Posner-Robinson for Turing Degrees of Hyperjumps

Hayden Jananthan

Vanderbilt University

July 8, 2019

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyper

Previous Results

Theorem (Posner-Robinson 1981)

Suppose $0 <_T Z \leq_T A$ and $0' \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} B' \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0'$$

The proof is relatively straight-forward.

Theorem (Kumabe & Slaman 1999)

Suppose Z is not arithmetical and $Z \leq_T A$ and $0^{(\omega)} \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} B^{(\omega)} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0^{(\omega)}$$

The Main Result

Theorem

Suppose 0 $<_{\rm HYP}$ Z $\leq_{\rm T}$ A and $\mathcal{O} \leq_{\rm T}$ A. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

The proof is more difficult than the classical version.

Theorem

Suppose Z_0, Z_1, Z_2, \ldots is a sequence of non-hyperarithmetical reals which is recursive in A, where $\mathcal{O} \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z_k \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

for every $k \in \mathbb{N}$.

We present an unpublished proof due to Slaman using Kumabe-Slaman forcing.

3 Turing Functionals and Kumabe-Slaman Forcing

Notation

Baire Space — $\mathbb{N}^{\mathbb{N}}$ with the product topology Cantor Space — $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$ with the product topology Partial Function — $f :\subset A \rightarrow B$ is a function $f : C \rightarrow B$ with dom $f = C \subset A$ $f(a) \downarrow \iff f(a)$ converge/is defined $\iff a \in \text{dom } f$ $f(a) \uparrow \iff f(a)$ diverges/is undefined $\iff a \notin \text{dom } f$ $f(x) \simeq g(x)$ means either both f(x) and g(x) converge and are equal, else they both diverge Strings — S^* is the set of strings of elements in S. • If $s_1, \ldots, s_n \in S$, then $\sigma = \langle s_1, \ldots, s_n \rangle \in S^*$ is defined by $\sigma(k) = s_{k+1}$. $\langle \rangle$ is the empty string. • $|\sigma| = \operatorname{dom} \sigma$, i.e. $|\langle s_1, \ldots, s_n \rangle| = n$. • $\langle s_1, \ldots, s_n \rangle^{\frown} \langle t_1, \ldots, t_m \rangle = \langle s_1, \ldots, s_n, t_1, \ldots, t_m \rangle.$ • $\sigma \subseteq \tau$ if $\sigma = \tau \upharpoonright |\sigma|$.

Partial Recursive Functions

Definition (Partial Recursive)

Suppose $f :\subseteq \mathbb{N}^k \to \mathbb{N}$ is given.

f is partial recursive \iff f is algorithmically computable

where 'algorithm' is interpreted in your favorite programming language.

If e is the Gödel number of such an algorithm, write

$$\varphi_e^{(k)}(m_1,\ldots,m_k)\simeq f(m_1,\ldots,m_k)$$

We call e an **index** of f.

Partial Recursive Functionals

Definition (Partial Recursive)

Suppose $\Psi :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^k \to \mathbb{N}$ is given.

 Ψ is partial recursive $\iff \Psi$ is algorithmically computable

where 'algorithm' now includes oracle/black-box computations that make use of the function parameter.

If e is the Gödel number of such an algorithm, write

$$\varphi_e^{(k),f}(m_1,\ldots,m_k)\simeq \Psi(f,m_1,\ldots,m_k)$$

We call e an **index** of Ψ .

Turing Reducibility, Equivalence, and Degrees

Definition (Turing Reducibility)

Suppose $f, g \in \mathbb{N}^{\mathbb{N}}$. The Turing reducibility preorder \leq_{T} is defined by

$$f \leq_{\mathrm{T}} g \iff f$$
 is algorithmically computable using oracle g
 $\iff f = \varphi_{e}^{(1),g}$ for some e

f and g are **Turing equivalent**, $f \equiv_T g$, if and only if $f \leq_T g$ and $g \leq_T f$. \equiv_T is an equivalence relation.

Can similarly define *g*-computability $(g \in \mathbb{N}^{\mathbb{N}})$ for partial functions or predicates.

Definition (Turing Degree)

Suppose $f \in \mathbb{N}^{\mathbb{N}}$. The **Turing degree** associated with f is

$$\mathsf{deg}_{\mathrm{T}}(f) = \{g \in \mathbb{N}^{\mathbb{N}} \mid f \equiv_{\mathrm{T}} g\}$$

Basic Results

Suppose $f,g \in \mathbb{N}^{\mathbb{N}}$. The *join* $f \oplus g \in \mathbb{N}^{\mathbb{N}}$ is defined by

$$(f \oplus g)(2n) = f(n)$$

 $(f \oplus g)(2n+1) = g(n)$

Proposition

$$\mathsf{sup}(\mathsf{deg}_{\mathrm{T}}(f),\mathsf{deg}_{\mathrm{T}}(g)) = \mathsf{deg}_{\mathrm{T}}(f) \lor \mathsf{deg}_{\mathrm{T}}(g) = \mathsf{deg}_{\mathrm{T}}(f \oplus g)$$

Proposition

There exists $X \in 2^{\mathbb{N}}$ such that $f \equiv_{\mathrm{T}} X$.

