Doubling the Cube: Constructing a line segment of length $\sqrt[3]{2}$ (a cube with side length $\sqrt[3]{2}$ has volume 2).
Angle trisection: Showing that any angle which can be constructed can also be trisected, e.g. a 60° angle can be constructed, so can a 20° angle be constructed as well?
It wasn't until the 1800s that these constructions were proven to not be possible.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$. A real number r is constructible if $(r, 0)$ is constructible.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$. A real number r is constructible if $(r, 0)$ is constructible.

Lemma

Let r be a real number. The following are equivalent:

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$. A real number r is constructible if $(r, 0)$ is constructible.

Lemma

Let r be a real number. The following are equivalent:
(1) r is constructible.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$. A real number r is constructible if $(r, 0)$ is constructible.

Lemma

Let r be a real number. The following are equivalent:
(1) r is constructible.
(2) A line segment of length $|r|$ can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$.

Proof.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$. A real number r is constructible if $(r, 0)$ is constructible.

Lemma

Let r be a real number. The following are equivalent:
(1) r is constructible.
(2) A line segment of length $|r|$ can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$.

Proof.
(1) \Rightarrow (2) : If r is constructible, then the line segment from $(0,0)$ to $(|r|, 0)$ has length $|r|$.

Constructible Numbers

A point (a, b) is constructible if it can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$.
A real number r is constructible if $(r, 0)$ is constructible.

Lemma

Let r be a real number. The following are equivalent:
(1) r is constructible.
(2) A line segment of length $|r|$ can be constructed in a finite number of steps starting with the constructed points $(0,0)$ and $(1,0)$.

Proof.
(1) \Rightarrow (2) : If r is constructible, then the line segment from $(0,0)$ to $(|r|, 0)$ has length $|r|$.
(2) \Leftarrow (1) Suppose $\overline{A B}$ is a line segment of length $|r|$. Translate $\overline{A B}$ to $\overline{O C}$, where $O=$ origin. Draw circle centered at O going through C. This intersects the x-axis at the point $(|r|, 0)$.

Properties of Constructible Numbers

Closure under Negation

Consider below diagram:

$-r$ is one of $|r|$ or $-|r|$.

Properties of Constructible Numbers

Closure under Addition

For $r, s \geq 0$, the above construction shows $r+s$ and $r-s$ are constructible. If r is negative, then

$$
r+s=-((-r)+(-s))
$$

Properties of Constructible Numbers

Closure under Multiplication

For $r, s \geq 0$, the above construction shows there is a line segment of length $r \cdot s$.
If either r or s are negative, then

$$
r \cdot s=-((-r) \cdot s)=-(r \cdot(-s))=(-r) \cdot(-s)
$$

Properties of Constructible Numbers

Closure under Reciprocation

For $r>0$, the above construction shows there is a line segment of length $1 / r$. If $r<0$, then

$$
\frac{1}{-r}=-\frac{1}{r}
$$

Properties of Constructible Numbers

Closure under Square Roots

We construct the circle of radius $\frac{1+r}{2}$ centered at $\left(\frac{r-1}{2}, 0\right)$. This circle intersects the y-axis at $(0, \pm \sqrt{r})$.

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:
(1) r is constructible.

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:
(1) r is constructible.
(2) r is the result of starting with 0 and 1 and applying the operations of addition, subtraction, multiplication, division, and taking square roots.

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:
(1) r is constructible.
(2) r is the result of starting with 0 and 1 and applying the operations of addition, subtraction, multiplication, division, and taking square roots.

Proof.

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:
(1) r is constructible.
(2) r is the result of starting with 0 and 1 and applying the operations of addition, subtraction, multiplication, division, and taking square roots.

Proof.
(2) \Rightarrow (1) Previously shown that the set of constructible numbers is closed under the given operations. 0,1 are defined to be constructible.

The Structure of Constructible Numbers

Theorem

Suppose r is a real number. The following are equivalent:
(1) r is constructible.
(2) r is the result of starting with 0 and 1 and applying the operations of addition, subtraction, multiplication, division, and taking square roots.

