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MALTSEV FAMILIES OF VARIETIES CLOSED UNDER

JOIN OR MALTSEV PRODUCT

RALPH FREESE AND RALPH MCKENZIE

Abstract. Maltsev families of varieties which are closed under join or Maltsev

product are investigated. New Maltsev conditions for congruence semi-distributivity
are given.

1. Introduction

A variety of algebras is a class of algebras of the same type defined by a set of
equations. Examples include groups, rings, modules over a fixed ring, lattices, and
Boolean algebras. Varieties can also be characterized as classes closed under homo-
morphic images, subalgebras and direct products. We sometimes group varieties by
certain properties they have and call these classes of varieties Maltsev families. For
example all the members of the classical varieties such as groups, rings and modules
have permutable congruence lattices; that is, the relational product of congruences
is commutative. Congruence permutability implies that the congruence lattices are
modular, as was essentially shown by Dedekind [5]. Maltsev [15] showed all the
members of a variety having permutable congruences is equivalent to the existence
of a term p(x, y, z) satisfying

x ≈ p(x, z, z) and z ≈ p(x, x, z).

Such a term is called a Maltsev term and conditions of this type (the existence of
terms satisfying certain equations or implications) is now called a Maltsev condition.
For groups p(x, y, z) = xy−1z is a Maltsev term. Collections of varieties satisfying
a Maltsev condition are called Maltsev families.

See [1] and [17] for standard notions from universal algebra.
This paper is concerned with eleven Maltsev families of varieties that are cer-

tainly the families most frequently encountered in the research in universal alge-
bra over the past half-century, and arguably, the most significant such families.
These are, namely, the varieties having a cube-term, a Taylor term, a Maltsev term
(permuting congruences), Jónsson terms (distributive congruence lattices), a near
unanimity term, Day terms (modular congruence lattices), meet semi-distributive
congruence lattices, a non-trivial congruence identity, semi-distributive congruence
lattices, n-permuting congruences (for some n), and finally, semi-distributive con-
gruence lattices of n-permuting congruences (for some n). The last five families,
along with the family defined by Taylor terms, were identified, in the domain of
locally finite varieties, in D. Hobby, R. McKenzie [11], as the families defined by
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omitting all types of congruence covers in a set J of types, where J ranges over the
non-empty, non-full, order ideals in the ordered set of tame congruence types.

For each family we consider, a defining Maltsev condition can be expressed as the
existence, for some n, of a finite set of terms f1, . . . , fk satisfying over the variety
the equations

fi(x, . . . , x) ≈ x (the idempotency law)

and a further specified finite set Σn of equations, each of which takes the form
fi(z1, . . . , zm) ≈ fj(w1, . . . , wm) where z1, . . . , wm are variables, not necessarily
distinct. Equations such as these, involving no superposition of operations, we call
linear. In other words, all eleven Maltsev families considered in this paper are
defined by linear, idempotent Maltsev conditions.

For a linear idempotent Maltsev condition expressed as finitely many linear equa-
tions in operations f1, . . . , fk as above, there is an equivalent linear idempotent
Maltsev condition expressed with one operation symbol f . Given two operations
s(x1, . . . , xm) and t(x1, . . . , xn) we define s ? t by

s ? t = [s ? t](x1, x2 . . . , xmn)(1)

= s(t(x1, . . . , xn), t(xn+1, . . . , x2n), . . . , t(x(m−1)n+1, . . . , xmn)) .

Given such a linear idempotent Maltsev condition expressed with f1, . . . , fk, put

f = f1 ? f2 ? · · · ? fk .

Then the given condition is equivalent to the existence of an idempotent term oper-
ation f satisfying a finite set of equations of the form f(variables) ≈ f(variables).
These new equations are derived from the former ones via the observations that
since all fi are idempotent, all fi are derived from f through replacing the vari-
ables in f by the variables of fi in an appropriate way. To illustrate the process,
suppose that our condition requires the existence of term operations f1, f2 so that
f1(x, y, y) ≈ f2(y, x, x), f1(x, y, x) ≈ x and f2(x, x, x) ≈ x. This is equivalent
to the existence of a term operation f(x1, . . . , x9) (and given f1, f2, we can take
f = f1 ? f2) satisfying the equations

f(xxxyyyyyy) ≈ f(yxxyxxyxx) and f(xxxyyyxxx) ≈ x .

Such a linear idempotent Maltsev condition in one function symbol f of r vari-
ables, constituted by s equations plus the idempotency law, can also be expressed
by two “equations”, namely: f(x, . . . x) ≈ x and f(Z) ≈ f(W ) where Z and W are
s×r matrices of variables and f(Z) ≈ f(W ) stands for the collection of s equations
stating that f applied to the ith row of variables in Z gives the same result as f
applied to the ith row of variables in W , for 1 ≤ i ≤ s.

The Maltsev family most naturally defined in this way is the largest of our
eleven, containing all of the other ten. A Taylor term for a variety V is a term
f(x1, . . . , xn) for some n ≥ 1 satisfying f(x, . . . , x) ≈ x and f(Z) ≈ f(W ) where
for each 1 ≤ i ≤ n, the ith columns in Z and W are distinct. For a given Taylor
term f(x1, . . . , xn) we can always arrange (by simple manipulations) to find another
equation f(Z ′) ≈ f(W ′) holding in V where Z ′ and W ′ are n× n matrices with all
entries from {x, y}, for two variables x and y, and the main diagonal of Z ′ consists
entirely of x’s while the main diagonal of W ′ consists entirely of y’s. W. Taylor
[20] proved that an idempotent variety V has a Taylor term if and only if V has no
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algebra F of more than one element in which every operation g is, for some m, one
of the m-ary projections g(x1, . . . , xm) = xi (1 ≤ i ≤ m).