Relativized Arithmetical Hierarchy

Suppose $X \in 2^{\mathbb{N}}$.

Definition

$$\begin{split} \Sigma_0^{0,X} &= \Pi_0^{0,X} = \Delta_0^{0,X} = \{ R \mid R \subseteq (\mathbb{N}^{\mathbb{N}})^k \times \mathbb{N}^\ell \text{ an } X \text{-recursive predicate} \} \\ \Sigma_{n+1}^{0,X} &= \{ S \mid S(-) \equiv \exists n \, R(n,-) \text{ for } R \in \Pi_n^{0,X} \} \\ \Pi_{n+1}^{0,X} &= \{ S \mid S(-) \equiv \forall n \, R(n,-) \text{ for } R \in \Sigma_n^{0,X} \} \\ \Delta_n^{0,X} &= \Sigma_n^{0,X} \cap \Pi_n^{0,X} \end{split}$$

where quantifiers range over \mathbb{N} . If X is recursive, we drop mention of X, *i.e.* $\Sigma_n^{0,X} = \Sigma_n^0$ and $\Pi_n^{0,X} = \Pi_n^0$. S is X-arithmetical if S is $\Sigma_n^{0,X}$ for some n.

Proposition

$$S \subseteq (\mathbb{N}^{\mathbb{N}})^k imes \mathbb{N}^\ell$$
 is X-recursive if and only if S is $\Delta_1^{0,X}$

Turing Jump Operator

Suppose $X, Y \in 2^{\mathbb{N}}$.

Definition

The **Turing jump** of X is defined by $X' = \{e \in \mathbb{N} \mid \varphi_e^{(1),X}(0) \downarrow\}.$

I.e. X' is the Halting problem for programs with oracle X.

Theorem

X' is a complete $\Sigma_1^{0,X}$ set, i.e. if $S \subseteq \mathbb{N}$ is another $\Sigma_1^{0,X}$ set then there is a recursive f such that $x \in S$ if and only if $f(x) \in X'$.

Corollary

$$X <_{\mathrm{T}} X'.$$

2
$$X \leq_{\mathrm{T}} Y$$
 implies $X' \leq_{\mathrm{T}} Y'$.

Π_1^0 Classes

A Π_1^0 subset of $2^{\mathbb{N}}$ is a Π_1^0 class.

They have an effective enumeration

$$P_{e} = \{X \in 2^{\mathbb{N}} \mid arphi_{e}^{(1),X}(0) \uparrow\}$$

Proposition

P ⊆ 2^N is Π₁⁰ if and only if P is the set of paths through some recursive subtree of {0, 1}*.

2 For *X* ∈
$$2^{\mathbb{N}}$$
, *X'* = {*e* ∈ \mathbb{N} | *X* ∈ *P*_{*e*}}.

Basis Theorems for Π_1^0 Classes

Let $P \neq \emptyset$ be a Π_1^0 class.

Theorem (Kleene Basis Theorem)

There exists $B \in P$ such that $B \leq_{\mathrm{T}} 0'$.

This can be substantially strengthened:

Theorem (Jump Inversion)

Suppose P is special, i.e. contains no recursive elements. Then for every $A \ge_T 0'$, there exists $B \in P$ such that

$$A \equiv_{\mathrm{T}} B' \equiv_{\mathrm{T}} B \oplus 0'$$

In a different direction:

Theorem (Jockusch-Soare Basis Theorem)

If $0 <_{\mathrm{T}} Z$, then there exists $B \in P$ such that $Z \nleq_{\mathrm{T}} B$.

Relativized Analytical Hierarchy

Suppose $X \in 2^{\mathbb{N}}$.

Definition

$$\begin{split} \Sigma_0^{1,X} &= \Pi_0^{1,X} = \Delta_0^{1,X} = \{R \mid R \subseteq (\mathbb{N}^{\mathbb{N}})^k \times \mathbb{N}^\ell \text{ an X-arithmetical predicate} \} \\ \Sigma_{n+1}^{1,X} &= \{S \mid S(-) \equiv \exists f \ R(f,-) \text{ for } R \in \Pi_n^{1,X} \} \\ \Pi_{n+1}^{1,X} &= \{S \mid S(-) \equiv \forall f \ R(f,-) \text{ for } R \in \Sigma_n^{1,X} \} \\ \Delta_n^{1,X} &= \Sigma_n^{1,X} \cap \Pi_n^{1,X} \end{split}$$

where quantifiers range over $\mathbb{N}^{\mathbb{N}}$. If X is recursive, we drop mention of X, i.e. $\Sigma_n^{1,X} = \Sigma_n^1$ and $\Pi_n^{1,X} = \Pi_n^1$.