Proof.
(2) \Rightarrow (1) Previously shown that the set of constructible numbers is closed under the given operations. 0,1 are defined to be constructible.
(1) \Rightarrow (2) Must analyze three kinds of intersections:

- two lines
- a circle and a line
- two circle

How Constructed Points Arise

Intersection of two Lines
Suppose ℓ_{1}, ℓ_{2} are the lines

$$
\begin{aligned}
& \ell_{1} a_{1} x+b_{1} y=c_{1} \\
& \ell_{2} a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

How Constructed Points Arise

Intersection of two Lines

Suppose ℓ_{1}, ℓ_{2} are the lines

$$
\begin{aligned}
& \ell_{1} a_{1} x+b_{1} y=c_{1} \\
& \ell_{2} a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

At least one of a_{1}, b_{1} are $\neq 0$, say $a_{1} \neq 0$. Then

$$
a_{1} x+b_{1} y=c_{1} \Leftrightarrow x=\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y
$$

How Constructed Points Arise

Intersection of two Lines

Suppose ℓ_{1}, ℓ_{2} are the lines

$$
\begin{aligned}
& \ell_{1} a_{1} x+b_{1} y=c_{1} \\
& \ell_{2} a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

At least one of a_{1}, b_{1} are $\neq 0$, say $a_{1} \neq 0$. Then

$$
a_{1} x+b_{1} y=c_{1} \Leftrightarrow x=\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y
$$

so

$$
a_{2}\left(\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y\right)+b_{2} y=c_{2}
$$

How Constructed Points Arise

Intersection of two Lines

Suppose ℓ_{1}, ℓ_{2} are the lines

$$
\begin{aligned}
& \ell_{1} a_{1} x+b_{1} y=c_{1} \\
& \ell_{2} a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

At least one of a_{1}, b_{1} are $\neq 0$, say $a_{1} \neq 0$. Then

$$
a_{1} x+b_{1} y=c_{1} \Leftrightarrow x=\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y
$$

so

$$
a_{2}\left(\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y\right)+b_{2} y=c_{2}
$$

This is linear in y.

How Constructed Points Arise

Intersection of two Lines

Suppose ℓ_{1}, ℓ_{2} are the lines

$$
\begin{aligned}
& \ell_{1} a_{1} x+b_{1} y=c_{1} \\
& \ell_{2} a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

At least one of a_{1}, b_{1} are $\neq 0$, say $a_{1} \neq 0$. Then

$$
a_{1} x+b_{1} y=c_{1} \Leftrightarrow x=\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y
$$

so

$$
a_{2}\left(\frac{c_{1}}{a_{1}}-\frac{b_{1}}{a_{1}} y\right)+b_{2} y=c_{2}
$$

This is linear in y.
Thus, x and y are obtained from $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ using the operations of addition, subtraction, multiplication, and division.

How Constructed Points Arise

Intersection of a Circle and Line

Suppose C is the circle

$$
C: \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

How Constructed Points Arise

Intersection of a Circle and Line

Suppose C is the circle

$$
C: \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and ℓ is the line

$$
\ell: \quad a x+b y=c
$$

where h, k, r, a, b, c are numbers which have already been constructed.

How Constructed Points Arise

Intersection of a Circle and Line

Suppose C is the circle

$$
C: \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and ℓ is the line

$$
\ell: \quad a x+b y=c
$$

where h, k, r, a, b, c are numbers which have already been constructed. Then either $a \neq 0$ or $b \neq 0$. Say $a \neq 0$, so

$$
a x+b y=c \Leftrightarrow x=\frac{c}{a}-\frac{b}{a} y
$$

How Constructed Points Arise

Intersection of a Circle and Line

Suppose C is the circle

$$
C: \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and ℓ is the line

$$
\ell: \quad a x+b y=c
$$

where h, k, r, a, b, c are numbers which have already been constructed. Then either $a \neq 0$ or $b \neq 0$. Say $a \neq 0$, so

$$
a x+b y=c \Leftrightarrow x=\frac{c}{a}-\frac{b}{a} y
$$

Substituting into the equation for C gives a quadratic equation in y.

