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Introduction

Adjacency Matrices are a convenient way of representing directed graphs.
In practice Incidence Matrices are readily obtained from raw data.
The standard approach to getting an adjacency matrix from incidence

matrices Eqgyut, Ein is via
A=E! E,

out
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Introduction

Real-world data need not be in the form of a matrix.

@ The column and row indices need not be positive integers.

= They can be arbitrary key sets Kj and K.

@ The values need not be 0 and 1 nor do + and x need be defined on
those values.

= They can be taken from a set of values V with binary
operations @ and ®.

e.g. Ki contains song identifiers, K> contains song properties (length,
album, artist, etc), V contains strings with ordered lexicographically,
@ =max, ® =min, 0 = a, 1 = co.
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Introduction

Notation

@ G is a directed multigraph with
o vertex set K,y U Kin where
o K,ut consists of vertices which are sources of edges and
e Ki, consists of vertices which are targets of edges, and
o edge set K.
Assume every vertex is either a source or a target, and that
Kout U Kin and K are finite and totally-ordered.

@ V is some set with two binary operations @& and ® with (unequal)
identity elements 0 and 1, resp.
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Definitions

An associative array is a map A: K1 xK, — V.
Given associative arrays

A: K1><K3 -V
B: KsxKy =V,

their array product
C=A2.2B=AB

is an associative array K1 x K, — V defined by

Clki, ko) = D Alki, ks) © B(ks, k2)
k3€K3
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Definitions

Given G directed multigraph,

o A: Ky X Kin — V is an adjacency array if A(x,y) # 0 if and only if
there is an edge from x to y.

@ Eoy : KxKouy — V is a source incidence array if Eqoyi(k, x) # 0 if
and only if k is an edge from x.

e Ei, : KxKi, — V is a target incidence array if Ei,(k,y) # 0 if and
only if k is an edge into y.

(Note the use of “a"; incidence or adjacency arrays are not necessarily
unique.)
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Results

A natural question is whether ET  E;, is an adjacency array for general
@0, ®.

Theorem
Suppose V' a set with binary operations &, ® with identities 0,1, 0 #£ 1.
The following are equivalent:
@ @ and ® satisfy the properties:
o Zero-Sum-Free: a® b =0 if and only if a= b= 0.
e No Zero Divisors: a® b = 0 implies at least one of a, b is 0.
e 0 Annihilates: a® 0 =0® a =0 for all a.
@ If G a directed multigraph with incidence arrays Eqyu, Ein, then
E!.Ein is an adjacencey array.
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Proof Sketch: @ — @

Assume @, ® satisfy hypotheses of @ .

A = E! .E;, being an adjacency array is equivalent to

for all k € K,

@ Eout(k,X)(X)Ein(k,_)/) =0 — Eout(k,X) =0or Ein(k7y) =0

kek

@ Forward implication follows from “Zero-Sum-Free” followed by “No
Zero Divisors”.

@ Backward implication follows from “0 Annihilates”.

Jananthan, Dibert, Kepner Constructing Adjacency Arrays May 28, 2017 10 / 21



Proof Sketch: @ = @ (Zero-Sum-Free)
Assume that @ holds.

For sake of a contradiction, suppose v, w are non-zero and
vew=20

Construct graph and incidence arrays such that E! (E;, is not an
adjacency array.

ki . ,
X : y ki 14 ki 1
k2 Eout - Ky |: w :| ElIl — ky |: 1 :|

Then
El En(x,y)=(v@1)d(w®l)=vdw=0

a contradiction.
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Proof Sketch: @ = @ (No Zero Divisors)
Assume that @ holds.

For sake of a contradiction, suppose v, w are non-zero and
vew=20

Construct graph and incidence arrays such that E! (E;, is not an
adjacency array.

Then
ElEn(x,x)=vew=0

a contradiction.
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Proof Sketch: @ = @ (0 Annihilates)

Assume that @ holds.

