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Abstract
If G is a group, then subgroups A and B are commensurable if

A ∩B has finite index in both A and B. The commensurator of A in
G, denoted CommG(A), is

{g ∈ G|(gAg−1) ∩A has finite index in both A and gAg−1}.
It is straightforward to check that CommG(A) is a subgroup of G. A
subgroup A is commensurated in G if CommG(A) = G. The central-
izer of A in G is a subgroup of the normalizer of A in G which is a
subgroup of CommG(A). We develop geometric versions of commen-
surators in finitely generated groups. In particular, g ∈ CommG(A)
iff the Hausdorff distance between A and gA is finite. We show a
commensurated subgroup of a group is the kernel of a certain map,
and a subgroup of a finitely generated group is commensurated iff a
Schreier (left) coset graph is locally finite. The ends of this coset graph
correspond to the filtered ends of the pair (G,A). This last equiva-
lence is particularly useful for deriving asymptotic results for finitely
generated groups. Our primary goals in this paper are to develop
and compare the basic theory of commensurated subgroups to that of
normal subgroups, and to initiate the development of the asymptotic
theory of commensurated subgroups.

1 Introduction

Classically (1966), A. Borel proved several results about irreducible lattices
in semisimple Lie groups that cemented commensurators as critical to the
theory [4]. In 1975, G. A. Margulis extended these results [17].
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The concept of a commensurated subgroup shows up in a variety of set-
tings in the literature. In his Memoirs article on Hecke algebras [13], A. Krieg
defines the pair (Q,G) to be “Hecke” if Q is commensurated in G. He shows
GLn(Z) is commensurated in GLn(Q), for all n.

Margulis’ Normal Subgroup Theorem. Let G be a connected semi-
simple Lie group with finite center with rkR(G) > 2, and let Γ be an irre-
ducible lattice. If N is a normal subgroup of Γ, then either N lies in the
center of G (and hence N is finite) or the quotient G/N is finite.

In the preprint [25], Y. Shalom and G. A. Willis use the term “com-
mensurated” and we follow that terminology. They show that for n > 2,
all commensurated subgroups of SLn(Z), are finite or of finite index. They
also show SLn(Z[1/p]) satisfies Margulis’ theorem but its subgroup SLn(Z)
is commensurated. Still under certain hypotheses, there are commensurated
versions of Margulis’ theorem (see [25]).

One goal of this paper is to develop the basic theory of commensurated
subgroups of groups in analogy with the theory of normal subgroups of
groups. There are significant parallels and subtle differences between the
two theories. We include a focus on finitely generated groups as a means
to examine the geometric group theory of commensurated subgroups and to
uncover basic geometric intuition in the subject.

Commensurators seem increasingly important in the study of the geome-
try and topology of finitely generated groups. In [2] and [3], J. Behrstock and
W. Neumann, and J. Behrstock, W. Neumann and T. Januszkiewicz respec-
tively, show quasi-isometry classes of 3-manifold groups and free products of
abelian groups are tightly connected to commensurability classes. In [15] and
[21], C. Leininger, D. Long, and A. Reid, and M. Mj (respectively) analyze
when commensurators of finitely generated Kleinian groups in PSL(2,C) are
discrete. In [14], P. Kropholler defines a subgroup Q to be “near normal”
in G if Q is commensurated in G. Kropholler proves a generalization of
the Lyndon-Hochschild-Serre spectral sequence for group extensions, which
replaces the normal subgroup by a commensurated subgroup.

In section 2, we derive several rather technical results. Corollaries 2.4 and
2.5 give geometric interpretations of commensurators in a finitely generated
group and provide geometric motivation for what follows. In particular, we
show that a subgroup Q of a finitely generated group G is commensurated
iff the Hausdorff distance between Q and gQ is finite for every g ∈ G.

Section 3 contains the bulk of the basic theory of commensurated sub-
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groups. We show the intersection of two commensurated subgroups is com-
mensurated, but the intersection of a countable number of commensurated
subgroups may not be commensurated. The union of two commensurated
subgroups may not generate a commensurated subgroup, but the union of
a commensurated subgroup and a normal subgroup generate a commensu-
rated subgroup. The ascending union of commensurated subgroups may
not be commensurated. The image and inverse image of a commensurated
subgroup under an epimorphism is commensurated. We examine commen-
surated subgroups in amalgamated products and HNN extensions of groups
and show that commensurated subgroups of a word hyperbolic group behave
like normal subgroups with respect to limit sets and quasi-convexity.

In section 4, we produce two characterizations of commensurated sub-
groups of finitely generated groups. First we show that a subgroup of a
finitely generated group G is commensurated iff it is the kernel of a certain
map of G to a set. In a second characterization of commensurated subgroups,
we show a subgroup H of a finitely generated group G is commensurated iff
a corresponding Schreier (left) coset graph is locally finite.

In section 5, we show that if Q is a commensurated subgroup of G then
G acts transitively on a left coset graph and this graph has either 0, 1, 2 or
an uncountable number of ends, in direct analogy with H. Hopf’s theorem
for finitely generated groups. When Q is finitely generated, we produce a
strong equivalence (theorem 5.4) between the ends of the coset graph and
the filtered ends of the pair (G,Q) (see Chapter 14 of [8] for a study of filtered
ends of a pair of groups). When Q is not finitely generated the filtered ends of
the pair (G,Q) still naturally map onto the ends of the coset graph. We give
an example of a finitely generated group G and commensurated subgroup Q
where the number of ends of Q\Γ is countably infinite (for Γ a Cayley graph
of G) but the left coset graph has an uncountable number of ends.

In section 6, we examine a connection between a left Schreier coset graph
and the bounded packing ideas of C. Hruska and D. Wise [10].

In Section 7, we list some of our asymptotic results that will appear in
a separate paper. These are semistability and simple connectivity at infin-
ity results that generalize fundamental results in the subject. We point out
results about L2-Betti numbers of groups where normal subgroups can be
replaced by commensurated subgroups, providing generalizations of impor-
tant theorems in the literature. An analysis of Higman’s simple group also
appears in this section as well as a series of natural questions associated to
this group.
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2 Basic Technical Results

If H is a subgroup of G and g ∈ G, then g is an element of the commensurator
of H in G if gHg−1 ∩ H has finite index in both gHg−1 and H. For H a
subgroup of G we write CommH(G) for the commensurator of H in G. We
include proofs of the next two well known results for completeness.

Lemma 2.1 Suppose A, B, C and D are subgroups of a group G, A has
finite index in B, and C has finite index in D. Then A ∩ C has finite index
in B ∩D.

Proof: First we show A ∩D has finite index in B ∩D. Write B = ∪n
i=1Abi

for bi ∈ B. If Abi contains an element of D then we assume that bi ∈ D.
Reordering, B = (∪mi=1Adi) ∪ (∪ni=m+1Abi), where di ∈ D for i ≤ m and
(Abi) ∩ D = ∅ for i > m. Then D ∩ B = ∪mi=1D ∩ (Adi). Since di ∈ D we
have D ∩ (Adi) = (D ∩ A)di and so A ∩D has finite index in B ∩D.

The same proof shows A ∩ C has finite index in A ∩D (which has finite
index in B ∩D)) and so A ∩ C has finite index in B ∩D. �

Lemma 2.2 If H is a subgroup of a group G, then CommH(G) is a subgroup
of G.

Proof: If g ∈ CommH(G) then H ∩ gHg−1 has finite index in H and gHg−1

so g−1(H ∩ gHg−1)g ≡ g−1Hg ∩ H has finite index in g−1Hg and H, so
g−1 ∈ CommH(G).

If g, k ∈ CommH(G) then
1) H ∩ gHg−1 has finite index in H and gHg−1, and
2) H ∩ kHk−1 has finite index in H and kHk−1.

Conjugating 1) by k we have:
3) kHk−1 ∩ kgHg−1k−1 has finite index in kgHg−1k−1.

By lemma 2.1, and equations 2) and 3) we have:
4) H ∩ kHk−1 ∩ kgHg−1k−1 has finite index in kHk−1 ∩ kgHg−1k−1.

By equations 3) and 4):
5) H ∩ kHk−1 ∩ kgHg−1k−1 has finite index in kgHg−1k−1.

As H ∩ kgHg−1k−1 sits between the two groups of 5) we have:
∗) H ∩ kgHg−1k−1 has finite index in kgHg−1k−1.

Since both k−1 and g−1 are in CommH(G), equation ∗) implies:
∗′) H ∩ g−1k−1Hkg has finite index in g−1k−1Hkg.

Conjugating by kg gives:
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∗∗) kgHg−1k−1 ∩H has finite index in H.
Equations ∗) and ∗∗) imply kg ∈ CommH(G). �

The next result “morally” says that if there is any sort of metric on a
group G, and g ∈ CommH(G) then the “Hausdorff” distance between H and
gH in G is bounded. Corollary 2.4 is a geometric version of this theorem
when G is finitely generated.

Theorem 2.3 If H is a subgroup of G and g ∈ G then g ∈ CommH(G) iff
there are finite subsets A and B of G such that for each h ∈ H there is an
a ∈ A and b ∈ B such that ha ∈ gH, and ghb ∈ H. (Equivalently, there is
a ∈ A such that h(ag−1) ∈ gHg−1 and b ∈ B such that ghg−1(gb) ∈ H.)

Proof: Suppose g ∈ CommH(G). Choose hi ∈ H such that

∪ni=1(gHg
−1 ∩H)hi = H

For h ∈ H, say h = xhi for some i ∈ {1, . . . , n} and some x ∈ (gHg−1 ∩H).
Then x = hh−1i ∈ (gHg−1 ∩ H) and hh−1i g ∈ gH. So, we can let A be
the finite set {h−11 g, . . . , h−1n g}. Since CommH(G) is a subgroup of G, g−1 ∈
CommH(G). By the preceding argument, there is a finite subset B of G such
that for each h ∈ H there is a b ∈ B such that hb ∈ g−1H. Equivalently,
ghb ∈ H.

