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Abstract. A well-know conjecture is that all finitely presented groups
have semistable fundamental group at ∞. A class of groups whose mem-
bers have not been shown to be semistable at ∞ is the class A of finitely
presented groups that are ascending HNN-extensions with finitely gen-
erated base. The class A naturally partitions into two non-empty sub-
classes; those that have “bounded” and “unbounded” depth. Using
new methods introduced in a companion paper [GGMa] we show those
of bounded depth have semistable fundamental group at ∞. Ascend-
ing HNN extensions produced by Ol’shanskii-Sapir and Grigorchuk (for
other reasons), and once considered potential non-semistable examples
are shown to have bounded depth. Finally, we devise a technique for
producing explicit examples with unbounded depth. These examples
are perhaps the best candidates to date in the search for a group with
non-semistable fundamental group at ∞.

1. Introduction

A 1-ended finitely presented group has semistable fundamental group at
∞ if it acts geometrically on some (equivalently any) simply connected and
locally finite complex X with the property that any two proper rays in X
are properly homotopic. If G has semistable fundamental group at ∞ then
one can unambiguously define the fundamental group at ∞ for G. The
conjecture that all finitely presented groups have semistable fundamental
group at ∞ has been studied for over 40 years. If G is an ascending HNN
extension with finitely presented base group then indeed, G has semistable
fundamental group at ∞ ([Mih85]), but since the early 1980’s it has been
suggested that the finitely presented groups that are ascending HNN exten-
sions with finitely generated base may include a group with non-semistable
fundamental group at ∞. We show that ascending HNN extensions natu-
rally break into two non-empty classes, those with bounded depth and those
with unbounded depth. Those with finitely presented base have bounded
depth (by definition). Our main theorem shows that bounded depth finitely
presented ascending HNN extensions with finitely generated base groups
have semistable fundamental group at ∞. Semistability is equivalent to
two weaker asymptotic conditions on the group holding simultaneously. We
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show one of these conditions holds for all ascending HNN extensions, re-
gardless of depth. Before this paper, the only unbounded depth ascending
HNN extension we were aware of was one whose base was in fact normal in
the overgroup. Such groups have semistable fundamental group at ∞ for
other reasons. A technique for constructing ascending HNN extensions with
unbounded depth is developed in Section 4 (see Theorem 4.2). We consider
this construction to be the best attempt so far to produce a group with
non-semistable fundamental group at ∞.

If H is a group, and φ : H → H is a monomorphism, then the notation
〈t,H : t−1ht = φ(h)〉 stands for a presentation of a group G with generators
{t} ∪ H and relation set {t−1ht = φ(h) for all h ∈ H} union all relations
for H. The group G is usually denoted H∗φ and called an ascending HNN
extension with base H and stable letter t. By Britton’s lemma the obvious
map of H into G is an isomorphism onto its image. If F (A) is the free group
on the set A, φ : A → F (A) is a function and R is a set of A-words, then
the group G with presentation

P = 〈t,A : R, t−1at = φ(a) for all a ∈ A〉

is an ascending HNN extension with base group A, the subgroup of G gen-
erated by A. It is important to note that 〈A : R〉 need not be a presentation
for A. For each integer n > 0 and r ∈ R, φn(r) may not be in the normal
closure of R in F (A), but certainly φn(r) is a relator of A. In fact, when A
is finite, one would rarely expect A to be finitely presented. The relations
t−1at = φ(a) are called conjugation relations.

Semistability of the fundamental group at∞ for a finitely presented group
is a geometric notion discussed in §2. If a finitely presented 1-ended group
G has semistable fundamental group at ∞ then the fundamental group at
∞ of G is independent of base ray. It is unknown if all finitely presented
groups are semistable at ∞. To date, the strongest result in the theory of
semistability and simple connectivity at∞ for ascending HNN extensions is
the following:

Theorem 1.1. (M. Mihalik [Mih85]) Suppose H is a finitely presented
group φ : H → H is a monomorphism and G = 〈t,H : t−1ht = φ(h)〉 is
the resulting HNN extension. Then G is 1-ended and semistable at ∞. If
additionally, H is 1-ended, then G is simply connected at ∞.

