Posner-Robinson for Turing Degrees of Hyperjumps

Hayden Jananthan
Vanderbilt University

July 8, 2019

Previous Results

Theorem (Posner-Robinson 1981)
Suppose $0<_{\mathrm{T}} Z \leq_{\mathrm{T}} A$ and $0^{\prime} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0^{\prime}
$$

The proof is relatively straight-forward.
Theorem (Kumabe \& Slaman 1999)
Suppose Z is not arithmetical and $Z \leq_{\mathrm{T}} A$ and $0^{(\omega)} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} B^{(\omega)} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus 0^{(\omega)}
$$

The Main Result

Theorem
Suppose $0<_{\mathrm{HYP}} Z \leq_{\mathrm{T}} A$ and $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

The proof is more difficult than the classical version.

Theorem

Suppose $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of non-hyperarithmetical reals which is recursive in A, where $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z_{\mathrm{k}} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

for every $k \in \mathbb{N}$.
We present an unpublished proof due to Slaman using Kumabe-Slaman forcing.
(1) Recursion Theory Background
(2) Hyperarithmetical Theory Background
(3) Turing Functionals and Kumabe-Slaman Forcing
(4) Proof of the Main Results

Notation

Baire Space - $\mathbb{N}^{\mathbb{N}}$ with the product topology
Cantor Space - $2^{\mathbb{N}}=\{0,1\}^{\mathbb{N}}$ with the product topology
Partial Function - $f: \subseteq A \rightarrow B$ is a function $f: C \rightarrow B$ with $\operatorname{dom} f=C \subseteq A$
$f(a) \downarrow \quad \Longleftrightarrow f(a)$ converge/is defined $\quad \Longleftrightarrow a \in \operatorname{dom} f$ $f(a) \uparrow \quad \Longleftrightarrow f(a)$ diverges/is undefined $\Longleftrightarrow a \notin \operatorname{dom} f$
$f(x) \simeq g(x)$ means either both $f(x)$ and $g(x)$ converge and are equal, else they both diverge
Strings $-S^{*}$ is the set of strings of elements in S.

- If $s_{1}, \ldots, s_{n} \in S$, then $\sigma=\left\langle s_{1}, \ldots, s_{n}\right\rangle \in S^{*}$ is defined by $\sigma(k)=s_{k+1}$. \rangle is the empty string.
- $|\sigma|=\operatorname{dom} \sigma$, i.e. $\left|\left\langle s_{1}, \ldots, s_{n}\right\rangle\right|=n$.
- $\left\langle s_{1}, \ldots, s_{n}\right\rangle \smile\left\langle t_{1}, \ldots, t_{m}\right\rangle=\left\langle s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}\right\rangle$.
- $\sigma \subseteq \tau$ if $\sigma=\tau \upharpoonright|\sigma|$.

Partial Recursive Functions

Definition (Partial Recursive)
Suppose $f: \subseteq \mathbb{N}^{k} \rightarrow \mathbb{N}$ is given.
f is partial recursive $\Longleftrightarrow f$ is algorithmically computable
where 'algorithm' is interpreted in your favorite programming language.
If e is the Gödel number of such an algorithm, write

$$
\varphi_{e}^{(k)}\left(m_{1}, \ldots, m_{k}\right) \simeq f\left(m_{1}, \ldots, m_{k}\right)
$$

We call e an index of f.

Partial Recursive Functionals

Definition (Partial Recursive)

Suppose $\Psi: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ is given.
Ψ is partial recursive $\Longleftrightarrow \Psi$ is algorithmically computable
where 'algorithm' now includes oracle/black-box computations that make use of the function parameter.

If e is the Gödel number of such an algorithm, write

$$
\varphi_{e}^{(k), f}\left(m_{1}, \ldots, m_{k}\right) \simeq \Psi\left(f, m_{1}, \ldots, m_{k}\right)
$$

We call e an index of Ψ.

Turing Reducibility, Equivalence, and Degrees

Definition (Turing Reducibility)

Suppose $f, g \in \mathbb{N}^{\mathbb{N}}$. The Turing reducibility preorder \leq_{T} is defined by

$$
\begin{aligned}
f \leq_{\mathrm{T}} g & \Longleftrightarrow f \text { is algorithmically computable using oracle } g \\
& \Longleftrightarrow f=\varphi_{e}^{(1), g} \text { for some } e
\end{aligned}
$$

f and g are Turing equivalent, $f \equiv_{\mathrm{T}} g$, if and only if $f \leq_{\mathrm{T}} g$ and $g \leq_{\mathrm{T}} f . \equiv_{\mathrm{T}}$ is an equivalence relation.

Can similarly define g-computability $\left(g \in \mathbb{N}^{\mathbb{N}}\right)$ for partial functions or predicates.

Definition (Turing Degree)
Suppose $f \in \mathbb{N}^{\mathbb{N}}$. The Turing degree associated with f is

$$
\operatorname{deg}_{\mathrm{T}}(f)=\left\{g \in \mathbb{N}^{\mathbb{N}} \mid f \equiv_{\mathrm{T}} g\right\}
$$

Basic Results

Suppose $f, g \in \mathbb{N}^{\mathbb{N}}$. The join $f \oplus g \in \mathbb{N}^{\mathbb{N}}$ is defined by

$$
\begin{aligned}
(f \oplus g)(2 n) & =f(n) \\
(f \oplus g)(2 n+1) & =g(n)
\end{aligned}
$$

Proposition

$$
\sup \left(\operatorname{deg}_{\mathrm{T}}(f), \operatorname{deg}_{\mathrm{T}}(g)\right)=\operatorname{deg}_{\mathrm{T}}(f) \vee \operatorname{deg}_{\mathrm{T}}(g)=\operatorname{deg}_{\mathrm{T}}(f \oplus g)
$$

Proposition

There exists $X \in 2^{\mathbb{N}}$ such that $f \equiv_{\mathrm{T}} X$.