H gH

gh
bh

a
ghb ha

Figure 1
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Assume A and B are finite subsets of G satisfying the conclusion of the
theorem. Define a function α : H → A such that hα(h) ∈ gH. Suppose
h1, h2 ∈ H and α(h1) = α(h2). As h1α(h1) and h2α(h2) are elements of gH,
we have h1α(h1)Hg

−1 = h2α(h2)Hg
−1 = gHg−1. Then

h2h
−1
1 gHg−1 = h2h

−1
1 h1α(h1)Hg

−1 = h2α(h2)Hg
−1 = gHg−1

In particular:

If α(h1) = α(h2) then h2h
−1
1 ∈ gHg−1 ∩H.

Say im(α) = {a1, . . . , an} and select hi ∈ H such that α(hi) = ai. If h ∈ H
and α(h) = ai, then hh−1i ∈ H ∩ gHg−1 and h ∈ (H ∩ gHg−1)hi. We have
H = ∪ni=1(H ∩ gHg−1)hi and H ∩ gHg−1 has finite index in H.

For each h ∈ H there is b ∈ B such that ghb ∈ H, and so hb ∈ g−1H. The
preceding argument implies H ∩ g−1Hg has finite index in H. Conjugating
(by g−1) gives gHg−1 ∩H has finite index in gHg−1. �

If S is a finite generating set for a group G, Γ(G,S) the Cayley graph
of G with respect to S, and H a subgroup of G, then for any g1, g2 ∈ G,
the Hausdorff distance between g1H and g2H, denoted DS(g1H, g2H), is the
smallest integer K such that for each element h of H the edge path distance
from g1h to g2H in Γ is ≤ K and the edge path distance from g2h to g1H in
Γ is ≤ K. If no such K exists, then DS(g1H, g2H) =∞.

As a direct consequence of theorem 2.3 we have:

Corollary 2.4 Suppose S is a finite generating set for a group G and H is
a subgroup of G, then g ∈ G is in CommH(G) iff the Hausdorff distance
DS(H, gH) <∞ iff DS(H, gHg−1) <∞.

In particular, a subgroup Q of a finitely generated group G is commen-
surated in G iff the Hausdorff distance D(Q, gQ) is finite for all g ∈ G iff
D(Q, gQg−1) is finite for all g ∈ G.

Corollary 2.5 Suppose H is a subgroup of a group G and g ∈ CommH(G)
then there are finite sets U(g) and V (g) such that gH ⊂ ∪v∈V (g)Hv and
Hg ⊂ ∪u∈U(g)uH.

Proof: By theorem 2.3, there is a finite set B so that for each h ∈ H
there is b ∈ B such that ghb ∈ H. Then gh ∈ Hb−1 and gH ⊂ H · B−1.
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Define V (g) ≡ B−1. Since g−1 ∈ CommH(G) we have g−1H ⊂ H · V (g−1).
Inverting, Hg ⊂ (V (g−1))−1 ·H ≡ U(g) ·H. �

In [13], A. Krieg has an elementary proof that a subgroup H of a group
G is commensurated iff for each g ∈ G, HgH is contained in a finite number
of left (right) H cosets. We prove a slightly more general result.

Lemma 2.6 Suppose H is a subgroup of G and g ∈ CommH(G) then HgH
is contained in the union of a finite number of left (right) H cosets. If
gH ⊂ ∪ni=1Hxi and g−1H ⊂ ∪mi=1Hyi then g ∈ CommH(G).

Proof: Note that Hg ⊂ CommH(G) and for each h ∈ H, the finite sets B
of theorem 2.3 for g and hg can be selected to be the same (if h1 ∈ H and
gh1b ∈ H for some b ∈ B then for any h ∈ H, hgh1b ∈ H). If x ∈ HgH
there is b ∈ B such that xb ∈ H. I.e. x ∈ bH and HgH ⊂ BH. If B′

is the corresponding finite set for g−1 ∈ CommH(G), then Hg−1H ⊂ B′H.
Inverting we have HgH ⊂ (B′)−1H.

For the second part, if gH ⊂ ∩n
i=1Hxi then for h ∈ H there is an i ∈

{1, . . . , n} such that ghxi ∈ H. If g−1H ⊂ ∪mi+1Hyi then for h ∈ H there is an
i ∈ {1, . . . ,m} such that g−1h ∈ Hyi and hy−1i ∈ gH. Set A = {x1, . . . , xn}
and B = {y−11 , . . . , y−1m }, and apply theorem 2.3. �

The next two results are independent from the rest of the paper, except
the next corollary is used to construct an interesting transversal in lemma
3.6.

Corollary 2.7 Suppose H is a subgroup of G and g ∈ CommH(G). There
is a finite subset A(g,H,G) of HgH ⊂ CommH(G) and functions α(g,H,G)

and β(g,H,G) (written A(g), αg, and βg respectively, when H and G are un-
ambiguous) such that:

1) αg : H → A(g) and βg : H → (A(g))−1,
2) for each h ∈ H, hαg(h) ∈ gH and ghβg(h) ∈ H,
3) [image(αg) ∪ (image(βg))

−1] = A(g), and
4) for each a ∈ A(g), there is h1 ∈ H such that h1a ∈ gH, and h2 ∈ H

such that gh2a
−1 ∈ H. (It is not possible to make A(g) symmetric.)

Proof: Consider the sets A and B of theorem 2.3. There are functions
α : H → A and β : H → B such that for each h ∈ H, hα(h) ∈ gH and
ghβ(h) ∈ H. Without loss, we assume α and β are onto. Define A(g) ≡
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A ∪ B−1. Define αg : H → A(g) to agree with α and βg : H → (A(g))−1 to
agree with β.

If a ∈ A ⊂ A(g) then any element in α−1(a) will play the role of h1 in
our result. As h1a ∈ gH, we write h1a = gh2 and gh2a

−1 ∈ H. If b ∈ B−1 ⊂
A(g), let h2 ∈ H be such that βg(h2) = b−1. Then gh2βg(h2) = gh2b

−1 ∈ H.
Say gh2b

−1 = h1. Then gh2 = h1b ∈ gH. �

Remark 1. The next result applies locally. It would be interesting to extend
this to a more general global result.

Corollary 2.8 Suppose g ∈ CommH(G).
1) A(g−1) may be selected to be (A(g))−1 with αg−1 ≡ βg and βg−1 ≡ αg.
2) If k ∈ A(g) then A(k) may be selected to be A(g) with αk(h) ≡ αg(h1h)

where h1k = gh′1 for some h1, h
′
1 ∈ H and βk(h) ≡ βg(h2h) where gh2 = h′2k

for some h2, h
′
2 ∈ H.

Proof: Suppose h ∈ H then hαg(h) ∈ gH, and g−1hαg(h) ∈ H. So, we may
define βg−1(h) ≡ αg(h) ∈ A(g). As ghβg(h) ∈ H, hβg(h) ∈ g−1H and we
may define αg−1(h) ≡ βg(h) ∈ (A(g))−1.

Suppose k ∈ A(g) then h1k = gh′1 for some h1, h
′
1 ∈ H. Define αk : H →

A(g) by αk(h) ≡ αg(h1h). Then h1hαk(h) = h1hαg(h1h) ∈ gH = h1kH and
so hαk(h) ∈ kH, as required.

The equality gh2k
−1 = h′2 is valid for some h2, h

′
2 ∈ H. Define βk :

H → (A(g))−1 by βk(h) = βg(h2h). As gh2hβk(h) = gh2hβg(h2h) ∈ H,
substituting for g shows (h′2kh

−1
2 )h2hβk(h) ∈ H and khβk(h) ∈ H. �

Remark 2. As one might expect, there is some overlap in the literature with
the elementary results in this section. As pointed out earlier, one of Krieg’s
results in [13], is basically the same as our lemma 2.6, In the preprint [22],
L. Mosher, M. Sageev and K. Whyte show that two subgroups A and B of
G are commensurable in G if and only if the Hausdorff distance between A
and B is finite (compare with corollary 2.4).

3 Examples and Basic Facts for Commensu-

rated Subgroups

In order to check that a subgroup Q of a group G is commensurated it suffices
to show that a set of generators of G is contained in CommQ(G). This is
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particularly useful when G is finitely generated.

Example 1. We show that the subgroup 〈x〉 is commensurated in the
Baumslag-Solitar group BS(m,n) ≡ 〈t, x : t−1xmt = xn〉.

As (x〈x〉x−1) ∩ 〈x〉 = 〈x〉, x ∈ Comm〈x〉(BS(m,n)). Next observe that
(t−1〈x〉t) ∩ 〈x〉 = 〈xn〉. Certainly 〈xn〉 has finite index in 〈x〉. As 〈xm〉
has finite index in 〈x〉, t−1〈xm〉t = 〈xn〉 has finite index in t−1〈x〉t and t−1 ∈
Comm〈x〉(BS(m,n)). As t−1 and x generate BS(m,n), 〈x〉 is commensurated
in BS(m,n).

Note that the normal closure of x in BS(1, 2) is the commutator subgroup
of BS(1, 2) and is isomorphic to the dyadic rationals.

Lemma 3.1 Suppose Q is a commensurated subgroup of a group G and H
is a subgroup of G, then Q ∩H is commensurated in H.

Proof: For each h ∈ H, (h−1Qh)∩Q has finite index in both Q and h−1Qh.
Then (h−1Qh) ∩Q ∩H ≡ [h−1(Q ∩H)h] ∩ (Q ∩H) has finite index in both
Q ∩H and (h−1Qh) ∩H ≡ h−1(Q ∩H)h. �

Lemma 3.2 If Q is a normal, finite or a finite index subgroup of a group
G, then Q is commensurated in G. If Q is commensurated in G then for any
automorphism α of G, α(Q) is commensurated in G.

Proposition 3.3 Suppose A and B are commensurated subgroups of a group
G. Then A ∩B is commensurated in G.