The line of proof used for this result fails when H is only finitely generated
and it has been suggested since the 1980’s that a promising place to search for
a group with non-semistable fundamental group at ∞ is among the finitely
presented ascending HNN extensions with finitely generated base. More
specifically, A. Ol’shanskii and M. Sapir [OS02] and [OS01] have constructed
a finitely generated infinite torsion group H̄ and finitely presented ascending
HNN extension G with base H̄ which has been suggested as a possible group
with non-semistable fundamental group at ∞.
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In §4, we show that the collection of finitely presented ascending HNN
extensions of finitely generated groups is naturally divided into two classes
- those with what is called bounded depth and those of infinite/unbounded
depth. The Ol’shanskii-Sapir group G has bounded depth and is semistable
at ∞ by our main theorem.

Theorem 1.2. Suppose G is a finitely presented ascending HNN extension
of a finitely generated group A and G has bounded depth. Then G has
semistable fundamental group at ∞.

Semistable fundamental group at ∞ for finitely generated groups was de-
fined in the mid-1980’s ([Mih86]). While we are not concerned with that
notion here, the following result (Theorem 4, [Mih86]) is connected to the
ideas in this paper.

Theorem 1.3. Suppose G is an ascending HNN extension of a finitely gen-
erated 1-ended group A. If A is semistable at ∞, then G is semistable at
∞.

To prove Theorem 1.2 we use the main theorem of [GGMa] which implies
that a finitely presented group G has semistable fundamental group at ∞ if
and only if two (somewhat orthogonal) weaker semistability conditions hold
for G. The rest of the paper is organized as follows.

In §2, we define semistability at ∞ for spaces and groups, and list a
number of equivalent formulations of this notion. Two weaker notions, the
semistablility of a finitely generated subgroup J in an over group G and,
the co-semistability of J in G are defined.

In §3 we prove that if A is an infinite finitely generated base group of a
finitely presented ascending HNN extension G and t is the stable letter, then
for any N ≥ 0, tNAt−N is semistable at ∞ in G (regardless of depth). By
the main theorem of [GGMa] this reduces the proof of our main theorem to
showing that G satisfies the second semistability condition of [GGMa].

In §4 we review the combinatorial group theory of ascending HNN groups
and define what it means for such a group to have bounded depth. Exam-
ples of Grigorchuk and Ol’shanskii-Sapir of ascending HNN extensions with
bounded depth are reviewed and a method for constructing ascending HNN
extensions with unbounded depth is given.

In §5 the bulk of the proof of our main theorem is given. We show that
if G is an ascending HNN extension of a finitely generated group A, P is
a finite HNN presentation with bounded depth for G, and X is the Cayley
2-complex for P, then for each compact subset C of X, there is an integer
N(C) ≥ 0 such that tNAt−N is co-semistable at ∞ in X with respect to
C. We also prove a result (Theorem 5.9) that considers the case when A
is finitely presented and connects this case to several papers already in the
literature. When A is finitely presented and C is compact in X, we show
there is an integer N(C) ≥ 0 and compact set Q(C) containing C such that
loops in X − (tNAt−N )Q are homotopically trivial in X − (tNAt−N )Q.
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2. The basics of semistability at ∞ for groups

Suppose K is a locally finite connected CW complex. A ray in X is a
map r : [0,∞) → K. The space K has semistable fundamental group at
∞ if any two proper rays in K converging to the same end are properly
homotopic. Suppose C0, C1, . . . is a collection of compact subsets of a 1-
ended locally finite complex K such that Ci is a subset of the interior of
Ci+1 and ∪∞i=0Ci = K, and r : [0,∞) → K is proper, then π∞1 (K, r) is the
inverse limit of the inverse system of groups:

π1(K − C0, r)← π1(K − C1, r)← · · ·

This inverse system is pro-isomorphic to an inverse system of groups with
epimorphic bonding maps if and only if K has semistable fundamental
group at ∞. When K is 1-ended with semistable fundamental group at
∞, π∞1 (K, r) is independent of proper base ray r.

If for any compact set C in K there is a compact set D in K such that
loops in K −D are homotopically trivial in X − C (equivalently the above
inverse sequence of groups is pro-trivial), then K is simply connected at ∞.

There are a number of equivalent forms of semistability which are collected
as Theorem 3.2 of [CM14].

