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Previous Results

Theorem (Posner-Robinson 1981)
Suppose 0 <1 Z <1 A and 0’ <1 A. Then there exists B such that

AETB/ETB@ZETB@OI

The proof is relatively straight-forward.

Theorem (Kumabe & Slaman 1999)

Suppose Z is not arithmetical and Z <1 A and 0) <1 A. Then there
exists B such that

A=p B = B® Z =1 Ba 0W
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The Main Result

Theorem
Suppose 0 <gvp Z <1 A and O <1 A. Then there exists B such that

A=r OB =1B®Z=rBa0O

The proof is more difficult than the classical version.

Theorem

Suppose 2y, 21, 2>, . .. is a sequence of non-hyperarithmetical reals which
is recursive in A, where O <1 A. Then there exists B such that

AETOBETBEBZkET B O

for every k € N.

We present an unpublished proof due to Slaman using Kumabe-Slaman
forcing.
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0 Recursion Theory Background

© Hyperarithmetical Theory Background

© Turing Functionals and Kumabe-Slaman Forcing

@ Proof of the Main Results
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Notation

Baire Space — NN with the product topology

Cantor Space — 2N = {0, 1}V with the product topology

Partial Function — f :C A — B is a function f : C — B with
domf=CCA

f(a)l <= f(a) converge/is defined <= acdomf
f(a)t <= f(a) diverges/is undefined <= a¢ domf

f(x) ~ g(x) means either both f(x) and g(x) converge and
are equal, else they both diverge

Strings — S* is the set of strings of elements in S.

@ If si,...,5, €S, then 0 = (s1,...,s,) € S* is defined
by o(k) = skt+1. () is the empty string.

o |o| =domao, i.e. |(s1,...,5n)| = n.

o <51,...,S,,>A<Z‘1,...,tm> = <S]_,...,Sn,t1,...,tm>.

eocCrifo=1]]ol.
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Partial Recursive Functions

Definition (Partial Recursive)

Suppose f :C N¥ — N is given.
f is partial recursive <> f is algorithmically computable

where ‘algorithm’ is interpreted in your favorite programming language.

If e is the Godel number of such an algorithm, write

gogk)(ml, ceeymi) >~ f(my, ..., myg)

We call e an index of f.
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Partial Recursive Functionals

Definition (Partial Recursive)

Suppose W :C NN x Nk — N s given.
V js partial recursive <= V s algorithmically computable

where ‘algorithm’ now includes oracle/black-box computations that make
use of the function parameter.

If e is the Godel number of such an algorithm, write

P (my, i) = W my, L my)

We call e an index of V.
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Turing Reducibility, Equivalence, and Degrees

Definition (Turing Reducibility)
Suppose f,g € NN. The Turing reducibility preorder <t is defined by

f <t g <= f is algorithmically computable using oracle g

<~ = gogl)’g for some e

f and g are Turing equivalent, f =t g, if and only if f <t g and
g <t f. =7 is an equivalence relation.

Can similarly define g-computability (g € NV) for partial functions or
predicates.

Definition (Turing Degree)

Suppose f € NN, The Turing degree associated with f is

degp(f) ={g e NV | f =1 g}
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Basic Results

Suppose f,g € NN. The join f @ g € NN is defined by

(f ©g)(2n) = f(n)
(fog)2n+1)=g(n)

Proposition

sup(degry(f),degr(g)) = degr(f) V degr(g) = degr(f © g)

Proposition

There exists X € 2V such that f =p X.
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Relativized Arithmetical Hierarchy

Suppose X € 2N,

Definition

Zg’x = I'Ig’x = Ag’x = {R| R C (N")* x N® an X-recursive predicate}

0% ={S|S(-) = 3nR(n,—) for R € N%X}
N ={S|S(~) =VnR(n,~) for R € 5%}
B = T A [T

where quantifiers range over N. If X is recursive, we drop mention of X,

I.e. Z?,’X = Z?, and I'I?,’X = I'I%.
S is X-arithmetical if S is Z,,’X for some n.

Proposition

S C (NMY* x N* is X-recursive if and only if S is A(l)’x.
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Turing Jump Operator

Suppose X, Y € 2N,

Definition
The Turing jump of X is defined by X' = {e € N | o{)%(0) 1}. J

l.e. X’ is the Halting problem for programs with oracle X.

