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Previous Results

Theorem (Posner-Robinson 1981)

Suppose 0 <T Z ≤T A and 0′ ≤T A. Then there exists B such that

A ≡T B ′ ≡T B ⊕ Z ≡T B ⊕ 0′

The proof is relatively straight-forward.

Theorem (Kumabe & Slaman 1999)

Suppose Z is not arithmetical and Z ≤T A and 0(ω) ≤T A. Then there
exists B such that

A ≡T B(ω) ≡T B ⊕ Z ≡T B ⊕ 0(ω)
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The Main Result

Theorem

Suppose 0 <HYP Z ≤T A and O ≤T A. Then there exists B such that

A ≡T OB ≡T B ⊕ Z ≡T B ⊕O

The proof is more difficult than the classical version.

Theorem

Suppose Z0,Z1,Z2, . . . is a sequence of non-hyperarithmetical reals which
is recursive in A, where O ≤T A. Then there exists B such that

A ≡T OB ≡T B ⊕ Zk ≡T B ⊕O

for every k ∈ N.

We present an unpublished proof due to Slaman using Kumabe-Slaman
forcing.
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Notation

Baire Space — NN with the product topology

Cantor Space — 2N = {0, 1}N with the product topology

Partial Function — f :⊆ A→ B is a function f : C → B with
dom f = C ⊆ A

f (a) ↓ ⇐⇒ f (a) converge/is defined ⇐⇒ a ∈ dom f
f (a) ↑ ⇐⇒ f (a) diverges/is undefined ⇐⇒ a /∈ dom f

f (x) ' g(x) means either both f (x) and g(x) converge and
are equal, else they both diverge

Strings — S∗ is the set of strings of elements in S .

If s1, . . . , sn ∈ S , then σ = 〈s1, . . . , sn〉 ∈ S∗ is defined
by σ(k) = sk+1. 〈〉 is the empty string.
|σ| = domσ, i.e. |〈s1, . . . , sn〉| = n.
〈s1, . . . , sn〉_〈t1, . . . , tm〉 = 〈s1, . . . , sn, t1, . . . , tm〉.
σ ⊆ τ if σ = τ � |σ|.
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Partial Recursive Functions

Definition (Partial Recursive)

Suppose f :⊆ Nk → N is given.

f is partial recursive ⇐⇒ f is algorithmically computable

where ‘algorithm’ is interpreted in your favorite programming language.

If e is the Gödel number of such an algorithm, write

ϕ
(k)
e (m1, . . . ,mk) ' f (m1, . . . ,mk)

We call e an index of f .
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Partial Recursive Functionals

Definition (Partial Recursive)

Suppose Ψ :⊆ NN × Nk → N is given.

Ψ is partial recursive ⇐⇒ Ψ is algorithmically computable

where ‘algorithm’ now includes oracle/black-box computations that make
use of the function parameter.

If e is the Gödel number of such an algorithm, write

ϕ
(k),f
e (m1, . . . ,mk) ' Ψ(f ,m1, . . . ,mk)

We call e an index of Ψ.
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Turing Reducibility, Equivalence, and Degrees

Definition (Turing Reducibility)

Suppose f , g ∈ NN. The Turing reducibility preorder ≤T is defined by

f ≤T g ⇐⇒ f is algorithmically computable using oracle g

⇐⇒ f = ϕ
(1),g
e for some e

f and g are Turing equivalent, f ≡T g , if and only if f ≤T g and
g ≤T f . ≡T is an equivalence relation.

Can similarly define g -computability (g ∈ NN) for partial functions or
predicates.

Definition (Turing Degree)

Suppose f ∈ NN. The Turing degree associated with f is

degT(f ) = {g ∈ NN | f ≡T g}
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Basic Results

Suppose f , g ∈ NN. The join f ⊕ g ∈ NN is defined by

(f ⊕ g)(2n) = f (n)

(f ⊕ g)(2n + 1) = g(n)

Proposition

sup(degT(f ), degT(g)) = degT(f ) ∨ degT(g) = degT(f ⊕ g)

Proposition

There exists X ∈ 2N such that f ≡T X .
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Relativized Arithmetical Hierarchy

Suppose X ∈ 2N.