Theorem 2.1. (G. Conner and M. Mihalik [CM14]) Suppose K is a
locally finite, connected and 1-ended CW-complex. Then the following are
equivalent:

(1) K has semistable fundamental group at ∞.
(2) For any proper ray r : [0,∞) → K and compact set C, there is a

compact set D such that for any third compact set E and loop α
based on r and with image in K − D, α is homotopic rel{r} to a
loop in K − E, by a homotopy with image in K − C.

(3) For any compact set C there is a compact set D such that if r and
s are proper rays based at v and with image in K −D, then r and s
are properly homotopic rel{v}, by a proper homotopy in K − C.

If K is simply connected, then a fourth equivalent condition can be added to
this list:

4. Proper rays r and s based at v are properly homotopic rel{v}.

If G is a finitely presented group and Y is a finite complex with π1(Y ) = G
then G has semistable (respectively simply connected) fundamental group at
∞ if the universal cover of Y has semistable (respectively simply connected)
fundamental group at ∞. This definition only depends on the group G.

In [GGMa] we consider finitely generated groups acting (perhaps not co-
compactly) as covering transformations on 1-ended CW complexes X and
we say what it means for such a group to be semistable at ∞ in X with
respect to a given compact subset of X. In this paper we only need consider
a more simple notion. Suppose A is a finitely generated infinite subgroup
of a finitely presented 1-ended group G. Say A ∪ S is a finite generating
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set of G, where A generates A. Let X be the Cayley 2-complex for some
finite presentation P (with generating set A ∪ S) of G. So X is the simply
connected 2-dimensional complex with 1-skeleton equal to the Cayley graph
of G with respect to A ∪ S. The vertex set of X is G and each edge of X
is labeled by an element of A ∪ S. For each vertex v of X and relation r
of P there is a 2-cell with boundary equal to the edge path loop at v with
edge labels spelling the word r. Let ∗ be the identity vertex of X. Let
Λ(A,A) ⊂ X be the Cayley graph of A with respect to A. If g ∈ G and q
is an edge path in gΛ, then q is called an A-path in X. Note that q is an
A-path if and only if each edge of q is labeled by an element of A.

If g ∈ G and C is compact in X then we say gAg−1 is semistable at ∞
in X (or in G) with respect to C if there is a compact set D(C) ⊂ X such
that if r and s are two proper edge path rays in gΛ(A,A)−D based at the
same vertex v ∈ gA then r and s are properly homotopic rel{v} by a proper
homotopy in X − C. This definition is equivalent to the one of [GGMa].
If gAg−1 is semistable at ∞ with respect to every compact subset of X,
then we say gAg−1 is semistable at ∞ in X (or in G). If A is 1-ended and
semistable at ∞, then gAg−1 is always semistable at ∞ in X (G).

In §3 we prove:

Proposition 2.2. If G is a finitely presented ascending HNN extension of
a finitely generated infinite group A and t is the stable letter, then for all
N ≥ 0, tNAt−N is semistable at ∞ in G.

The main theorem of [GGMa] is significantly more general than Theorem
2.3. In [GGMa], the main result does not require an overgroup G acting
cocompactly on Y , only that Y be 1-ended and for each compact subset C
of Y , the existence a finitely generated group J acting as covering transfor-
mations on Y and satisfying conditions 1) and 2) below. The notion of a
group J being co-semistable at∞ in a space is a bit technical and we define
this afterwards.

Theorem 2.3. (R. Geoghegan, C. Guilbault and M. Mihalik [GGMa])
Suppose G is a 1-ended finitely presented group acting cocompactly on a sim-
ply connected locally finite CW-complex Y . If for each compact set C ⊂ Y
there is an infinite finitely generated subgroup J of G such that

1) J is semistable at ∞ in Y with respect to C and
2) J is co-semistable at ∞ in Y with respect to C,

then Y (and hence G) has semistable fundamental group at ∞.

