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Abstract. We prove that every clone of operations on a finite set A, if it contains a Malcev op-
eration, is finitely related—i.e., identical with the clone of all operations respecting R for some
finitary relation R over A. It follows that for a fixed finite set A, the set of all such Malcev clones
is countable. This completes the solution of a problem that was first formulated in 1980, or earlier:
how many Malcev clones can finite sets support? More generally, we prove that every finite algebra
with few subpowers has a finitely related clone of term operations. Hence modulo term equivalence
and a renaming of the elements, there are only countably many finite algebras with few subpowers,
and thus only countably many finite algebras with a Malcev term.
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1. Introduction

An algebraic structure (or algebra, for short) is usually represented as a nonvoid set to-
gether with a set of finitary operations on it. In the present paper, we contribute to the fol-
lowing question: how many essentially different finite algebraic structures exist? Clearly,
on a finite set of size at least two, there are countably many finitary operations, and hence
there are continuum many ways to choose a set of basic operations. However, many of
these algebras are equivalent in the sense that the same functions can be composed from
their basic operations; these compositions are called the term functions of the algebra.
Two algebras are term equivalent if they have the same set of term functions. The Boolean
algebra 〈B,∧,∨,¬〉 and its counterpart, the Boolean ring 〈B,+, ·, 1〉, are examples of
term equivalent algebras. Many structural properties of an algebra, like its subalgebras,
congruence relations, automorphisms, etc., depend on its term functions rather than on the
particular choice of basic operations. Hence we are motivated to classify algebras modulo
term equivalence. In 1941 E. Post [Pos41] proved that there are only countably many term
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inequivalent algebras of size two (modulo renaming of the elements), and he described
them all explicitly. In 1959 J. Janov and A. Mučnik [JM59] showed that even modulo
term equivalence, the number of algebras on a finite set with at least three elements is
uncountable.

Many classical algebraic structures have the property that their congruence relations
commute with respect to the relation product. A. Malcev [Mal54] has characterized va-
rieties of algebras with this property (a variety is a class of algebras of the same type
that is defined by equations); a consequence of his result is that an algebra generates such
a congruence-permutable variety if and only if it has a ternary (Malcev) term operation
m satisfying m(x, y, y) = m(y, y, x) = x for all x, y. These algebras include all finite
algebras that have a quasigroup operation among their binary term functions, and hence,
e.g., all finite groups, rings, modules, loops, and planar ternary rings. It has long been
open how many of the 2ℵ0 finite term inequivalent algebras on a set of size at least three
have a Malcev term (see e.g. [KP92, Problem 5.19]). We will prove that this number is
at most countably infinite. In particular, Theorem 6.2 implies that for every finite algebra
A with a Malcev term there is an n ∈ N and a single subalgebra R of An such that A is
determined by R up to term equivalence.

Recently a combinatorial characterization of finite algebras with a Malcev term has
been found. As a consequence of [BIM+10] (see also [BD06]), a finite algebra A has
a Malcev term if and only if there is a positive real c such that every independent sub-
set of An has at most cn elements (here a subset X is independent if no proper subset
of X generates the same subalgebra of An as X). This condition immediately implies
that An has at most |A|cn

2
subalgebras. In general, a finite algebra A for which there

exists a polynomial p such that An has at most 2p(n) subalgebras is said to have few
subpowers (note that the number of subalgebras of An is certainly bounded by 2|A|

n
;

the adjective ‘few’ refers to the fact that the number of subalgebras does not grow dou-
bly exponentially in n). In [BIM+10], J. Berman, P. Idziak, P. Marković, R. McKenzie,
M. Valeriote, and R. Willard characterized algebras with few subpowers by the existence
of an edge operation (see Section 2) among their term functions. The class of algebras
with an edge term is a vast extension of the class of algebras with a Malcev term. It
also contains, e.g., all lattices and algebras with lattice operations, and is properly con-
tained in the class of algebras that generate congruence modular varieties. Theorem 6.2
implies that every finite algebra with few subpowers is finitely related (see Section 2).
This means that every such algebra—even if it has an infinite set of basic operations—
has a finite description up to term equivalence. Hence on a finite set A, modulo term
equivalence, the number of algebras with few subpowers is at most countably infinite
(Corollary 6.3).