How Constructed Points Arise

Intersection of a Circle and Line

Suppose C is the circle

$$
C: \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and ℓ is the line

$$
\ell: \quad a x+b y=c
$$

where h, k, r, a, b, c are numbers which have already been constructed. Then either $a \neq 0$ or $b \neq 0$. Say $a \neq 0$, so

$$
a x+b y=c \Leftrightarrow x=\frac{c}{a}-\frac{b}{a} y
$$

Substituting into the equation for C gives a quadratic equation in y. Thus, x and y are obtainable from h, k, r, a, b, c using the operations of addition, subtraction, multiplication, division, and taking square roots.

How Constructed Points Arise

Intersection of Circles

Suppose C_{1}, C_{2} are circles

$$
\begin{aligned}
& C_{1}:\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}=r_{1}^{2} \\
& C_{2}:\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}=r_{2}^{2}
\end{aligned}
$$

where $h_{1}, k_{1}, h_{2}, k_{2}, r_{1}, r_{2}$ are numbers which have already been constructed.

How Constructed Points Arise

Intersection of Circles

Suppose C_{1}, C_{2} are circles

$$
\begin{aligned}
& C_{1}:\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}=r_{1}^{2} \\
& C_{2}:\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}=r_{2}^{2}
\end{aligned}
$$

where $h_{1}, k_{1}, h_{2}, k_{2}, r_{1}, r_{2}$ are numbers which have already been constructed.
Then

$$
\begin{aligned}
\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}-r_{1}^{2} & =\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}-r_{2}^{2} \\
x^{2}-2 h_{1} x+h_{1}^{2}+y^{2}-2 k_{1} y+k_{1}^{2}-r_{1}^{2} & =x^{2}-2 h_{2} x+h_{2}^{2}+y^{2}-2 k_{2} y+k_{2}^{2}-r_{2}^{2} \\
2\left(h_{2}-h_{1}\right) x+\left(h_{1}^{2}+k_{1}^{2}-r_{1}^{2}\right) & =2\left(k_{1}-k_{2}\right) y+\left(h_{2}^{2}+k_{2}^{2}-r_{2}^{2}\right) \\
a x+b y & =c
\end{aligned}
$$

where $a=2\left(h_{2}-h_{1}\right), b=2\left(k_{2}-k_{1}\right)$, and $c=h_{1}^{2}-h_{2}^{2}+k_{1}^{2}-k_{2}^{2}+r_{2}^{2}-r_{1}^{2}$. This reduces to the case of a circle and a line.

How Constructed Points Arise

Intersection of Circles

Suppose C_{1}, C_{2} are circles

$$
\begin{aligned}
& C_{1}:\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}=r_{1}^{2} \\
& C_{2}:\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}=r_{2}^{2}
\end{aligned}
$$

where $h_{1}, k_{1}, h_{2}, k_{2}, r_{1}, r_{2}$ are numbers which have already been constructed.
Then

$$
\begin{aligned}
\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}-r_{1}^{2} & =\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}-r_{2}^{2} \\
x^{2}-2 h_{1} x+h_{1}^{2}+y^{2}-2 k_{1} y+k_{1}^{2}-r_{1}^{2} & =x^{2}-2 h_{2} x+h_{2}^{2}+y^{2}-2 k_{2} y+k_{2}^{2}-r_{2}^{2} \\
2\left(h_{2}-h_{1}\right) x+\left(h_{1}^{2}+k_{1}^{2}-r_{1}^{2}\right) & =2\left(k_{1}-k_{2}\right) y+\left(h_{2}^{2}+k_{2}^{2}-r_{2}^{2}\right) \\
a x+b y & =c
\end{aligned}
$$

where $a=2\left(h_{2}-h_{1}\right), b=2\left(k_{2}-k_{1}\right)$, and $c=h_{1}^{2}-h_{2}^{2}+k_{1}^{2}-k_{2}^{2}+r_{2}^{2}-r_{1}^{2}$.