The converse of Theorem 2.3 is rather straightforward. In fact, if Y
(equivalently G) has semistable fundamental group at ∞, then suppose C
is any compact subset of Y and J is any infinite finitely generated subgroup
of G then conditions 1) and 2) hold for J and C. Interestingly, our proof
of the main theorem of this paper relies on selecting different groups J for
different compact sets C satisfying 1) and 2). We apply Theorem 2.3 when
G is an ascending HNN extension of a finitely generated group A, and G
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acts cocompactly on Y the Cayley 2-complex of G with respect to some
finite HNN presentation P (see §1). In our situation, all of the subgroups J
of Theorem 2.3 will have the form tNAt−N for some N ≥ 0. Proposition 2.2
resolves part 1) of Theorem 2.3 for all compacts sets. All that remains to
be shown is that for each compact set C in X there is an integer N(C) ≥ 0
such that tNAt−N is co-semistable at ∞ in Y with respect to C. We now
define what that means.

Suppose J is an infinite finitely generated group acting as covering trans-
formations on the 1-ended, simply connected and locally finite CW-complex
Y . A subset S of Y is bounded in Y if S is contained in a compact subset
of Y . Otherwise S is unbounded in Y . Let q : Y → J\Y be the quotient
map. If K is a subset of Y , and there is a compact subset C1 of Y such
that K ⊂ JC1 (equivalently q(K) has image in a compact set), then K is
a J-bounded subset of Y . Otherwise K is a J-unbounded subset of Y . If
r : [0,∞) → Y is a proper edge path ray and qr has image in a compact
subset of J\Y then r is said to be J-bounded. Equivalently, r is a J-bounded
proper edge path ray in S if and only if r has image in JC1 for some compact
set C1 ⊂ Y . Let ∗ be a base vertex in Y . When r is J-bounded there is an
integer M (depending only on C1 and fixed terms) such that each vertex of
r is (using edge path distance) within M of a vertex of J∗ ⊂ Y .

We say J is co-semistable at ∞ in Y with respect to the compact subset
C of Y if there is a compact subcomplex C1 of Y such that for each J-
unbounded component U of Y − (JC1), and any J-bounded proper ray r in
U “loops in U and based on r can be properly pushed to infinity along r,
avoiding C”. More specifically:

For any loop α : [0, 1] → U with α(0) = α(1) = r(0) there is a proper
homotopy H : [0, 1] × [0,∞) → Y − C such that H(t, 0) = α(t) for all
t ∈ [0, 1] and H(0, s) = H(1, s) = r(s) for all s ∈ [0,∞).

3. Base group semistability in an ascending HNN extension

In this section we prove three lemmas that imply Proposition 2.2. This
shows that an infinite finitely generated base group is always semistable
at ∞ in an ascending HNN extension (regardless of bounded or unbounded
depth). Begin with a finite presentation for a group G which is an ascending
HNN extension with base group a finitely generated group A with finite set
of generators A:

P = 〈t,A : R, t−1at = φ(a) for all a ∈ A〉
Here R is a finite subset of the free group F (A). Consider the homo-

morphism P0 : G → Z that kills the normal closure of A. If g ∈ G and
P0(g) = N , we say g is in level N . Let X be the Cayley 2-complex for the
presentation P of G. Then P0 can be extended to P : X → R by taking
each 2-cell corresponding to an element of R to P0(v) for any vertex v of the
cell, and if D is 2-cell corresponding to a conjugation relation t−1at = φ(a)
for a ∈ A, then P maps D to the interval [N,N + 1] (where the edge of D
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corresponding to a ∈ A is mapped by P0 to N and those corresponding to
φ(a) are mapped to N + 1), in the obvious way.

Lemma 3.1. Let e : [0, 1] → X be an edge in X with e(0) = v, e(1) = w
and label a ∈ A. Let rv and rw be the edge path rays at v and w (respec-
tively) each of whose edges is labeled t. There is a proper map He : [0, 1] ×
[0,∞) → X such that He(t, 0) = e(t), He(0, t) = rv(t)), He(1, t) = rw(t)
and P (He([0, 1]× [N,N + 1])) ⊂ [N,N + 1].

Proof. On [0, 1]×[0, 1] define He to have image the 2-cell at v with boundary
label atφ(a−1)t−1. Iterate to define He as in Figure 1. Note that if φ(a) has
length L then the image of He on [0, 1] × [1, 2], consists of L conjugation
relation 2-cells (each of which is mapped by P to [1, 2]).

v

w

a φ(a) φ2(a)

t

t

t

t

rv

rw

P
• • •0 1 2

He

Figure 1

To see that He is proper, let C be compact in X. Then P (C) ⊂ [−N,N ]
for some integer N ≥ 0. But then H−1e (C) ⊂ [0, 1]× [0, N ]. �

Recall Λ is the Cayley graph of A with respect to A and we assume
∗ ∈ Λ ⊂ X where ∗ is the identity vertex.