Relativized Arithmetical Hierarchy

Suppose $X \in 2^{\mathbb{N}}$.

Definition

$$
\begin{aligned}
\Sigma_{0}^{0, X}=\Pi_{0}^{0, X}=\Delta_{0}^{0, X} & =\left\{R \mid R \subseteq\left(\mathbb{N}^{\mathbb{N}}\right)^{k} \times \mathbb{N}^{\ell} \text { an } X \text {-recursive predicate }\right\} \\
\Sigma_{n+1}^{0, X} & =\left\{S \mid S(-) \equiv \exists n R(n,-) \text { for } R \in \Pi_{n}^{0, X}\right\} \\
\Pi_{n+1}^{0, X} & =\left\{S \mid S(-) \equiv \forall n R(n,-) \text { for } R \in \Sigma_{n}^{0, X}\right\} \\
\Delta_{n}^{0, X} & =\Sigma_{n}^{0, X} \cap \Pi_{n}^{0, X}
\end{aligned}
$$

where quantifiers range over \mathbb{N}. If X is recursive, we drop mention of X, i.e. $\Sigma_{n}^{0, X}=\Sigma_{n}^{0}$ and $\Pi_{n}^{0, X}=\Pi_{n}^{0}$.
S is X-arithmetical if S is $\sum_{n}^{0, X}$ for some n.

Proposition

$S \subseteq\left(\mathbb{N}^{\mathbb{N}}\right)^{k} \times \mathbb{N}^{\ell}$ is X-recursive if and only if S is $\Delta_{1}^{0, X}$.

Turing Jump Operator

Suppose $X, Y \in 2^{\mathbb{N}}$.

Definition

The Turing jump of X is defined by $X^{\prime}=\left\{e \in \mathbb{N} \mid \varphi_{e}^{(1), X}(0) \downarrow\right\}$.
I.e. X^{\prime} is the Halting problem for programs with oracle X.

Theorem

X^{\prime} is a complete $\Sigma_{1}^{0, X}$ set, i.e. if $S \subseteq \mathbb{N}$ is another $\Sigma_{1}^{0, X}$ set then there is a recursive f such that $x \in S$ if and only if $f(x) \in X^{\prime}$.

Corollary

(1) $X<{ }_{\mathrm{T}} X^{\prime}$.
(2) $X \leq_{\mathrm{T}} Y$ implies $X^{\prime} \leq_{\mathrm{T}} Y^{\prime}$.
Π_{1}^{0} Classes

A Π_{1}^{0} subset of $2^{\mathbb{N}}$ is a Π_{1}^{0} class.
They have an effective enumeration

$$
P_{e}=\left\{X \in 2^{\mathbb{N}} \mid \varphi_{e}^{(1), X}(0) \uparrow\right\}
$$

Proposition

(1) $P \subseteq 2^{\mathbb{N}}$ is Π_{1}^{0} if and only if P is the set of paths through some recursive subtree of $\{0,1\}^{*}$.
(2) For $X \in 2^{\mathbb{N}}, X^{\prime}=\left\{e \in \mathbb{N} \mid X \in P_{e}\right\}$.

Basis Theorems for Π_{1}^{0} Classes
Let $P \neq \emptyset$ be a Π_{1}^{0} class.
Theorem (Kleene Basis Theorem)
There exists $B \in P$ such that $B \leq_{T} 0^{\prime}$.
This can be substantially strengthened:
Theorem (Jump Inversion)
Suppose P is special, i.e. contains no recursive elements. Then for every $A \geq_{\mathrm{T}} 0^{\prime}$, there exists $B \in P$ such that

$$
A \equiv_{\mathrm{T}} B^{\prime} \equiv_{\mathrm{T}} B \oplus 0^{\prime}
$$

In a different direction:
Theorem (Jockusch-Soare Basis Theorem)
If $0<_{\mathrm{T}} Z$, then there exists $B \in P$ such that $Z \not \not_{\mathrm{T}} B$.

Relativized Analytical Hierarchy

Suppose $X \in 2^{\mathbb{N}}$.

Definition

$$
\begin{aligned}
\Sigma_{0}^{1, X}=\Pi_{0}^{1, X}=\Delta_{0}^{1, X} & =\left\{R \mid R \subseteq\left(\mathbb{N}^{\mathbb{N}}\right)^{k} \times \mathbb{N}^{\ell} \text { an } X \text {-arithmetical predicate }\right\} \\
\Sigma_{n+1}^{1, X} & =\left\{S \mid S(-) \equiv \exists f R(f,-) \text { for } R \in \Pi_{n}^{1, X}\right\} \\
\Pi_{n+1}^{1, X} & =\left\{S \mid S(-) \equiv \forall f R(f,-) \text { for } R \in \Sigma_{n}^{1, X}\right\} \\
\Delta_{n}^{1, X} & =\Sigma_{n}^{1, X} \cap \Pi_{n}^{1, X}
\end{aligned}
$$

where quantifiers range over $\mathbb{N}^{\mathbb{N}}$. If X is recursive, we drop mention of X, i.e. $\Sigma_{n}^{1, X}=\Sigma_{n}^{1}$ and $\Pi_{n}^{1, X}=\Pi_{n}^{1}$.