Theorem

X' is a complete ):(l)’x set, i.e. if S C N is another zg,x set then there is a
recursive f such that x € S if and only if f(x) € X'.

v

Corollary
Q X<r X'.
Q@ X <t Y implies X' <t Y'.
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N9 Classes

A 9 subset of 2 is a MY class.
They have an effective enumeration

Pe = {X €2 | ot"(0) 1}

Proposition

© P C 2V isNY if and only if P is the set of paths through some
recursive subtree of {0,1}*.

Q@ ForXe2V X' ={eeN|XeP.}.
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Basis Theorems for M9 Classes
Let P # () be a N? class.

Theorem (Kleene Basis Theorem)
There exists B € P such that B <1 0. J

This can be substantially strengthened:

Theorem (Jump Inversion)

Suppose P is special, i.e. contains no recursive elements. Then for every
A >1 0, there exists B € P such that

AET B/ET B@O/

In a different direction:

Theorem (Jockusch-Soare Basis Theorem)
If 0 <1 Z, then there exists B € P such that Z <1 B. }

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyper: July 8, 2019 14 /52



Relativized Analytical Hierarchy

Suppose X € 2N

Definition

Ztl)’x = I'I(l)’x = Al’X = {R| R C (N)* x N an X-arithmetical predicate}

zij_‘l = {S|S(-) = 3FR(f,—) for R € NLX}
={S|S(-) =VfR(f,—) for R € X1X}

Al X Zl X N I—Il X

where quantifiers range over NN, If X is recursive, we drop mention of X,
ie. Ty =%1 and NEX =Nl
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Hyperarithmetical Reducibility
Suppose X, Y € 2N

Theorem (Kleene, Kreisel)

The following are equivalent:
Q X<t Y (@) for some recursive ordinal .
@ XCNisAPY.

© X is an element of any w-model of ZFC which contains Y .

Definition

Suppose X, Y € 2V, The hyperarithmetical reducibility preorder <pyp
is defined by declaring X <gvyp Y if any of the equivalent conditions
above hold.

X and Y are hyperarithmetically equivalent, X =yvp Y, if and only if
X <gvep Y and Y <ugyp X. =uyp Is an equivalence relation.

X is hyperarithmetical if X <gyp 0.
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Hyperjumps

Is there is a hyperarithmetical analogue of the Turing jump operator?
1,X
Perhaps a complete ¥ set?

It ends up the I'I}’X sets are a better analogy for Z(l)’x sets both
structurally and in terms of the properties they satisfy.

Definition
The hyperjump of X is a fixed complete I'I}’X set OX C N (uniform in

X), i.e. if S C N is another I'Ii’X set then there is a recursive f such that
x € S if and only if f(x) € OX.

Proposition

Q X <uyp 0%
Q X SHYP Y imp/ies OX ST OY.
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>1 Classes

A ¥1 subset of 2 is a ¥1 class.
Proposition

Is S C 2N is X1, then there is a N? subset P of NN such that

S(X)=3FP(X & f)

Letting Pe = {f € NV | go(el)’f(O) 1}, they have an effective enumeration

P:={Xe2V|IF(X@fcP)}

Proposition

OX=r{eeN| X e P} J
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Basis Theorems for 31 Classes

Let K be a non-empty Z{ subset of 2.

Theorem (Gandy Basis Theorem)
There exists B € K such that B <gyp O and B <t O.

Theorem (Hyperjump Inversion)

Suppose K is special, i.e. contains no hyperarithmetical elements. Then
for every A >1 O, there exists B € K such that

AETOBETBEBO

Theorem (Kreisel Basis Theorem)

If Z is not hyperarithmetical, then there exists B € K such that
Z fHYP B.
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The Analogy between Recursion and Hyperarithmetical

Theory

Recursion Theory

Hyperarithmetical Theory

Arithmetical Hierarchy
Recursive = A9
Turing reducibility
ng
Turing jump

First-Order Logic
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Analytical Hierarchy
Hyperarithmetical = Al
Hyperarithmetical reducibility
i
Hyperjump

w-logic
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The Main Result

Theorem

Suppose 2y, Z1, 2o, . .. is a sequence of non-hyperarithmetical reals which
is recursive in A, where O <1 A. Then there exists B such that

= O = 8@ 7 = B DO

for every k € N.