The concept of a cube-term emerged very recently. A cube-term for a variety V

is a term f(x1, . . . , xn) for some n ≥ 1 satisfying the idempotency law and some
matrix equation f(Z) ≈ f(W ) where for two variables x and y, Z and W are n×n
matrices of x’s and y’s, the entries of Z are all x, and the diagonal entries of W
are y. In other words, a cube-term is a term f satisfying a collection of linear
equations f(z̄) ≈ x (where z1, . . . , zn, x are variables) such that for each 1 ≤ i ≤ n
one of these equations has a variable y 6= x replacing xi. Unlike Taylor terms,
there are standard forms for cube-terms. A k-dimensional cube-term c has 2k − 1
variables and satisfies the idempotency law and the equation c(C) ≈ c(X) where C
and X are k × (2k − 1) matrices of x’s and y’s, X has only x for entries, and the
columns of C are precisely all k-tuples of x’s and y’s containing at least one y—with
the 2k − 1 columns arranged in lexicographic order. A variety with a cube-term
has a k-dimensional cube-term for some k ≥ 2. To illustrate, a 2-dimensional cube
term is just a Maltsev term with the variables in non-standard order; namely, the
standard 2-dimensional cube-term equations are f(x, x, x) ≈ x and f(x, y, y) ≈ x,
f(y, x, y) ≈ x. Cube-terms were introduced in J. Berman, P. Idziak, P. Markovic,
R. McKenzie, M. Valeriote, R. Willard [2] where it was shown that a finite algebra
A has a cube-term if and only if the relational clone consisting of all subalgebras of
powers An is “sparse”, in the sense that for some k, and for all n ≥ 2, the number
of subuniverses of An is no greater than exp(2, nk). It is also known that every
variety with a cube-term has Day terms; i.e., its congruence lattices are modular
lattices.

This paper you are reading began with the observation in P. Markovic, M. Maroti
and R. McKenzie [16] that, for any signature σ, the class C of finite idempotent
algebras in the signature σ that have a cube-term is a pseudo-variety; that is, it is
closed under homs, subs, and finite products. Moreover if A is a finite idempotent
algebra of signature σ with a congruence θ so that both A/θ and every θ-block
have cube terms, then A has a cube term.

The Maltsev product of two quasi-varieties V and W in the same signature, is
the class of all algebras C in this signature having a congruence θ with C/θ ∈ W

and such that every equivalence class c/θ is a subalgebra of C that belongs to V.
This class V ◦W is a quasi-variety. It is idempotent if V is idempotent. V ◦W is
not necessarily a variety, even if both are idempotent. To see this let V = V (M3)
and W be the variety of distributive lattices. (M3 is the five element modular,
nondistributive lattice.) The first lattice of Figure 1 has an obvious homomorphism
onto the two-element lattice and this witnesses that it is in V◦W. It has the second
lattice as an image. Since this lattice is simple, it is not in V ◦W.

We say that a Maltsev family F is robust if whenever V and W are idempotent
varieties belonging to F then H(V ◦ W) (the variety generated by the Maltsev
product) also belongs to F.

In this paper, we prove that robustness fails for the properties of having per-
muting congruences, having modular congruence lattices, or having distributive
congruence lattices, but that all eight remaining Maltsev families we consider are
robust.
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Figure 1. M33+

We stick with idempotent varieties, because it is easy to see that for each of our
eleven Maltsev families F, there are non-idempotent varieties of the same signature
in F whose join does not belong to F, in fact, has only trivial idempotent terms.

Here we record three easy robustness results. The equations that define a near
unanimity term are x ≈ t(x, . . . , x, y, x, . . . , x), with y in the ith place, i = 1, . . . , n.
If a variety has a near unanimity term, it is congruence distributive; see [18].

Theorem 1.1. Each of the following Maltsev families is robust:

(1) varieties having a Taylor term,
(2) varieties having a cube term,
(3) varieties having a near unanimity term.

Proof. Let V and W be varieties of the same signature and let s and t be terms in
the common language which are idempotent in both varieties. If s is a Taylor term
for V and t is a Taylor term for W, then the reader can show s ? t is a Taylor term
for V ◦W; and similarly for the other two properties. �

Since a Maltsev term is a cube term and a majority term is a near unanimity
term, we get the following corollary.

Corollary 1.2. The variety generated by the Maltsev product of two idemponent
varieties each having a Maltsev term is congruence modular. The variety generated
by the Maltsev product of two idemponent varieties each having a majority term is
congruence distributive.

To conclude the introduction, we remark that M. Valeriote [22], showed that if
{A1, . . . ,Ak} are finitely many finite idempotent algebras of one signature and if
tame congruence type i occurs in the variety V (A1, . . . ,Ak), then some type j ≤ i
occurs in a homomorphic image of a subalgebra of one of the A`. This, combined
with the omitting types characterizations mentioned above, enables an easy proof
(which we omit) that among finite idempotent algebras, each of the six Maltsev
classes characterized by omitting types is robust. In the remainder of this paper,
we shall extend these robustness conclusions from locally finite idempotent varieties
to arbitrary idempotent varieties.

2. Non-preservation examples

First we recall Polin’s algebra [19]. Let Pi, i = 0, 1, be algebras both with
universe {0, 1} and both having the meet operation and two unary operations:
x 7→ x′ and x 7→ x+. In P0, x′ is the complement of x and x+ = 1. In P1,
x+ is the complement and x′ = x. Both algebras are term equivalent to the two
element Boolean algebra but the variety they together generate is not congruence
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modular; in fact, Con (P0 × P1) = N5. Indeed, besides the top, bottom and
projection congruences, the partition whose only nontrivial block is {(0, 0), (1, 0)}
is a congruence. The reader can check the details (or consult [4]).

A Pixley operation is a Maltsev operation t which also satisfies t(x, y, x) ≈ x.
If a variety has a Pixley term, it has a majority term; namely t(x, t(x, y, z), z).
Polin’s example shows that the join of two varieties both having a Pixley term (and
so both having a majority term) need not be congruence modular. As we saw in
Corollary 1.2, if we restrict ourselves to idempotent varieties we cannot hope for
something this strong.

The terms for some of the Maltsev conditions below were obtained with the help
of the Universal Algebra Calculator [8]. UACalc algebra files for the algebras below
can be obtained from github.com/UACalc/AlgebraFiles in the Robust directory.

Example 2.1. First, we exhibit two finite idempotent algebras B0 and B1, each
with a Maltsev term, whose direct product does not have a Maltsev term. This
shows also that neither the join nor the Maltsev product of two idempotent congru-
ence permutable varieties need be congruence permutable. Our algebras will have
similarity type {P,Q}, where P and Q are ternary operations symbols. {0, 1} is the

universe of both algebras. PB0 = QB1 are Pixley operations and QB0(x, y, z) =

PB1(x, y, z) = x ∨ y ∨ z (the maximum of the three inputs).
The set S = {0, 1}2 \ {(0, 0)} is a subuniverse of B = B0 × B1; let S be the

corresponding subalgebra. The two projection congruences restricted to S do not
permute. Thus B0 ×B1 has no Maltsev term.

However, the variety generated by B is 3-permutable with Hagemann-Mitschke
terms:

x, P (x,Q(x, y, x), Q(x, y, z)), P (z,Q(y, y, z), Q(x, y, z)), z .