Definition

Σ0,X
0 = Π0,X

0 = ∆0,X
0 = {R | R ⊆ (NN)k × N` an X -recursive predicate}

Σ0,X
n+1 = {S | S(−) ≡ ∃n R(n,−) for R ∈ Π0,X

n }

Π0,X
n+1 = {S | S(−) ≡ ∀n R(n,−) for R ∈ Σ0,X

n }
∆0,X

n = Σ0,X
n ∩ Π0,X

n

where quantifiers range over N. If X is recursive, we drop mention of X ,
i.e. Σ0,X

n = Σ0
n and Π0,X

n = Π0
n.

S is X -arithmetical if S is Σ0,X
n for some n.

Proposition

S ⊆ (NN)k × N` is X -recursive if and only if S is ∆0,X
1 .
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Turing Jump Operator

Suppose X ,Y ∈ 2N.

Definition

The Turing jump of X is defined by X ′ = {e ∈ N | ϕ(1),X
e (0) ↓}.

I.e. X ′ is the Halting problem for programs with oracle X .

Theorem

X ′ is a complete Σ0,X
1 set, i.e. if S ⊆ N is another Σ0,X

1 set then there is a
recursive f such that x ∈ S if and only if f (x) ∈ X ′.

Corollary

1 X <T X ′.

2 X ≤T Y implies X ′ ≤T Y ′.
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Π0
1 Classes

A Π0
1 subset of 2N is a Π0

1 class.

They have an effective enumeration

Pe = {X ∈ 2N | ϕ(1),X
e (0) ↑}

Proposition

1 P ⊆ 2N is Π0
1 if and only if P is the set of paths through some

recursive subtree of {0, 1}∗.
2 For X ∈ 2N, X ′ = {e ∈ N | X ∈ Pe}.
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Basis Theorems for Π0
1 Classes

Let P 6= ∅ be a Π0
1 class.

Theorem (Kleene Basis Theorem)

There exists B ∈ P such that B ≤T 0′.

This can be substantially strengthened:

Theorem (Jump Inversion)

Suppose P is special, i.e. contains no recursive elements. Then for every
A ≥T 0′, there exists B ∈ P such that

A ≡T B ′ ≡T B ⊕ 0′

In a different direction:

Theorem (Jockusch-Soare Basis Theorem)

If 0 <T Z , then there exists B ∈ P such that Z �T B.
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Relativized Analytical Hierarchy

Suppose X ∈ 2N.

Definition

Σ1,X
0 = Π1,X

0 = ∆1,X
0 = {R | R ⊆ (NN)k × N` an X -arithmetical predicate}

Σ1,X
n+1 = {S | S(−) ≡ ∃f R(f ,−) for R ∈ Π1,X

n }

Π1,X
n+1 = {S | S(−) ≡ ∀f R(f ,−) for R ∈ Σ1,X

n }
∆1,X

n = Σ1,X
n ∩ Π1,X

n

where quantifiers range over NN. If X is recursive, we drop mention of X ,
i.e. Σ1,X

n = Σ1
n and Π1,X

n = Π1
n.
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Hyperarithmetical Reducibility

Suppose X ,Y ∈ 2N.

Theorem (Kleene, Kreisel)

The following are equivalent:

1 X ≤T Y (α) for some recursive ordinal α.

2 X ⊆ N is ∆1,Y
1 .

3 X is an element of any ω-model of ZFC which contains Y .

Definition

Suppose X ,Y ∈ 2N. The hyperarithmetical reducibility preorder ≤HYP

is defined by declaring X ≤HYP Y if any of the equivalent conditions
above hold.
X and Y are hyperarithmetically equivalent, X ≡HYP Y , if and only if
X ≤HYP Y and Y ≤HYP X . ≡HYP is an equivalence relation.

X is hyperarithmetical if X ≤HYP 0.
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Hyperjumps

Is there is a hyperarithmetical analogue of the Turing jump operator?
Perhaps a complete Σ1,X

1 set?

It ends up the Π1,X
1 sets are a better analogy for Σ0,X

1 sets both
structurally and in terms of the properties they satisfy.

Definition

The hyperjump of X is a fixed complete Π1,X
1 set OX ⊆ N (uniform in

X ), i.e. if S ⊆ N is another Π1,X
1 set then there is a recursive f such that

x ∈ S if and only if f (x) ∈ OX .

Proposition

1 X <HYP OX

2 X ≤HYP Y implies OX ≤T OY .
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Σ1
1 Classes

A Σ1
1 subset of 2N is a Σ1

1 class.