Hyperarithmetical Reducibility

Suppose $X, Y \in 2^{\mathbb{N}}$.

Theorem (Kleene, Kreisel)

The following are equivalent:

- $X \leq_{\mathrm{T}} Y^{(\alpha)}$ for some recursive ordinal α .
- $X \subseteq \mathbb{N} \text{ is } \Delta_1^{1,Y}.$
- **§** X is an element of any ω -model of ZFC which contains Y.

Definition

Suppose $X, Y \in 2^{\mathbb{N}}$. The hyperarithmetical reducibility preorder \leq_{HYP} is defined by declaring $X \leq_{\mathrm{HYP}} Y$ if any of the equivalent conditions above hold.

X and Y are hyperarithmetically equivalent, $X \equiv_{HYP} Y$, if and only if $X \leq_{HYP} Y$ and $Y \leq_{HYP} X$. \equiv_{HYP} is an equivalence relation.

X is hyperarithmetical if $X \leq_{HYP} 0$.

Hyperjumps

Is there is a hyperarithmetical analogue of the Turing jump operator? Perhaps a complete $\Sigma_1^{1,X}$ set?

It ends up the $\Pi_1^{1,X}$ sets are a better analogy for $\Sigma_1^{0,X}$ sets both structurally and in terms of the properties they satisfy.

Definition

The hyperjump of X is a fixed complete $\Pi_1^{1,X}$ set $\mathcal{O}^X \subseteq \mathbb{N}$ (uniform in X), i.e. if $S \subseteq \mathbb{N}$ is another $\Pi_1^{1,X}$ set then there is a recursive f such that $x \in S$ if and only if $f(x) \in \mathcal{O}^X$.

Proposition

2
$$X \leq_{\mathrm{HYP}} Y$$
 implies $\mathcal{O}^X \leq_{\mathrm{T}} \mathcal{O}^Y$.

Σ^1_1 Classes

A Σ_1^1 subset of $2^{\mathbb{N}}$ is a Σ_1^1 class.

Proposition

Is $S \subseteq 2^{\mathbb{N}}$ is Σ_1^1 , then there is a Π_1^0 subset P of $\mathbb{N}^{\mathbb{N}}$ such that

 $S(X) \equiv \exists f \ P(X \oplus f)$

Letting $P_e = \{f \in \mathbb{N}^{\mathbb{N}} \mid \varphi_e^{(1),f}(0) \uparrow\}$, they have an effective enumeration

$$P_e^* = \{X \in 2^{\mathbb{N}} \mid \exists f (X \oplus f \in P_e)\}$$

Proposition

$$\mathcal{O}^X \equiv_{\mathrm{T}} \{ e \in \mathbb{N} \mid X \in P_e^* \}.$$

Basis Theorems for Σ_1^1 Classes

Let K be a non-empty Σ_1^1 subset of $2^{\mathbb{N}}$.

Theorem (Gandy Basis Theorem)

There exists $B \in K$ such that $B <_{HYP} O$ and $B \leq_{T} O$.

Theorem (Hyperjump Inversion)

Suppose K is special, i.e. contains no hyperarithmetical elements. Then for every $A \ge_T O$, there exists $B \in K$ such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

Theorem (Kreisel Basis Theorem)

If Z is not hyperarithmetical, then there exists $B \in K$ such that $Z \not\leq_{HYP} B$.

The Analogy between Recursion and Hyperarithmetical Theory

Recursion Theory	Hyperarithmetical Theory				
Arithmetical Hierarchy	Analytical Hierarchy				
$Recursive = \Delta^0_1$	Hyperarithmetical $=\Delta_1^1$				
Turing reducibility	Hyperarithmetical reducibility				
Π^0_1	Σ_1^1				
Turing jump	Hyperjump				
First-Order Logic	ω -logic				

-

The Main Result

Theorem

Suppose Z_0, Z_1, Z_2, \ldots is a sequence of non-hyperarithmetical reals which is recursive in A, where $\mathcal{O} \leq_T A$. Then there exists B such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z_k \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

for every $k \in \mathbb{N}$.

The desired B will be a particular generic Turing functional.

Turing Functionals

Definition (Turing Functional)

A Turing functional is a subset $\Phi \subseteq \mathbb{N} \times \{0,1\} \times \{0,1\}^*$ such that if $(x, y_1, \sigma_1), (x, y_2, \sigma_2) \in \Phi$ and σ_1, σ_2 are compatible, then $y_1 = y_2$ and $\sigma_1 = \sigma_2$. An element of Φ is called a computation.

Note that a Turing functional Φ is not necessarily recursive or even recursively enumerable.

We shall be interested in non-recursive Turing functionals and finite Turing functionals.

Computations along Reals

Let Φ be a Turing functional and $Z \in 2^{\mathbb{N}}$.