Hyperarithmetical Reducibility

Suppose $X, Y \in 2^{\mathbb{N}}$.

Theorem (Kleene, Kreisel)

The following are equivalent:
(1) $X \leq_{\mathrm{T}} Y^{(\alpha)}$ for some recursive ordinal α.
(2) $X \subseteq \mathbb{N}$ is $\Delta_{1}^{1, Y}$.
(3) X is an element of any ω-model of ZFC which contains Y.

Definition

Suppose $X, Y \in 2^{\mathbb{N}}$. The hyperarithmetical reducibility preorder $\leq_{\text {HYP }}$ is defined by declaring $X \leq_{\text {HYP }} Y$ if any of the equivalent conditions above hold.
X and Y are hyperarithmetically equivalent, $X \equiv_{\text {HYP }} Y$, if and only if $X \leq_{\text {HYP }} Y$ and $Y \leq_{\text {HYP }} X . \equiv_{\text {HYP }}$ is an equivalence relation.
X is hyperarithmetical if $X \leq_{\text {HYP }} 0$.

Hyperjumps

Is there is a hyperarithmetical analogue of the Turing jump operator?
Perhaps a complete $\Sigma_{1}^{1, X}$ set?
It ends up the $\Pi_{1}^{1, X}$ sets are a better analogy for $\Sigma_{1}^{0, X}$ sets both structurally and in terms of the properties they satisfy.

Definition

The hyperjump of X is a fixed complete $\Pi_{1}^{1, X}$ set $\mathcal{O}^{X} \subseteq \mathbb{N}$ (uniform in X), i.e. if $S \subseteq \mathbb{N}$ is another $\Pi_{1}^{1, X}$ set then there is a recursive f such that $x \in S$ if and only if $f(x) \in \mathcal{O}^{X}$.

Proposition

(1) $X \ll_{\text {HYP }} \mathcal{O}^{X}$
(2) $X \leq_{\text {HYP }} Y$ implies $\mathcal{O}^{X} \leq_{\mathrm{T}} \mathcal{O}^{Y}$.

Σ_{1}^{1} Classes

A Σ_{1}^{1} subset of $2^{\mathbb{N}}$ is a Σ_{1}^{1} class.

Proposition

Is $S \subseteq 2^{\mathbb{N}}$ is Σ_{1}^{1}, then there is a Π_{1}^{0} subset P of $\mathbb{N}^{\mathbb{N}}$ such that

$$
S(X) \equiv \exists f P(X \oplus f)
$$

Letting $P_{e}=\left\{f \in \mathbb{N}^{\mathbb{N}} \mid \varphi_{e}^{(1), f}(0) \uparrow\right\}$, they have an effective enumeration

$$
P_{e}^{*}=\left\{X \in 2^{\mathbb{N}} \mid \exists f\left(X \oplus f \in P_{e}\right)\right\}
$$

Proposition

$\mathcal{O}^{X} \equiv_{\mathrm{T}}\left\{e \in \mathbb{N} \mid X \in P_{e}^{*}\right\}$.

Basis Theorems for Σ_{1}^{1} Classes

Let K be a non-empty Σ_{1}^{1} subset of $2^{\mathbb{N}}$.
Theorem (Gandy Basis Theorem)
There exists $B \in K$ such that $B<_{\mathrm{HYP}} \mathcal{O}$ and $B \leq_{\mathrm{T}} \mathcal{O}$.

Theorem (Hyperjump Inversion)
Suppose K is special, i.e. contains no hyperarithmetical elements. Then for every $A \geq_{\mathrm{T}} \mathcal{O}$, there exists $B \in K$ such that

$$
A \equiv{ }_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

Theorem (Kreisel Basis Theorem)
If Z is not hyperarithmetical, then there exists $B \in K$ such that $Z \not Z_{\text {HYP }} B$.

The Analogy between Recursion and Hyperarithmetical Theory

Recursion Theory	Hyperarithmetical Theory
Arithmetical Hierarchy	Analytical Hierarchy
Recursive $=\Delta_{1}^{0}$	Hyperarithmetical $=\Delta_{1}^{1}$
Turing reducibility	Hyperarithmetical reducibility
Π_{1}^{0}	Σ_{1}^{1}
Turing jump	Hyperjump
First-Order Logic	ω-logic

The Main Result

Theorem

Suppose $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of non-hyperarithmetical reals which is recursive in A, where $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists B such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z_{k} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

for every $k \in \mathbb{N}$.
The desired B will be a particular generic Turing functional.

Turing Functionals

Definition (Turing Functional)

A Turing functional is a subset $\Phi \subseteq \mathbb{N} \times\{0,1\} \times\{0,1\}^{*}$ such that if $\left(x, y_{1}, \sigma_{1}\right),\left(x, y_{2}, \sigma_{2}\right) \in \Phi$ and σ_{1}, σ_{2} are compatible, then $y_{1}=y_{2}$ and $\sigma_{1}=\sigma_{2}$.
An element of Φ is called a computation.
Note that a Turing functional Φ is not necessarily recursive or even recursively enumerable.
We shall be interested in non-recursive Turing functionals and finite Turing functionals.

Computations along Reals

Let Φ be a Turing functional and $Z \in 2^{\mathbb{N}}$.

Definition (Computations along a Real)

$(x, y, \sigma) \in \Phi$ is a computation along Z if $\sigma \subset Z$, written

$$
\Phi(Z)(x)=y
$$

If for every $x \in \mathbb{N}$ there is $y \in\{0,1\}$ such that $\Phi(Z)(x)=y$, then $\Phi(Z)$ defines an element of $2^{\mathbb{N}}$.