Algebras with few subpowers recently appeared in connection with the constraint
satisfaction problem (CSP) in computer science. In [IMM+07] P. Idziak, P. Marković,
R. McKenzie, M. Valeriote, and R. Willard proved that CSPs that afford an edge term
can be solved by a polynomial-time algorithm. It is expected that more generally, CSPs
admissible over finite algebras in congruence-modular varieties are solvable in polyno-
mial time as well. This would follow from a partial converse of our result which has
been conjectured by M. Valeriote. The conjecture is that a finite algebra in a congruence-
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modular variety, if it is finitely related, must have few subpowers.1 A special case of
this, which had earlier been conjectured by L. Zádori, has been established recently by
L. Barto [Bar13] (see also P. Marković and R. McKenzie [MM08]): A finite algebra in
a congruence-distributive variety is finitely related if and only if it has a near unanimity
operation.

2. Algebras and clones

We will express our results using the terminology of universal algebra [BS81, MMT87]
and clone theory [PK79, Sze86]. Following [HM88], we understand an algebra A :=
〈A,F 〉 as a set A together with a set F of finitary operations on A. For a nonvoid set A,
by a clone onA we shall mean any set of finitary operations onA (of positive arity) that is
closed under compositions and contains the projection operations eni (x1, . . . , xn) = xi for
all positive integers n and for all i ∈ {1, . . . , n}. The set of term operations of an algebra
A is a clone, and every clone on A takes this form.

For k ≥ 2 a function t : Ak+1
→ A is a k-edge operation if for all x, y ∈ A we have

t (y, y, x, . . . , x) = t (y, x, y, x, . . . , x) = x,

and for all i ∈ {4, . . . , k + 1} and for all x, y ∈ A we have

t (x, . . . , x, y, x, . . . , x) = x, with y in position i.

A ternary operation t is a 2-edge operation if and only if m(x, y, z) := t (y, x, z) is a
Malcev operation. For k > 2 a k-ary near unanimity operation f is a function such that
t (x1, . . . , xk+1) := f (x2, . . . , xk+1) is a k-edge operation. Thus the class of clones with
edge operations contains all clones with Malcev or near unanimity operations. We also
note that an algebra has an edge term if and only if it has a parallelogram term as defined
in [KS12].

A clone C on A is finitely related if there exist subalgebras R1, . . . , Rk of finitary
powers of 〈A,C〉 such that every function on A that preserves every Ri for i ∈ {1, . . . , k}
is in C. We call an algebra finitely related if its clone of term functions is finitely re-
lated. Clones on finite sets containing a near-unanimity operation are finitely related by
the Baker–Pixley Theorem [BP75]. In [Aic10] the first author shows that, on a finite set,
every clone that contains a Malcev operation and all constant functions is finitely re-
lated. Special cases of the result in [Aic10] were given, for example, by P. Idziak [Idz99],
A. Bulatov [Bul01], K. Kearnes and Á. Szendrei [KS05], the second author [May08,
May11], and N. Mudrinski and the first author [AM10]. In this paper we prove the com-
mon generalization that on a finite set every clone with edge operation is finitely related
(Theorem 6.1).

The conjecture that on a finite set the number of clones with Malcev operation is
countable dates back to the mid 1980’s or earlier. The two tools which we use to prove

1 The conjecture was since announced to be true by L. Barto in June 2012.
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this conjecture were first combined to good effect in [Aic10]. They are, first, a combi-
natorial theorem due to G. Higman [Hig52], which occurs here in a generalized form as
Lemma 3.2; and second, the result that for an algebraAwith k-edge term every subalgebra
of a finite power of A has a small generating set that takes a specific form (Lemma 4.1).
The second result also lies at the core of the proof in [IMM+07] that every constraint
satisfaction problem whose template relations are admissible over an algebra with few
subpowers is tractable—i.e., admits a polynomial time algorithm for its solution.

3. Preliminaries from order theory

We will first give a short survey of those results from order theory that we will need. The
partially ordered set 〈X,≤〉 is well partially ordered if it satisfies the descending chain
condition (DCC) and has no infinite antichains. The following facts about well partial
orders can be found in [Lav76] (cf. [NW63]). A sequence of elements 〈xk | k ∈ N〉 is
good if there are i, j ∈ N with i < j and xi ≤ xj ; a sequence is bad if it is not good.
Using Ramsey’s Theorem, one can prove that 〈X,≤〉 is well partially ordered if and only
if every sequence in X is good. If 〈X,≤〉 satisfies the (DCC), but is not well partially
ordered, then there exists a bad sequence 〈xk | k ∈ N〉 with the property that for all i ∈ N
and for all yi ∈ X with yi < xi , every sequence starting with (x1, . . . , xi−1, yi) is good.
Such a sequence is called a minimal bad sequence. For an ordered set 〈X,≤〉, a subset Y
of X is upward closed if for all y ∈ Y and x ∈ X with y ≤ x, we have x ∈ Y .