The desired B will be a particular generic Turing functional.
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Turing Functionals

Definition (Turing Functional)

A Turing functional is a subset ® C N x {0,1} x {0,1}* such that if
(x,¥1,01), (X, y2,02) € ® and 01,02 are compatible, then y; = y> and
01 = 092.

An element of ® is called a computation.

Note that a Turing functional @ is not necessarily recursive or even
recursively enumerable.

We shall be interested in non-recursive Turing functionals and finite Turing
functionals.
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Computations along Reals

Let ® be a Turing functional and Z € 2N.

Definition (Computations along a Real)

(x,y,0) € ® is a computation along Z if o C Z, written
®(Z2)(x) =y

If for every x € N there is y € {0,1} such that $(Z)(x) =y, then ®(Z)
defines an element of 2V.

Lemma
Suppose ®(Z) is total (i.e. ®(Z) € 2Y). Then ®(Z) <1 ¢ @ Z.
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Outline of the Proof

Suppose Zy, Z1, Za, .. . is a sequence of distinct non-hyperarithmetical reals
which is recursive in A. Without loss of generality, O # Z; for every k.

© Take a (code for an) countable w-model M of ZFC which omits
0,2y,21,25, ... and has OM =1 A.

@ Force over M using Kumabe-Slaman forcing to produce a generic
Turing functional ® with the following properties:

o ®(Zy) =1 O for each k
) q)(O) =7 A

The construction of ® will be recursive in A.
@ Conclusion: for each k

A=r P(0) <1 PO <1 O =1 O(Z) <r ®P Z <1 A

so there is Turing equivalence throughout.
B = ® is the desired real.
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A Basis Theorem for Special ¥] Classes

To get our countable w-model M, we will need the following basis
theorem, which combines the Kreisel Basis Theorem and Hyperjump
Inversion in a special X1 class:

Theorem

Suppose K is a special Z} class (so non-empty and K NHYP = () and
20,21, 22, ... is a sequence of non-hyperarithmetical reals which is
recursive in A >t O. Then there exists B € K such that

A= ©F = B@ 0O

and such that Zy £yyp B for every k € N.

The proof uses some methods due to Gandy and Kreisel.

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hype July 8, 2019

27 /52



Corollary

Suppose 2y, Z1, 2o, . .. is a sequence of non-hyperarithmetical reals which
is recursive in A >1 O. Then there exists a (code for a) countable
w-model M of ZFC such that OM =1 A and Z, ¢ M for each k.

Proof.
The set of codes (w, E) for countable w-models of ZFC is a ¥} class. [

(We assume ZFC is w-consistent to ensure that there are countable
w-models of ZFC.)

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyper: July 8, 2019 28 /52



Proof Sketch:

Gandy-Harrington Forcing. Define sequence of non-empty Y1 subsets of K
K=Ki2Ki2Ky2---

with B € 72, K. Roughly, define K, to achieve the following effects:
e Control OB by deciding whether B € P
@ Encode A into OB.
e Arrange for Zyx Zuyp B.

Some subtleties:

@ Need to ensure ()2, Ky # (). Must build B and ‘witnesses’ that
B € K, for each n along the way.

e Some difficulties in arranging for Zx £uyp B, as enough of A may
not have been encoded to fulfill. Keep trying.
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A (Very) Brief Review of Forcing

The essential ingredients of forcing are the following:
e a model (M, eM) of ZFC,
@ a poset (P, <) (in M), and
@ an M-generic filter G of (P, <).

The result is a new model M[G] which ‘extends’ M.

The forcing relation p I 0(a;,. .., a,) between elements p € P and
sentences in the forcing language 6(a1, ..., a,) that allow M to think

about what its forcing extensions look like.

Extra subtlety: (M, €M) is not necessarily well-founded!
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Kumabe-Slaman Forcing

The following definition takes place in a countable w-model M of ZFC:

_ ® finite, use-monotone Turing functional,
P= {(q)’ X) ‘ X finite set of subsets of N }

Suppose p = ($p, X,) and g = (Pg, Xy). p < q if and only if
o &, C P,
o X, C Xq,
o if (Xg,¥q,0¢) € Pg\ Pp and (Xp, ¥p, 0p) € p, then |op| < |og], and
o for every x,y and X € X,, if ®4(X)(x) =y, then ®,(X)(x) = y.
In other words:
®g 2D P, Xg 2 X,

p < g < and all new computations are longer
and do not apply to elements of X,
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Generic Turing Functionals

Suppose G is an M-generic filter (in the sense of Kumabe-Slaman
Forcing). Then for every X € M,

ME (X CN) <= thereis p € G with X € X,

Thus, the essential parts of a generic filter G are the ®,.