Proof: For g ∈ G, A ∩ gAg−1 has finite index in both A and gAg−1, and
B ∩ gBg−1 has finite index in both B and gBg−1. Hence by lemma 2.1,
(A∩B)∩ g(A∩B)g−1 ≡ (A∩ gAg−1)∩ (B ∩ gBg−1) has finite index in both
A ∩B and gAg−1 ∩ gBg−1 ≡ g(A ∩B)g−1. �

Example 2. The arbitrary intersection of commensurated subgroups need
not be commensurated. In 1949, M. Hall Jr. proved [11] that free groups are
subgroup separable. A group G is subgroup separable if any finitely generated
subgroup of G is the intersection of subgroups of finite index in G. In par-
ticular, any infinite cyclic subgroup A of F2 ≡ 〈x, y〉, the free group of rank
2, is the intersection of subgroups of finite index in F2. By lemma 3.2, each
subgroup of finite index in F2 is commensurated in F2, but if A = 〈x〉, then
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〈x〉 ∩ y〈x〉y−1 = {1}. So A is the intersection of commensurated subgroups
(of finite index in F2), but A is not commensurated in F2. �

The next example shows that the ascending union of commensurated
subgroups is not necessarily commensurated.

Example 3. Let

H ≡ 〈x0, x1, . . . : x2
k

0 = x2k, for k ≥ 1, [xi, xj] = 1 for i, j ≥ 0〉 and

Hn ≡ 〈x0, . . . , xn : x2
k

0 = x2k for 1 ≤ k ≤ n, [xi, xj] = 1 for 0 ≤ i, j ≤ n〉.
The map in(xk) = xk for 0 ≤ k ≤ n, and the map qn(xk) = xk for 0 ≤

k ≤ n and qn(xk) = x2
k−1

0 for k > n extend to homomorphisms in : Hn → H
and qn : H → Hn. The composition qnin is the identity on Hn and so the
subgroup of H generated by {x0, . . . , xn} is isomorphic to Hn (and a retract
of H). We identify Hn with this subgroup. As H0 ≡ 〈x0〉 is infinite cyclic,
xn is of infinite order in H for all n. Consider the monomorphism of H0

determined by x0 → x20. If G is the resulting HNN-extenssion, then G has
presentation:

G ≡ 〈t, x0, x1, . . . : t−kx0t
k = x2

k

0 = x2k, for k ≥ 1, [xi, xj] = 1 for i, j ≥ 0〉.

Note that each generator in this presentation of G has infinite order. Now

(x−1i 〈x0〉xi) ∩ 〈x0〉 = (xi〈x0〉x−1i ) ∩ 〈x0〉 = 〈x0〉

and
(t−1〈x0〉t) ∩ 〈x0〉 = 〈x20〉 and (t〈x0〉t−1) ∩ 〈x0〉 = 〈x0〉.

Hence the infinite cyclic group 〈x0〉 is commensurated in G.
The group 〈x0〉 has finite index in the abelian group Hn ≡ 〈x0, . . . , xn〉.

In fact Hn/〈x0〉 is isomorphic to ⊕n
i=1Z2. By lemma 3.7 (below), Hn is

commensurated in G for all n ≥ 0.
The group H is the ascending union of the nested groups Hn. We prove

H is not commensurated in G, by showing t−1Ht ∩ H = 〈x20〉 (which has
infinite index in H).

Suppose g ∈ t−1Ht ∩H. Let g = t−1ht ∈ H for some h ∈ H. By lengths
of normal forms for the HNN extension G, it must be that h is an element of
the associated subgroup 〈x0〉 (i.e. elements of the base group H of the HNN
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extension G, have length 1, but t−1ht has length 3 unless h ∈ 〈x0〉). Now
g = t−1xk0t = x2k0 , and so H is not commensurated in G.

In lemma 3.5, we show that the inverse image of a commensurated sub-
group under an epimorphism is commensurated. In our example, consider
the epimorphism q′0 : G → 〈t, x0 : t−1x0t = x20〉 where q′0(t) = t, q′0(x0) = x0
and q′0(xk) = x2

k−1

0 , for k > 0. The subgroup (q′0)
−1(〈x0〉) is commensurated

in G and has generating set 〈x0, x1, tx2t−1, . . . , tk−1xkt−(k−1), . . .〉. �

Lemma 3.4 Suppose f : G1 → G2 is an epimorphism and Q is commensu-
rated in G1 then f(Q) is commensurated in G2.

Proof: For g2 ∈ G2 let g1 ∈ G1 be such that f(g1) = g2. As Q∩ g1Qg−11 has
finite index inQ and g1Qg

−1
1 we haveQ = ∪n

i=1(Q∩g1Qg−11 )qi for some qi ∈ Q.
Then f(Q) = ∪ni=1(f(Q) ∩ g2f(Q)g−12 )f(qi) (since f is an epimorphism) and
f(Q) ∩ g2f(Q)g−12 ) has finite index in Q. Similarly for g2f(Q)g−12 . �

Lemma 3.5 Suppose f : G1 → G2 is a homomorphism and Q is commen-
surated in G2 then f−1(Q) is commensurated in G1.

Proof: For g ∈ G we first show that f−1[f(g)Qf(g−1)] = gf−1(Q)g−1:
Note that x ∈ f−1[f(g)Qf(g−1)] iff f(x) = f(g)qf(g−1) for some q ∈ Q iff
f(g−1)f(x)f(g) ∈ Q iff f(g−1xg) ∈ Q iff g−1xg ∈ f−1(Q) iff x ∈ gf−1(Q)g.

Since Q ∩ f(g)Qf(g−1) has finite index in both Q and f(g)Qf(g−1),
f−1[Q∩f(g)Qf(g−1)] = f−1(Q)∩gf−1(Q)g−1 has finite index in both f−1(Q)
and gf−1(Q)g−1. �

Lemma 3.6 If Q is commensurated in G and N is a normal subgroup of
G then the subgroup of G generated by Q and N is commensurated in G.
Furthermore, one may arrange things so that: There is a transversal T for
N in 〈Q ∪N〉 such that T ⊂ Q, and for any g ∈ G, t ∈ T and n ∈ N :

α(g,〈Q∪N〉,G)(tn) = α(g,Q,G)(t) and β(g,〈Q∪N〉,G)(tn) = β(g,Q,G)(t)

Proof: Let q : G → G/N be the quotient map. By lemmas 3.5 and 3.6,
q−1(q(Q))(≡ 〈Q,N〉) is commensurated in G.

For the second part of the lemma, we write A(g) for A(g,Q,G) and αg for
α(g,Q,G) for all g ∈ G. As N is normal in G, each element f ∈ 〈Q∪N〉 can be
written as qn for some q ∈ Q and some n ∈ N . Hence there is a transversal
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T ⊂ Q for N in 〈Q∪N〉. Suppose g ∈ G, t ∈ T and n ∈ Q. By corollary 2.7
there is q′ ∈ Q such that tαg(t) = gq′. Let αg(t)

−1nαg(t) = n′ ∈ N . Then

tnαg(t) = tαg(t)αg(t)
−1nαg(t) = gq′n′.

So we define α(g,〈Q∪N〉,G)(tn) = α(g,Q,G)(t) for all n ∈ N .
By corollary 2.7, there is q̂ ∈ Q such that gqβg(t) = q̂. Let n̂ =

βg(t)
−1nβg(t) ∈ N . Then

gtnβg(t) = gtβg(t)βg(t)
−1nβg(t) = q̂n̂.

So we define β(g,〈Q∪N〉,G)(tn) = β(g,Q,G)(t) for all n ∈ N . �

In [24], E. Rips, shows that for any finitely presented group G there
is a word hyperbolic group H and epimorphism f : H � G with finitely
generated kernel. By lemmas 3.5 and 3.6, if (in this setting) Q is a finitely
generated commensurated subgroup of G, then f−1(Q) is finitely generated
and commensurated in H.

Lemma 3.7 Suppose Q is a commensurated subgroup of G and Q′ is a sub-
group of G such that either Q′ has finite index in Q, or Q has finite index in
Q′, then Q′ is commensurated in G.

Proof: Suppose Q′ has finite index in Q and g ∈ G. Then lemma 2.1 implies
Q′ ∩ gQ′g−1 has finite index in Q∩ gQg−1. Since Q∩ gQg−1 has finite index
in both Q and gQg−1, so does Q′ ∩ gQ′g−1. But then Q′ ∩ gQ′g−1 has finite
index in Q′ and gQ′g−1. Similarly if Q has finite index in Q′. �

In the next example we show that the union of two commensurated sub-
groups may not generate a commensurated subgroup, in contrast to lemma
3.6 which shows the union of a commensurated subgroup and a normal sub-
group generates a commensurated subgroup.

Example 4. Let H be the group 〈x, y : x2 = y2〉 and G the HNN extension
with base H and associates subgroups 〈x2〉 and 〈x4〉 with presentation:

G ≡ 〈x, y, t : x2 = y2, t−1x2t = x4〉.

To see that 〈x2〉 = 〈y2〉 is commensurated in G, simply observe that:

x〈x2〉x−1 = y〈x2〉y−1 = 〈x2〉 and t−1〈x2〉t = 〈x4〉
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so that x, y and t−1 are in Comm〈x2〉(G). By lemma 3.7, 〈x〉 and 〈y〉 are
commensurated in G. We show that 〈x, y〉 is not commensurated in G. Note
that

〈x, y〉/〈x2〉 ∼= Z2 ∗ Z2.

It suffices to show t−1〈x, y〉t ∩ 〈x, y〉 = 〈x4〉. Suppose z ∈ t−1〈x, y〉t ∩ 〈x, y〉.
Write z = t−1ut for some u ∈ 〈x, y〉. As z is in 〈x, y〉, the base group of the
HNN extension G, lengths of normal forms implies that u is in the domain
associated subgroup 〈x2〉 (elements of the base group have length 1, and
t−1ut has length 3 unless u ∈ 〈x2〉). Then z = t−1x2kt = x4k. �

Lemma 3.8 Suppose Q1 is a commensurated subgroup of the group H, Q1

and Q2 are commensurable in H and h : Q1 → Q2 is an isomorphism, then
Q1 is commensurated in the HNN-extension G ≡ 〈t,H : t−1qt = h(q) for all
q ∈ Q1〉.