Lemma 3.2. Suppose C is compact in X. There are only finitely many
A-edges e in Λ such that the image of He (see Lemma 3.1) intersects C.

Proof. If v ∈ A, let rv be the proper edge path ray at v, each of whose
edges is labeled t. If e is an edge of Λ with initial point v, let He be the
proper homotopy of Lemma 3.1. For any integers S > R ≥ 0, P (He([0, 1]×
[R,S])) ⊂ [R,S]. Say that P (C) ⊂ [−N,N ] for N ≥ 0. Then for any edge
e of Λ,

He([0, 1]× [N + 1,∞)) ∩ C = ∅
(since P (C) ⊂ [−N,N ] and PHe([0, 1]× [N + 1,∞)) ⊂ [N + 1,∞)). Let L
be the length of the longest word in {φ(a1), . . . , φ(an)}. So for any integer
K ≥ 0, the length of the A-word He([0, 1] × {K} is ≤ LK (if e has label
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a ∈ A, then He([0, 1] × {K} has label φK(a)). For any edge e of Λ with
initial vertex v,

He([0, 1]× [0, N ]) ⊂ StLN+N (v).

There are only finitely many vertices v of Λ such that StL
N+L(v) ∩ C 6= ∅

and so there are only finitely many edges e of Λ such that the image of He

intersects C. �

Lemma 3.3. Suppose s = (s0, s1, . . .) is a proper edge path ray in Λ ⊂ X.
If v is the initial point of s let rv be the edge path at v each of whose edges
is labeled t, then there is a proper homotopy Hs : [0,∞) × [0,∞) → X of s
to rv rel{v} defined so that Hs restricted to [N,N + 1]× [0,∞) is HsN (i.e.
Hs(N + x, y) = HsN (x, y) for all (x, y) ∈ [0, 1]× [0,∞)).

Proof. Since H(0, y) = rv(y) and H(x, 0) = s, H is a homotopy of rv to s
rel{v}. It remains to show that H is proper. If C is compact in X, then by
Lemma 3.2 there are only finitely many edges e of s such that the image of
He intersects C. Choose N such that for all n > N , Hsn avoids C. Then
H−1s (C) = ∪Ni=1H

−1
si (C). This last set is a finite union of compact sets since

each Hsi is proper. �

Proof. (of Proposition 2.2) We show that for any integer N ≥ 0, the group
tNAt−N is semistable at ∞ in X (G). Let C be compact in X. If v ∈ A, let
rv be the proper edge path ray at v, each of whose edges is labeled t. If e is
an edge of Λ with initial point v, let He be the proper homotopy of Lemma
3.1. By Lemma 3.2 there are only finitely many edges e of Λ such that
the image of He intersects t−NC. Choose D compact such that D contains
t−NC and all of these edges. If s and s′ are proper A-rays at v ∈ Λ − D
then the proper homotopies Hs and Hs′ of Lemma 3.3 both avoid t−NC so
that both s and s′ are properly homotopic rel{v} to rv by homotopies in
X − t−NC. Combining Hs and Hs′ we have s is properly homotopic rel{v}
to s′ by a homotopy H in X − t−NC. Now tNH is a proper homotopy
rel{tNv} of tNs to tNs′ in X −C and tNAt−N is semistable at ∞ in X. �

4. Ascending HNN extension combinatorics

Suppose A is a finite set, φ : F (A)→ F (A) is a homomorphism of the free
group, R is a finite set of words in F (A) and G is the (finitely presented)
ascending HNN extension with the following HNN presentation:

(∗) P = 〈t,A : R, t−1at = φ(a) for all a ∈ A〉
The base group of this HNN extension is A, the subgroup of G generated by
A. In this paper, we are only interested in the case when A is finite. In order
to define what it means for an ascending HNN extension to have bounded
depth, we must first understand ker(p) where p is the homomorphism p :
F (A) → A (defined by p(a) = a for a ∈ A). Certainly ker(p) contains
N0(R, φ) ≡ N(∪∞i=0φ

i(R)), where N(∪∞i=0φ
i(R)) is the normal closure of

∪∞i=0φ
i(R) in F (A). But it may be that for some word w ∈ F (A) and
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some integer m, φm(w) ∈ N0(R, φ), and w 6∈ N0(R, φ). Then w ∈ ker(p).
Consider the normal subgroup of F (A):

N∞(R, φ) ≡ ∪∞i=0φ
−i(N0(R, φ)) / F (A).