Definition
® /s M-generic for P if and only if there exists a M-generic filter G

(x,y,0) € ® <= there exists p € G such that M = ((x",yM oM) € ®,)

(here we are making use of the fact that M is an w-model)

® may be identified with an element (®)¢ in M[G], where

ME(®={(p,¢) | pEPACcE D))

and ¢ is a canonical ‘name’ for c € M.
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An Extension Lemma

Lemma

Suppose M is an w-model of ZFC, D € M is dense in P € M, and
Xi,...,X, €2N. Then for any p € P, there is q > p such that g € D and
&, does not add any new computations along any Xj.

To prove the lemma, we will need the following notion:
7 € ({0,1}*)" is essential for (p, D) if any extension of p in D adds a
computation along a string compatible with a component of 7.

Define
To(p, D) = {7 € ({0,1}*)" | 7 essential for (p, D) and |r1| = --- = |7|}
Tn(p, D) is a finitely-branching tree in M.

Our proof will show that if the claim is false, then T,(p, D) is infinite.
This will provide a contradiction of the density of D.
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Proof.
Suppose otherwise, so every g > p has g ¢ D or g adds a new
computation along some Xj.

Claim 1: (X1 | m,..., X, | m) is essential for (p, D) for each m.
Proof. If g > p and g € D, by hypothesis there is g adds a computation
(x,y,0) along some Xi. Then o is compatible with X [ m. O

Claim 2: M thus has a path through T,(p, D) of the form

(Yo [m,..., Y, [ m)for Yi,..., Y, € M.

Proof. T,(p, D) is infinite. M is a model of ZFC, so the Weak Konig's
Lemma implies the existence of a path (7,)nen. Let Yi = U, cnTn(k). O

Let p1 = (®p, Xp U{Y1,..., Yn}) and suppose g > p1 with g € D. By
construction, for each m, there is (Xm, Ym,om) € ®q \ P, such that o, is
compatible with Yy [ m for some k. Letting m be sufficiently large yields
(x,y,0) € &g\ @, such that o C Y for some k. Contradiction.

Ol
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Proof of the Main Result: Outline Redux
Suppose 2y, Z1, Z>, . . . is a sequence of distinct non-hyperarithmetical reals
which is recursive in A. Without loss of generality, O # Z, for every k.
@ Take a (code for an) w-model M of ZFC which omits
0,2y,21, 25, ... and has OM =1 A.
Q Let Dy, Dy, D5, ... be an enumeration of the dense open subsets of P
in M recursive in A.
© Define a sequence

po<pL<p2< - S pp <

so that ® = [J;2, ®p,. Roughly, we do the following at Stage n:
Stage n = 2™: Meet the open dense set D,,.
Stage n = 2" -3: Arrange for ®(O0) =1 A.
Stage n = 2™ - 5K+ Arrange for ®(Z;) =1 O°.
All other stages n: Do nothing.
@ Conclusion: for each k

A=10(0) <1 P 0 <1 0% =0 O(Z) <1 d& Z, =1 A
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Proof of the Main Result: Stages n =2" and n=2"-3

Let po = (0, 0).
Suppose p,—1 has been constructed.

Stage n = 2™: By the Extension Lemma, there is p, € D, extending p,—1
which does not add any new computations along
0,2,...,2,.

Stage n =27 -3: Extend p,_1 to p, by adding (m, A(m), o), where
o C O is sufficiently long, i.e. longer than any existing
strings in elements of &, .