Definition (Computations along a Real) $(x, y, \sigma) \in \Phi$ is a computation along Z if $\sigma \subset Z$, written

 $\Phi(Z)(x)=y$

If for every $x \in \mathbb{N}$ there is $y \in \{0,1\}$ such that $\Phi(Z)(x) = y$, then $\Phi(Z)$ defines an element of $2^{\mathbb{N}}$.

Lemma

Suppose
$$\Phi(Z)$$
 is total (i.e. $\Phi(Z) \in 2^{\mathbb{N}}$). Then $\Phi(Z) \leq_{\mathrm{T}} \Phi \oplus Z$.

Outline of the Proof

Suppose $Z_0, Z_1, Z_2, ...$ is a sequence of distinct non-hyperarithmetical reals which is recursive in A. Without loss of generality, $\mathcal{O} \neq Z_k$ for every k.

- Take a (code for an) countable ω -model M of ZFC which omits $\mathcal{O}, Z_0, Z_1, Z_2, \ldots$ and has $\mathcal{O}^M \equiv_{\mathrm{T}} A$.
- Source over M using Kumabe-Slaman forcing to produce a generic Turing functional Φ with the following properties:

•
$$\Phi(Z_k) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$$
 for each k

•
$$\Phi(\mathcal{O}) \equiv_{\mathrm{T}} A$$

The construction of Φ will be recursive in A.

Onclusion: for each k

$$A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi(Z_k) \leq_{\mathrm{T}} \Phi \oplus Z_k \leq_{\mathrm{T}} A$$

so there is Turing equivalence throughout.

 $B = \Phi$ is the desired real.

A Basis Theorem for Special Σ_1^1 Classes

To get our countable ω -model M, we will need the following basis theorem, which combines the Kreisel Basis Theorem and Hyperjump Inversion in a special Σ_1^1 class:

Theorem

Suppose K is a special Σ_1^1 class (so non-empty and $K \cap HYP = \emptyset$) and Z_0, Z_1, Z_2, \ldots is a sequence of non-hyperarithmetical reals which is recursive in $A \ge_T \mathcal{O}$. Then there exists $B \in K$ such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

and such that $Z_k \not\leq_{HYP} B$ for every $k \in \mathbb{N}$.

The proof uses some methods due to Gandy and Kreisel.

Corollary

Suppose $Z_0, Z_1, Z_2, ...$ is a sequence of non-hyperarithmetical reals which is recursive in $A \ge_T O$. Then there exists a (code for a) countable ω -model M of ZFC such that $O^M \equiv_T A$ and $Z_k \notin M$ for each k.

Proof.

The set of codes $\langle \omega, E \rangle$ for countable ω -models of ZFC is a Σ_1^1 class.

(We assume ZFC is ω -consistent to ensure that there *are* countable ω -models of ZFC.)

Proof Sketch:

Gandy-Harrington Forcing. Define sequence of non-empty Σ_1^1 subsets of K

$$K = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots$$

with $B \in \bigcap_{n=0}^{\infty} K_n$. Roughly, define K_n to achieve the following effects:

- Control \mathcal{O}^B by deciding whether $B \in P_m^*$.
- Encode A into \mathcal{O}^B .
- Arrange for $Z_k \not\leq_{\text{HYP}} B$.

Some subtleties:

- Need to ensure $\bigcap_{n=0}^{\infty} K_n \neq \emptyset$. Must build *B* and 'witnesses' that $B \in K_n$ for each *n* along the way.
- Some difficulties in arranging for Z_k ≰_{HYP} B, as enough of A may not have been encoded to fulfill. Keep trying.

A (Very) Brief Review of Forcing

The essential ingredients of forcing are the following:

- a model (M, \in^M) of ZFC,
- a poset (P, \leq) (in M), and
- an *M*-generic filter *G* of (P, \leq) .

The result is a new model M[G] which 'extends' M.

The forcing relation $p \Vdash \theta(a_1, \ldots, a_n)$ between elements $p \in P$ and sentences in the forcing language $\theta(a_1, \ldots, a_n)$ that allow M to think about what its forcing extensions look like.

Extra subtlety: (M, \in^M) is not necessarily well-founded!

Kumabe-Slaman Forcing

The following definition takes place in a countable ω -model M of ZFC:

$$\mathbb{P} = \left\{ (\Phi, \mathbf{X}) \mid \begin{array}{c} \Phi \text{ finite, use-monotone Turing functional,} \\ \mathbf{X} \text{ finite set of subsets of } \mathbb{N} \end{array} \right\}$$

Suppose $p = (\Phi_p, \mathbf{X}_p)$ and $q = (\Phi_q, \mathbf{X}_q)$. $p \leq q$ if and only if

$$\begin{array}{c} \Phi_q \supseteq \Phi_p, \ \mathbf{X}_q \supseteq \mathbf{X}_p, \\ p \leq q \iff \quad \text{and all new computations are longer} \\ \text{and do not apply to elements of } \mathbf{X}_p \end{array}$$

Generic Turing Functionals

Suppose G is an M-generic filter (in the sense of Kumabe-Slaman Forcing). Then for every $X \in M$,

 $M \vDash (X \subseteq \mathbb{N}) \iff$ there is $p \in G$ with $X \in \mathbf{X}_p$

Thus, the essential parts of a generic filter G are the Φ_p .