For A = {1, . . . , t}, we will use the lexicographic ordering on An. For a =
(a1, . . . , an) and b = (b1, . . . , bn), we say a ≤lex b if

(∃i ∈ {1, . . . , n} : a1 = b1 ∧ · · · ∧ ai−1 = bi−1 ∧ ai < bi) or
(a1, . . . , an) = (b1, . . . , bn).

For every finite set A, we let A+ be the set
⋃
{An | n ∈ N}. We will now introduce an

order relation on A+. For a = (a1, . . . , an) ∈ A
+ and b ∈ A, we define the index of the

first occurrence of b in a, firstOcc(a, b), by firstOcc(a, b) := 0 if b 6∈ {a1, . . . , an}, and
firstOcc(a, b) := min{i ∈ {1, . . . , n} | ai = b} otherwise.

Definition 3.1. Let A be a finite set, and let a = (a1, . . . , am) and b = (b1, . . . , bn)

be elements of A+. We say a ≤E b (read: a embeds into b) if there is an injective and
increasing function h : {1, . . . , m} → {1, . . . , n} such that

(1) ai = bh(i) for all i ∈ {1, . . . , m},
(2) {a1, . . . , am} = {b1, . . . , bn},
(3) h(firstOcc(a, c)) = firstOcc(b, c) for all c ∈ {a1, . . . , am}.

We will call such an h a function witnessing a ≤E b.

Less formally, we have a ≤E b for words a,b over the alphabet A if and only if b can
be obtained from a by inserting additional letters anywhere after their first occurrence in a.
We will use the following fact about this ordering, which generalizes Higman’s Theorem
4.4 in [Hig52].
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Lemma 3.2. Let A be a finite set. Then 〈A+,≤E〉 is well partially ordered.

Proof. It is easy to see that ≤E is a partial order relation and that 〈A+,≤E〉 satisfies the
(DCC). It remains to show that for every sequence 〈x(k) | k ∈ N〉 in A+, there exist
i, j ∈ N such that i < j and x(i) ≤E x(j). We will prove this by induction on |A|. For
|A| = 1, the claim is obvious. Assume that |A| > 1 and 〈B+,≤E〉 is well partially ordered
for every proper subset B of A.

Seeking a contradiction we suppose we have a minimal bad sequence 〈x(k) | k ∈ N〉
in A+. For each x = (x1, . . . , xn) ∈ A

+, let Symbols(x) := {x1, . . . , xn} be the set of all
elements of A that occur in the word x, let Last(x) := xn denote the last letter of x, and,
if n ≥ 2, let Start(x) := (x1, . . . , xn−1). Since A is finite, we have a ∈ A and an infinite
T ⊆ N such that for all i ∈ T , Last(x(i)) = a and the length of x(i) is at least two.

Let us first consider the case that there exists an infinite S ⊆ T such that
Symbols(Start(x(i))) ⊆ A \ {a} for all i ∈ S. By the induction hypothesis, ≤E is
a well partial order on (A \ {a})+. Hence there are i, j ∈ S with i < j such that
Start(x(i)) ≤E Start(x(j)). Since a does not occur in Start(x(i)) nor in Start(x(j)), and
since Last(x(i)) = Last(x(j)) = a, we have x(i) ≤E x(j), contradicting the fact that
〈x(k) | k ∈ N〉 is a bad sequence.

Thus we may assume that there exists an infinite subset S := {s1, s2, . . .} of T (with
si < sj whenever i < j ) such that Symbols(Start(x(s))) = A for all s ∈ S. Now consider
the sequence

〈y(k) | k ∈ N〉 := 〈x(1), . . . , x(s1−1),Start(x(s1)), Start(x(s2)), . . .〉.