How Constructed Points Arise

Intersection of Circles

Suppose C_{1}, C_{2} are circles

$$
\begin{aligned}
& C_{1}:\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}=r_{1}^{2} \\
& C_{2}:\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}=r_{2}^{2}
\end{aligned}
$$

where $h_{1}, k_{1}, h_{2}, k_{2}, r_{1}, r_{2}$ are numbers which have already been constructed.
Then

$$
\begin{aligned}
\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}-r_{1}^{2} & =\left(x-h_{2}\right)^{2}+\left(y-k_{2}\right)^{2}-r_{2}^{2} \\
x^{2}-2 h_{1} x+h_{1}^{2}+y^{2}-2 k_{1} y+k_{1}^{2}-r_{1}^{2} & =x^{2}-2 h_{2} x+h_{2}^{2}+y^{2}-2 k_{2} y+k_{2}^{2}-r_{2}^{2} \\
2\left(h_{2}-h_{1}\right) x+\left(h_{1}^{2}+k_{1}^{2}-r_{1}^{2}\right) & =2\left(k_{1}-k_{2}\right) y+\left(h_{2}^{2}+k_{2}^{2}-r_{2}^{2}\right) \\
a x+b y & =c
\end{aligned}
$$

where $a=2\left(h_{2}-h_{1}\right), b=2\left(k_{2}-k_{1}\right)$, and $c=h_{1}^{2}-h_{2}^{2}+k_{1}^{2}-k_{2}^{2}+r_{2}^{2}-r_{1}^{2}$. This reduces to the case of a circle and a line.

Some Algebra Background

Proposition

Suppose r is a root of the irreducible polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each a_{k} is a root of an irreducible polynomial p_{k} with rational coefficients. Then r is the root of an irreducible polynomial with rational coefficients.

Some Algebra Background

Proposition

Suppose r is a root of the irreducible polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each a_{k} is a root of an irreducible polynomial p_{k} with rational coefficients. Then r is the root of an irreducible polynomial with rational coefficients.
Moreover, the degree of that irreducible polynomial divides $n \cdot \operatorname{deg}\left(p_{0}\right) \cdots \operatorname{deg}\left(p_{n}\right)$.

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Proof.
Induction on the number k of square roots used to construct r.

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Proof.

Induction on the number k of square roots used to construct r. If $k=0, r$ is rational. Hence root of linear equation (degree $1=2^{0}$).

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Proof.

Induction on the number k of square roots used to construct r. If $k=0, r$ is rational. Hence root of linear equation (degree $1=2^{0}$). Induction hypothesis: assume true for constructible numbers using k square roots.

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Proof.

Induction on the number k of square roots used to construct r. If $k=0, r$ is rational. Hence root of linear equation (degree $1=2^{0}$). Induction hypothesis: assume true for constructible numbers using k square roots.
Suppose r uses $k+1$ square roots, so $r=a+b \sqrt{c}$ where a, b, c use at most k square roots. Then r is a root of the quadratic

$$
(x-a)^{2}-b^{2} c
$$

Application to Constructibility

Corollary

Suppose r is constructible. Then r is the root of an irreducible polynomial with rational coefficients of degree 2^{n} for some n.

Proof.

Induction on the number k of square roots used to construct r. If $k=0, r$ is rational. Hence root of linear equation (degree $1=2^{0}$). Induction hypothesis: assume true for constructible numbers using k square roots.
Suppose r uses $k+1$ square roots, so $r=a+b \sqrt{c}$ where a, b, c use at most k square roots. Then r is a root of the quadratic

$$
(x-a)^{2}-b^{2} c
$$

Proposition implies r is root of an irreducible polynomial with rational coefficients with degree dividing

$$
2 \cdot 2^{k} \cdot 2^{k} \cdot 2^{k}=2^{3 k+1}
$$

Impossibility of Squaring the Circle

Corollary

Using ruler-and-compass constructions, it is not possible to square the circle, i.e. create a square with the same area as a unit circle.