Proof: By hypothesis t−1Q1t∩Q1 = Q2 ∩Q1 has finite index in Q2 and Q1.
Since t−1 and H generate G, Q1 is commensurated in G. �

As a direct consequence of the previous lemma we have:

Lemma 3.9 If f : H → H is a monomorphism and f(H) has finite index
in H, then H (and by the previous fact f(H)) is a commensurated subgroup
of the (ascending) HNN extension G = H∗f .

Lemma 3.10 If G = G1 ∗QG2 and Q is commensurated in Gi for i ∈ {1, 2}
then Q is commensurated in G.

Proof: For each g ∈ {G1 ∪ G2}, g−1Qg ∩ Q has finite index in both Q
and g−1Qg, by hypothesis. As G1 ∪ G2 generates G and is a subset of the
subgroup CommQ(G) of G (see corollary 2.2), G = CommQ(G). �

In [20], M. Mihalik and W. Towle proved that an infinite quasi-convex
subgroup of a word hyperbolic group has finite index in its normalizer. The
same proof shows:

Theorem 3.11 Suppose H is an infinite quasi-convex subgroup of a word
hyperbolic group G then H has finite index in its commensurator.
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Proof: (Outline) Let a be an element of Q ≡ CommH(G). It suffices to
bound the distance from a to H in Γ, a Cayley graph of G with respect to
some finite generating set (containing a set of generators for H). Let α ≡
(. . . , h−1, h0, h1, . . .) be a bi-infinite geodesic in the generators of H (so that α
is quasi-geodesic in Γ). Assume the initial vertex of h0 is a ≡ x0 and the initial
point of hn is xn. Choose N large, with respect to the Hausdorff distance
D ≡ D(H, aH) in Γ. Let x be a point of H within D of xN . Consider the
geodesic rectangle ([1, a], [a, xN ], [xN , x], [x, 1]). By thin geodesic triangles,
some xi (for 1 ≤ i ≤ N) is within D1 of x′i ∈ H (where D1 only depends on
δ, the thin triangle constant and the quasi-convexity constants for α and H).
Similarly there is a j such that −N ≤ j ≤ −1 such that xj is within D1 of
x′j ∈ H.

The geodesic quadrilateral ([xj, xi], [xi, x
′
i], [x

′
i, x
′
j], [x

′
j, xj]) has (opposite)

sides of length ≤ D1, implying each point of [xj, xi] is close to each point of
[x′j, x

′
i]. As a is close to [xj, xi], a is close to [x′j, x

′
i] and so a is close to a

point of H. �

Theorem 3.12 The limit set of an infinite commensurated subgroup of a
word hyperbolic group H is the entire boundary of H.

Proof: (This proof is basically the same as the standard one for normal sub-
groups.) Let Q be an infinite commensurated subgroup of a word hyperbolic
group H. Let Γ be a Cayley graph for H (on a finite generating set).

(∗) By the definition of commensurated, the limit set ∂Q is the same as
∂(hQ) in Γ for all h ∈ H.

As word hyperbolic groups have only finitely many conjugacy classes of
finite subgroups, Q contains an element a, of infinite order. Let a±∞ = ∂〈a〉
in Γ. Let α = (. . . , a−1, a0, a1, . . .) be a bi-infinite geodesic edge path in Γ
with ∂(α) = a±∞. As elements of infinite order determine quasi-geodesics in
Γ, α is of bounded distance D from Q ⊂ Γ. In particular, a±∞ ∈ ∂Q.

Let x0 be the initial vertex of the edge a0, β = (b1, b2, . . .) a geodesic edge
path in Γ beginning at x0, b

∞ the boundary point of β, yi the initial point
of bi, and let gi ∈ H be the group element such that gix0 = yi. Consider
the ideal triangle with sides giα, [x0, gi(a

∞)) and [x0, gi(a
−∞)). Since yi is

a vertex of g(α), one of the two sides of the ideal triangle, [x0, gi(a
∞)) or

[x0, gi(a
−∞)), passes within δ (the hyperbolic constant for thin triangles in

Γ) of yi. Hence b∞ is a limit point of the boundary points of {gi(α)}∞i=1. As
gi(α) is within D of gi(Q), ∂(gi(α)) ⊂ ∂(giQ) = ∂Q (see (∗)). Hence b ∈ ∂Q.
As β was arbitrary ∂Q = ∂H. �
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We end this section by showing there is not an analogue to the notion
of regular covering for commensurated subgroups. If G is a group and H a
subgroup of G then the normalizer of H in G, denoted N(H,G) is {g ∈ G :
gHg−1 = H}. Suppose X is a connected finite complex and π1(X) = G. Let
p : X̃ → X be the universal covering of X. If H is a subgroup of G then
the deck transformations of H\X̃ are isomorphic to N(H,G)/H, and H is
normal in G iff the deck transformations of H\X̃ act transitively on each
fiber (over X). When H is commensurated in G one might expect the deck
transformations to act co-compactly on H\X̃. This is not the case unless
N(H,G) has finite index in G.

Simply consider the quotient map r : H\X̃ → (H\N(H,G))\(H\X̃) =
N(H,G)\X̃, and recall that N(H,G)\X̃ is compact iff N(H,G) has finite
index in G. The subgroup 〈x〉 is commensurated in BS(1, 2) = 〈x, t : t−1xt =
x2〉 ≡ G, and N(〈x〉, G) is the same as the normal closure of 〈x〉 in G. So
G/N(〈x〉) ≈ Z.

4 Characterizations of commensurated sub-

groups of finitely generated groups

In this section we produce two characterizations of commensurated subgroups
of finitely generated groups that connect the theory to both well developed
and emerging ideas in group theory.

Lemma 4.1 Suppose Q is a subgroup of the finitely generated group G. Fix
a finite generating set, S, for G, and let | · | be the corresponding word-
length norm on G, let d be the induced left invariant word metric on G
where d(a, b) = |b−1a|, and D be the corresponding Hausdorff metric on sub-
sets of G.

Suppose Q is commensurated in G. Let k = max
s∈S

(D(sQ,Q)) + 1. Then for

all a, b ∈ G we have the following:

1. D(bQ,Q) ≤ k|b|

2. D(bQb−1, Q) ≤ (k + 1)|b|

3. D(QbQ,Q) ≤ k|b|.
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4. D(aQbQ, abQ) = D(QbQ, bQ) ≤ 2k|b|

Proof: Let b = b1b2 · · · bn where each bi ∈ S. Then

D(bQ,Q) ≤ D(bQ, b1 · · · bn−1Q)+D(b1 · · · bn−1Q, b1 · · · bn−2Q)+· · ·+D(b1Q,Q)

= D(bnQ,Q) +D(bn−1Q,Q) + · · ·+D(b1Q,Q) ≤ k|b|
by left invariance. Then

D(bQb−1, Q) ≤ D(bQb−1, bQ) +D(bQ,Q) ≤ |b|+ k|b| = (k + 1)|b|.

Also, for any q, q′ ∈ Q,

d(q′bq,Q) = d(bq,Q) ≤ D(bQ,Q) ≤ k|b| and

d(QbQ, q) = d(QbQ, 1) ≤ d(QbQ, b) + d(b, 1) = 0 + |b| ≤ k|b|.
Next,

D(aQbQ, abQ) = D(QbQ, bQ) ≤ D(QbQ,Q)+D(Q, bQ) ≤ k|b|+k|b| = 2k|b|.

�

If f : G → A is a function from a group to a set then define the neutral
set of f to be:

N(f) = {x ∈ G : f(gx) = f(g) for all g ∈ G}.

If A is also a group, and f is a homomorphism, then the neutral set of f is
ker(f). It is easy to check that the neutral set for any function is a group:

If x, y ∈ N(f) then f(gxy) = f(gx) = f(g) (so xy ∈ N(f)), and
f(gx−1) = f(gx−1x) = f(g) for all g ∈ G (so x−1 ∈ N(f)).

A function φ : G → L from a group to a set is defined to be a commen-
surated homomorphism if there is an integer k such that for all a, b ∈ G,

D(φ−1(φ(a)) · φ−1(φ(b)), φ−1(φ(ab))) ≤ 2k|b|,

Define ker(φ) ≡ φ−1(φ(1G)).

Theorem 4.2 A subset Q of a finitely generated group G is a commensu-
rated subgroup of G iff there is a set L and Q is the kernel of a commensurated
homomorphism φ : G→ L iff Q is the neutral set of φ.
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Proof: Fix a generating set, S, forG, use the notation of lemma 4.1, and sup-
pose Q is a commensurated subgroup of G and let L be the set of left cosets
{gQ | g ∈ G} of Q in G. Let φ be the natural map from G to L taking g ∈ G
to the left coset gQ (so Q = ker(φ)). Let k = max

s∈S
(D(sQ,Q))+1 as in lemma

4.1. ThenD(φ−1(φ(a))·φ−1(φ(b)), φ−1(φ(ab))) = d(aQbQ, abQ) ≤ 2k|b| again
by lemma 4.1.

Conversely, suppose φ : G→ L is a commensurated homomorphism. We
proceed to show that ker(φ) is the neutral set of φ and a commensurated
subgroup of G. For convenience, let Q ≡ ker(φ). Let g ∈ G, then

D(φ−1(φ(g)) · φ−1(φ(1G)), φ−1(φ(g · 1G))) ≤ 2k|1G| = 0 implying

(∗) φ−1(φ(g)) ·Q = φ−1(φ(g)) for all g ∈ G
If q ∈ Q then by (∗), gq ∈ φ−1(φ(g)) for all g ∈ G. Then φ(gq) = φ(g)

for all g ∈ G, and Q ⊂ N(φ).
If y ∈ N(φ), then φ(gy) = φ(g) for all g ∈ G. In particular for g = 1G we

have φ(y) = φ(1G) and y ∈ Q. Thus Q is equal to the neutral set of f . In
particular, Q is a subgroup of G.