We show that 〈y(k) | k ∈ N〉 is bad by distinguishing three cases: If i < j < s1, then
clearly x(i) 6≤E x(j). If i < s1 and j ≥ 1, then x(i) ≤E Start(x(sj )) yields x(i) ≤E x(sj ),
contradicting the fact that 〈x(k) | k ∈ N〉 is bad. If i < j , then Start(x(si )) ≤E Start(x(sj ))
implies x(si ) ≤E x(sj ) because Last(x(si )) = Last(x(sj )) = a and a already occurs both
in Start(x(si )) and in Start(x(sj )). This again contradicts the badness of 〈x(k) | k ∈ N〉.
Hence 〈y(k) | k ∈ N〉 is bad. However, since y(s1) = Start(x(s1)) <E x(s1), this contradicts
the choice of 〈x(k) | k ∈ N〉 as a minimal bad sequence. Hence 〈A+,≤E〉 is well partially
ordered. ut

For a,b ∈ A+ with a ≤E b we observe a correspondence between the elements that are
lexicographically smaller than a and certain elements that are lexicographically smaller
than b. But before that we need to introduce some notation.

Definition 3.3. Let A be a finite set, let a = (a1, . . . , am) ∈ A
m, b = (b1, . . . , bn) ∈ A

n

be such that a ≤E b, and let h be a function from {1, . . . , m} → {1, . . . , n} witnessing
a ≤E b. We define a function Ta,b,h : A

m
→ An. Let x = (x1, . . . , xm) ∈ A

m. If
j ∈ range(h), then the j -th entry of Ta,b,h(x), abbreviated by Ta,b,h(x)(j), is defined by

Ta,b,h(x)(j) := xi,

where i ∈ {1, . . . , m} is such that h(i) = j . If j 6∈ range(h), then

Ta,b,h(x)(j) := xi,

where i := firstOcc(a, bj ).
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Lemma 3.4. Let t ∈ N, let A = {1, . . . , t}, and let a ∈ Am, b ∈ An with h : {1, . . . , m}
→ {1, . . . , n} witnessing a ≤E b. Let c ∈ Am be such that c <lex a. Then

(1) Ta,b,h(a) = b,
(2) Ta,b,h(c) <lex b.

Proof. (1) follows immediately from the definition of Ta,b,h. To prove (2), let k be the
index of the first place where c differs from a. Hence c = (a1, . . . , ak−1, ck, ck+1, . . .),
a = (a1, . . . , ak−1, ak, ak+1, . . .), and ck < ak .

We first show that for all j < h(k), we have Ta,b,h(c)(j) = Ta,b,h(a)(j). If j is
in the range of h, there is an i with h(i) = j , and we have Ta,b,h(c)(j) = ci and
Ta,b,h(a)(j) = ai . Since h(i) < h(k), we have i < k. Thus ci = ai , since k is the
first index at which c and a differ. We now assume that j is not in the range of h. Since
{b1, . . . , bn} = {a1, . . . , am}, we see that i := firstOcc(a, bj ) satisfies i > 0. By the def-
inition of ≤E we see h(i) = firstOcc(b, bj ) and therefore h(i) ≤ j . Hence h(i) < h(k)

and i < k. Thus ci = ai . Since Ta,b,h(x1, . . . , xm)(j) := xi for all x ∈ Am, we finally
obtain Ta,b,h(c)(j) = Ta,b,h(a)(j).

Since Ta,b,h(a)(h(k))= ak and Ta,b,h(c)(h(k))= ck , we have Ta,b,h(c) <lex Ta,b,h(a).
ut

4. Algebras with edge term

Let A be a set, and let m ∈N. For a= (a1, . . . , am) ∈A
m and T ⊆ {1, . . . , m}, we denote

the projection to the tuple of entries that are indexed by T as

πT (a) := 〈ai | i ∈ T 〉.

For F ⊆Am and i ∈ {1, . . . , m}, define

ϕi(F ) := {(ai, bi) ∈A
2
| a,b ∈ F and π{1,...,i−1}(a)= π{1,...,i−1}(b)}.

By [Aic10, Lemma 3.1] a subuniverse G of a Malcev algebra Am is generated by every
subset F of G with ϕi(F )= ϕi(G) for all i ∈ {1, . . . , m}.

In [BIM+10] these relations ϕi and projections πT occur in the description of small
generating sets for the subuniverses of Am for a finite algebra A with edge term operation.
These generating sets were then used to obtain a bound on the number of subuniverses
of Am. We reformulate the representation result [BIM+10, Corollary 3.9] for our pur-
poses.