Definition

 Φ is M-generic for $\mathbb P$ if and only if there exists a M-generic filter G

 $(x, y, \sigma) \in \Phi \iff$ there exists $p \in G$ such that $M \vDash ((x^M, y^M, \sigma^M) \in \Phi_p)$

(here we are making use of the fact that M is an ω -model)

 Φ may be identified with an element $(\dot{\Phi})_G$ in M[G], where

$$M \vDash (\dot{\Phi} = \{(p, \dot{c}) \mid p \in \mathbb{P} \land c \in \Phi_p\})$$

and \dot{c} is a canonical 'name' for $c \in M$.

An Extension Lemma

Lemma

Suppose M is an ω -model of ZFC, $D \in M$ is dense in $\mathbb{P} \in M$, and $X_1, \ldots, X_n \in 2^{\mathbb{N}}$. Then for any $p \in \mathbb{P}$, there is $q \ge p$ such that $q \in D$ and Φ_q does not add any new computations along any X_k .

To prove the lemma, we will need the following notion: $\vec{\tau} \in (\{0,1\}^*)^n$ is **essential for** (p, D) if any extension of p in D adds a computation along a string compatible with a component of $\vec{\tau}$.

Define

 $\mathcal{T}_n(p,D) = \{ \vec{\tau} \in (\{0,1\}^*)^n \mid \vec{\tau} \text{ essential for } (p,D) \text{ and } |\tau_1| = \cdots = |\tau_n| \}$

 $T_n(p, D)$ is a finitely-branching tree in M.

Our proof will show that if the claim is false, then $T_n(p, D)$ is infinite. This will provide a contradiction of the density of D.

Proof.

Suppose otherwise, so every q > p has $q \notin D$ or q adds a new computation along some X_k .

Claim 1: $(X_1 \upharpoonright m, ..., X_n \upharpoonright m)$ is essential for (p, D) for each m. *Proof.* If q > p and $q \in D$, by hypothesis there is q adds a computation (x, y, σ) along some X_k . Then σ is compatible with $X_k \upharpoonright m$.

Claim 2: *M* thus has a path through $T_n(p, D)$ of the form $(Y_1 \upharpoonright m, \dots, Y_n \upharpoonright m)$ for $Y_1, \dots, Y_n \in M$.

Proof. $T_n(p, D)$ is infinite. M is a model of ZFC, so the Weak Konig's Lemma implies the existence of a path $(\vec{\tau}_n)_{n \in \mathbb{N}}$. Let $Y_k = \bigcup_{n \in \mathbb{N}} \vec{\tau}_n(k)$.

Let $p_1 = (\Phi_p, \mathbf{X}_p \cup \{Y_1, \dots, Y_n\})$ and suppose $q \ge p_1$ with $q \in D$. By construction, for each m, there is $(x_m, y_m, \sigma_m) \in \Phi_q \setminus \Phi_p$ such that σ_m is compatible with $Y_k \upharpoonright m$ for some k. Letting m be sufficiently large yields $(x, y, \sigma) \in \Phi_q \setminus \Phi_p$ such that $\sigma \subseteq Y_k$ for some k. Contradiction.

Proof of the Main Result: Outline Redux

Suppose $Z_0, Z_1, Z_2, ...$ is a sequence of distinct non-hyperarithmetical reals which is recursive in A. Without loss of generality, $\mathcal{O} \neq Z_k$ for every k.

- Take a (code for an) ω -model M of ZFC which omits $\mathcal{O}, Z_0, Z_1, Z_2, \ldots$ and has $\mathcal{O}^M \equiv_{\mathrm{T}} A$.
- ② Let D₀, D₁, D₂,... be an enumeration of the dense open subsets of ℙ in *M* recursive in *A*.
- Oefine a sequence

$$p_0 \leq p_1 \leq p_2 \leq \cdots \leq p_n \leq \cdots$$

so that $\Phi = \bigcup_{n=0}^{\infty} \Phi_{p_n}$. Roughly, we do the following at Stage n: Stage $n = 2^m$: Meet the open dense set D_m . Stage $n = 2^m \cdot 3$: Arrange for $\Phi(\mathcal{O}) \equiv_{\mathrm{T}} A$. Stage $n = 2^m \cdot 5^{k+1}$: Arrange for $\Phi(Z_k) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$. All other stages n: Do nothing.

Conclusion: for each k

$$A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi(Z_k) \leq_{\mathrm{T}} \Phi \oplus Z_k \equiv_{\mathrm{T}} A$$

Proof of the Main Result: Stages $n = 2^m$ and $n = 2^m \cdot 3$

Let $p_0 = (\emptyset, \emptyset)$.