(n-permutability and Hagemann-Mitschke terms are explained in Section 5; one
can easily verify the identities of Theorem 5.1 hold in B0 and B1.)

Since both algebras have a Pixley and hence majority term, the variety generated
by B is congruence distributive by Corollary 1.2. Since it is 3-permutable, it is 3-
distributive. But actually it is 2-distributive; that is, it has a majority term:

P (Q(x, P (x, x, y), y),

Q(x, P (x, x, y), Q(y, z, y)),

P (Q(x, P (x, x, z), z), Q(x, P (x, x, y), y), Q(y, P (y, x, z), z)))

Next, we give more examples, with slightly different features, showing that con-
gruence distributivity and modularity both fail to be robust.

Example 2.2. This example is an idempotent reduct of Polin’s algebra constructed
by Matthew Valeriote.1 Let Ai, i = 0, 1, be the reduct of Pi to the meet operation,
which we denote with juxtaposition, and the ternary operations s and t given by

s(x, y, z) = (xyz′)′(xy′z)′(x′yz)′(x′y′z′)′(2)

t(x, y, z) = (xz+)+y(x+z)+(3)

1He used it as an example of an idempotent algebra whose variety is not congruence modular
and has no prime intervals in its congruence lattices of TCT type 1 or 5 and whose subalgebras

have no tails; see [6]. There is a subalgebra of the square of the algebra with a tail.
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Since A0×A1 is a reduct of P0×P1, it also has a nonmodular congruence lattice.
(In fact the congruence lattice is also N5.)

One can easily check that sA0(x, y, z) = x+ y + z (mod 2) and tA0(x, y, z) = y,
and so s(x, s(xy, xz, yz), z) is a Pixley term for A0.

For A1, sA1(x, y, z) = xyz and

tA1(x, y, z) =

{
1 if y = 1 and x = z

0 otherwise

By Corollary 1.2 A1 cannot have a Maltsev term. Its variety is, however, 3-
permutable with Hagemann-Mitschke terms x, t(y, x, z), t(x, z, y), z. Also by
Corollary 1.2 A1 cannot be 2-distributive (have a majority term). But it is 3-
distributive with Jónsson terms x, t(s(x, y, z), x, t(y, x, z)), t(y, z, s(x, x, y)), z. The
variety generated by A0×A1 cannot be 3-permutable since 3-permutable varieties
are congruence modular. Nevertheless it is 4-permutable with Hagemann-Mitschke
terms x, t(y, x, z), s(x, y, z), t(x, z, y), z.

If we let A2 be a third algebra on {0, 1} with the meet operation, tA2(x, y, z) = y
and sA2(x, y, z) = tA1(x, y, z). Then the variety of A2, like that of A1, is 3-
permutable but not permutable. The variety generated by A1×A2 is 5-permutable
(but not 4-permutable) with Hagemann-Mitschke terms x, t(y, x, z), s(y, x, z),
s(x, z, y), t(x, z, y), z.

3. SD(∧) is robust

A variety is congruence meet semi-distributive, or satisfies SD(∧), if in the con-
gruence lattice of any algebra in this variety, for congruences α, β, γ we have

α ∧ β = α ∧ γ implies α ∧ (β ∨ γ) = α ∧ β .

A system of Willard terms for a class K of similar algebras is a finite set

{(fi(x, y, z), gi(x, y, z)) : 0 ≤ i ≤ n}

of pairs of three-variable terms such that K satisfies the equations fi(x, y, x) ≈
gi(x, y, x), fi(x, x, x) ≈ x for 0 ≤ i ≤ n and for all A ∈ K and a, b ∈ A, we have
that a = b if and only if for all 0 ≤ i ≤ n,

fi(a, b, b) = gi(a, b, b)↔ fi(a, a, b) = gi(a, a, b) .

R. Willard [23] proved that a variety V satisfies SD(∧) if and only if it has a system
of Willard terms.

Certain concepts of Abelian algebras, and of Abelian congruences, which have
played many important roles in universal algebra were introduced, notably in
D. Hobby, R. McKenzie [11] and R. Freese, R. McKenzie [9], in the following
way. Given congruences α, β, γ in an algebra A, we say that α centralizes β
(mod γ), and write this as C(α, β; γ), if for every term operation t(x0, . . . , xn) of
A and for all pairs of elements (a0, b0) ∈ α, (ci, di) ∈ β, i = 1, . . . n we have that
t(a0, c̄) ≡ t(a0, d̄) (mod γ) if and only if t(b0, c̄) ≡ t(b0, d̄) (mod γ). We say that α
is an Abelian congruence if and only if C(α, α; 0A) holds, where 0A is the equality
relation on A (the smallest congruence), and we say that A is an Abelian algebra if
and only if 1A is an Abelian congruence where 1A = A×A (the largest congruence).
Note subalgebras of Abelian algebras are Abelian.
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Combining the above with results from [12], we get the following theorem,

which is due K. Kearnes and E. Kiss [12], K. Kearnes and Á. Szendrei [13], and
R. Willard [23].

Theorem 3.1. The following are equivalent for a variety V of algebras.

(1) V satisfies SD(∧).
(2) V has Willard terms.
(3) V has no non-trivial Abelian algebras.

Theorem 3.2. If V and W are idempotent varieties of one signature satisfying
SD(∧) then the variety H(V ◦W) satisfies SD(∧).

Proof. Suppose that A is a non-trivial Abelian algebra in H(V◦W). Then we have
an algebra B ∈ V ◦W and a surjective homomorphism f : B→ A. Write λ for the
kernel of f , a congruence of B. Since B ∈ V ◦W, we have a second congruence θ of
B such that B/θ ∈W and every θ-class is an algebra in V.

We now establish that θ ⊆ λ. Suppose this fails. Then there is some element
a ∈ B so that f is non-constant on the θ-class a/θ, which is a subalgebra of B. Thus
f(a/θ) is a subalgebra of A with at least two elements. This algebra is Abelian
and belongs to V. But this cannot happen since V contains no non-trivial Abelian
algebras by Theorem 3.1.

Thus, indeed, θ ⊆ λ. It follows that A ∼= B/λ ∈ H(B/θ) ⊆W. But W contains
no non-trivial Abelian algebras by Theorem 3.1. Thus H(V ◦W) contains no non-
trivial Abelian algebras and so satisfies SD(∧). �

4. SD is robust

The next theorem combines some known characterization of join semi-distributivity
(or SD(∨)) with some new ones. The Maltsev condition given in part (4) is similar
to the one given in Hobby and McKenzie [11] and Kearnes and Kiss [12] but is
apparently more useful, as we shall see. For another application of (4) see [7].