Lemma 4.1. Let k,m be positive integers with k > 1, let A be a finite algebra with k-edge
term operation t , and let F,G be subuniverses of Am with F ⊆G. Assume πT (F )=
πT (G) for all T ⊆ {1, . . . , m} with |T |< k, and ϕi(G)⊆ ϕi(F ) for all i ∈ {1, . . . , m}.
Then F =G.



On the number of finite algebraic structures 1679

Proof. We only have to check that F is what is called a representation ofG in [BIM+10,
Def. 3.2]. For that we need to introduce some more notation. By Lemma 2.13
of [BIM+10], A has term operations d : A2

→A, p : A3
→A, and s : Ak→A such that

for all x, y ∈A:

p(x, y, y) = x,

s(y, x, x, . . . , x, x) = p(x, x, y),

s(x, y, x, . . . , x, x) = x,

...

s(x, x, x, . . . , x, y) = x,

d(x, y) = p(x, x, y),

d(x, d(x, y)) = d(x, y).

The signature SigR of a subset R of Am is defined as

SigR := {(i, u, v) ∈ {1, . . . , m} × A
2
| (u, v) ∈ ϕi(R) and d(u, v)= v}.

For R, S ⊆An we say that R is a representation of S if
(1) R ⊆ S,
(2) πT (R)= πT (S) for all T ⊆ {1, . . . , n} with |T |< k, and
(3) SigR = SigS .
From F ⊆G, it is immediate that ϕi(F )⊆ ϕi(G). Consequently, ϕi(F )= ϕi(G) for all
i ∈ {1, . . . , m}. In particular SigF = SigG. Thus F is a representation of G. Since F,G
are subuniverses of Am, Corollary 3.9 of [BIM+10] yields F =G. ut

The previous result has also been known in two special cases: For A with a k-ary
near unanimity term it follows from the Baker–Pixley Theorem [BP75]. For A with a
Malcev term, it occurs as Lemma 3.1 in [Aic10], and it is the central fact underlying
Dalmau’s polynomial-time algorithm for solving CSPs which admit a Malcev polymor-
phism [BD06].

5. Encoding clones

Let C be a clone on the t-element set A= {1, . . . , t}, and let n ∈N. Let C[n] denote the
set of n-ary functions in C. As in [Aic10], for a∈An, we define a binary relation ϕ(C, a)
on A by

ϕ(C, a) := {(f (a), g(a)) | f, g ∈C[n],∀c ∈An : c<lex a⇒ f (c)= g(c)}.

Intuitively, if ϕ(C, a) is small, then the functions in C are strongly restricted by their
images on c for c<lex a. We also encode these relations in another way.

For (c, d) ∈A2, we define a subset λ(C, (c, d)) of A+ by

λ(C, (c, d)) := {a ∈A+ | (c, d) 6∈ ϕ(C, a)}.

We will later use the following straightforward connection between the relations ϕ(C, a)
and the sets λ(C, (c, d)).
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Lemma 5.1. Let C,D be clones on a finite set A. Then the following are equivalent:

(1) λ(C, (c, d))⊆ λ(D, (c, d)) for all (c, d) ∈A2.
(2) ϕ(D, a)⊆ ϕ(C, a) for all a ∈A+.

Proof. Assume we have (1). Let a ∈A+, and let (c, d) ∈ ϕ(D, a). Then a 6∈ λ(D, (c, d))
and a 6∈ λ(C, (c, d)) by (1). Hence (c, d) ∈ ϕ(C, a), and (2) is proved.

Conversely, assume we have (2). Let (c, d) ∈A2, and let a ∈ λ(C, (c, d)). Then
(c, d) 6∈ ϕ(C, a), which implies (c, d) 6∈ ϕ(D, a) by (2). Hence a ∈ λ(D, (c, d)), and (1)
is proved. ut

From the order-theoretic observations in Section 3 we obtain the following lemmas.

Lemma 5.2. Let t, m, n∈N, let C be a clone on the t-element set A= {1, . . . , t}, and let
a ∈Am and b ∈An be such that a≤E b. Then ϕ(C,b)⊆ ϕ(C, a).
Proof. Let (x, y)∈ ϕ(C,b). Then there are f, g ∈C[n] such that x = f (b), y = g(b), and
f (c)= g(c) for all c∈An with c<lex b. Let h be a function from {1, . . . , m} to {1, . . . , n}
witnessing a≤E b. Now we define functions f1 and g1 from Am to A by

f1(x) := f (Ta,b,h(x)), g1(x) := g(Ta,b,h(x)),

for x ∈Am. By the definition of Ta,b,h, we see that for each j ∈ {1, . . . , n}, the mapping
that maps x to the j -th component of Ta,b,h(x) is a projection operation. Hence f1 and g1
lie in the clone C.