Suppose p_{n-1} has been constructed.

Stage $n = 2^m$: By the Extension Lemma, there is $p_n \in D_m$ extending p_{n-1} which does not add any new computations along $\mathcal{O}, Z_0, \ldots, Z_n$.

Stage $n = 2^m \cdot 3$: Extend p_{n-1} to p_n by adding $(m, A(m), \sigma)$, where $\sigma \subset \mathcal{O}$ is sufficiently long, i.e. longer than any existing strings in elements of $\Phi_{p_{n-1}}$.

Stage $n = 2^m \cdot 5^{k+1}$ involves similar ideas, but requires a case-analysis based on what is forced about \mathcal{O}^{Φ} .

Proof of the Main Result: Stage $n = 2^m \cdot 5^{k+1}$

If there is y and $\sigma \subseteq Z_k$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$, let $p_n = p_{n-1}$ and proceed to the next stage. Otherwise, proceed as follows: Recall one definition of \mathcal{O}^B :

 $\mathcal{O}^B \equiv_{\mathrm{T}} \{ m \in \mathbb{N} \mid m \text{ encodes a } B \text{-recursive well-ordering of } \omega \}$

Define $D = D_1 \sqcup D_2 \sqcup D_3$ where

$$D_1 = \begin{cases} q \in \mathbb{P} \ | \ q \Vdash \begin{pmatrix} (m \text{ encodes } \dot{\Phi} \text{-recursive linear order on } \omega) \land (m \in \mathcal{O}^{\dot{\Phi}}) \\ \land \exists \alpha (\alpha \in \operatorname{Ord}^M \land |m| = \alpha) \end{pmatrix} \end{pmatrix}$$
$$D_2 = \{ q \in \mathbb{P} \ | \ q \Vdash ((m \text{ encodes } \dot{\Phi} \text{-recursive linear order on } \omega) \land (m \notin \mathcal{O}^{\dot{\Phi}})) \}$$
$$D_3 = \{ q \in \mathbb{P} \ | \ q \Vdash \neg (m \text{ encodes } \dot{\Phi} \text{-recursive linear order on } \omega) \}$$

D is dense.

By the Extension Lemma, take $q \in D$ extending p_{n-1} which does not add any new computations along $\mathcal{O}, Z_0, \ldots, Z_n$.

Proof of Main Result: Stage $n = 2^m \cdot 5^{k+1}$, continued

Extend q to p_n by adding (m, y, σ) , where $\sigma \subset Z_k$ is sufficiently long and y depends on the following cases:

Case 1:
$$q \in D_1$$
. Then
 $q \Vdash ((m \text{ encodes } \dot{\Phi}\text{-recursive linear order on } \omega) \land (m \in \mathcal{O}^{\dot{\Phi}}) \land \exists \alpha (\alpha \in \operatorname{Ord}^M \land |m| = \alpha))$. We break into two
subcases:
Case 1a: If α is actually an ordinal, set $y = 1$.
Case 1b: If α is not actually an ordinal, set $y = 0$.
Case 2: $q \in D_2$. Then
 $q \Vdash (m \text{ encodes } \dot{\Phi}\text{-recursive linear order on } \omega \land m \notin \mathcal{O}^{\dot{\Phi}})$.
Set $y = 0$.
Case 3: $q \in D_3$. Then $q \Vdash \neg(m \text{ encodes } \dot{\Phi}\text{-recursive linear order on } \omega)$.
Set $y = 0$.

Proof of Main Result: Final Comments

The construction of Φ is recursive in A: assuming p_{n-1} is given

• Stage
$$n = 2^m$$
 is recursive in $\mathcal{O}^M \equiv_{\mathrm{T}} A$,

- 2 Stage $n = 2^m \cdot 3$ is recursive in $\mathcal{O} \leq_T A$,
- **③** Stage $n = 2^m \cdot 5^{k+1}$ is recursive in $\mathcal{O}^M \oplus \bigoplus_{i=0}^n Z_i \leq_T A$, and
- Il other stages are recursive.

This shows that $\Phi \leq_T A$.

Finally, $\Phi(Z_k) \equiv_T \mathcal{O}^{\Phi}$ as they only differ at finitely many places. Likewise, $\Phi(\mathcal{O}) \equiv_T A$.

This justifies the string of Turing reductions and equivalences

$$A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi(Z_k) \leq_{\mathrm{T}} \Phi \oplus Z_k \equiv_{\mathrm{T}} A$$

Open Questions

What Σ₁¹ classes K have the following property (and the stronger version with a sequence replacing Z)?

Property

Suppose $0 <_{HYP} Z \leq_T A$ and $\mathcal{O} \leq_T A$. Then there exists $B \in K$ such that

$$A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

The e-th pseudo-hyperjump of X is HJ_e(X) = X ⊕ W_e^X where W_e^X is the e-th Π₁^{1,X} set. Does the following result hold?