Stage n = 2™ - 5¥*1 involves similar ideas, but requires a case-analysis
based on what is forced about O°.
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Proof of the Main Result: Stage n = 27 . 5¢+1

If there is y and o C Zj such that (m,y,o) € &, _,, let p, = pp—1 and
proceed to the next stage. Otherwise, proceed as follows:
Recall one definition of OF:

OB =1 {m € N | m encodes a B-recursive well-ordering of w}

Define D = Dy LU Dy LI D3 where

Dlz{qGP

gl (m encodes ®-recursive linear order on w) A (m € Od’)l
Ada(a € OrdM A |m| = a) J

D> = {q e P| qlF ((m encodes -recursive linear order on w) A (m ¢ (’)d>))}

Ds = {q € P| qIF —=(m encodes ®-recursive linear order on w)}

D is dense.
By the Extension Lemma, take g € D extending p,—1 which does not add
any new computations along O, 2y, ..., Z,.
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Proof of Main Result: Stage n = 2™ - 5¥*1 continued

Extend q to p, by adding (m, y, o), where o C Zj is sufficiently long and
y depends on the following cases:

Case 1: g € Dy. Then
g I- ((m encodes ®-recursive linear order on w) A (m €
0®) A3a(a € Ord A |m| = a)). We break into two
subcases:
Case la: If avis actually an ordinal, set y = 1.
Case 1b: If a is not actually an ordinal, set y = 0.
Case 2: g € D>. Then .
q I- (m encodes ®-recursive linear order on w A m ¢ O®).
Set y =0.

Case 3: g € D3. Then g IF =(m encodes ®-recursive linear order on w).
Set y =0.

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyper: July 8, 2019 39/52



Proof of Main Result: Final Comments

The construction of ® is recursive in A: assuming p,_1 is given
© Stage n = 2™ is recursive in OM =1 A,
@ Stage n =2™ -3 is recursive in O <7 A,
© Stage n =27 .5k is recursive in OM @ D, Z <1 A and
@ all other stages are recursive.

This shows that ® <p A.

Finally, ®(Z) =1 O® as they only differ at finitely many places. Likewise,
®(0) =1 A

This justifies the string of Turing reductions and equivalences

A=r 0(0) <1020 <1 O =1 O(Z) <r ®B Z =1 A
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Open Questions

o What Z% classes K have the following property (and the stronger
version with a sequence replacing Z)?

Property

Suppose 0 <gvp Z <1 A and O <1 A. Then there exists B € K such
that
A=1 OB =1BoZ=x1Bo0O

o The e-th pseudo-hyperjump of X is HJ.(X) = X @ WX where WX
is the e-th I'Ii’x set. Does the following result hold?

Conjecture

Suppose 0 <pyp Z <1 A and O <t A. For every e, there exists B such
that
A= HJe(B) =rB®Z=rBaO
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Thank you!
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A Brief Review of Forcing — Basic Definitions
Suppose (M, M) E ZFC (not necessarily well-founded!) and

ME “(P,<) is a poset”.

Definition

Suppose D € M and ME (D C P),and GC{pe M| ME (pe€ P)}.
e D isdense if M (Vp € P)(3qg € D)(p < q).
e Disopenif ME (Vp,ge P)(pe DAp<gq)— qe D).

e G is afilter if it is upwards-closed and downwards-directed (as
evaluated in V).

e G is an M-generic filter if it is a filter and for every open dense set
D CM P there is p € G such that M & (p € D).

Suppose G is M-generic. Associate to each a € M a symbol a¢. Define

M[G] ={a¢ | a € M}
ac €¢ bg <= thereis p € G such that M E ((p, b) € a)

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hype July 8, 2019 43 /52



Some Differences from Forcing with Transitive Standard
Models

If M is transitive and standard, then

M[G] = smallest model of ZFC containing MU {G}

In general, we only get an embedding of MU {G} into M[G].

For a € M, define by transfinite recursion (in M) a to be the unique
element in M for which

ME(a=Px{b|bea})

a gives a canonical ‘name’ for a. a+— (a)c embeds M into M[G].
Likewise, define G to be the unique element in M for which

ME (G ={(p,p)|peEP})
(G)¢ embeds G into M[G], which is to say that

peEG < (p)6 €6 (G)q
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A Brief Review of Forcing — Forcing Relation

Definition (Forcing Language)

The forcing language consists of Lc along with constant symbols a for
each a e M.

M[G] E 6(a1,...,an) if and only if (a1, ..., an) is true in M[G], where
quantifiers range over M[G] and a1, ..., a, are interpreted as

(a1)6,-- - (an)c.

G allows us to talk about G without necessarily knowing what G is.