We will now show that (f1(a), g1(a)) is an element of ϕ(C, a). To this end, let c∈Am
be such that c<lex a. Then Lemma 3.4 yields Ta,b,h(c) <lex b. Hence we have f1(c)=
f (Ta,b,h(c))= g(Ta,b,h(c))= g1(c). From this we obtain (f1(a), g1(a)) ∈ ϕ(C, a). Since
(f1(a), g1(a))= (f (b), g(b))= (x, y) by Lemma 3.4, we obtain (x, y) ∈ ϕ(C, a). ut

Lemma 5.3. Let C be a clone on a finite set A, and let (c, d) ∈A2. Then λ(C, (c, d)) is
an upward closed subset of 〈A+,≤E〉.

Proof. Let a ∈ λ(C, (c, d)), and let b ∈A+ such that a≤E b. Since (c, d) 6∈ ϕ(C, a),
Lemma 5.2 yields (c, d) 6∈ ϕ(C,b) and thus b ∈ λ(C, (c, d)). ut

6. Relations

A finitary relation R on a set A is a subset of AI for some finite set I . We say a function
f :Ak→A preserves R if R is a subuniverse of 〈A, f 〉I .

For a clone C on a set A and for m ∈N, the set of m-ary functions C[m] is a sub-
set of AA

m
. In this sense, a function f :Ak→A preserves the relation C[m] if for all

g1, . . . , gk ∈C
[m] the function

Am→A, x 7→ f (g1(x), . . . , gk(x)),

is in C[m] again.
For a ∈A+ let |a| denote the length of a.
In the next result we give finitely many relations that determine a clone with edge

operation.
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Theorem 6.1. Let A be a finite set, let k ∈N, k > 1, let C be a clone on A that contains
a k-edge operation t , and let A := 〈A,C〉. Then the set {|a| | there exists (c, d) ∈A2 such
that a is minimal with respect to ≤E in λ(C, (c, d))} has a supremum m in N, and C is
the clone of functions that preserve the relation C[m] and every subuniverse of Ak−1.

So by Theorem 6.1 the clone C is determined by the finitely many relations of arity
max(|A|m, k − 1). Apart from the condition on the m-ary functions our result resembles
the Baker–Pixley Theorem (see [BP75, Theorem 2.1(5)]) for clones with near unanimity
operations.

Proof of Theorem 6.1. Let (c, d) ∈A2. Since (A+,≤E) has no infinite antichain by
Lemma 3.2, λ(C, (c, d)) contains only finitely many minimal elements. Consequently,
as the supremum of finitely many natural numbers, m is finite. We note that the set
{|a| | there exists (c, d) ∈A2 such that a is minimal with respect to ≤E in λ(C, (c, d))}
is empty if λ(C, (c, d)) is empty for all (c, d) ∈A2. In that case we have m= 1 as the
supremum.

Let D be the clone of functions that preserve C[m] and every subuniverse of Ak−1.
Then C ⊆D and C[i] =D[i] for all i ∈ {1, . . . , m}. We claim that

λ(C, (c, d))⊆ λ(D, (c, d)). (6.1)

If λ(C, (c, d))=∅, the assertion is clear. So let a be minimal in λ(C, (c, d)). Then (c, d) 6∈
ϕ(C, a). By definition,m is at least the length |a| of a. HenceC[|a|]=D[|a|], which implies
that ϕ(C, a)= ϕ(D, a). Thus a∈ λ(D, (c, d)). So we have just proved that every minimal
element of λ(C, (c, d)) is contained in λ(D, (c, d)). Since λ(C, (c, d)) and λ(D, (c, d))
are upward closed subsets of the well partially ordered set (A+,≤E) by Lemma 5.3, this
proves (6.1).