Impossibility of Squaring the Circle

Corollary

Using ruler-and-compass constructions, it is not possible to square the circle, i.e. create a square with the same area as a unit circle.

Proof.
Squaring the circle is possible if and only if $\sqrt{\pi}$ is constructible.

Impossibility of Squaring the Circle

Corollary

Using ruler-and-compass constructions, it is not possible to square the circle, i.e. create a square with the same area as a unit circle.

Proof.
Squaring the circle is possible if and only if $\sqrt{\pi}$ is constructible.
But if $\sqrt{\pi}$ is constructible, it is the root of a polynomial.

Impossibility of Squaring the Circle

Corollary

Using ruler-and-compass constructions, it is not possible to square the circle, i.e. create a square with the same area as a unit circle.

Proof.
Squaring the circle is possible if and only if $\sqrt{\pi}$ is constructible.
But if $\sqrt{\pi}$ is constructible, it is the root of a polynomial.
π is transcendental, not the root of any polynomial, so neither is $\sqrt{\pi}$.

Impossibility of Doubling the Cube

Corollary

Using ruler-and-compass constructions, it is not possible to construct a main diagonal of a unit cube.

Impossibility of Doubling the Cube

Corollary

Using ruler-and-compass constructions, it is not possible to construct a main diagonal of a unit cube.

Proof.
Doubling the cube is possible if and only if $\sqrt[3]{2}$ is constructible.

Impossibility of Doubling the Cube

Corollary

Using ruler-and-compass constructions, it is not possible to construct a main diagonal of a unit cube.

Proof.
Doubling the cube is possible if and only if $\sqrt[3]{2}$ is constructible.
If $\sqrt[3]{2}$ is constructible, it is the root of a polynomial $p(x)$ with rational coefficients of degree 2^{n} for some n.

Impossibility of Doubling the Cube

Corollary

Using ruler-and-compass constructions, it is not possible to construct a main diagonal of a unit cube.

Proof.
Doubling the cube is possible if and only if $\sqrt[3]{2}$ is constructible.
If $\sqrt[3]{2}$ is constructible, it is the root of a polynomial $p(x)$ with rational coefficients of degree 2^{n} for some n.

But $\sqrt[3]{2}$ is also the root of the irreducible polynomial $x^{3}-2$, so $x^{3}-2$ must divide $p(x)$. This is impossible since 3 does not divide 2^{n}.

Impossibility of Trisecting Arbitrary Angles

Corollary

Using ruler-and-compass constructions, it is not always possible to trisect an arbitrary constructible angle.

Impossibility of Trisecting Arbitrary Angles

Corollary

Using ruler-and-compass constructions, it is not always possible to trisect an arbitrary constructible angle.

Proof.

If trisecting arbitrary angles is possible, then a 20° angle in primary position can be constructed since a 60° angle in primary position can be constructed. This angle intersects the unit circle at $\left(\cos \frac{\pi}{9}, \sin \frac{\pi}{9}\right)$. Suffices to show $\cos \frac{\pi}{9}$ is not constructible.

Impossibility of Trisecting Arbitrary Angles

Corollary

Using ruler-and-compass constructions, it is not always possible to trisect an arbitrary constructible angle.

Proof.

If trisecting arbitrary angles is possible, then a 20° angle in primary position can be constructed since a 60° angle in primary position can be constructed. This angle intersects the unit circle at $\left(\cos \frac{\pi}{9}, \sin \frac{\pi}{9}\right)$. Suffices to show $\cos \frac{\pi}{9}$ is not constructible.

The triple angle formula $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ implies that $\cos \frac{\pi}{9}$ is a root of the cubic $4 x^{3}-3 x-\frac{1}{2}$. But 3 does not divide 2^{n} for any n, so $\cos \frac{\pi}{9}$ cannot be constructible.