Condition (5) arose in [14] and the term t is called a SD(∨)-term. The authors
there showed having such a term implies congruence semi-distributivity and that
every congruence distributive variety has such a term. Here we strengthen this by
showing that every congruence semi-distributive variety has such a term and so the
condition is equivalent to SD(∨).

The equivalence of (1) and (2) is in Hobby and McKenzie [11, Exercise 7.14
(10)]. That (1) and (2) are equivalent to (6) is proved by Kearnes and Kiss in
Theorem 8.14 of [12]. We will give a new proof that (2) implies (1) by deriving
Willard’s Maltsev condition for SD(∧) [23] from the Maltsev condition given in (4).

Theorem 4.1. The following are equivalent for a idempotent variety V:

(1) V is congruence semi-distributive.
(2) V is congruence join semi-distributive.
(3) V satisfies

γ ∩ (α ◦ β) ⊆ (α ∧ β) ∨ (β ∧ γ) ∨ (α ∧ γ)

for congruences.
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(4) For some k V has terms d0(x, y, z), . . . , dk(x, y, z) satisfying

d0(x, y, z) ≈ x;

di(x, y, y) ≈ di+1(x, y, y) if i ≡ 0 or 1 (mod 3);

di(x, y, x) ≈ di+1(x, y, x) if i ≡ 0 or 2 (mod 3);

di(x, x, y) ≈ di+1(x, x, y) if i ≡ 1 or 2 (mod 3);

dk(x, y, z) ≈ z;

(5) V has an idempotent term t(x1, . . . , xn) satisfying for each 1 ≤ i ≤ n an
equation t(ū) ≈ t(v̄) where ū, v̄ are tuples of x’s and y’s and uj = vj = x
for 1 ≤ j < i, ui = x and vi = y.

(6) V satisfies an idempotent Maltsev condition that fails in the variety of semi-
lattices and in every non-trivial variety of modules.

Proof. Clearly, (1) implies (2). That (2) implies (3) is proved by considering the
congruences γ = Cg(x, z) α = Cg(x, y) and β = Cg(y, z) on FV(x, y, z). We
assume that V satisfies SD(∨). Since, α ∨ β = α ∨ γ = β ∨ γ it follows that
α ∨ (β ∧ γ) = β ∨ (α ∧ γ) = α ∨ β. Then

α ∨ (β ∧ γ) ∨ (α ∧ γ) = α ∨ β ;

β ∨ (β ∧ γ) ∨ (α ∧ γ) = α ∨ β ;

and finally applying SD(∨) again we get

(α ∧ β) ∨ (β ∧ γ) ∨ (α ∧ γ) = α ∨ β ,

and it is easy to see (3) follows from this.
Next, (4) is an easy consequence of (3)—or rather of the corollary that (x, z)

belongs to the join of the three binary meets—using the usual characterization of
the relations f(x, y, z) ≡ g(x, y, z) mod α, mod β, and mod γ.

Let (5′) be the following condition:

(5′) V has an idempotent term t(x0, . . . , xn−1) such that for all nonempty sub-
sets S of {x0, . . . , xn−1}

V satisfies an equation in the variables {x, y} of the form

t(a0, . . . , an−1) ≈ t(b0, . . . , bn−1),

where ai = x for all i such that xi ∈ S, and bi = x for all i such
that xi ∈ S except for exactly one such i (for which bi = y, of
course).

Let (∗)S denote the displayed condition. We will show that (4) implies (5′)
and that (5′) implies (5) (so (5′) is also equivalent to V being congruence join
semidistributive).

To see that (4) implies (5′) suppose V has terms as in condition (4). We may
assume k is 1 or 2 mod 3 (but adding the third projection to the end if necessary)
so that dk−1(x, y, y) ≈ y holds in V. Define ti, i = 1, . . . , k − 1 by

ti = di ? di−1 ? · · · ? d1

and let t = tk−1.

Claim. For 1 ≤ i < k the term ti(x0, . . . , x3i−1) satisfies (∗)I for all nonempty
subsets I of its variables except possibly I = {x0}.
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Since t1(x, x, x) ≈ t1(x, y, y) and t1(x, x, x) ≈ t1(x, y, x), the claim holds for
i = 1. Assume that the claim holds for ti. Suppose I * {x0, x3i , x2·3i}. Then
there is a j such that xj ∈ I but not in {x0, x3i , x2·3i}. So either 0 < j < 3i

or 3i < j < 2 · 3i or 2 · 3i < j < 3i+1. The arguments for the three cases are
similar, so we shall assume 3i < j < 2 · 3i and let I1 = I ∩ {x3i , . . . , x2·3i−1}.
By induction the claim holds for ti(x0, . . . , x3i−1) which implies that (∗)S holds
for each nonempty subset S of {x3i , . . . , x2·3i−1} except possibly {x3i}. Thus (∗)I1
holds for ti(x3i , . . . , x2·3i−1), so there is an equation witnessing this. We can extend
this to a witness that ti+1 satisfies (∗)I by setting the first third and last third of
the variables to x.

So we may assume I ⊆ {x0, x3i , x2·3i}. Let x̄ be a string of 3i−1 x’s and ¯̄x be a
string of 3i x’s and similarly for y. Then

ti+1(x̄, ȳ, ȳ, x̄, ȳ, ȳ, x̄, ȳ, ȳ) ≈ ti+1(¯̄x, ¯̄y, ¯̄y) i = 0 or 1 (mod 3)

ti+1(x̄, ȳ, x̄, x̄, ȳ, x̄, x̄, ȳ, x̄) ≈ ti+1(¯̄x, ¯̄y, ¯̄x) i = 0 or 2 (mod 3)

ti+1(x̄, x̄, ȳ, x̄, x̄, ȳ, x̄, x̄, ȳ) ≈ ti+1(¯̄x, ¯̄x, ¯̄y) i = 1 or 2 (mod 3)

For example both sides of the first equation can be simplified to di(x, y, y).
To complete the proof of the claim we need to verify (∗)I for all nonempty subsets

I of {x0, x3i , x2·3i} except {x0}. Using the above equations, this is straightforward.
Using dk−1(x, y, y) ≈ y one can show

tk−1(y, x, . . . , x) ≈ tk−1(x, x, . . . , x) ≈ x

which witnesses (∗){x0}. Thus tk−1 is an SD(∨)-term.
To see that (5′) implies (5) let t(x0, . . . , xn−1) be the term given by (5′). We

shall show that after permuting the variables, this term will satisfy (5). Let S
be all the variables. The condition (∗)S says there is a j such that t(x, . . . , x) =
t(x, . . . , x, y, x, . . . , x), with the y in the jth position. We interchange j and the
last position so the modified t satisfies t(x, . . . , x) = t(x, . . . , x, y). Now take S to
be all but the last variable. (∗)S and another permutation of the variables give an
equation of the form

t(x, . . . , x, x, an−1) = t(x, . . . , x, y, bn−1)

where an−1 and bn−1 ∈ {x, y}. Continuing we see that (5) holds.
It is easily seen that (5) does not hold in any non-trivial module or semilattice.