Finally, by (∗) we see that each set φ−1(φ(a)) is a union of left cosets of
Q and since it contains a it contains aQ.

By hypothesis we have

D(φ−1(φ(a)) · φ−1(φ(a−1)), Q) ≤ 2k|a−1| for all a ∈ G, and so

sup
q,q′∈Q

d(aqa−1q′, Q) ≤ 2k|a|.

For q′ = 1G we obtain supq∈Q d(aqa−1, Q) ≤ 2k|a|, and

sup
q∈Q

d(aq,Q) ≤ (2k + 1)|a|.

Conversely, left invariance yields

sup
q∈Q

d(q, a−1Q) ≤ (2k + 1)|a−1| for all a−1 ∈ G.

Thus D(aQ,Q) ≤ (2k + 1)|a| for all a ∈ G. �
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Remark 3. This result should be compared to the result of Krieg in [13]
showing: If S is commensurated in G, there is a natural map of G into the
positive rationals, Q+. The map is a homomorphism of groups with S in the
kernel.

Our second characterization of commensurated subgroups is based on the
following lemma.

Lemma 4.3 Suppose S is a finite generating set for the group G and Q is a
subgroup of G. Then Q is commensurated in G iff there are only finitely many
cosets qsQ where q ∈ Q and s ∈ S±1. (Equivalently, Q is commensurated in
G iff there are only finitely many cosets gQ such that, in the Cayley graph
Γ(G,S), an edge connects a vertex of Q to a vertex of gQ.)

Proof: If Q is a commensurated subgroup of G then by lemma 2.6, QsQ is
contained in a finite number of cosets gQ for each s ∈ S±1.

For the converse, suppose for each s ∈ S, QsQ and Qs−1Q are contained
in the union of finitely many cosets gQ. Inverting, Qs−1Q and QsQ are
each contained in the union of finitely many cosets Qg−1. By lemma 2.6,
S ⊂ CommQ(G) and Q is commensurated in G. �

Suppose G is a group with finite generating set S and H is a subgroup
of G. Let Λ(S,H,G) be the (left) Schreier coset graph with vertices the left
cosets gH of G and a directed edge (labeled s) from gH to fH (gH 6= fH)
if for some s ∈ S and h1, h2 ∈ H, we have gh1sh2 = f . (Equivalently, in the
Cayley graph Γ(S,G), there is an edge labeled s with initial point in gH and
end point in fH.) The following result is a direct consequence of lemma 4.3.

Theorem 4.4 Suppose G is a group with finite generating set S. Then Q
is commensurated in G iff Λ(S,Q,G) is locally finite. The group G acts (on
the left) transitively on the vertices of Λ(S,Q,G) and by isometries (using
the edge path metric) on Λ(S,Q,G). The stabilizer of gQ is gQg−1 and the
quotient map p : Γ(S,G)→ Λ(S,Q,G), defined by p(gq) = gQ for all g ∈ G
and q ∈ Q, commutes with the left action of G.

Remark 4. Observe that if Q is a commensurated subgroup of G, S is a
finite generating set for G and v is a vertex of Λ(S,Q,G) then there may
be more than one edge emanating from v with label s ∈ S. If S contains n
elements, then there at most 2n labeled (and directed) edges connecting two
given vertices of Λ.
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5 Ends

H. Hopf [9] and H. Freudenthal [6] developed the theory of ends of a finitely
generated group. In particular, if G is a group with finite generating set S,
then the Cayley graph Γ(G,S) has either 0, 1, 2 or an uncountable number
of ends. R. Geoghegan’s book [8] gives a complete analysis of the proper
homotopy theory of ends of groups and it is our standard reference for this
subject. A continuous function f : X → Y is proper if for each compact
set C in Y , f−1(C) is compact in X. An end of a connected graph Γ is an
equivalence class of proper rays r : [0,∞)→ Γ where r and s are equivalent if
for any compact set C in Γ there is a path αC in Γ, beginning on r and ending
on s such that αC avoids C. The number of ends of a connected locally finite
CW-complex X is the largest integer N such that for some compact subset
C of X, X − C has N unbounded components (unbounded here means not
contained in a compact set). If no such integer N exists, then X has an
infinite number of ends. The cardinality of the set of ends of X agrees with
the number of ends of X.

Suppose S is a finite set of generators for a group G, Γ the Cayley graph
of G with respect to S, Q a subgroup of G and π : Γ → Q\Γ the quotient
map. The cardinality of the set of ends of Γ and Q\Γ does not depend on
the generating set S and is called the number of ends of G and of the pair
(G,Q), respectively.

A ray r : [0,∞) → Γ is Q-filtered if πr : [0,∞) → Q\Γ is proper. If r
and s are Q-filtered in Γ then they converge to the same Q-filtered end of Γ
if for any compact set C in Q\Γ there is a path αC in Γ, beginning on r and
ending on s such that παC avoids C. A Q-filtered end of Γ is an equivalence
class of Q-filtered rays converging to the same Q-filtered end of Γ.

Each Q-filtered ray in Γ is proper and each Q-filtered end of Γ (respec-
tively, end of Q\Γ) contains an edge path ray that begins at the identity
vertex ∗ (respectively, π(∗)). If r and s are Q-filtered rays in Γ that converge
to the same Q-filtered end, then πr and πs converge to the same end of Q\Γ,
so π induces a map from the Q-filtered ends of Γ to the ends of Q\Γ. Any
proper edge path ray at π(∗) in Q\Γ lifts to a proper edge path ray at ∗ so
there is a natural map from the set of Q-filtered ends of Γ onto the set of
ends of Q\Γ. (For more details, see proposition 14.5.3. of [8].)

In section 4 we defined the (left Schreier) coset graph of a group G with
finite generating set S and subgroup H and denoted it by Λ(S,H,G). There
is a quotient map from the Cayley graph to this coset graph p : Γ(S,G) →
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Λ(S,H,G) that takes each left coset gH to the corresponding vertex, each
edge of Γ with label s ∈ S ∩H to a vertex, and each directed edge in Γ with
label s 6∈ S ∩H to a directed edge with the same label. Let π : Γ(S,G) →
H\Γ(S,G) be the quotient map. The main result of this section is theorem
5.4 that establishes a proper continuous m : Λ(S,Q,G)→ Γ(S,G) when Q is
a finitely generated commensurated subgroup of G, such that πm is proper,
pm is properly homotopic to the identity and p and m induce bijections
between the ends of Λ and the Q-filtered ends of Γ.

If S is a finite generating set for the group G and N is a normal subgroup
of G, then the number of ends of the group N\G is the same as the number of
ends of N\Γ(S,G) and hence is 0, 1, 2 or uncountable. This need not be the
case for a commensurated subgroup Q of a finitely generated group G (see
example 6). Instead, the coset graph Λ(S,Q,G) seems a more appropriate
object of analysis than Q\Γ(S,G). This line of reasoning is verified in our
paper [5] where the graph Λ(S,Q,G) is fundamental in developing the results
of that paper.

First we need three elementary technical results.

Lemma 5.1 Suppose A is a subgroup of a group G and q : G→ A\G is the
quotient map (g → Ag).

A) If x, y, g ∈ G, then yx−1 ∈ A iff q(x) = q(y) iff q(xg) = q(yg),
B) For g ∈ G and a1, a2 ∈ A, q(ga1) = q(ga2) iff a1 ∈ (A ∩ (g−1Ag))a2.

Also, the following are equivalent:
1) q(xA) ∩ q(yA) 6= ∅
2) q(xA) = q(yA)
3) for some a ∈ A, yax−1 ∈ A.

Proof: Note that q(x) ≡ Ax = Ay ≡ q(y) iff yx−1 ∈ A iff ygg−1x−1 ∈ A iff
q(xg) = q(yg) and the proof of part A) is complete.

For part B), note that q(ga1) = q(ga2) iff ga1a
−1
2 g−1 ∈ A iff a1a

−1
2 ∈

g−1Ag iff a1a
−1
2 ∈ A ∩ (g−1Ag) iff a1 ∈ (A ∩ (g−1Ag))a2, and part B) is

proved.
If q(xA) ∩ q(yA) 6= ∅ there is a1, a2 ∈ A such that q(xa1) = q(ya2). By

part A), q(xa1a) = q(ya2a) for all a ∈ A and so q(xA) = q(yA).
If q(xA) = q(yA) then q(x) = q(ya) for some a ∈ A, and yax−1 ∈ A.
If yax−1 ∈ A and a ∈ A then ya = a′x for some a′ ∈ A. Then q(ya) =

q(a′x) = q(x) and q(xA) ∩ q(yA) 6= ∅. �
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Lemma 5.2 Suppose G is a group with finite generating set S, Q is a com-
mensurated subgroup of G, Γ is the Cayley graph of G with respect to S, and
π : Γ→ Q\Γ is the quotient map, then

1) for each g ∈ G, the set π(gQ) is finite and has cardinality the index of
Q ∩ g−1Qg in Q,

2) for any g ∈ G there are only finitely many cosets hQ of G such that
π(hQ) = π(gQ), and

3) for any compact set C in Q\Γ there are only finitely many distinct
cosets gQ (g ∈ G) such that π(gQ) ∩ C 6= ∅.

Proof: Since Q is commensurated in G, Q∩ g−1Qg has finite index in Q for
all g ∈ G. By lemma 5.1 part B), if {(Q ∩ g−1Qg)qi}ni=1 are the Q ∩ g−1Qg
cosets of Q then π is constant and distinct on each g(Q ∩ g−1Qg)qi, and 1)
is proved.