Proposition

Is S ⊆ 2N is Σ1
1, then there is a Π0

1 subset P of NN such that

S(X ) ≡ ∃f P(X ⊕ f )

Letting Pe = {f ∈ NN | ϕ(1),f
e (0) ↑}, they have an effective enumeration

P∗e = {X ∈ 2N | ∃f (X ⊕ f ∈ Pe)}

Proposition

OX ≡T {e ∈ N | X ∈ P∗e }.
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Basis Theorems for Σ1
1 Classes

Let K be a non-empty Σ1
1 subset of 2N.

Theorem (Gandy Basis Theorem)

There exists B ∈ K such that B <HYP O and B ≤T O.

Theorem (Hyperjump Inversion)

Suppose K is special, i.e. contains no hyperarithmetical elements. Then
for every A ≥T O, there exists B ∈ K such that

A ≡T OB ≡T B ⊕O

Theorem (Kreisel Basis Theorem)

If Z is not hyperarithmetical, then there exists B ∈ K such that
Z �HYP B.
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The Analogy between Recursion and Hyperarithmetical
Theory

Recursion Theory Hyperarithmetical Theory

Arithmetical Hierarchy Analytical Hierarchy

Recursive = ∆0
1 Hyperarithmetical = ∆1

1

Turing reducibility Hyperarithmetical reducibility

Π0
1 Σ1

1

Turing jump Hyperjump

First-Order Logic ω-logic
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The Main Result

Theorem

Suppose Z0,Z1,Z2, . . . is a sequence of non-hyperarithmetical reals which
is recursive in A, where O ≤T A. Then there exists B such that

A ≡T OB ≡T B ⊕ Zk ≡T B ⊕O

for every k ∈ N.

The desired B will be a particular generic Turing functional.
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Turing Functionals

Definition (Turing Functional)

A Turing functional is a subset Φ ⊆ N× {0, 1} × {0, 1}∗ such that if
(x , y1, σ1), (x , y2, σ2) ∈ Φ and σ1, σ2 are compatible, then y1 = y2 and
σ1 = σ2.
An element of Φ is called a computation.

Note that a Turing functional Φ is not necessarily recursive or even
recursively enumerable.
We shall be interested in non-recursive Turing functionals and finite Turing
functionals.
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Computations along Reals

Let Φ be a Turing functional and Z ∈ 2N.

Definition (Computations along a Real)

(x , y , σ) ∈ Φ is a computation along Z if σ ⊂ Z , written

Φ(Z )(x) = y

If for every x ∈ N there is y ∈ {0, 1} such that Φ(Z )(x) = y , then Φ(Z )
defines an element of 2N.

Lemma

Suppose Φ(Z ) is total (i.e. Φ(Z ) ∈ 2N). Then Φ(Z ) ≤T Φ⊕ Z .
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Outline of the Proof

Suppose Z0,Z1,Z2, . . . is a sequence of distinct non-hyperarithmetical reals
which is recursive in A. Without loss of generality, O 6= Zk for every k.

1 Take a (code for an) countable ω-model M of ZFC which omits
O,Z0,Z1,Z2, . . . and has OM ≡T A.

2 Force over M using Kumabe-Slaman forcing to produce a generic
Turing functional Φ with the following properties:

Φ(Zk) ≡T OΦ for each k
Φ(O) ≡T A

The construction of Φ will be recursive in A.

3 Conclusion: for each k

A ≡T Φ(O) ≤T Φ⊕O ≤T OΦ ≡T Φ(Zk) ≤T Φ⊕ Zk ≤T A

so there is Turing equivalence throughout.

B = Φ is the desired real.
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A Basis Theorem for Special Σ1
1 Classes

To get our countable ω-model M, we will need the following basis
theorem, which combines the Kreisel Basis Theorem and Hyperjump
Inversion in a special Σ1

1 class:

Theorem

Suppose K is a special Σ1
1 class (so non-empty and K ∩HYP = ∅) and

Z0,Z1,Z2, . . . is a sequence of non-hyperarithmetical reals which is
recursive in A ≥T O. Then there exists B ∈ K such that

A ≡T OB ≡T B ⊕O

and such that Zk �HYP B for every k ∈ N.

The proof uses some methods due to Gandy and Kreisel.
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Corollary

Suppose Z0,Z1,Z2, . . . is a sequence of non-hyperarithmetical reals which
is recursive in A ≥T O. Then there exists a (code for a) countable
ω-model M of ZFC such that OM ≡T A and Zk /∈ M for each k.