Thus (5) implies (6). As mentioned above the equivalence of (1), (2) and (6) is
proved in [12]. �

We shall now directly show that SD(∨) implies SD(∧) by showing any variety
that has terms satisfying (4) of the last theorem has Willard terms. Let Γ be the
set of all terms f(x, y, z) = di(u, v, w) with 0 ≤ i ≤ k and {u, v, w} = {x, y, z}.
Take for Σ the set of all pairs (f(x, y, z), g(x, y, z)) such that f , g ∈ Γ and V

satisfies f(x, y, x) ≈ g(x, y, x). We claim Σ constitutes a system of Willard terms
for congruence meet semidistributivity. To do this we need to prove V satisfies

x = y ↔
∧

(f,g)∈Σ

[f(x, x, y) = g(x, x, y)↔ f(x, y, y) = g(x, y, y)].

So let a, b ∈ A where A ∈ V and suppose that whenever (f, g) ∈ Σ we have
f(a, b, b) = g(a, b, b) ↔ f(a, a, b) = g(a, a, b). We proceed to show that for all
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0 ≤ i ≤ k, di(a, b, b) = di(a, b, a) = di(a, a, b) = a, by induction on i. For i = 0 it is
trivial.

Suppose i < k and it is true for i. Suppose that di+1(a, b, b) 6= a. Then i ≡ 2
(mod 3). It follows that (di, di+1) ∈ Σ. But then di+1(a, a, b) = di(a, a, b) from
equations (4), and hence di+1(a, b, b) = di(a, b, b) = a after all.

Next, suppose that di+1(a, b, a) 6= a. Then i ≡ 1 (mod 3). Then (f, g) ∈ Σ where
f(x, y, z) = di(x, z, y) and g(x, y, z) = di+1(x, z, y). Since f(a, b, b) = g(a, b, b), from
equations (4), it follows that f(a, a, b) = g(a, a, b)—i.e., di+1(a, b, a) = di(a, b, a) =
a after all.

The proof that di+1(a, a, b) = a follows the pattern of the demonstration that
di+1(a, b, b) = a.

Finally, it follows that b = dk(a, b, b) = a, as required.

Theorem 4.2. If V and W are idempotent varieties of one signature satisfying SD
then the variety H(V ◦W) satisfies SD.

Proof. We can assume that the term s(x1, . . . , xn) satisfies condition (5) of Theo-
rem 4.1 over V and t(x1, . . . , xm) satisfies Theorem 4.1 (5) over W.

Consider the term

r(x11, x12, . . . , x1n, x21, x22, . . . , xm1, . . . , xmn) = s(t(x̄1), . . . , t(x̄n))

where x̄j = (x1j , . . . , xmj). The m × n variables are ordered lexicographically as
displayed, so that for 1 ≤ i, i′ ≤ m and i ≤ j, j′ ≤ n, ij < i′j′ if and only if i < i′

or i = i′ and j < j′. With this ordering, the term r satisfies a set of equations
over V ◦W that fulfills the condition of Theorem 4.1 (5) for this class, and thus for
H(V ◦W).

Indeed, for any variable xij , choose an equation t(ū) = t(v̄) valid in W where
the tuples of x’s and y’s ū, v̄ satisfy uk = vk = x for 1 ≤ k < i and ui = x and
vi = y. Choose an equation s(z̄) = s(w̄) valid in V where the tuples z̄, w̄ of x’s,
y’s satisfy zk = wk = x for 1 ≤ k < j and zj = x and wj = y. In the second
equation, substitute t(ū) for x everywhere, and t(v̄) for y everywhere. This gives a
linear equation r(variables) ≈ r(variables) which is valid in V ◦W, has xi′j′ = x
on both sides when i′j′ < ij, and has xij = x on the left side, and xij = y on the
right side. �

The next theorem combines some curious observations.

Theorem 4.3. The following are equivalent for an idempotent variety V:

(1) V is congruence semi-distributive.
(2) V satisfies

γ ∩ (α ◦ β) ⊆ α ∨ (γ ∧ β)

for congruences.
(3) Whenever S,T,A,B ∈ V and T ≤ A×B and S is a block of a congruence θ

on T, then (a, b), (a′, b′) ∈ S and (a′, b) ∈ T imply (a′, b) ∈ S. In particular,
the blocks of a congruence on A×B are rectangles.

Proof. Statement (2) is a consequence of Theorem 4.1 (3), hence (1) implies (2) in
this theorem. Also, (2) easily is seen to fail in semilattices and in any non-trivial
variety of modules. Hence again by Theorem 4.1, (1) and (2) are equivalent.

In the situation of statement (3), take γ to be the first projection congruence
restricted to T , put α = θ, and take β to be the second projection congruence
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restricted to T . Then
((a′, b′), (a′, b)) ∈ γ ∩ (α ◦ β) .

Since γ ∩ β = 0T , then (2) implies

((a′, b′), (a′, b)) ∈ α
which entails (a′, b) ∈ S = (a′, b′)/α. Thus (2) implies (3).

To see that (3) implies (2), let G ∈ V, and α, β, γ be congruences of G, and
u, v, w elements of G with (u, v) ∈ α, (v, w) ∈ β, (u,w) ∈ γ. We need to see that
(u,w) ∈ α ∨ (β ∧ γ) = α′. Take A = G/β, B = G/γ, and let π : G → A ×B be
the map

π(x) = (x/β, x/γ) ,

and T = π(G) ≤ A×B. The kernel of π is β ∧ γ. Put

θ = π(α′) = {(π(x), π(y)) : (x, y) ∈ α′} .
Since α′ contains the kernel of π, θ is a congruence of T. Finally, take S = π(u)/θ.
Now where a = u/β, b = u/γ, a′ = v/β, b′ = v/γ, we have

π(u) = (a, b) π(v) = (a′, b′), π(w) = (a′, b)

and these elements belong to T . Note that {π(u), π(v)} ∈ S. So it follows by (3)
that π(w) ∈ S; equivalently, (u,w) ∈ α′. �

5. Congruence n-permutability for some n is robust

For n ≥ 2, a variety is congruence n-permutable if and only if for all A ∈ V and
congruences θ, ψ of A, we have that θ ∨ ψ = α1 ◦ α2 ◦ · · · ◦ αn (relation product)
where αi = θ for odd i and αi = ψ for even i.