Lemma

Suppose $\Phi(Z)$ is total (i.e. $\Phi(Z) \in 2^{\mathbb{N}}$). Then $\Phi(Z) \leq_{\mathrm{T}} \Phi \oplus Z$.

Outline of the Proof

Suppose $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of distinct non-hyperarithmetical reals which is recursive in A. Without loss of generality, $\mathcal{O} \neq Z_{k}$ for every k.
(1) Take a (code for an) countable ω-model M of ZFC which omits $\mathcal{O}, Z_{0}, Z_{1}, Z_{2}, \ldots$ and has $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$.
(2) Force over M using Kumabe-Slaman forcing to produce a generic Turing functional Φ with the following properties:

- $\Phi\left(Z_{k}\right) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$ for each k
- $\Phi(\mathcal{O}) \equiv_{\mathrm{T}} A$

The construction of Φ will be recursive in A.
(3) Conclusion: for each k

$$
A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi\left(Z_{k}\right) \leq_{\mathrm{T}} \Phi \oplus Z_{k} \leq_{\mathrm{T}} A
$$

so there is Turing equivalence throughout.
$B=\Phi$ is the desired real.

A Basis Theorem for Special Σ_{1}^{1} Classes

To get our countable ω-model M, we will need the following basis theorem, which combines the Kreisel Basis Theorem and Hyperjump Inversion in a special Σ_{1}^{1} class:

Theorem

Suppose K is a special Σ_{1}^{1} class (so non-empty and $K \cap H Y P=\emptyset$) and $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of non-hyperarithmetical reals which is recursive in $A \geq_{\mathrm{T}} \mathcal{O}$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

and such that $Z_{k} \not{ }_{\text {HYP }} B$ for every $k \in \mathbb{N}$.
The proof uses some methods due to Gandy and Kreisel.

Corollary

Suppose $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of non-hyperarithmetical reals which is recursive in $A \geq_{\mathrm{T}} \mathcal{O}$. Then there exists a (code for a) countable ω-model M of ZFC such that $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$ and $Z_{k} \notin M$ for each k.

Proof.

The set of codes $\langle\omega, E\rangle$ for countable ω-models of ZFC is a Σ_{1}^{1} class.
(We assume ZFC is ω-consistent to ensure that there are countable ω-models of ZFC.)

Proof Sketch:

Gandy-Harrington Forcing. Define sequence of non-empty Σ_{1}^{1} subsets of K

$$
K=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots
$$

with $B \in \bigcap_{n=0}^{\infty} K_{n}$. Roughly, define K_{n} to achieve the following effects:

- Control \mathcal{O}^{B} by deciding whether $B \in P_{m}^{*}$.
- Encode A into \mathcal{O}^{B}.
- Arrange for $Z_{k} \not \mathbb{K}_{\mathrm{HYP}} B$.

Some subtleties:

- Need to ensure $\bigcap_{n=0}^{\infty} K_{n} \neq \emptyset$. Must build B and 'witnesses' that $B \in K_{n}$ for each n along the way.
- Some difficulties in arranging for $Z_{k} \not \mathbb{Z H Y P} B$, as enough of A may not have been encoded to fulfill. Keep trying.

A (Very) Brief Review of Forcing

The essential ingredients of forcing are the following:

- a model $\left(M, \in^{M}\right)$ of ZFC,
- a poset (P, \leq) (in M), and
- an M-generic filter G of (P, \leq).

The result is a new model $M[G]$ which 'extends' M.
The forcing relation $p \Vdash \theta\left(a_{1}, \ldots, a_{n}\right)$ between elements $p \in P$ and sentences in the forcing language $\theta\left(a_{1}, \ldots, a_{n}\right)$ that allow M to think about what its forcing extensions look like.

Extra subtlety: $\left(M, \in^{M}\right)$ is not necessarily well-founded!

Kumabe-Slaman Forcing

The following definition takes place in a countable ω-model M of ZFC:

$$
\mathbb{P}=\left\{\begin{array}{l|c}
(\Phi, \mathbf{X}) & \begin{array}{c}
\Phi \text { finite, use-monotone Turing functional, } \\
\mathbf{X} \text { finite set of subsets of } \mathbb{N}
\end{array}
\end{array}\right\}
$$

Suppose $p=\left(\Phi_{p}, \mathbf{X}_{p}\right)$ and $q=\left(\Phi_{q}, \mathbf{X}_{q}\right) . p \leq q$ if and only if

- $\Phi_{p} \subseteq \Phi_{q}$,
- $\mathbf{X}_{p} \subseteq \mathbf{X}_{q}$,
- if $\left(x_{q}, y_{q}, \sigma_{q}\right) \in \Phi_{q} \backslash \Phi_{p}$ and $\left(x_{p}, y_{p}, \sigma_{p}\right) \in \Phi_{p}$, then $\left|\sigma_{p}\right|<\left|\sigma_{q}\right|$, and
- for every x, y and $X \in \mathbf{X}_{p}$, if $\Phi_{q}(X)(x)=y$, then $\Phi_{p}(X)(x)=y$. In other words:

$$
p \leq q \Longleftrightarrow \quad \begin{array}{|c}
\Phi_{q} \supseteq \Phi_{p}, \mathbf{X}_{q} \supseteq \mathbf{X}_{p}, \\
\text { and all new computations are longer } \\
\text { and do not apply to elements of } \mathbf{X}_{p}
\end{array}
$$

Generic Turing Functionals

Suppose G is an M-generic filter (in the sense of Kumabe-Slaman Forcing). Then for every $X \in M$,

$$
M \vDash(X \subseteq \mathbb{N}) \Longleftrightarrow \text { there is } p \in G \text { with } X \in \mathbf{X}_{p}
$$

Thus, the essential parts of a generic filter G are the Φ_{p}.