Conjecture

Suppose $0<_{\rm HYP} Z \leq_{\rm T} A$ and $\mathcal{O} \leq_{\rm T} A.$ For every e, there exists B such that

$$A \equiv_{\mathrm{T}} \mathsf{HJ}_{e}(B) \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}$$

Thank you!

A Brief Review of Forcing – Basic Definitions Suppose $(M, \in^M) \models$ ZFC (not necessarily well-founded!) and $M \models$ " (P, \leq) is a poset".

Definition

Suppose $D \in M$ and $M \vDash (D \subseteq P)$, and $G \subseteq \{p \in M \mid M \vDash (p \in P)\}$.

- *D* is dense if $M \vDash (\forall p \in P)(\exists q \in D)(p \leq q)$.
- *D* is open if $M \vDash (\forall p, q \in P)((p \in D \land p \leq q) \rightarrow q \in D)$.
- *G* is a **filter** if it is upwards-closed and downwards-directed (as evaluated in *V*).
- G is an M-generic filter if it is a filter and for every open dense set D ⊆^M P there is p ∈ G such that M ⊨ (p ∈ D).

Suppose G is M-generic. Associate to each $a \in M$ a symbol a_G . Define

$$M[G] = \{a_G \mid a \in M\}$$

 $a_G \in_G b_G \iff$ there is $p \in G$ such that $M \vDash ((p, b) \in a)$

Some Differences from Forcing with Transitive Standard Models If *M* is transitive and standard, then

M[G] =smallest model of ZFC containing $M \cup \{G\}$

In general, we only get an *embedding* of $M \cup \{G\}$ into M[G]. For $a \in M$, define by transfinite recursion (in M) \dot{a} to be the unique element in M for which

$$M \vDash (\dot{a} = P \times \{\dot{b} \mid b \in a\})$$

 \dot{a} gives a canonical 'name' for $a. a \mapsto (\dot{a})_G$ embeds M into M[G]. Likewise, define \dot{G} to be the unique element in M for which

$$M \vDash (\dot{G} = \{(p, \dot{p}) \mid p \in P\})$$

 $(G)_G$ embeds G into M[G], which is to say that

$$p \in G \iff (\dot{p})_G \in_G (\dot{G})_G$$

A Brief Review of Forcing – Forcing Relation

Definition (Forcing Language)

The forcing language consists of \mathcal{L}_{\in} along with constant symbols a for each $a \in M$. $M[G] \models \theta(a_1, \ldots, a_n)$ if and only if $\theta(a_1, \ldots, a_n)$ is true in M[G], where quantifiers range over M[G] and a_1, \ldots, a_n are interpreted as $(a_1)_G, \ldots, (a_n)_G$.

 \dot{G} allows us to talk about G without necessarily knowing what G is.

Definition (Forcing Relation)

Let $p \in P$ and θ be a sentence of the forcing language.

 $p \Vdash \theta \iff M[G] \vDash \theta$ for all M-generic filters $G \ni p$

A Brief Review of Forcing – Basic Results

Suppose $\theta(x_1, \ldots, x_n)$ is a formula of \mathcal{L}_{\in} , M a countable model of ZFC, and G is an M-generic filter of \mathbb{P} .

Theorem (Definability of Forcing)

There is $\theta^*(p, x_1, \dots, x_n)$ such that, for every $p \in P$ and $a_1, \dots, a_m \in M$,

$$p \Vdash \theta(a_1, \ldots, a_n) \iff M \vDash \theta^*(p, a_1, \ldots, a_n)$$

Theorem (Forcing Equals Truth)

For every $a_1, \ldots, a_n \in M$, $M[G] \models \theta(a_1, \ldots, a_n)$ if and only if there is $p \in G$ such that $p \Vdash \theta(a_1, \ldots, a_n)$.

Theorem

 $(M[G], \in_G)$ is a model of ZFC with the same ordinals as M (under the embedding $a \mapsto (\dot{a})_G$).

Tools needed for Proof of Σ_1^1 Basis Theorem

Proposition

Suppose K is special Σ_1^1 class and $T = \{\rho \in \mathbb{N}^* \mid (\exists X \in K) (\rho \subset X)\}$. For every $\sigma \in T$ there are infinitely-many pairwise-incompatible $\sigma' \supset \sigma$ in T. Moreover, the partial functions

 $\sigma(n, e) \simeq least \ \sigma \in T_e \ with \ |\sigma| = n$ $\rho_n(\sigma, e) \simeq n$ -th extension $\sigma' \supset \sigma$ such that $\sigma' \in T_e$

are recursive in \mathcal{O} , where T_0, T_1, \ldots is an effective enumeration of the recursive subtrees of \mathbb{N}^* .

Proposition

Suppose K is a special Σ_1^1 class, $e \in \mathbb{N}$, $Z \notin HYP$, and $b \in \mathcal{O}$. There is a special Σ_1^1 class $\tilde{K} \subseteq K$ such that $Z \neq \varphi_e^{(1), H_b^Y}$ for every $Y \in \tilde{K}$.