Theorem 5.1 (J. Hagemann, A. Mitschke [10]). For any n ≥ 2 an idempotent
variety V is congruence n-permutable if and only if V has terms f0, . . . , fn satisfying

(1) f0(x, y, z) = x.
(2) fi(x, x, y) = fi+1(x, y, y) for 0 ≤ i < n.
(3) fn(x, y, z) = z.

The next theorem, due to M. Kozik, A. Krokhin, M. Valeriote and R. Willard,
gives a matrix like condition for n-permutability in the same vein as condition (5)
of Theorem 4.1. However we have not been able to use this theorem to proof
robustness of “n-permutable for some n”. Instead, we use Hagemann-Mitschke
terms from Theorem 5.1 to prove that if V, W are idempotent n-permutable varieties
then H(V ◦W) is m-permutable for some m > n. Note that we already showed in
Example 2.1 that 2-permutability is not robust. However the arguments below show
that the Maltsev product of two idempotent 2-permutable varieties is 4-permutable.
In the following section we shall give an arguement of a different nature showing
that such a Maltsev product is actually 3-permutable.

Theorem 5.2 (Kozik, Krokhin, Valeriote, Willard [14]). A variety V is congruence
n-permutable for some n ≥ 2 if and only if it has a term f(x1, . . . , xm) for some
m ≥ 3 satisfying an equation f(Z) = f(W ) where Z and W are m ×m matrices
of x’s and y’ and Z has x on the main diagonal and everywhere below the main
diagonal, while W has y on the main diagonal and everywhere above the main
diagonal.

Theorem 5.3. The condition “congruence n-permutable for some n” is robust.
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Proof. Suppose that V is k-permutable and W is `-permutable and both varieties
are idempotent (and in the same signature). Then both varieties are n-permutable
where n is the larger of k and `.

By Theorem 5.1 we have Hagemann-Mitschke terms f0(x, y, z), . . . , fn(x, y, z)
for V and Hagemann-Mitschke terms g0(x, y, z), . . . , gn(x, y, z) for W. There is no
harm in assuming f0 = g0 = x and fn = gn = z. We write U for the quasi-variety
V ◦W.

For a class K and terms s(x, y, z) and t(x, y, z) we write K |= s ⇒ t to denote
K |= s(x, x, z) ≈ t(x, z, z). The transitive closure of this relation is denoted K |=
s→ t. We have that V, W |= x→ z and want to show U |= x→ z. In what follows,
⇒ and → and ≈ denote the relations over U. We will show that

(4) x→ g1(x, y, z)→ g2(x, y, z)→ · · · → gn(x, y, z) = z.

First

x⇒ f1(x, g1(x, y, y), g1(x, z, z))

⇒ f2(x, g1(x, y, y), g1(x, z, z))

⇒ f3(x, g1(x, y, y), g1(x, z, z))

...

⇒ fn−1(x, g1(x, y, y), g1(x, z, z))

⇒ g1(x, y, z) .

To see f2(x, g1(x, y, y), g1(x, z, z)) ⇒ f3(x, y, y), g1(x, z, z)), for example, we need
to show U |= f2(x, g1(x, x, x), g1(x, z, z)) ≈ f3(x, g1(x, z, z), g1(x, z, z)). Of course
g1(x, x, x) ≈ x and if θ is a congruence of an idempotent algebra A with A/θ ∈W

and whose blocks are in V, then g1(x, z, z) θ g0(x, x, z) = x. So x and g1(x, z, z) are
in the same block. And so f2(x, g1(x, x, x), g1(x, z, z)) ≈ f3(x, g1(x, z, z), g1(x, z, z))
holds.

Now

g1(x, y, z)⇒ f1(g1(x, x, z), g2(x, y, y), g2(x, z, z))

→ f2(g1(x, x, z), g2(x, y, y), g2(x, z, z))

→ f3(g1(x, x, z), g2(x, y, y), g2(x, z, z))

...

→ fn−1(g1(x, x, z), g2(x, y, y), g2(x, z, z))

→ fn(g1(x, x, z), g2(x, y, y), g2(x, z, z))

⇒ g2(x, y, z) .

To see f2(g1(x, x, z), g2(x, y, y), g2(x, z, z)) → f3(g1(x, x, z), g2(x, y, y), g2(x, z, z)),
for example, we first calculate

f2(g1(x, x, z), g2(x, y, y), g2(x, z, z))⇒ f2(g1(x, x, z), g2(x, x, x), g2(x, z, z))

≈ f2(g1(x, x, z), x, g2(x, z, z))
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Now, since x→ g1(x, y, z)⇒ g1(x, x, z), we have

f2(g1(x, x, z), x, g2(x, z, z))→ f2(g1(x, x, z), g1(x, x, z), g2(x, z, z))

≈ f3(g1(x, x, z), g2(x, z, z), g2(x, z, z))

⇒ f3(g1(x, x, z), g2(x, y, y), g2(x, z, z))

Thus g1(x, y, z)→ g2(x, y, z). Continuing in this way we see that (4) holds. �

The proof of this theorem obviously produces a very long sequence of Hagemann-
Mitschke terms. Each → of (4) is longer (has more ⇒’s) than the one before it
(about n times as long). Also the depth of the terms increases by one at each step
of (4). One way to decrease the length is to work from both ends towards the
middle. The next theorems do this explicitly for n = 2 and 3.