Proof.

The set of codes 〈ω,E 〉 for countable ω-models of ZFC is a Σ1
1 class.

(We assume ZFC is ω-consistent to ensure that there are countable
ω-models of ZFC.)
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Proof Sketch:

Gandy-Harrington Forcing. Define sequence of non-empty Σ1
1 subsets of K

K = K0 ⊇ K1 ⊇ K2 ⊇ · · ·

with B ∈
⋂∞

n=0 Kn. Roughly, define Kn to achieve the following effects:

Control OB by deciding whether B ∈ P∗m.

Encode A into OB .

Arrange for Zk �HYP B.

Some subtleties:

Need to ensure
⋂∞

n=0 Kn 6= ∅. Must build B and ‘witnesses’ that
B ∈ Kn for each n along the way.

Some difficulties in arranging for Zk �HYP B, as enough of A may
not have been encoded to fulfill. Keep trying.
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A (Very) Brief Review of Forcing

The essential ingredients of forcing are the following:

a model (M,∈M) of ZFC,

a poset (P,≤) (in M), and

an M-generic filter G of (P,≤).

The result is a new model M[G ] which ‘extends’ M.

The forcing relation p  θ(a1, . . . , an) between elements p ∈ P and
sentences in the forcing language θ(a1, . . . , an) that allow M to think
about what its forcing extensions look like.

Extra subtlety: (M,∈M) is not necessarily well-founded!
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Kumabe-Slaman Forcing

The following definition takes place in a countable ω-model M of ZFC:

P =

{
(Φ,X)

∣∣∣∣ Φ finite, use-monotone Turing functional,
X finite set of subsets of N

}
Suppose p = (Φp,Xp) and q = (Φq,Xq). p ≤ q if and only if

Φp ⊆ Φq,

Xp ⊆ Xq,

if (xq, yq, σq) ∈ Φq \ Φp and (xp, yp, σp) ∈ Φp, then |σp| < |σq|, and

for every x , y and X ∈ Xp, if Φq(X )(x) = y , then Φp(X )(x) = y .

In other words:

p ≤ q ⇐⇒
Φq ⊇ Φp, Xq ⊇ Xp,

and all new computations are longer
and do not apply to elements of Xp
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Generic Turing Functionals
Suppose G is an M-generic filter (in the sense of Kumabe-Slaman
Forcing). Then for every X ∈ M,

M � (X ⊆ N) ⇐⇒ there is p ∈ G with X ∈ Xp

Thus, the essential parts of a generic filter G are the Φp.

Definition

Φ is M-generic for P if and only if there exists a M-generic filter G

(x , y , σ) ∈ Φ ⇐⇒ there exists p ∈ G such that M � ((xM , yM , σM) ∈ Φp)

(here we are making use of the fact that M is an ω-model)

Φ may be identified with an element (Φ̇)G in M[G ], where

M � (Φ̇ = {(p, ċ) | p ∈ P ∧ c ∈ Φp})

and ċ is a canonical ‘name’ for c ∈ M.
Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyperjumps July 8, 2019 32 / 52



An Extension Lemma

Lemma

Suppose M is an ω-model of ZFC, D ∈ M is dense in P ∈ M, and
X1, . . . ,Xn ∈ 2N. Then for any p ∈ P, there is q ≥ p such that q ∈ D and
Φq does not add any new computations along any Xk .

To prove the lemma, we will need the following notion:
~τ ∈ ({0, 1}∗)n is essential for (p,D) if any extension of p in D adds a
computation along a string compatible with a component of ~τ .

Define

Tn(p,D) = {~τ ∈ ({0, 1}∗)n | ~τ essential for (p,D) and |τ1| = · · · = |τn|}

Tn(p,D) is a finitely-branching tree in M.

Our proof will show that if the claim is false, then Tn(p,D) is infinite.
This will provide a contradiction of the density of D.
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Proof.

Suppose otherwise, so every q > p has q /∈ D or q adds a new
computation along some Xk .

Claim 1: (X1 � m, . . . ,Xn � m) is essential for (p,D) for each m.

Proof. If q > p and q ∈ D, by hypothesis there is q adds a computation
(x , y , σ) along some Xk . Then σ is compatible with Xk � m.

Claim 2: M thus has a path through Tn(p,D) of the form
(Y1 � m, . . . ,Yn � m) for Y1, . . . ,Yn ∈ M.