Definition

Φ is M-generic for \mathbb{P} if and only if there exists a M-generic filter G
$(x, y, \sigma) \in \Phi \Longleftrightarrow$ there exists $p \in G$ such that $M \vDash\left(\left(x^{M}, y^{M}, \sigma^{M}\right) \in \Phi_{p}\right)$
(here we are making use of the fact that M is an ω-model)
Φ may be identified with an element $(\dot{\Phi})_{G}$ in $M[G]$, where

$$
M \vDash\left(\dot{\Phi}=\left\{(p, \dot{c}) \mid p \in \mathbb{P} \wedge c \in \Phi_{p}\right\}\right)
$$

and \dot{c} is a canonical 'name' for $c \in M$.

An Extension Lemma

Lemma

Suppose M is an ω-model of $Z F C, D \in M$ is dense in $\mathbb{P} \in M$, and $X_{1}, \ldots, X_{n} \in 2^{\mathbb{N}}$. Then for any $p \in \mathbb{P}$, there is $q \geq p$ such that $q \in D$ and Φ_{q} does not add any new computations along any X_{k}.

To prove the lemma, we will need the following notion:
$\vec{\tau} \in\left(\{0,1\}^{*}\right)^{n}$ is essential for (p, D) if any extension of p in D adds a computation along a string compatible with a component of $\vec{\tau}$.

Define

$$
T_{n}(p, D)=\left\{\vec{\tau} \in\left(\{0,1\}^{*}\right)^{n} \mid \vec{\tau} \text { essential for }(p, D) \text { and }\left|\tau_{1}\right|=\cdots=\left|\tau_{n}\right|\right\}
$$

$T_{n}(p, D)$ is a finitely-branching tree in M.
Our proof will show that if the claim is false, then $T_{n}(p, D)$ is infinite. This will provide a contradiction of the density of D.

Proof.

Suppose otherwise, so every $q>p$ has $q \notin D$ or q adds a new computation along some X_{k}.

Claim 1: $\left(X_{1} \upharpoonright m, \ldots, X_{n} \upharpoonright m\right)$ is essential for (p, D) for each m. Proof. If $q>p$ and $q \in D$, by hypothesis there is q adds a computation (x, y, σ) along some X_{k}. Then σ is compatible with $X_{k} \upharpoonright m$.

Claim 2: M thus has a path through $T_{n}(p, D)$ of the form

$$
\left(Y_{1} \upharpoonright m, \ldots, Y_{n} \upharpoonright m\right) \text { for } Y_{1}, \ldots, Y_{n} \in M .
$$

Proof. $T_{n}(p, D)$ is infinite. M is a model of ZFC, so the Weak Konig's Lemma implies the existence of a path $\left(\vec{\tau}_{n}\right)_{n \in \mathbb{N}}$. Let $Y_{k}=\bigcup_{n \in \mathbb{N}} \vec{\tau}_{n}(k)$. $\quad \square$

Let $p_{1}=\left(\Phi_{p}, \mathbf{X}_{p} \cup\left\{Y_{1}, \ldots, Y_{n}\right\}\right)$ and suppose $q \geq p_{1}$ with $q \in D$. By construction, for each m, there is $\left(x_{m}, y_{m}, \sigma_{m}\right) \in \Phi_{q} \backslash \Phi_{p}$ such that σ_{m} is compatible with $Y_{k} \upharpoonright m$ for some k. Letting m be sufficiently large yields $(x, y, \sigma) \in \Phi_{q} \backslash \Phi_{p}$ such that $\sigma \subseteq Y_{k}$ for some k. Contradiction.

Proof of the Main Result: Outline Redux

Suppose $Z_{0}, Z_{1}, Z_{2}, \ldots$ is a sequence of distinct non-hyperarithmetical reals which is recursive in A. Without loss of generality, $\mathcal{O} \neq Z_{k}$ for every k.
(1) Take a (code for an) ω-model M of ZFC which omits $\mathcal{O}, Z_{0}, Z_{1}, Z_{2}, \ldots$ and has $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$.
(2) Let $D_{0}, D_{1}, D_{2}, \ldots$ be an enumeration of the dense open subsets of \mathbb{P} in M recursive in A.
(3) Define a sequence

$$
p_{0} \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n} \leq \cdots
$$

so that $\Phi=\bigcup_{n=0}^{\infty} \Phi_{p_{n}}$. Roughly, we do the following at Stage n :
Stage $n=2^{m}$: Meet the open dense set D_{m}.
Stage $n=2^{m} \cdot 3$: Arrange for $\Phi(\mathcal{O}) \equiv{ }_{\mathrm{T}} A$.
Stage $n=2^{m} \cdot 5^{k+1}$: Arrange for $\Phi\left(Z_{k}\right) \equiv{ }_{\mathrm{T}} \mathcal{O}^{\Phi}$.
All other stages n : Do nothing.
(9) Conclusion: for each k

$$
A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi\left(Z_{k}\right) \leq_{\mathrm{T}} \Phi \oplus Z_{k} \equiv_{\mathrm{T}} A
$$

Proof of the Main Result: Stages $n=2^{m}$ and $n=2^{m} \cdot 3$

Let $p_{0}=(\emptyset, \emptyset)$.
Suppose p_{n-1} has been constructed.
Stage $n=2^{m}$: By the Extension Lemma, there is $p_{n} \in D_{m}$ extending p_{n-1} which does not add any new computations along $\mathcal{O}, Z_{0}, \ldots, Z_{n}$.
Stage $n=2^{m} \cdot 3$: Extend p_{n-1} to p_{n} by adding $(m, A(m), \sigma)$, where $\sigma \subset \mathcal{O}$ is sufficiently long, i.e. longer than any existing strings in elements of $\Phi_{p_{n-1}}$.
Stage $n=2^{m} \cdot 5^{k+1}$ involves similar ideas, but requires a case-analysis based on what is forced about \mathcal{O}^{Φ}.