It is well known to experts that φ−i(N0(R, φ)) < φ−i−1(N0(R, φ)) (see the-
orem 4.1) so that N∞(R, φ) is an ascending union of normal subgroups of
F (A) and that N∞(R, φ) is the kernel of p, so

A = 〈A : N∞(R, φ)〉

If there is an integer B such that N∞(R, φ) = ∪Bi=0φ
−i(N0(R, φ)) then

the presentation P of G has bounded depth. Our main theorem shows that
if P has bounded depth, then G is semistable at∞ (Theorem 1.2). It is not
always the case that such ascending HNN extensions have bounded depth.
(See Theorem 4.2.)

As in §3, P0 : G→ Z is the homomorphism that kills the normal closure
of A. If X is the Cayley 2-complex for the presentation P of G given in
(∗) (with vertex set G), then P0 extends to P : X → R. If g ∈ G and
P0(g) = N , g is in level N .

Remark 1. An edge path loop in level L of X, whose labeling defines an
element of ∪Bi=0φ

−i(N0(R, φ)), is homotopically trivial by a combinatorial
homotopy H such that P (H) has image in (−∞, L + B]. Note that if α is
an edge path loop in level L labeled by an element of N(R) (the normal
closure of R in F (A)) then α can be killed by a homotopy in level L. If α
has initial vertex v in level L and labeling φ(r) for r ∈ N(R), then using
only conjugation relations, α is homotopic to an edge path loop at v with
labeling (t−1, β, t) where β has labeling r and image in level L−1. Since β is
homotopically trivial in level L− 1, the loop α can be killed by a homotopy
H such that P (H) has image in [L − 1, L]. This homotopy only uses the
homotopy that kills β in level L − 1 and the conjugation relation 2-cells
connecting α and β. If α has label in φ−1(N(R)) (so φ(α) = r ∈ N(R))
then α can be killed by a homotopy H such that P (H) has image in [L,L+1].

In the case that A is finitely generated and the image of φ : A→ A is of
finite index in A, then A is “commensurated” in G and G is semistable at
∞ (see Corollary 4.9 of [CM14]).

For A finite, the group G = 〈t,A : R′, t−1at = φ(a) for a ∈ A〉 (with
R′ ⊂ F (A)) is an ascending HNN extension with bounded depth D and root
R if the kernel of the homomorphism p : F (A) → A (defined by p(a) = a
for all a ∈ A) is φ−D(N0(R, φ)) ≡ φ−D(N(∪∞i=0φ

i(R))) for some finite set of
words R in F (A). In this case, G has finite presentation: 〈t,A : R, t−1at =
φ(a) for all a ∈ A〉.

Example 1. R. Grigorchuk ([Gri96] and [Gri98]) constructed a finitely
generated infinite torsion group G of intermediate growth having solvable
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word problem. He also showed that G was the base group of a finitely
presented ascending HNN extension (which is the first example of a finitely
presented cyclic extension of an infinite torsion group). I. Lysënok [Lys85]
produced the following recursive presentation of G:

G ≡ 〈a, c, d : σn(a2), σn((ad)4), σn(adacac)4), n ≥ 0〉

where σ(a) = aca, σ(c) = cd and σ(d) = c. It can be shown that the
ascending HNN extension E with presentation:

〈a, c, d, t : a2 = (ad)4 = (adacac)4 = 1, t−1at = aca, t−1ct = dc, t−1dt = c〉

has base group G generated by {a, c, d} and E has bounded depth with root
{a2, c2, d2, (ad)4, (adacac)4}. The group E was the first example of a finitely
presented amenable but not elementary amenable group. In §5 of [Mih], M.
Mihalik shows that E is simply connected at ∞. The notion of a finitely
generated group being simply connected at ∞ is introduced in [Mih], and
the group G is shown to be simply connected at ∞.