Proof. Tn(p,D) is infinite. M is a model of ZFC, so the Weak Konig’s
Lemma implies the existence of a path (~τn)n∈N. Let Yk =

⋃
n∈N ~τn(k).

Let p1 = (Φp,Xp ∪ {Y1, . . . ,Yn}) and suppose q ≥ p1 with q ∈ D. By
construction, for each m, there is (xm, ym, σm) ∈ Φq \ Φp such that σm is
compatible with Yk � m for some k . Letting m be sufficiently large yields
(x , y , σ) ∈ Φq \ Φp such that σ ⊆ Yk for some k . Contradiction.
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Proof of the Main Result: Outline Redux
Suppose Z0,Z1,Z2, . . . is a sequence of distinct non-hyperarithmetical reals
which is recursive in A. Without loss of generality, O 6= Zk for every k.

1 Take a (code for an) ω-model M of ZFC which omits
O,Z0,Z1,Z2, . . . and has OM ≡T A.

2 Let D0,D1,D2, . . . be an enumeration of the dense open subsets of P
in M recursive in A.

3 Define a sequence

p0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ · · ·

so that Φ =
⋃∞

n=0 Φpn . Roughly, we do the following at Stage n:

Stage n = 2m: Meet the open dense set Dm.
Stage n = 2m · 3: Arrange for Φ(O) ≡T A.
Stage n = 2m · 5k+1: Arrange for Φ(Zk) ≡T OΦ.
All other stages n: Do nothing.

4 Conclusion: for each k

A ≡T Φ(O) ≤T Φ⊕O ≤T OΦ ≡T Φ(Zk) ≤T Φ⊕ Zk ≡T A
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Proof of the Main Result: Stages n = 2m and n = 2m · 3

Let p0 = (∅, ∅).
Suppose pn−1 has been constructed.

Stage n = 2m: By the Extension Lemma, there is pn ∈ Dm extending pn−1

which does not add any new computations along
O,Z0, . . . ,Zn.

Stage n = 2m · 3: Extend pn−1 to pn by adding (m,A(m), σ), where
σ ⊂ O is sufficiently long, i.e. longer than any existing
strings in elements of Φpn−1 .

Stage n = 2m · 5k+1 involves similar ideas, but requires a case-analysis
based on what is forced about OΦ.
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Proof of the Main Result: Stage n = 2m · 5k+1

If there is y and σ ⊆ Zk such that (m, y , σ) ∈ Φpn−1 , let pn = pn−1 and
proceed to the next stage. Otherwise, proceed as follows:
Recall one definition of OB :

OB ≡T {m ∈ N | m encodes a B-recursive well-ordering of ω}

Define D = D1 t D2 t D3 where

D1 =

{
q ∈ P

∣∣∣∣∣ q 

(
(m encodes Φ̇-recursive linear order on ω) ∧ (m ∈ OΦ̇)

∧∃α(α ∈ OrdM ∧ |m| = α)

)}
D2 = {q ∈ P | q  ((m encodes Φ̇-recursive linear order on ω) ∧ (m /∈ OΦ̇))}
D3 = {q ∈ P | q  ¬(m encodes Φ̇-recursive linear order on ω)}

D is dense.
By the Extension Lemma, take q ∈ D extending pn−1 which does not add
any new computations along O,Z0, . . . ,Zn.
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Proof of Main Result: Stage n = 2m · 5k+1, continued

Extend q to pn by adding (m, y , σ), where σ ⊂ Zk is sufficiently long and
y depends on the following cases:

Case 1: q ∈ D1. Then
q  ((m encodes Φ̇-recursive linear order on ω) ∧ (m ∈
OΦ̇) ∧ ∃α(α ∈ OrdM ∧ |m| = α)). We break into two
subcases:

Case 1a: If α is actually an ordinal, set y = 1.
Case 1b: If α is not actually an ordinal, set y = 0.

Case 2: q ∈ D2. Then
q  (m encodes Φ̇-recursive linear order on ω ∧m /∈ OΦ̇).
Set y = 0.

Case 3: q ∈ D3. Then q  ¬(m encodes Φ̇-recursive linear order on ω).
Set y = 0.
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Proof of Main Result: Final Comments

The construction of Φ is recursive in A: assuming pn−1 is given

1 Stage n = 2m is recursive in OM ≡T A,

2 Stage n = 2m · 3 is recursive in O ≤T A,

3 Stage n = 2m · 5k+1 is recursive in OM ⊕
⊕n

i=0 Zi ≤T A, and

4 all other stages are recursive.