Suppose v # 0. Construct graph and incidence arrays

y kl X y z x 'y z
k2< X k [v 00 k [0 v O
Eout:kg 0 v O Ein:kz 0 0 v

Z{ k|0 0 v k| v 0 0

Then no edge from x to x means
ESutEn(x,x) = (v 0)® (0©0)® (0@ v) =0
Zero-Sum-Free implies v®@0=0®0=0® v = 0.
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Proof Sketch

Further Results

Corollary
Suppose V' a set with binary operations @, ® with identities 0,1, 0 # 1.
The following are equivalent:

@ & and ® satisfy the properties:

e Zero-Sum-Free: a® b= 0 if and only ifa= b= 0.

e No Zero Divisors: a® b = 0 implies at least one of a, b is 0.
e 0 Annihilates: a@0=0® a =0 for all a.

Q If G a directed graph with incidence arrays Eoyt, Ein then EIlEout is
an adjacencey array of the reverse of G.

Proof Sketch.

Taking the reverse switches the roles of Eyy and E;y.
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Example

Consider the following associative array E of data from a music database

with selected subarrays E; and E,.
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E, = E(:, WriterlA : WritelZ ')
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E, = E(:,GenrelA : GenrelZ ")
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031013kinAT 1 031013kinA1 11
053013kinAT | 1 053013KinA1 11
. 053013ktnA2 | 1 053013ktnA2 | 1
E; and E»> can be considered 063012kinA1 1 063012ktnA1 11
063012ktnA2 1 063012ktnA2 11
063012kinA3 1 063012ktnA3 11
as source and target 063012kinA4 1 063012ktnA4 11
I : 063012KinA5 1 063012ktnAS 11
incidence arrays, respectively.  Gg3gioana; 1 082812KinAT 111
082812kinA2 1 082812ktnA2 11
082812kinA3 1 082812ktnA3 11
082812kinA4 1 082812ktnAd 11
082812ktnA5 1 082812ktnAS 111
082812ktnAG 1 082812ktnAG 11
093012kinAT | 1 1 093012ktnA1 11
093012kinA2 | 1 1 093012ktnA2 11
093012kinA3 | 1 1 093012ktnA3 141
093012kinA4 | 1 1 093012ktnAd 11
093012kinA5 | 1 1 093012ktnA5 11
093012kinA6 | 1 1 093012ktnA6 11
093012ktnA7 | 11 093012ktnA7 11
093012ktnA8 11

Jananthan, Dibert, Kepner Constructing Adjacency Arrays May 28, 2017 17 /21



Values of Eq, E; are £ E
non-negative reals (with Lo 2
possibly 00). g omec g
E-lrEz calculated under several 1 min+ 2
pairs of operations @, ®:
’ ElT max.min E2
T
El min.max E2
T max.X
El min.x E2
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zz=z=23
GenrelElectronic[ T 7 7 2 1
GenrelPop 1313 3
GenrelRock 6 6 1
GenrelElectronic[ 2 2 2 2 2
GenrelPop 2 2 2
GenrelRock 2 2 2
GenrelElectronic [T 1 1 1 1
GenrelPop 111
GenrelRock 111
GenrelElectronic [ T T 1T 1T T
GenrelPop 111
GenrelRock 11 1
GenrelElectronic[ T 1T 1T 1T 1
GenrelPop 111
GenrelRock 1 1 1
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What algebraic properties are necessary and sufficient when restricting to
smaller classes of directed graphs?

@ For example, directed graphs without multiple edges:

Conjecture
Suppose &, ® are binary operations on V' with additive identity 0. Then
the following are equivalent:

@ V has no zero divisors and 0 is an annihilator.

@ If G is a directed graph (without multiple edges) and E.y, Ei,, are incidence

arrays, then E! Ei, is an adjacency array.

v

@ What about undirected graphs?
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Is the existence of 1 necessary?

What properties does 0 necessarily have without assuming it is the
additive identity?

Any way to reflect other structures of the graph (weights, counting of
multiple edges, etc) and still be compatible with forming the product
El (Ein?

out
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