Suppose giQ, for i ∈ {1, 2, . . .}, are distinct cosets inG such that π(giQ) =
π(gQ) for all i. Let α be an edge path from g to ∗. By lemma 5.1 part 3),
there is qi ∈ Q such that giqig

−1 ∈ Q. The path giqig
−1α begins at giqi ∈ giQ

and ends at giqig
−1 ∈ Q. But if N = |α| then each coset giQ is within N of

Q in Λ(S,Q,G). This contradicts the fact that Λ(S,Q,G) is locally finite,
and 2) is proved.

Suppose giQ, for i ∈ {1, 2, . . .}, are distinct cosets in G such that π(giQ)∩
C 6= ∅ for some compact set C ⊂ Q\Γ. Then there is a vertex v ∈ C such
that for infinitely many i, v ∈ π(giQ). By lemma 5.1, all these π(giQ) are
the same, which is impossible by part 2). �

Lemma 5.3 Suppose G is a group with finite generating set S, Q is a com-
mensurated subgroup of G, Γ is the Cayley graph of G with respect to S,
and π : Γ → Q\Γ the quotient map. Then an edge path r (with consecutive
vertices v0, v1, . . .) in Γ is Q-filtered iff for each g ∈ G, there are only finitely
many indices i such that vi ∈ gQ.

Proof: Suppose r is Q-filtered. If for infinitely many i, vi ∈ gQ, then for
each such i, π(vi) ∈ π(gQ). By lemma 5.2, π(gQ) is finite. But then πr is
not proper, contrary to our assumption that r is Q-filtered.

Suppose that for each g ∈ G there are only finitely many indices such that
vi ∈ gQ. If r is not Q-filtered, then πr is not proper and there is a vertex
v ∈ Q\Γ such that for infinitely many i, π(vi) = v. But if π(vi) = π(vj) then
by lemma 5.1, viQ = vjQ. This is contrary to our assumption on the vi. �
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Theorem 5.4 Suppose G is a group with finite generating set S, Q is a
finitely generated commensurated subgroup of G with generating set a subset
of S, and Γ is the Cayley graph of G with respect to S. Let p : Γ→ Λ(S,Q,G)
and π : Γ→ Q\Γ be the quotient maps.

1) There is a proper continuous map m : Λ(S,Q,G) → Γ such that
pm : Λ → Λ is properly homotopic to the identity, and πm : Λ → Q\Γ is
proper. In particular, m induces a function from the set of ends of Λ to the
set of Q-filtered ends of Γ.

2) The map p : Γ→ Λ induces a map from the Q-filtered ends of Γ to the
ends of Λ.

3) The maps pm : Λ(S,Q,G) → Λ(S,Q,G) and mp : Γ → Γ induce
the identity on the set of ends of Λ(S,Q,G) and the Q-filtered ends of Γ,
respectively. In particular, m and p induce bijections between the set of ends
of Λ(S,Q,G) and the Q-filtered ends of Γ.

Proof: Let m : Λ(S,Q,G)→ Γ be defined as follows: First pick a vertex agQ
in each coset gQ. Assume that aQ = ∗. If V = vQ is a vertex of Λ(S,Q,G),
define m(V ) = aV . If e is an edge of Λ(S,Q,G) with initial vertex V and
terminal vertex W , map e (linearly) to an edge path with initial vertex aV
followed by a Q-path from aV to a vertex of u of V such that the edge at u
with the same label as e ends in W . The next edge of m(e) is the edge at u
with the same label as e. Follow this edge by a Q-path to aW . Clearly pm(e)
is homotopic rel.{0, 1}, to e by a homotopy with image in the edge e and so
pm is properly homotopic to the identity.

Γ

π
p m

Q\Γ Λ(S,Q,G)

Figure 2

Next we prove m is proper. Otherwise, there are infinitely many distinct
edges e1, e2, . . . of Λ(S,Q,G) such that m(ei) intersect some finite complex
K of Γ. The set m(ei) intersects only two cosets, Vi and Wi the initial and
terminal vertex of ei, respectively. Hence for infinitely many i, Vi intersects
K, or for infinitely many i, Wi intersects K. As only finitely many Q-cosets
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intersect any finite subcomplex of Γ, infinitely many Vi or Wi are identical.
This contradicts the fact that Λ(S,Q,G) is locally finite, and so we conclude
that m is proper.

If πm is not proper, then there is a compact C in Q\Γ and mutually
disjoint edges e1, e2, . . . of Λ(S,Q,G) such that π(m(ei))∩C 6= ∅ for all i. If
giQ and tiQ are the initial and terminal vertex of ei respectively, then either
π(giQ) or π(tiQ) intersects C non-trivially. But this contradicts part 3) of
lemma 5.2. We conclude that πm is proper and part 1) is proved.

Suppose s is a Q-filtered edge path ray in Γ. Given any coset gQ of G,
only finitely many vertices of s belong to gQ by lemma 5.3). Hence p(s)
is proper in Λ(S,Q,G). If r and s are Q-filtered edge path rays in Γ that
determine the same filtered end of (G,Q), there is a Q-filtered edge path t
that intersects both r and s in infinitely many vertices. The proper edge
path p(t) intersects both p(r) and p(s) in infinitely many vertices, so p(r)
and p(s) determine the same end of Λ(S,Q,G). Hence p determines a map
of the filtered ends of (G,Q) to the ends of Λ(S,Q,G) and 2) is proved.

By part 1), pm induces the identity on the set of ends of Λ(S,Q,G).
Suppose s is a Q-filtered edge path ray in Γ. The proper edge path ray
mp(s) intersects the exact same set of gQ cosets as does s and in the same
order (by the definitions of m and p). Connect each vertex vi of s to the
corresponding vertex mp(vi) of mp(s) by a Q-edge path αi. Let C be a
compact subcomplex of Q\Λ. We need only show that for some i, π(αi)
avoids C. Note that viQ contains the vertices of αi. For any i there are
only finitely many j such that viQ = vjQ (since by part 2), ps is proper
and p(vi) = viQ ∈ Λ(S,Q,G)). Now if for infinitely many i, π(αi) intersects
C non-trivially, then there would be infinitely many distinct viQ such that
π(viQ) intersects C non-trivially. But that is impossible by part 3) of lemma
5.2. Instead mp(s) and s determine the same Q-filtered end in Γ. �

When a commensurated subgroup Q of G is not finitely generated, there
is still an induced map from the set of filtered ends of (G,Q) onto the set of
ends of the coset graph.

Theorem 5.5 Suppose Q is a commensurated subgroup of the group G, S
is a finite generating set for G, and p : Γ → Λ(S,Q,G) is projection. Then
p induces a map of the set of filtered ends of (G,Q) onto the set of ends of
Λ(S,Q,G).

Proof: The proof of part 2) of theorem 5.4 does not use the hypothesis that
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Q is finitely generated and so p induces a map of the set of Q-filtered ends
of (G,Q) to the set of ends of Λ(S,Q,G).

For any proper edge path ray r : [0,∞) → Λ(S,Q,G) at ∗, we define
a proper edge path ray r̂ : [0,∞) → Γ at ∗. First observe that there is an
integer N such that if cosets gQ and hQ of G are adjacent in Λ(S,Q,G), then
gQ and hQ are of Hausdorff distance ≤ N apart in Γ. Let the consecutive
vertices of r be Q, g1Q, g2Q, . . .. Let α1 be an edge path of length ≤ N from
∗ ∈ Γ to a vertex v1 of g1Q. Inductively, for i > 1, let αi be an edge path of
length ≤ N from vi−1 to a vertex vi ∈ giQ.

Suppose the edge path r̂ ≡ (α1, α2, . . .) is not Q-filtered in Γ. Then by
lemma 5.3, there is a coset gQ and infinitely many indices i such that αi

intersects gQ non-trivially. But then for each such i, giQ is within N of gQ
in Λ(S,Q,G). This contradicts the hypothesis that r is proper. Instead, we
have r̂ is Q-filtered.

Now p(r̂) is a proper edge path in Λ(S,Q,G) that passes through each
vertex that r passes through. Hence r and p(r̂) determine the same end of
Λ(S,Q,G). This implies that the map from filtered ends of (G,Q) to ends
of Λ(S,Q,G) induced by p is onto. �

Remark 5. When Q is not finitely generated, it seems unlikely there is
a proper continuous map m : Λ(S,Q,G) → Γ (in analogy with the map
m of theorem 5.4) inducing a bijection of filtered ends of (G,Q) and ends
of Λ(S,Q,G). In fact, it seems unlikely there is a proper continuous map
m′ : Λ(S,Q,G)→ Q\Γ such that π and m′p induce the same map on filtered
ends of (G,Q). If such an m′ could be found, then it would induces a map
from the set of ends of Λ(S,Q,G) onto the set of ends of Q\Γ. As an
alternative we next introduce a refinement of Λ(S,Q,G), that can be mapped
to Q\Γ.

Suppose S is a finite generating set for a group G and Q is a commen-
surated subgroup of G. While our focus in this section is on the case when
Q is finitely generated, part B) of lemma 5.1 motivates the definition of an-
other locally finite graph that is useful in studying the filtered ends of the
pair (Q,G) when Q is not finitely generated. Define Λ̃(S,Q,G) to be the
graph with vertices the elements of the set {g(Q∩ g−1Qg)q : g ∈ G, q ∈ Q}.
There is a directed edge (labeled s) from g(Q∩g−1Qg)q1 to the distinct vertex
f(Q∩f−1Qf)q2 if there is an edge labeled s in the Cayley graph Γ(S,G) with
initial point in g(Q ∩ g−1Qg)q1 and end point in f(Q ∩ f−1Qf)q2. Unfortu-
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nately, G does not act nicely on Λ̃(S,Q,G) (as it does on Λ(S,Q,G)). Still,
we can show that N(Q,G), the normalizer of Q in G, acts on Λ̃(S,Q,G)
(see proposition 5.7). The quotient maps r1 : Γ(S,G) → Λ̃(S,Q,G) and
r2 : Λ̃(S,Q,G) → Λ(S,Q,G), defined by r1(gxq) = g(Q ∩ g−1Qg)q and
r2(g(Q ∩ g−1Qg)q) = gQ for all g ∈ G, x ∈ Q ∩ g−1Qg and q ∈ Q are such
that r2r1 = p (recall p : Γ(S,G) → Λ(S,Q,G) by p(g) = gQ for each vertex
g ∈ Γ(S,G)). Note that r2 is finite to 1 in the sense that the preimage of
the vertex gQ under the map r2 is {g(Q ∩ g−1Qg)q : q ∈ Q} (a finite set
since Q∩ g−1Qg has finite index in Q). Basically we obtain Λ̃(S,Q,G) from
Λ(S,Q,G) by splitting the vertex gQ of Λ(S,Q,G) into the finitely many
vertices {g(Q∩g−1Qg)q : q ∈ Q} determined by the finitely many Q∩g−1Qg
cosets of Q.