Proof of the Main Result: Stage $n=2^{m} \cdot 5^{k+1}$

If there is y and $\sigma \subseteq Z_{k}$ such that $(m, y, \sigma) \in \Phi_{p_{n-1}}$, let $p_{n}=p_{n-1}$ and proceed to the next stage. Otherwise, proceed as follows: Recall one definition of \mathcal{O}^{B} :

$$
\mathcal{O}^{B} \equiv_{\mathrm{T}}\{m \in \mathbb{N} \mid m \text { encodes a } B \text {-recursive well-ordering of } \omega\}
$$

Define $D=D_{1} \sqcup D_{2} \sqcup D_{3}$ where
$D_{1}=\left\{q \in \mathbb{P} \left\lvert\, q \Vdash\binom{(m\right.$ encodes $\dot{\Phi}$-recursive linear order on $\left.\omega) \wedge\left(m \in \mathcal{O}^{\dot{\Phi}}\right)}{\wedge \exists \alpha\left(\alpha \in \operatorname{Ord}^{M} \wedge|m|=\alpha\right)}\right.\right\}$
$D_{2}=\left\{q \in \mathbb{P} \mid q \Vdash\left((m\right.\right.$ encodes $\dot{\Phi}$-recursive linear order on $\left.\left.\omega) \wedge\left(m \notin \mathcal{O}^{\dot{\Phi}}\right)\right)\right\}$
$D_{3}=\{q \in \mathbb{P} \mid q \Vdash \neg(m$ encodes $\dot{\phi}$-recursive linear order on $\omega)\}$
D is dense.
By the Extension Lemma, take $q \in D$ extending p_{n-1} which does not add any new computations along $\mathcal{O}, Z_{0}, \ldots, Z_{n}$.

Proof of Main Result: Stage $n=2^{m} \cdot 5^{k+1}$, continued

Extend q to p_{n} by adding (m, y, σ), where $\sigma \subset Z_{k}$ is sufficiently long and y depends on the following cases:
Case 1: $q \in D_{1}$. Then
$q \Vdash((m$ encodes $\dot{\Phi}$-recursive linear order on $\omega) \wedge(m \in$ $\left.\mathcal{O}^{\dot{\Phi}}\right) \wedge \exists \alpha\left(\alpha \in \mathrm{Ord}^{M} \wedge|m|=\alpha\right)$). We break into two subcases:

Case 1a: If α is actually an ordinal, set $y=1$.
Case 1b: If α is not actually an ordinal, set $y=0$.
Case 2: $q \in D_{2}$. Then
$q \Vdash\left(m\right.$ encodes $\dot{\Phi}$-recursive linear order on $\left.\omega \wedge m \notin \mathcal{O}^{\dot{\Phi}}\right)$. Set $y=0$.
Case 3: $q \in D_{3}$. Then $q \Vdash \neg(m$ encodes $\dot{\Phi}$-recursive linear order on $\omega)$. Set $y=0$.

Proof of Main Result: Final Comments

The construction of Φ is recursive in A : assuming p_{n-1} is given
(1) Stage $n=2^{m}$ is recursive in $\mathcal{O}^{M} \equiv_{\mathrm{T}} A$,
(2) Stage $n=2^{m} \cdot 3$ is recursive in $\mathcal{O} \leq_{\mathrm{T}} A$,
(3) Stage $n=2^{m} \cdot 5^{k+1}$ is recursive in $\mathcal{O}^{M} \oplus \bigoplus_{i=0}^{n} Z_{i} \leq_{\mathrm{T}} A$, and
(9) all other stages are recursive.

This shows that $\Phi \leq_{\mathrm{T}} A$.
Finally, $\Phi\left(Z_{k}\right) \equiv_{\mathrm{T}} \mathcal{O}^{\Phi}$ as they only differ at finitely many places. Likewise, $\Phi(\mathcal{O}) \equiv_{\mathrm{T}} A$.

This justifies the string of Turing reductions and equivalences

$$
A \equiv_{\mathrm{T}} \Phi(\mathcal{O}) \leq_{\mathrm{T}} \Phi \oplus \mathcal{O} \leq_{\mathrm{T}} \mathcal{O}^{\Phi} \equiv_{\mathrm{T}} \Phi\left(Z_{k}\right) \leq_{\mathrm{T}} \Phi \oplus Z_{k} \equiv_{\mathrm{T}} A
$$

Open Questions

- What Σ_{1}^{1} classes K have the following property (and the stronger version with a sequence replacing Z)?

Property

Suppose $0<_{\mathrm{HYP}} Z \leq_{\mathrm{T}} A$ and $\mathcal{O} \leq_{\mathrm{T}} A$. Then there exists $B \in K$ such that

$$
A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

- The e-th pseudo-hyperjump of X is $\mathrm{HJ}_{e}(X)=X \oplus W_{e}^{X}$ where W_{e}^{X} is the e-th $\Pi_{1}^{1, X}$ set. Does the following result hold?