Proof.

We consider the following cases:

Case 1: Suppose $(\exists Y \in K) (\varphi_e^{H_b^Y} \text{ not total})$. Let

$$ilde{K} = K \cap \{Y \in \mathbb{N}^{\mathbb{N}} \mid \exists n (\varphi_e^{(1), H_b^Y}(n) \uparrow)\}$$

Case 2: Suppose Case 1 fails and $(\exists Y_1, Y_2 \in K) (\exists m \in \mathbb{N}) (\varphi_e^{(1), H_b^{Y_1}}(m) \neq \varphi_e^{(1), H_b^{Y_2}}(m)).$ Let $\tilde{K} = K \cap \{Y \in \mathbb{N}^{\mathbb{N}} \mid \varphi_e^{(1), H_b^{Y}}(m) \neq Z(m)\}$ Case 3: Otherwise, the common function $h = \varphi_e^{H_b^{Y}}$ is a Σ_1^1 singleton and hence Δ_1^1 . Let $\tilde{K} = K$

Proof shows that an index of \tilde{K} is recursive in $\mathcal{O} \oplus Z$ as a function of an index of K.

Hayden Jananthan (Vanderbilt University) Posner-Robinson for Turing Degrees of Hyper

Futher Details about Σ_1^1 Basis Theorem Proof We define sequences of special Σ_1^1 subsets

$$K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_n \supseteq \cdots$$

strings

σ_0	\subseteq	σ_1	\subseteq		\subseteq	σ_n	\subseteq	
$ au_{0,0}$	\subseteq	$ au_{1,0}$	\subseteq	• • •	\subseteq	$ au_{n,0}$	\subseteq	• • •
$ au_{0,1}$	\subseteq	$ au_{1,1}$	\subseteq	•••	\subseteq	$ au_{n,0}$	\subseteq	• • •
÷		÷		۰.		÷		۰.

finite subsets of \mathbb{N}

$$\emptyset = I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

and $j : \mathbb{N} \to \mathbb{N}$ such that

$$K_n = P_{j(n)}^* = \bigcap_{k \in I_n} \{ X \mid X \supset \sigma_n \land (\exists f \supset \tau_{n,k}) (X \oplus f \in P_k) \}$$

Assume that j encodes all of the information from previous steps (i.e. a course-of-values computation).

Futher Details about Σ_1^1 Basis Theorem Proof, Continued

WLOG, $\omega_1^X = \omega_1^{CK}$ for all $X \in K$. Let \tilde{e} be such that $K = P_{\tilde{e}}^*$. Stage n = 0: Define

$$K_0 = K$$
 $\sigma_0 = \langle \rangle$ $\tau_{0,k} = \langle \rangle$ $j(0) = \tilde{e}$ $I_0 = \{\tilde{e}\}$

Stage n = 3e + 1: Take

$$K_n = K_{n-1} \cap P_e^*$$

if that intersection is non-empty, and $K_n = K_{n-1}$ otherwise, with book-keeping.

Stage n = 3e + 2: Encode A(e) into B by extending σ_{n-1} to one of infinitely-many pairwise-incompatible extensions which extend to elements of K_{n-1} , with book-keeping.

Futher Details about Σ_1^1 Basis Theorem Proof, Continued

Stage $n = 3^{b+1} \cdot 5^e \cdot 7^k \cdot 11^s$: Take

$$K_n = \tilde{K_n}$$

if enough of A has been encoded to carry out that computation. Book-keeping analogous to Stage n = 3e + 1. Virtually identical way to Stage 3e + 1, with replacements

$$P_e^* o \widetilde{K_{n-1}} \qquad e o ext{index of } \widetilde{K_{n-1}}$$

Otherwise, do nothing.

All Other Stages n: Do nothing.

This completes the construction.

Futher Details about Σ_1^1 Basis Theorem Proof, Continued

Let

$$B = \bigcup_{n \in \omega} \sigma_n$$
 and $g_k = \bigcup_{n \in \omega} \tau_{n,k}$

Observations:

- Stage n = 3e + 1 determines whether $e \in \mathcal{O}^B$.
- Stage n = 3e + 2 encodes A(e) into B, recoverable from O^B (or j or B ⊕ O).
- Stage $n = 3^{b+1} \cdot 5^e \cdot 7^k \cdot 11^s$ ensures $Z_k \neq \varphi_e^{(1), H_b^B}$ for sufficiently large s.
- Book-keeping ensures $B \oplus g_n \in K_n$ for each n.
- Entire construction is recursive in any one of j, A, \mathcal{O}^B , and $B \oplus \mathcal{O}$, so

$$j \equiv_{\mathrm{T}} A \equiv_{\mathrm{T}} \mathcal{O}^B \equiv_{\mathrm{T}} \mathcal{O} \oplus B$$