Theorem 5.6 Suppose Q is a commensurated subgroup of the group G, S is
a finite generating set for G, and r1 : Γ→ Λ̃(S,Q,G) and r2 : Λ̃(S,Q,G)→
Λ(S,Q,G) are the projections defined by r1(gxq) = g(Q ∩ g−1Qg)q and
r2(g(Q ∩ g−1Qg)q) = gQ for all g ∈ G, x ∈ Q ∩ g−1Qg and q ∈ Q (so
that r2r1 = p).

Then r1 induces a map of the set of filtered ends of (G,Q) into the set
of ends of Λ̃(S,Q,G) and r2 is a proper onto map. There is a continuous
map π′ : Λ̃(S,Q,G) → Q\Γ such that π = π′r1 : Γ → Q\Γ. In particular,
the induced image under r1 of the set of filtered ends of (G,Q) in Λ̃(S,Q,G)
is mapped onto the set of ends of Q\Γ by π′ and onto the set of ends of
Λ(S,Q,G) by r2.

Proof: An argument completely analogous to that in part 2) of theorem 5.4
shows that r1 induces a map of the set of filtered ends of (G,Q) into the set
of ends of Λ̃(S,Q,G).
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The map r2 is proper since the preimage of a vertex in Λ(S,Q,G) is finite.
By theorem 5.5, p(= r2r1) induces a map of the filtered ends of (G,Q) onto
the ends of Λ(S,Q,G) so r2 induces a map from the induced image under r1
of the filtered ends of (G,Q) onto the set of ends of Λ(S,Q,G). By lemma
5.1, part B), π is constant on the sets g(Q ∩ g−1Qg)q for g ∈ G and q ∈ Q.
Hence we define π′(g(Q ∩ g−1Qg)q) to be π(g(Q ∩ g−1Qg)q)(≡ π(gq)) and
obtain π = π′r1. �

Proposition 5.7 Suppose Q is a commensurated subgroup of the group G,
and S is a finite generating set for G then N(Q,G) the normalizer of Q
in G acts by isometries on Λ̃(S,Q,G) so that each n ∈ N(Q,G) maps the
set of vertices/cosets g(Q ∩ g−1Qg)qi of gQ bijectively to the set of cosets
ng(Q ∩ n−1g−1Qgn)n−1qin of ngQ.

Proof: Suppose Q = ∪mi=1(Q ∩ g−1Qg)qi. For each n ∈ N(Q,G), we have
n−1(Q ∩ g−1Qg)qin = (Q ∩ n−1g−1Qgn)n−1qin (defining a bijection between
the Q ∩ g−1Qg cosets of Q and the Q ∩ n−1g−1Qgn cosets of Q). Sim-
ply define n : Λ̃(S,Q,G) → Λ̃(S,Q,G) by n(g(Q ∩ g−1Qg)qi) = ng(Q ∩
n−1g−1Qgn)n−1qin, for each n ∈ N(Q,G) and g ∈ G �

Suppose X is a finite connected CW-complex with π1(X) = G and X̃ the
universal cover of X. If Q is subgroup G, then N(Q,G) the normalizer of
Q in G is the set of deck transformations of the intermediate covering space
Q\X̃. The next example is meant to show how a small change in Q can lead
to a dramatic change in N(Q,G).

Example 5. Let G be the direct product of the infinite cyclic group 〈z〉
with the free product 〈t, x : x2〉 ≈ Z ∗ Z2. So

G ≡ Zz × (Zt ∗ Z2) ≡ 〈t, x, z : x2, [z, t], [z, x]〉

Since the infinite cyclic group 〈z〉 is central in G, Q ≡ 〈z, x〉 ≈ Z × Z2 is
commensurated in G. If g ∈ G is in the normalizer of Q then g−1zg = z and
since x is the only order 2 element of Q, g−1xg = x, so g is in the centralizer
of Q. Now, g has the form znw for w ∈ 〈t, x〉 and g−1xg = w−1xw = x.
Certainly the centralizer of x in 〈t, x〉 is 〈x〉 so that w ∈ 〈x〉. Hence while
the normalizer of Zz is all of G (large as possible), and Zz has index 2 in Q,
the normalizer of Q is Q (small as possible).
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The next result should be compared to theorem 14.5.10 of [8] (when Q is
finitely generated).

Theorem 5.8 If G is a group with finite generating set S, and Q is a com-
mensurated subgroup of G then Λ(S,Q,G) has 0, 1, 2 or an uncountable
number of ends, and this number is independent of the finite generating set
S.

If Q has infinite index in N(Q,G) then Λ̃(S,Q,G) has 0, 1, 2 or an
infinite number of ends, also independent of the finite generating set S.

Proof: As G acts transitively on the vertices of Λ(S,Q,G) and by isometries
on Λ(S,Q,G) the standard proof that a Cayley graph of a group has 0, 1, 2
or an uncountable number of ends can be modified to show that Λ(S,Q,G)
has 0, 1, 2 or an uncountable number of ends. I.e. if Λ(S,Q,G) has at least 3
ends, let K be a finite subgraph of Λ(S,Q,G) such that Λ(S,Q,G)−K has
n ≥ 3 unbounded components. Choose one of the unbounded components
A of Λ(S,Q,G) − K and an element g ∈ G so that gK ⊂ A and gK is
far from K. Then Λ(S,Q,G) − (K ∪ gK) has at least 2(n − 1) unbounded
components and showing Λ(S,Q,G) has an infinite number of ends. Since
the same can be done in each unbounded component of Λ(S,Q,G) − K, a
standard argument continuing this line of reasoning shows Λ(S,Q,G) has an
uncountable number of ends.

Suppose Q has infinite index in N(Q,G). Let n1Q, n2Q, . . . be distinct
cosets in N(Q,G) then the niQ are distinct vertices of Λ̃(S,Q,G). For any
compact set C in Λ̃(S,Q,G) there is an i > 0 such that ni(C) ∩ C = ∅ and
an argument as above shows Λ̃(S,Q,G) has 0, 1, 2 or ∞ ends, but does
not show infinitely many ends implies an uncountable number of ends (If
Λ̃(S,Q,G)−C has n unbounded components there in no guarantee that for
each such component there is an ni that translates C into that component.)

If T is another finite generating set for G, then the graph Λ(T,Q,G)
has the same set of vertices as does Λ(S,Q,G) (the left cosets gQ). Let
fS : Λ(S,Q,G) → Λ(T,Q,G) be defined as follows: fS restricted to the
vertices of Λ(S,Q,G) is the identity. Suppose s ∈ S. Choose a T -word ws

such that in G, s = ws. If e is any directed edge of Λ(S,Q,G) with label s ∈ S
and initial vertex g1Q and terminal vertex g2Q, let ẽ be an edge of Γ(S,G)
with label s, initial vertex v1 ∈ g1Q and terminal vertex v2 ∈ g2Q. The edge
path τẽ at v1 with labeling defined by ws ends at v2. Define fS to linearly map
e to the edge path τe ≡ p(τẽ) of Λ(T,Q,G) (where p : Γ(S,G)→ Λ(S,Q,G)
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is the quotient map). Note that τe is an edge path from g1Q to g2Q. Both
fT and fS are proper and the compositions fSfT and fTfS are the identity
on vertices so fT and fS induce isomorphisms between the set of ends of
Λ(S,Q,G) and Λ(T,Q,G). Similarly for Λ̃(S,Q,G). �

Suppose S is a finite generating set for the group G and Q is a commen-
surated subgroup of G. Corollary 2.5 suggests the graphs Λ(S,Q,G) and
Q\Γ(S,G) are quasi-isometric. This need not be the case. In the following
example, the set of ends of Q\Γ and Λ have different cardinality.

Example 6. If G = 〈t, x : t−1xt = x2〉 and Q = 〈x〉, then Λ({x, t}, Q,G)
is a tri-valent tree. The graph of Q\Γ(S,G) is obtained as follows: Begin
with a ray, with vertices labeled vi for i ≤ 0. Assume the directed edge from
vi−1 to vi is labeled t. There is a loop labeled x at each vi. Call this graph
A0. Attach a directed edge labeled t to v0 with end vertex v1 and a loop of
length 2 to v1 with each edge labeled x. Let w1 label the vertex of this loop
opposite v1. Call this graph B̂1. Let B̂′1 be another copy of B̂1 and attach
B̂1 to B̂′1 along the respective loops of length 2 with a half twist (so that v1
is identified with w′1 and w1 is identified with v′1). Call the resulting graph
A1. Note that A1 has 2-ends.

Next, attach an edge at v1 labeled t with end vertex v2 and attach a loop
of length 4 to v2 such that each edge of the loop is labeled x. Let w2 label
the vertex of this loop opposite v2. Attach to this graph an edge labeled t
beginning at w1 and ending at w2. Call the resulting graph B̂2. Let B̂′2 be
another copy of B̂2 and attach B̂2 to B̂′2 along the respective loops of length
4 with a one quarter twist. Call the resulting graph A2. Note that A2 has
4-ends.