Conjecture

Suppose $0<_{\mathrm{HYP}} Z \leq_{\mathrm{T}} A$ and $\mathcal{O} \leq_{\mathrm{T}} A$. For every e, there exists B such that

$$
A \equiv_{\mathrm{T}} \mathrm{HJ}_{e}(B) \equiv_{\mathrm{T}} B \oplus Z \equiv_{\mathrm{T}} B \oplus \mathcal{O}
$$

Thank you!

A Brief Review of Forcing - Basic Definitions

Suppose $\left(M, \in^{M}\right) \vDash$ ZFC (not necessarily well-founded!) and $M \vDash$ " (P, \leq) is a poset".

Definition

Suppose $D \in M$ and $M \vDash(D \subseteq P)$, and $G \subseteq\{p \in M \mid M \vDash(p \in P)\}$.

- D is dense if $M \vDash(\forall p \in P)(\exists q \in D)(p \leq q)$.
- D is open if $M \vDash(\forall p, q \in P)((p \in D \wedge p \leq q) \rightarrow q \in D)$.
- G is a filter if it is upwards-closed and downwards-directed (as evaluated in V).
- G is an M-generic filter if it is a filter and for every open dense set $D \subseteq^{M} P$ there is $p \in G$ such that $M \vDash(p \in D)$.

Suppose G is M-generic. Associate to each $a \in M$ a symbol a_{G}. Define

$$
M[G]=\left\{a_{G} \mid a \in M\right\}
$$

$a_{G} \in_{G} b_{G} \Longleftrightarrow$ there is $p \in G$ such that $M \vDash((p, b) \in a)$

Some Differences from Forcing with Transitive Standard Models
 If M is transitive and standard, then

$$
M[G]=\text { smallest model of ZFC containing } M \cup\{G\}
$$

In general, we only get an embedding of $M \cup\{G\}$ into $M[G]$.
For $a \in M$, define by transfinite recursion (in M) à to be the unique element in M for which

$$
M \vDash(\dot{a}=P \times\{\dot{b} \mid b \in a\})
$$

à gives a canonical 'name' for a. $a \mapsto(\dot{a})_{G}$ embeds M into $M[G]$. Likewise, define \dot{G} to be the unique element in M for which

$$
M \vDash(\dot{G}=\{(p, \dot{p}) \mid p \in P\})
$$

$(\dot{G})_{G}$ embeds G into $M[G]$, which is to say that

$$
p \in G \Longleftrightarrow(\dot{p})_{G} \in_{G}(\dot{G})_{G}
$$

A Brief Review of Forcing - Forcing Relation

Definition (Forcing Language)

The forcing language consists of \mathcal{L}_{\in} along with constant symbols a for each $a \in M$.
$M[G] \vDash \theta\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\theta\left(a_{1}, \ldots, a_{n}\right)$ is true in $M[G]$, where quantifiers range over $M[G]$ and a_{1}, \ldots, a_{n} are interpreted as $\left(a_{1}\right)_{G}, \ldots,\left(a_{n}\right)_{G}$.
\dot{G} allows us to talk about G without necessarily knowing what G is.
Definition (Forcing Relation)
Let $p \in P$ and θ be a sentence of the forcing language.

$$
p \Vdash \theta \Longleftrightarrow M[G] \vDash \theta \text { for all } M \text {-generic filters } G \ni p
$$

A Brief Review of Forcing - Basic Results

Suppose $\theta\left(x_{1}, \ldots, x_{n}\right)$ is a formula of $\mathcal{L}_{\epsilon}, M$ a countable model of ZFC, and G is an M-generic filter of \mathbb{P}.

Theorem (Definability of Forcing)

There is $\theta^{*}\left(p, x_{1}, \ldots, x_{n}\right)$ such that, for every $p \in P$ and $a_{1}, \ldots, a_{m} \in M$,

$$
p \Vdash \theta\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow M \vDash \theta^{*}\left(p, a_{1}, \ldots, a_{n}\right)
$$

Theorem (Forcing Equals Truth)

For every $a_{1}, \ldots, a_{n} \in M, M[G] \vDash \theta\left(a_{1}, \ldots, a_{n}\right)$ if and only if there is $p \in G$ such that $p \Vdash \theta\left(a_{1}, \ldots, a_{n}\right)$.

Theorem

$\left(M[G], \epsilon_{G}\right)$ is a model of ZFC with the same ordinals as M (under the embedding $\left.a \mapsto(\dot{a})_{G}\right)$.

Tools needed for Proof of Σ_{1}^{1} Basis Theorem

Proposition

Suppose K is special Σ_{1}^{1} class and $T=\left\{\rho \in \mathbb{N}^{*} \mid(\exists X \in K)(\rho \subset X)\right\}$. For every $\sigma \in T$ there are infinitely-many pairwise-incompatible $\sigma^{\prime} \supset \sigma$ in T. Moreover, the partial functions

$$
\begin{aligned}
\sigma(n, e) & \simeq \text { least } \sigma \in T_{e} \text { with }|\sigma|=n \\
\rho_{n}(\sigma, e) & \simeq n \text {-th extension } \sigma^{\prime} \supset \sigma \text { such that } \sigma^{\prime} \in T_{e}
\end{aligned}
$$

are recursive in \mathcal{O}, where T_{0}, T_{1}, \ldots is an effective enumeration of the recursive subtrees of \mathbb{N}^{*}.

Proposition

Suppose K is a special Σ_{1}^{1} class, $e \in \mathbb{N}, Z \notin \mathrm{HYP}$, and $b \in \mathcal{O}$. There is a special Σ_{1}^{1} class $\tilde{K} \subseteq K$ such that $Z \neq \varphi_{e}^{(1), H_{b}^{\curlyvee}}$ for every $Y \in \tilde{K}$.