Next we will show thatD[n]⊆C[n] for all n∈N. For fixed n∈N and a∈An we have

ϕ(D, a)⊆ ϕ(C, a) (6.2)

by (6.1) and Lemma 5.1.
Note that F :=C[n] andG :=D[n] form subuniverses of A|A|n with F ⊆G. For every

T ⊆An with |T |< k we claim that

πT (F )= πT (G). (6.3)

Clearly πT (F )⊆ πT (G). To prove the converse inclusion let g ∈G, let l := |T |, and
let T = {t1, . . . , tl} = {(a11, . . . , a1n), . . . , (al1, . . . , aln)}. We know that g preserves
the subuniverse B of Al that is generated by {(a11, . . . , al1), . . . , (a1n, . . . , aln)}.
From (g(t1), . . . , g(tl)) ∈B, we obtain an n-ary term function f of A such that
(g(t1), . . . , g(tl))= (f (t1), . . . , f (tl)). Hence f |T = g|T , and thus πT (f )= πT (g).
Hence πT (F )⊇ πT (G) and we have (6.3). By (6.2) and (6.3) the assumptions of
Lemma 4.1 are satisfied. Thus F =G. ut

For a finite set A and a set S of finitary relations on A, we will write Pol(A, S) for the set
of those functions on A that preserve all relations in S (cf. [PK79]).
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Theorem 6.2. Let A be a finite set, let k ∈N, k > 1, and let Mk be the set of all clones
on A that contain a k-edge operation. Then:

(1) For every clone C in Mk , there is a finitary relation R on A such that C =
Pol(A, {R}).

(2) There is no infinite descending chain in (Mk,⊆).
(3) The set Mk is finite if |A| ≤ 3 and countably infinite otherwise.

Proof. (1) Let C be a clone with k-edge term on the finite set A. By Theorem 6.1 there
exists a finite set S of finitary relations on A such that C = Pol(A, S). By [PK79, p. 50],
there is a single finitary relation R on A with Pol(A, S)= Pol(A, {R}).

Now (2) follows from (1) using the implication (i)′⇒(ii)′ in [PK79, Charakte-
risierungssatz 4.1.3].

(3) From [Idz99] and [KS12, Corollary 4.10] we deduce that Mk is finite if |A| ≤ 3,
and infinite if |A| ≥ 4. Every finitary relation on the finite set A is a finite subset of the
countable set A+. Hence Mk is countable by (1), and the claim follows. ut

Corollary 6.3. Let A be a finite set. Modulo term equivalence, the number of algebras
on A that have few subpowers is at most countably infinite.

Proof. By [BIM+10, Corollary 3.11] every algebra onAwith few subpowers has an edge
operation in its clone of term functions. Since the number of clones with edge operation
on A is at most countably infinite by Theorem 6.2(3), the assertion follows. ut

We recall that a primitive-positive formula over a language R of relation symbols is a
first-order formula ϕ(x1, . . . , xn) of the form

∃y1, . . . , yk : (α1 ∧ · · · ∧ αl)

where α1, . . . , αl are atomic formulas, that is, either of the form R(v1, . . . , vm) for some
R ∈R and variables v1, . . . , vm, or some equality v1 = v2 for variables v1, v2. The vari-
ables in α1, . . . , αl are from {x1, . . . , xn} ∪ {y1, . . . , yk}.

For a set A and m, n ∈N, let R be a subset of Am and let S be a subset of An. We say
that S is primitive-positive definable over R if there exists a primitive-positive formula
ϕ(x1, . . . , xn) over the language of the relational structure (A, {R}) such that

(a1, . . . , an) ∈ S if and only if (A, {R}) satisfies ϕ(a1, . . . , an).

We can now formulate a consequence of Theorem 6.2 that was not known even for finite
groups A.

Corollary 6.4. Let A be a finite algebra with few subpowers. Then there exists a subal-
gebra R of some finitary power of A such that for every n ∈N, every subalgebra S of An
is primitive-positive definable over R.

Proof. By [BIM+10, Corollary 3.11] the clone C of term operations of A contains an
edge operation. So, by Theorem 6.2(1), we have a finitary relation R on A such that C =
Pol(A, {R}). Hence by [PK79, Folgerung 1.2.4, Hauptsatz 2.1.3] every finitary relation S
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on A that is preserved by all functions in C is primitive-positive definable over R. Since
the finitary relations that are preserved by all term functions are exactly the subalgebras
of finite powers of A, the result is proved. ut

For the case of finite groups we restate the previous corollary and give some explicit
bounds on the length of the primitive-positive formula necessary to describe an arbitrary
relation.