This shows that Φ ≤T A.

Finally, Φ(Zk) ≡T OΦ as they only differ at finitely many places. Likewise,
Φ(O) ≡T A.

This justifies the string of Turing reductions and equivalences

A ≡T Φ(O) ≤T Φ⊕O ≤T OΦ ≡T Φ(Zk) ≤T Φ⊕ Zk ≡T A
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Open Questions

What Σ1
1 classes K have the following property (and the stronger

version with a sequence replacing Z )?

Property

Suppose 0 <HYP Z ≤T A and O ≤T A. Then there exists B ∈ K such
that

A ≡T OB ≡T B ⊕ Z ≡T B ⊕O

The e-th pseudo-hyperjump of X is HJe(X ) = X ⊕W X
e where W X

e

is the e-th Π1,X
1 set. Does the following result hold?

Conjecture

Suppose 0 <HYP Z ≤T A and O ≤T A. For every e, there exists B such
that

A ≡T HJe(B) ≡T B ⊕ Z ≡T B ⊕O
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Thank you!
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A Brief Review of Forcing – Basic Definitions
Suppose (M,∈M) � ZFC (not necessarily well-founded!) and
M � “(P,≤) is a poset”.

Definition

Suppose D ∈ M and M � (D ⊆ P), and G ⊆ {p ∈ M | M � (p ∈ P)}.
D is dense if M � (∀p ∈ P)(∃q ∈ D)(p ≤ q).

D is open if M � (∀p, q ∈ P)((p ∈ D ∧ p ≤ q)→ q ∈ D).

G is a filter if it is upwards-closed and downwards-directed (as
evaluated in V ).

G is an M-generic filter if it is a filter and for every open dense set
D ⊆M P there is p ∈ G such that M � (p ∈ D).

Suppose G is M-generic. Associate to each a ∈ M a symbol aG . Define

M[G ] = {aG | a ∈ M}
aG ∈G bG ⇐⇒ there is p ∈ G such that M � ((p, b) ∈ a)
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Some Differences from Forcing with Transitive Standard
Models
If M is transitive and standard, then

M[G ] = smallest model of ZFC containing M ∪ {G}

In general, we only get an embedding of M ∪ {G} into M[G ].
For a ∈ M, define by transfinite recursion (in M) ȧ to be the unique
element in M for which

M � (ȧ = P × {ḃ | b ∈ a})

ȧ gives a canonical ‘name’ for a. a 7→ (ȧ)G embeds M into M[G ].
Likewise, define Ġ to be the unique element in M for which

M � (Ġ = {(p, ṗ) | p ∈ P})

(Ġ )G embeds G into M[G ], which is to say that

p ∈ G ⇐⇒ (ṗ)G ∈G (Ġ )G
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A Brief Review of Forcing – Forcing Relation

Definition (Forcing Language)

The forcing language consists of L∈ along with constant symbols a for
each a ∈ M.
M[G ] � θ(a1, . . . , an) if and only if θ(a1, . . . , an) is true in M[G ], where
quantifiers range over M[G ] and a1, . . . , an are interpreted as
(a1)G , . . . , (an)G .

Ġ allows us to talk about G without necessarily knowing what G is.

Definition (Forcing Relation)

Let p ∈ P and θ be a sentence of the forcing language.

p  θ ⇐⇒ M[G ] � θ for all M-generic filters G 3 p
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A Brief Review of Forcing – Basic Results

Suppose θ(x1, . . . , xn) is a formula of L∈, M a countable model of ZFC,
and G is an M-generic filter of P.

Theorem (Definability of Forcing)

There is θ∗(p, x1, . . . , xn) such that, for every p ∈ P and a1, . . . , am ∈ M,

p  θ(a1, . . . , an) ⇐⇒ M � θ∗(p, a1, . . . , an)

Theorem (Forcing Equals Truth)

For every a1, . . . , an ∈ M, M[G ] � θ(a1, . . . , an) if and only if there is
p ∈ G such that p  θ(a1, . . . , an).