Theorem 5.4. If V and W are idempotent, congruence permutable varieties of
the same type, then the variety generated by V ◦W is 4-permutable. If f and g are
Maltsev terms for V and W, respectively, then V◦W has Hagemann-Mitschke terms
h0(x, y, z) = x, h4(x, y, z) = z and

h1(x, y, z) = f(x, g(x, y, y), g(x, z, z))

h2(x, y, z) = g(x, y, z)

h3(x, y, z) = f(g(x, x, z), g(y, y, z), z)

Theorem 5.5. If V and W are idempotent, congruence 3-permutable varieties of
the same type, then the variety generated by V ◦W is 15-permutable. If fi and gi,
i = 0, 1, 2, 3 are Hagemann-Mitshchke terms for V and W, respectively, then V ◦W
has Hagemann-Mitschke terms h0(x, y, z) = x, h15(x, y, z) = z and

h1(x, y, z) = f1(x, g1(x, y, y), g1(x, z, z))

h2(x, y, z) = f2(x, g1(x, y, y), g1(x, z, z))

h3(x, y, z) = g1(x, y, z)

h4(x, y, z) = f1(g1(x, x, z), g2(x, y, y), g2(x, z, z))

h5(x, y, z) = f1(g1(x, x, z), f1(x, g1(x, y, y), g1(x, z, z)), g2(x, z, z))

h6(x, y, z) = f1(g1(x, x, z), f2(x, g1(x, y, y), g1(x, z, z)), g2(x, z, z))

h7(x, y, z) = f1(g1(x, x, z), g1(x, y, z), g2(x, z, z))

h8(x, y, z) = f2(g1(x, x, z), g2(x, y, z), g2(x, z, z))

h9(x, y, z) = f2(g1(x, x, z), f1(g2(x, x, z), g2(y, y, z), z), g2(x, z, z))

h10(x, y, z) = f2(g1(x, x, z), f2(g2(x, x, z), g2(y, y, z), z), g2(x, z, z))

h11(x, y, z) = f2(g1(x, x, z), g1(y, y, z), g2(x, z, z))

h12(x, y, z) = g2(x, y, z)

h13(x, y, z) = f1(g2(x, x, z), g2(y, y, z), z)

h14(x, y, z) = f2(g2(x, x, z), g2(y, y, z), z)

Remark 5.6. Example 2.1 gives two idempotent congruence permutable varieties
whose join is 3-permutable but not permutable. Example 2.2 gives two idempotent
varieties, one permutable and the other 3-permutable whose join is 4 but not 3-
permutable. It also gives two idempotent, 3-permutable varieties whose join is 5,
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but not 4, permutable. Of course these numbers differ from those of Theorems 5.4
and 5.5.

6. Maltsev products of permutable varieties

In the last section we saw that the Maltsev product of two idempotent, con-
gruece permutable varieties is 4-permutable. While this seemed like it would be
the best possible result, it isn’t. Matt Valeriote is able to show that the join of two
idempotent, congruece permutable varieties is 3-permutable:

Theorem 6.1 (M. Valeriote, [21]). If V and W are idempotent, congruence per-
mutable varieties of the same signature, then V∨W is 3-permutable with Hagemann-
Mitschke terms

x

p(q(x, p(x, y, z), p(x, y, z)), q(x, p(y, z, z), z), q(x, y, z))

p(q(x, y, z), q(x, p(x, y, y), z), q(p(x, y, z), p(x, y, z), z))

z

where p and q are Maltsev terms for V and W, respectively.

Valeriote also found algebras that show the above terms are not adequate to
show V ◦W is 3-permutable.

Here we show that in fact the Maltsev product of two idempotent, congruence
permutable varieties is 3-permutable. However the proof, which is classic universal
algebra, does not produce Hagemann-Mitschke terms.

Theorem 6.2. The Maltsev product of two idempotent, congruence permutable
varieties is congruence 3-permutable.

The idea of the proof is to show that if A is an algebra and θ ∈ Con(A) is
such that A/θ has a Maltsev term q(x, y, z), and there is a term p(x, y, z) which
is Maltsev on each block of θ, then the congruences of A 3-permute. The theorem
then follows from this by stardard arguments. First we show that θ itself 3-permutes
with all congruences of Con(A).

Theorem 6.3. Let A be an algebra, θ ∈ Con(A).

(1) If A/θ has a Maltsev term, then for all ψ ∈ Con(A)

ψ ◦ θ ◦ ψ ⊆ θ ◦ ψ ◦ θ
(2) If p(x, y, z) is a term which is Maltsev on each θ-block, then for ψ ∈ Con(A)

θ ◦ ψ ◦ θ ⊆ ψ ◦ θ ◦ ψ
Thus if the hypotheses of both (1) and (2) hold, then θ 3-permutes with all ψ ∈
Con(A).

Proof. First assume the hypothesis of (1) holds and that the Maltsev term is
q(x, y, z). Suppose (a, d) ∈ ψ ◦ θ ◦ ψ so there exists b and c such that

a ψ b θ c ψ d

Then
a θ q(a, b, b) θ q(a, b, c) ψ q(b, b, d) θ d

so (a, d) ∈ θ ◦ ψ ◦ θ.
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Now assume the hypothesis of (2) holds and suppose (a, d) ∈ θ ◦ ψ ◦ θ so there
exists b and c such that

a θ b ψ c θ d

We calculate

a = p(a, b, b) ψ p(a, b, c) θ p(b, b, d) ψ p(c, c, d) = d

showing (a, d) ∈ ψ ◦ θ ◦ ψ. �

Lemma 6.4. Assume A and θ satisfy the hypotheses of (1) and (2) of Theorem 6.3.

(1) If α, β ≥ θ, then they permute.
(2) If α, β ≤ θ, then they permute.

Proof. Since A/θ lies in a CP variety, (1) holds by an easy argument. Suppose
α, β ≤ θ and that a α b β c. Then a, b and c all lie in the same θ block and so
d = p(a, b, c) satisfies a β d α c. �

Assume A is an algebra and θ ∈ Con(A) satisfies the hypotheses of (1) and (2)
of Theorem 6.3, but A does not have 3-permutable congruences. Hence there are
α and β ∈ Con(A) such that

(5) β ◦ α ◦ β 6= α ∨ β.

The elements of A that witness (5) lie in a single block of α ∨ β, of course.
If B is a subalgebra of A, then B and the restriction of θ to B also satisfies the
hypotheses (1) and (2) of Theorem 6.3. Thus we can replace A with B, where B
is the subalgebra on the above block. This shows we may also assume

α ∨ β = 1.

Since “having a cube term” is preserved under Maltsev products (and Maltsev
terms are cube terms), A lies in a congruence modular variety. Hence the sublattice,
which we denote L, of Con(A) generated by α, β and θ is an image of the well
known free modular lattice on three generators. Let L0 be the modular lattice
freely generated by α, β and θ subject to α∨β = 1. L0 is diagrammed in Figure 2.
Then L is a homomorphic image of L0.

As indicated in Figure 2, let β∗ be the lower cover of β and let β∗∗ be the lower
cover of β∗; define α∗ and α∗∗ dually.