Corollary 6.5. Let G be a finite, nontrivial group. Then there exists k ∈N and a subgroup
H of Gk with the following property:

For each n ∈N there are l, m ∈N with l ≤ |G|n·log2(|G|) and m≤ l · log2(|G|), and
there is a mapping σ : {1, . . . , m}×{1, . . . , k}→{1, . . . , l} such that for every subgroup S
of Gn there is a mapping τ : {1, . . . , n}→ {1, . . . , l} such that

S =
{
(g1, . . . , gn) ∈G

n
∣∣∣ ∃a1, . . . , al ∈G :( ∧

i∈{1,...,m}

(aσ(i,1), . . . , aσ(i,k)) ∈H
)
∧ g1 = aτ(1) ∧ · · · ∧ gn = aτ(n)

}
.

Proof. As a subgroup of Gn, S has a set of generators {s1, . . . , se} with e≤ log2(|G|
n).

Let C be the clone of term operations on G. Then

S = {f (s1, . . . , se) | f ∈C
[e]
}. (6.4)

By Theorem 6.2(1), we have k ∈N and some subgroup H of Gk such that C consists
exactly of those functions that preserve H . In particular

C[e] =
{
f ∈GG

e
∣∣∣ ∧
(r1,...,re)∈H e

f (r1, . . . , re) ∈H
}
,

=

⋂
(r1,...,re)∈H e

{f ∈GG
e

| f (r1, . . . , re) ∈H }.

Each of the |H |e sets in this intersection forms a subgroup of GGe . So we can choose
log2(|G|

|G|e ) of them whose intersection is again equal to C[e]. Hence we have M ⊆H e

with |M| ≤ |G|e · log2(|G|) such that

C[e] =
{
f ∈GG

e
∣∣∣ ∧
(r1,...,re)∈M

f (r1, . . . , re) ∈H
}
. (6.5)

Combining (6.4) and (6.5) yields

S =
{
g ∈Gn

∣∣∣ ∃f ∈GGe : ∧
(r1,...,re)∈M

f (r1, . . . , re) ∈H ∧ f (s1, . . . , se)= g
}
. (6.6)

It only remains to rewrite (6.6). Let l := |G|e, and let λ : Ge→{1, . . . , l} be a bijection.
For i ∈{1, . . . , l} define ai :=f (λ−1(i)). Letm := |M|, letµ : {1, . . . , m}→M be a bijec-
tion, and let σ : {1, . . . , m}×{1, . . . , k}→{1, . . . , l}, (i, j) 7→λ((µ(i))1j , . . . , (µ(i))ej ).
Note that l, m and σ only depend on n but not on S. Finally, define τ : {1, . . . , n}→
{1, . . . , l} by τ(i) := λ(s1i, . . . , sei). Then the result follows from (6.6). ut
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7. Concluding remarks

Given a set F of functions on a finite set A such that F generates a clone C with edge
operation, Theorem 6.2 guarantees the existence of a single relation R that determines C;
however, even if F is finite, it is not yet clear how to find R algorithmically.

K. Kearnes and Á. Szendrei [KS12] proved a result that is stronger than the one in this
paper for algebras in residually small varieties. Namely, Theorem 4.3 of [KS12] shows
that for every finite algebra A with k-edge term in a residually small variety, the clone of
term operations of A is determined by relations of arity max(k, |A||A|+1(B(|A| + 1)− 1)
where B(n) denotes the n-th Bell number. Hence these algebras are finitely related. More-
over on a fixed set A and for a fixed k > 1 there are only finitely many of them up to term
equivalence.

In [Koz08] M. Kozik considered the question whether a function can be obtained as
composition of some fixed functions. More precisely, for a fixed set of functions F on a
finite set A the problem ISTERMFUNCTION(F ) is the following:

Input: a function f :An→A,
Problem: decide if f is in the clone C on A that is generated by F .

He showed that in general this decision problem is EXPTIME-complete. If we assume
that F contains an edge operation, then there exists some fixed k-ary relation R onA such
that C = Pol(A, {R}). Whether f preserves R can be checked by evaluating f in k · |R|n

places and performing |R|n tests whether a given k-tuple is an element of R. The input of
ISTERMFUNCTION(F ) is the graph of f which basically has size |A|n. Consequently,
ISTERMFUNCTION(F ) is solvable in polynomial time if the algebra 〈A,F 〉 has few
subpowers.
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author acknowledges support from Portuguese Project ISFL-1-143 of CAUL financed by FCT and
FEDER.
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