Theorem

(M[G ],∈G ) is a model of ZFC with the same ordinals as M (under the
embedding a 7→ (ȧ)G ).
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Tools needed for Proof of Σ1
1 Basis Theorem

Proposition

Suppose K is special Σ1
1 class and T = {ρ ∈ N∗ | (∃X ∈ K ) (ρ ⊂ X )}. For

every σ ∈ T there are infinitely-many pairwise-incompatible σ′ ⊃ σ in T .
Moreover, the partial functions

σ(n, e) ' least σ ∈ Te with |σ| = n

ρn(σ, e) ' n-th extension σ′ ⊃ σ such that σ′ ∈ Te

are recursive in O, where T0,T1, . . . is an effective enumeration of the
recursive subtrees of N∗.

Proposition

Suppose K is a special Σ1
1 class, e ∈ N, Z /∈ HYP, and b ∈ O. There is a

special Σ1
1 class K̃ ⊆ K such that Z 6= ϕ

(1),HY
b

e for every Y ∈ K̃ .
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Proof.

We consider the following cases:

Case 1: Suppose (∃Y ∈ K ) (ϕ
HY
b

e not total). Let

K̃ = K ∩ {Y ∈ NN | ∃n (ϕ
(1),HY

b
e (n) ↑)}

Case 2: Suppose Case 1 fails and

(∃Y1,Y2 ∈ K ) (∃m ∈ N) (ϕ
(1),H

Y1
b

e (m) 6= ϕ
(1),H

Y2
b

e (m)). Let

K̃ = K ∩ {Y ∈ NN | ϕ(1),HY
b

e (m) 6= Z (m)}

Case 3: Otherwise, the common function h = ϕ
HY
b

e is a Σ1
1 singleton

and hence ∆1
1. Let

K̃ = K

Proof shows that an index of K̃ is recursive in O ⊕ Z as a function of an
index of K .
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Futher Details about Σ1
1 Basis Theorem Proof

We define sequences of special Σ1
1 subsets

K = K0 ⊇ K1 ⊇ · · · ⊇ Kn ⊇ · · ·

strings
σ0 ⊆ σ1 ⊆ · · · ⊆ σn ⊆ · · ·
τ0,0 ⊆ τ1,0 ⊆ · · · ⊆ τn,0 ⊆ · · ·
τ0,1 ⊆ τ1,1 ⊆ · · · ⊆ τn,0 ⊆ · · ·

...
...

. . .
...

. . .

finite subsets of N
∅ = I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · ·

and j : N→ N such that

Kn = P∗j(n) =
⋂
k∈In

{X | X ⊃ σn ∧ (∃f ⊃ τn,k) (X ⊕ f ∈ Pk)}

Assume that j encodes all of the information from previous steps (i.e. a
course-of-values computation).

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyperjumps July 8, 2019 49 / 52



Futher Details about Σ1
1 Basis Theorem Proof, Continued

WLOG, ωX
1 = ωCK

1 for all X ∈ K .
Let ẽ be such that K = P∗ẽ .

Stage n = 0: Define

K0 = K σ0 = 〈〉 τ0,k = 〈〉 j(0) = ẽ I0 = {ẽ}

Stage n = 3e + 1: Take
Kn = Kn−1 ∩ P∗e

if that intersection is non-empty, and Kn = Kn−1 otherwise,
with book-keeping.

Stage n = 3e + 2: Encode A(e) into B by extending σn−1 to one of
infinitely-many pairwise-incompatible extensions which
extend to elements of Kn−1, with book-keeping.
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Futher Details about Σ1
1 Basis Theorem Proof, Continued

Stage n = 3b+1 · 5e · 7k · 11s : Take

Kn = K̃n

if enough of A has been encoded to carry out that
computation. Book-keeping analogous to Stage n = 3e + 1.
Virtually identical way to Stage 3e + 1, with replacements

P∗e → K̃n−1 e → index of K̃n−1

Otherwise, do nothing.

All Other Stages n: Do nothing.

This completes the construction.
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Futher Details about Σ1
1 Basis Theorem Proof, Continued

Let
B =

⋃
n∈ω

σn and gk =
⋃
n∈ω

τn,k

Observations:

Stage n = 3e + 1 determines whether e ∈ OB .

Stage n = 3e + 2 encodes A(e) into B, recoverable from OB (or j or
B ⊕O).

Stage n = 3b+1 · 5e · 7k · 11s ensures Zk 6= ϕ
(1),HB

b
e for sufficiently

large s.

Book-keeping ensures B ⊕ gn ∈ Kn for each n.

Entire construction is recursive in any one of j , A, OB , and B ⊕O, so

j ≡T A ≡T OB ≡T O ⊕ B
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