Definition (Forcing Relation)
Let p € P and 0 be a sentence of the forcing language.

pl- 0 < MI[G]E 0 for all M-generic filters G > p
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A Brief Review of Forcing — Basic Results

Suppose O(x1,...,x,) is a formula of Lc, M a countable model of ZFC,

and G is an M-generic filter of P.

Theorem (Definability of Forcing)

There is 0*(p, x1, . . ., Xn) such that, for every p € P and a1,...,am € M,

pl-6(a1,...,ay) < MEO*(p,ai1,...,an)

Theorem (Forcing Equals Truth)

For every a1, ...,a, € M, M[G] E (a1, ..., an) if and only if there is
p € G such that pl-6(a1,...,an).

Theorem

(M[G], €g) is a model of ZFC with the same ordinals as M (under the
embedding a — (a)¢).

v
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Tools needed for Proof of X1 Basis Theorem

Proposition

Suppose K is special £} class and T = {p € N* | (3X € K) (p C X)}. For
every o € T there are infinitely-many pairwise-incompatible o’ > o in T.
Moreover, the partial functions

o(n,e) ~ least o € T, with |o| = n
pn(0, €) =~ n-th extension o’ D o such that o’ € T,

are recursive in O, where Ty, T, ... is an effective enumeration of the
recursive subtrees of N*.

Proposition

Suppose K is a special ¥1 class, e € N, Z ¢ HYP, and b € O. There is a
- Y ~
special ¥} class K C K such that Z # go(el)’H" for every Y € K.

v

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hype July 8, 2019 47 /52



Proof.

We consider the following cases:

Y
Case 1: Suppose (IY € K) (<p2'b not total). Let

K= Kn{y e NV | 3n (o™ () 1)}

Case 2: Suppose Case 1 fails and
(1),Hy ! (1).Hy?
(3Y1, Y2 € K)(3m € N) (pe (m) # pe (m)). Let

R=Kn{Y eN | oM (m) £ 2(m)}

Y
Case 3: Otherwise, the common function h = <pr is a X1 singleton
and hence Al. Let
K=K

O]

v

Proof shows that an index of K is recursive in O @ Z as a function of an
index of K.
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Futher Details about ¥1 Basis Theorem Proof
We define sequences of special Z} subsets

K=Ky2Ki2---2K,2
strings
op € o1 C C op C
700 & 7m0 C C Tho C
01 & 7111 C C mo C

finite subsets of N
=hhhc---Cl,C--.

and j : N — N such that

= [V XIXDonAGF D mi) (X F € P}
kel,

*
Kn = Pin
Assume that j encodes all of the information from previous steps (i.e. a
course-of-values computation).
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Futher Details about Z% Basis Theorem Proof, Continued

WLOG, w{( = wch for all X € K.
Let é be such that K = P%.

Stage n = 0: Define

Ko =K oo = () Tok = () Jj(0)=¢€ lh = {€}

Stage n = 3e + 1. Take
K,=K,_1N P:
if that intersection is non-empty, and K, = K,,_1 otherwise,
with book-keeping.
Stage n = 3e 4+ 2: Encode A(e) into B by extending 0,1 to one of

infinitely-many pairwise-incompatible extensions which
extend to elements of K,,_1, with book-keeping.
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Futher Details about Z% Basis Theorem Proof, Continued

Stage n = 3bT1.5¢ .7k .11 Take
K, = K,

if enough of A has been encoded to carry out that
computation. Book-keeping analogous to Stage n = 3e + 1.
Virtually identical way to Stage 3e + 1, with replacements

P — Kn-1 e — index of K,_1

Otherwise, do nothing.
All Other Stages n: Do nothing.

This completes the construction.
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Futher Details about Z% Basis Theorem Proof, Continued

Let

BZUO’n and gk:Uka

new new
Observations:
e Stage n = 3e + 1 determines whether e € OB,

o Stage n = 3e + 2 encodes A(e) into B, recoverable from O (or j or

B® 0).
__ 2b+1 e k s (1)7HbB ]
@ Stage n =3°7".5%.7%.11° ensures Zx # we for sufficiently
large s.
@ Book-keeping ensures B & g, € K, for each n.

Entire construction is recursive in any one of j, A, OB, and B® O, so

jETAETOBETO@B
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