Next, attach an edge at v2 labeled t with end vertex v3 and attach a loop
of length 8 to v2 such that each edge of the loop is labeled x. Attach to this
graph three additional edges, each labeled t and each beginning at a vertex
of the loop at v2 and ending at a vertex at the loop at v3 so that the relations
t−1xt = x2 is satisfied. Call the resulting graph B̂3. Let B̂′3 be another copy
of B̂3 and attach B̂3 to B̂′3 along the respective loops of length 8 with a one
eighth twist. Call the resulting graph A3. Note that A3 has 8-ends. Continue
to construct Q\Γ(S,G).

The number of ends of Q\Γ(S,G) is countable, while the number of ends
of Λ({x, t}, Q,G) is uncountable. As the cardinality of the set of ends of a
graph is a quasi-isometry invariant, the graphs Λ({x, t}, Q,G) and Q\Γ(S,G)
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are not quasi-isometric. �

6 Connections to Bounded Packing

In [10], C. Hruska and D. Wise make the following definition:
(Bounded packing) Let G be a discrete group with a left invariant metric
d. Suppose also that d is proper in the sense that every metric ball is finite.
A subgroup H has bounded packing in G (with respect to d) if, for each
constant D, there is a number N = N(G,H,D) so that for any collection of
N distinct cosets gH in G, at least two are separated by a distance of at least
D. (Here d(g1H, g2H) is the infimum of d(g1h1, g2h2) for all h1, h2 ∈ H.)

The main theorem of [10] is the following bounded packing result (which
is more general and more sophisticated than theorem 3.11):

Theorem (Hruska-Wise) Let H be a relatively quasi-convex subgroup of
a relatively hyperbolic group G. Suppose H ∩ gPg−1 has bounded packing
in gPg−1 for each conjugate of each peripheral subgroup P . Then H has
bounded packing in G.

Consider the coset graph Λ(S,Q,G) where S is a finite generating set for
the group G and Q is commensurated in G. For Γ(S,G) the Cayley graph of
G with respect to S, the natural projection map p : Γ→ Λ respects the left
action of G on Γ and Λ. If d and D are the edge path metrics on Γ and Λ
respectively, and d(g1Q, g2Q) is the infimum of d(g1q1, g2q2) for all q1, q2 ∈ Q,
then D(g1Q, g2Q) ≤ d(g1Q, g2Q) for all g1, g2 ∈ G. As G acts transitively on
Λ, and since Λ is locally finite (theorem 4.4) we have:

Lemma 6.1 If G is finitely generated and Q is commensurated in G, then
Q has bounded packing in G.

For F (x, y), the free group on {x, y}, it is elementary to show that 〈x〉 has
bounded packing in F (x, y). Certainly 〈x〉 is not commensurated in F (x, y).

If the wording is slightly changed in the bounded packing definition for
finitely generated groups, then one gets commensurated.

Lemma 6.2 Let G be a finitely generated group with word metric d. A
subgroup H is commensurated in G iff, for each constant D, there is a number
N = N(G,H,D) so that for any collection of N distinct cosets gH in G, at
least one is separated from H by a distance of at least D. (Here again,
d(H, gH) is the infimum of d(h1, gh2) for all h1, h2 ∈ H.)
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Proof: Assume S is a finite generating set for G. If H is commensurated
in G, let N − 1 be the number of vertices gH of the (locally finite) coset
graph Λ(S,H,G), within D of the vertex H. Then for N distinct cosets
g1H, . . . , gNH of G at least one, giH, is of distance greater than D from H
in Λ(S,H,G) and hence d(H, giH) > D.

For the converse, let g ∈ G and say d(1, g) = D. By hypothesis, there are
only finitely many distinct cosets g1H, . . . , gNH such that d(H, giH) ≤ D.
For each h ∈ H, d(H, hgH) ≤ D and so hgH = giH for some i. Without
loss assume g1 = g. Let Hi = {h ∈ H : hg ∈ giH} so that {Hi}Ni=1 partitions
H (reindexing, we may assume that Hi 6= ∅). Note that h ∈ H1 iff hg ∈ gH
iff g−1hg ∈ H, so H1 = H ∩ gHg−1.

Suppose a1, a2 ∈ Hi. Then a1g = gih1 and a2g = gih2 for some h1, h2 ∈ H.
Now, a−11 a2 = gh−11 h2g

−1 ∈ gHg−1 and a−11 a2 ∈ H ∩ gHg−1 ≡ H1. Hence

Hi ⊂ aH1 for all a ∈ Hi

For a ∈ Hi and h ∈ H1, write h = gh′g−1 for some h′ ∈ H. Then, ag ∈ giH
and ahg = agh′ ∈ agH = giH. So ah ∈ Hi and

aH1 ⊂ Hi for all a ∈ Hi

Hence Hi = aH1 for all a ∈ Hi

Suppose hi ∈ Hi, then H = ∪Ni=1hiH1 and H1 has finite index in H. This
implies that there is an integer Dg such that d(h,H1) ≤ Dg for each h ∈ H.
As each point of H1 is within |g| = D of gH, each point of H is within D+Dg

of gH. Now, each point of H is within D + Dg−1 of g−1H, so each point of
gH is with in D +Dg−1 of H, and H is commensurated in G. �

7 Closing Remarks: Semistability, L2-Betti

Numbers, and Simple Groups

In a separate paper [5], we show that certain asymptotic aspects of groups
with particular normal subgroups agree with those having corresponding
commensurated subgroups. See theorems 7.1, 7.2 and 7.3.

Theorem 7.1 Suppose G is a finitely generated group, and Q is an infinite,
finitely generated, commensurated subgroup of G of infinite index in G, then
G is one-ended and semistable at infinity.
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The corresponding result for normal subgroups is the main result of Mihalik’s
paper [18]. Using theorem 7.1, we obtain a relatively short proof of Vee
Ming Lew’s theorem on semistability of groups with infinite finitely generated
subnormal subgroup of infinite index.

Example 7. An infinite finitely generated subnormal subgroup of a finitely
generated group need not be commensurated. Let {. . . , x−1, x0, x1, . . .} be
a set of free generators for an infinite rank free abelian group N . Consider
G, the group extension of N obtained by adding a generator t and relations
t−1xit = xi+1 for all i (so G is the wreath product Z o Z). Then t and
x0 ≡ x generate G. Now N is normal in G and 〈x〉 is normal in N (since
N is abelian). But 〈x〉 is not normal in G. In fact, we show 〈x〉 is not
commensurated in G.

If 〈x〉 is commensurated in G then t−1〈x〉t ∩ 〈x〉 has finite index in both
terms. That implies for some non-zero m and n, t−1xmt = xn. This implies
xm1 = xn0 , but that only happens (in N) when m = n = 0.

Remark 6. If a finitely generated group has infinitely many ends then it
has non-zero first L2-Betti number (see [1]). D. Gaboriau has proven [7]: If
a countable group Γ acts freely, ergodically, in a measure-preserving way, on
some standard probability space and Γ contains a finitely generated, infinite,
normal subgroup N with infinite index in Γ, then the first L2-Betti number of
Γ vanishes. This result (answering in the affirmative a question of Gromov)
was previously proved, under the additional assumption that Γ/N is not
a torsion group, by W. Lück ([16]). Theorem 5.12 [23] (J. Peterson and A.
Thom) implies that normal can be replaced by commensurated in Gaboriau’s
result.

The main theorem of M. Mihalik’s paper [19] implies that if H is an
infinite finitely presented group and φ : H → H is a monomorphism then
the resulting HNN extension, G ≡ 〈t,H : t−1ht = φ(h) for all h ∈ H〉, is
semistable at infinity (and simply connected at infinity when H is 1-ended).
The technique for this proof breaks down when H is only finitely generated
and the corresponding semistability problem is currently unresolved.

As a direct corollary to theorem 7.1 and lemma 3.9, we obtain:

Theorem 7.2 Suppose H is a finitely generated group, φ : H → H is a
monomorphism and φ(H) has finite index in H. The resulting HNN exten-
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sion:
G ≡ 〈t,H : t−1ht = φ(h) for all h ∈ H〉

is semistable at infinity.

Theorem 7.3 Suppose G is a finitely presented group and Q is a subgroup
of G that is infinite, finitely presented, commensurated in G, and of infinite
index in G. If either Q has one end or the pair (G,Q) has one filtered end,
then G is simply connected at infinity.

Theorem 7.3 generalizes B. Jackson’s corresponding result for normal
subgroups in [12].

Remark 7. Higman’s group

G ≡ 〈a1, . . . , a4 : a−1i ai+1ai = a2i+1 cyclically for all i〉
is an infinite finitely presented group with no proper subgroups of finite index.
A proper normal subgroup N of G is maximal if it is not contained in any
other proper normal subgroup. As the ascending union of normal subgroups
is normal, any proper normal subgroup of G is contained in a maximal proper
normal subgroup of G. (To see this, list the elements of G as g1, g2, . . .. If
N is a proper normal subgroup of G, let N0 = N and Ni be the normal
closure of Ni−1 ∪ {gi} if this group is not G and otherwise let Ni = Ni−1.
Now {Ni}∞i=0 is an ascending sequence of normal subgroups in G. Hence
M ≡ ∪∞i=0Ni is normal in G. The group M is a proper normal subgroup of
G since otherwise, the generators, ai are elements of M for all i, and so for
some j, ai is in Nj for all i (this is impossible since Nj 6= G). Now M is
maximal since if g ∈ G is not in M then the normal closure of M ∪ {g} is
G. As G has no proper subgroups of finite index, G/M is an infinite finitely
generated simple group.

a) The ascending union of commensurated subgroups is not necessarily a
commensurated subgroup. (See example 3)

b) Does Higman’s group contain interesting commensurated subgroups?
c) Is G/M nearly simple (i.e. does it contain non-trivial commensurated

subgroups)?
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