Proof.

We consider the following cases:
Case 1: Suppose $(\exists Y \in K)\left(\varphi_{e}^{H_{b}^{\curlyvee}}\right.$ not total). Let

$$
\tilde{K}=K \cap\left\{Y \in \mathbb{N}^{\mathbb{N}} \mid \exists n\left(\varphi_{e}^{(1), H_{b}^{Y}}(n) \uparrow\right)\right\}
$$

Case 2: Suppose Case 1 fails and

$$
\begin{gathered}
\left(\exists Y_{1}, Y_{2} \in K\right)(\exists m \in \mathbb{N})\left(\varphi_{e}^{(1), H_{b}^{Y_{1}}}(m) \neq \varphi_{e}^{(1), H_{b}^{Y_{2}}}(m)\right) . \text { Let } \\
\tilde{K}=K \cap\left\{Y \in \mathbb{N}^{\mathbb{N}} \mid \varphi_{e}^{(1), H_{b}^{\curlyvee}}(m) \neq Z(m)\right\}
\end{gathered}
$$

Case 3: Otherwise, the common function $h=\varphi_{e}^{H_{b}^{\curlyvee}}$ is a Σ_{1}^{1} singleton and hence Δ_{1}^{1}. Let

$$
\tilde{K}=K
$$

Proof shows that an index of \tilde{K} is recursive in $\mathcal{O} \oplus Z$ as a function of an index of K.

Futher Details about Σ_{1}^{1} Basis Theorem Proof

We define sequences of special Σ_{1}^{1} subsets

$$
K=K_{0} \supseteq K_{1} \supseteq \cdots \supseteq K_{n} \supseteq \cdots
$$

strings

$$
\begin{array}{ccccccccc}
\sigma_{0} & \subseteq & \sigma_{1} & \subseteq & \cdots & \subseteq & \sigma_{n} & \subseteq & \cdots \\
\tau_{0,0} & \subseteq & \tau_{1,0} & \subseteq & \cdots & \subseteq & \tau_{n, 0} & \subseteq & \cdots \\
\tau_{0,1} & \subseteq & \tau_{1,1} & \subseteq & \cdots & \subseteq & \tau_{n, 0} & \subseteq & \cdots \\
\vdots & & \vdots & & \ddots & & \vdots & & \ddots
\end{array}
$$

finite subsets of \mathbb{N}

$$
\emptyset=I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{n} \subseteq \cdots
$$

and $j: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
K_{n}=P_{j(n)}^{*}=\bigcap_{k \in I_{n}}\left\{X \mid X \supset \sigma_{n} \wedge\left(\exists f \supset \tau_{n, k}\right)\left(X \oplus f \in P_{k}\right)\right\}
$$

Assume that j encodes all of the information from previous steps (i.e. a course-of-values computation).

Futher Details about Σ_{1}^{1} Basis Theorem Proof, Continued

WLOG, $\omega_{1}^{X}=\omega_{1}^{\mathrm{CK}}$ for all $X \in K$.
Let ẽ be such that $K=P_{e ̂ e r}^{*}$.
Stage $n=0$: Define

$$
K_{0}=K \quad \sigma_{0}=\langle \rangle \quad \tau_{0, k}=\langle \rangle \quad j(0)=\tilde{e} \quad I_{0}=\{\tilde{e}\}
$$

Stage $n=3 e+1$: Take

$$
K_{n}=K_{n-1} \cap P_{e}^{*}
$$

if that intersection is non-empty, and $K_{n}=K_{n-1}$ otherwise, with book-keeping.
Stage $n=3 e+2$: Encode $A(e)$ into B by extending σ_{n-1} to one of infinitely-many pairwise-incompatible extensions which extend to elements of K_{n-1}, with book-keeping.

Futher Details about Σ_{1}^{1} Basis Theorem Proof, Continued

Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{k} \cdot 11^{s}$: Take

$$
K_{n}=\tilde{K}_{n}
$$

if enough of A has been encoded to carry out that computation. Book-keeping analogous to Stage $n=3 e+1$. Virtually identical way to Stage $3 e+1$, with replacements

$$
P_{e}^{*} \rightarrow \widetilde{K_{n-1}} \quad e \rightarrow \text { index of } \widetilde{K_{n-1}}
$$

Otherwise, do nothing.
All Other Stages n: Do nothing.
This completes the construction.

Futher Details about Σ_{1}^{1} Basis Theorem Proof, Continued

Let

$$
B=\bigcup_{n \in \omega} \sigma_{n} \quad \text { and } \quad g_{k}=\bigcup_{n \in \omega} \tau_{n, k}
$$

Observations:

- Stage $n=3 e+1$ determines whether $e \in \mathcal{O}^{B}$.
- Stage $n=3 e+2$ encodes $A(e)$ into B, recoverable from \mathcal{O}^{B} (or j or $B \oplus \mathcal{O})$.
- Stage $n=3^{b+1} \cdot 5^{e} \cdot 7^{k} \cdot 11^{s}$ ensures $Z_{k} \neq \varphi_{e}^{(1), H_{b}^{B}}$ for sufficiently large s.
- Book-keeping ensures $B \oplus g_{n} \in K_{n}$ for each n.
- Entire construction is recursive in any one of j, A, \mathcal{O}^{B}, and $B \oplus \mathcal{O}$, so

$$
j \equiv_{\mathrm{T}} A \equiv_{\mathrm{T}} \mathcal{O}^{B} \equiv_{\mathrm{T}} \mathcal{O} \oplus B
$$