Using the commutator theory we see that [β∗, β∗] ≤ α∗; see [9]. Hence β∗ and
α∗ permute; so α∗∗ = α∗ ◦ β∗. Suppose that

1 = β ◦ α∗∗ ◦ β(6)

α∗ = β∗∗ ◦ α ◦ β∗∗(7)

Then we calculate

1 = β ◦ α∗∗ ◦ β
= β ◦ α∗ ◦ β∗ ◦ β
= β ◦ α∗ ◦ β
= β ◦ β∗∗ ◦ α ◦ β∗∗ ◦ β
= β ◦ α ◦ β

a contradiction.
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θ

β

β∗

β∗∗

α

α∗

α∗∗

L0

Figure 2

Thus either (6) or (7) must fail. If (6) fails we can replace α by α∗∗. In this case
L is an image of L2 given in Figure 3. If (7) fails we can replace β by β∗∗ and L is
an image of L1 also given in Figure 3.

θ β

α

1

L1

θ

β

α

1

L2

Figure 3

Suppose that L is a (not necessarily proper) homomorphic image of L1. In L1

let α1 = α ∧ θ and β1 = β ∧ θ. By the lemma θ = α1 ◦ β1 = β1 ◦ α1. Also θ
3-permutes with α so

1 = θ ◦ α ◦ θ
= β1 ◦ α1 ◦ α ◦ α1 ◦ β1

= β1 ◦ α ◦ β1

⊆ β ◦ α ◦ β ⊆ 1.

Thus β ◦ α ◦ β = α ∨ β, contradicting our assumption (5).
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Now suppose L is a (not necessarily proper) homomorphic image of L2. We clain
that

(8) 1 = α ∨ β = α ◦ β ◦ α = α ◦ β ◦ θ = θ ◦ β ◦ α.
To see this let γ = θ∨β in L2. Then, since θ and β 3-permute and, by the corollary,
α and γ permute,

1 = α ◦ γ = α ◦ (θ ◦ β ◦ θ) = α ◦ β ◦ θ.
Similar arguments prove the rest of the claim.

Let a and d be in A. By (8) there are elements b, c, e and f ∈ A such that

a α b β c θ d α e β f θ a

see Figure 4.

a

b c

d

ef

θ

θ

β

β

α

α

Figure 4

Since p is Maltsev on the blocks of θ, we have

p(d, c, b) β p(d, c, c) = d and p(e, e, a) β p(f, f, a) = a

Since θ ≤ α, p(d, c, b) α p(e, e, a). Hence a β p(e, e, a) α p(d, c, b) β d. Since a and d
were arbitrary, 1 = α ∨ β = β ◦ α ◦ β, showing this case cannot occur and proving
Theorem 6.2.

7. Congruence equations

A Hobby-McKenzie term is an idempotent term f(x1, . . . , xn) satisfying an equa-
tion f(Z) = f(W ) where Z, W are n × n matrices of x’s and y’s so that Z has
nothing but x on and below the main diagonal while W has nothing but y on the
main diagonal.

Theorem 7.1. The following are equivalent for an idempotent variety V.

(1) V contains no non-trivial algebra that is a reduct of a semilattice.
(2) V has a Hobby-McKenzie term.
(3) There is a non-trivial lattice equation obeyed by the congruence lattices of

all algebras in V.

Proof. D. Hobby and R. McKenzie [11] proved the equivalence of (1) and (2).
K. Kearnes and E. Kiss [12] proved the equivalence of (1) and (3). Note that (1),
for an indempotent variety V, is equivalent to V satisfying an idempotent Maltsev
condition that fails in the two-element semilattice. �
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Theorem 7.2. The class of idempotent varieties possessing a congruence equation
is robust.

Proof. Suppose that V and W are idempotent varieties and each has a non-trivial
congruence equation. By Theorem 7.1 it suffices to show that H(V ◦W) does not
contain a reduct of the two-element semilattice. Suppose, to the contrary that
C ∈ V ◦W and h is a surjective homomorphism of C onto a reduct of the two-
element semilattice Q. Let λ be the kernel of h and θ be a congruence of C with
C/θ ∈W and every c/θ ∈ V.

We argue that θ ⊆ λ. If h is not constant on some theta class c/θ then h(c/θ) =
h(C) and this algebra belongs to V, since the algebra c/θ does. This contradicts
Theorem 7.1. Thus θ ⊆ λ. Now it follows that the reduct of Q, namely h(C) is a
quotient of C/θ. Then h(C) ∈W, yielding again a contradiction. �

Remark 7.3. It follows that if V and W have Hobby-McKenzie terms s, t respec-
tively, and both terms are idempotent in both varieties, then these varieties have a
common Hobby-McKenzie term. We have been unable to discover any direct proof
of that fact.

Remark 7.4. One of the hallmark results of K. Kearnes, E. Kiss and Á. Szendrei
[12, 13] is that a variety V is congruence SD(∨) if and only if it is congruence SD(∧)
and possesses a congruence equation. Using this it follows from Theorem 3.2 and
Theorem 7.2 that SD is robust. However, unlike Theorem 4.2, this does not give
the SD(∨)-term that witnesses the result.

Remark 7.5. Of course, the eleventh Maltsev condition, namely SD plus congruence
n-permutability for some n, is robust because it is the conjunction of two robust
conditions.

8. Concluding remarks and further work

First we point out that knowing a property is robust leads to faster algorithms
for testing if an idempotent algebra A has the property. Namely, we can reduce
the problem to testing the property on simple sections of A. Specifically, find a
coatom of A, test the property on A/θ and then recursively continue on the blocks
of θ. This was first noted for cube terms in [16].

We note that for certain properties we were able to prove they are robust but
were not able to produce actual terms. These properties include congruence meet-
semidistributivity, having a nontrivial congruence identity (Hobby-McKenzie term),
and the 3-permutability of the Maltsev product of two permutable varieties. It
would be nice to have actual terms witnessing each of these.

Many of the numerical bounds we have given are not optimal and it would be
interesting to find better bounds. For example Theorem 5.5 shows that the Maltsev
product of two idempotent 3-permutable varieties is 15-permutable and the remark
following the theorem shows that 5 is a lower bound. But we do not know the best
bound.

Theorem 1.1 shows that the Maltsev product of two idempotent varieties with
near unamimity terms of arities n and m has a near unamimity term of arity nm.
But in [3] M. Campanella, S. Conley and M. Valeriote show that there is a near
unamimity term of arity n+m− 1, and that this is the best bound.
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