Example 2. A. Ol’shanskii and M. Sapir [OS02] and [OS01] construct a
finitely presented ascending HNN extension G, where the base group H̄ is a
finitely generated infinite torsion group. In contrast to Grigorchuk’s group
(Example 1) the base group has finite exponent, and G is not amenable
(see Theorem 1.1 of [OS02]). The group G has been suggested as a possible
non-semistable at∞ group, but it is clear from the equations (5)-(8) in §1.2
of [OS02] that G has an ascending HNN presentation with depth one, and
so by our main theorem is semistable at ∞. We give a brief summary. A
finite set of words R is determined in FC = 〈c1, . . . , cm〉 a free group of
rank m. A monomorphism φ : FC → FC is defined and R′ is defined to be
∪∞i=1{φi(r) : r ∈ R}. The base group of their ascending HNN extension has
presentation

H̄ = 〈c1, . . . , cm : R∪ V ∪R′〉
where V is the set of elements un for all u ∈ FC (and n a fixed large odd
number). In particular, H̄ is an infinite torsion group. A finitely presented
ascending HNN extension of H̄ has infinite presentation

G = 〈t, c1, . . . , cm : t−1cit = φ(ci),R∪R′ ∪ V〉

(This follows equation (7) of [OS02].) Clearly the relations R′ are a con-
sequence of R and the conjugation relations and so can be removed. It is
then argued that each relation vn of V is φ−1(v′) where v′ is a consequence
of R and the conjugation relations. In particular, the above presentation of
G can be reduced to the presentation

G = 〈t, c1, . . . , cm : t−1cit = φ(ci),R〉

and this presentation has depth 1. It seems unlikely that G has an ascending
HNN presentation with depth 0. One must wonder if for every integer N > 0
there are finitely presented ascending HNN groups GN with ascending HNN



BOUNDED DEPTH HNN EXTENSIONS AND π1-SEMISTABILITY 11

presentations of depth N but GN does not have such a presentation of depth
N − 1.

Theorem 4.1. Suppose G is the ascending HNN extension with finite pre-
sentation:

P = 〈t,A : R, t−1at = φ(a) for all a ∈ A〉
where φ : F (A)→ F (A) is a (finite rank) free group homomorphism. Then
A, the subgroup of G generated by A, has presentation:

A = 〈A : N∞(R, φ) ≡ ∪∞i=0φ
−i(N(∪∞j=0φ

j(R)))〉.
Furthermore, we have the relations:

(1) φ−i(N(∪∞j=0φ
j(R))) ⊂ φ−(i+1)(N(∪∞j=0φ

j(R))) for all i ≥ 0, and

(2) φ(N∞(R, φ)) ⊂ N∞(R, φ) = φ−1(N∞(R, φ))

Proof. Note that

φ(N(∪∞j=0φ
j(R))) ⊂ N(∪∞j=1φ

j(R))) ⊂ N(∪∞j=0φ
j(R)) so that

N(∪∞j=0φ
j(R))) ⊂ φ−1(N(∪∞j=0φ

j(R)))

and so relation 1) follows.
To simplify notation, let N∞ = N∞(R, φ) and Ni = φ−i(N(∪∞j=0φ

j(R)))

for i ≥ 0, so that N∞ = ∪∞i=0Ni and by 1), Ni ⊂ Ni+1 = φ−1(Ni). Suppose
a ∈ φ−1(N∞). Then φ(a) ∈ N∞ and so φ(a) ∈ Ni for some i ≥ 0. Then
a ∈ φ−1(Ni) = Ni+1 ⊂ N∞ and we have shown that φ−1(N∞) ⊂ N∞.

Next suppose a ∈ N∞. Then for some i ≥ 0, a ∈ Ni. By 1), a ∈ Ni+1 =
φ−1(Ni) ⊂ φ−1(N∞). We have shown that N∞(R, φ) ⊂ φ−1(N∞(R, φ)).
Combining we have N∞ = φ−1(N∞) and relation 2) follows.

Let A1 be the group with presentation 〈A : N∞(R, φ)〉. To finish the
theorem we must show that A = A1. Let p1 : F (A) → A1 (determined by
p1(a) = a for all a ∈ A) be the quotient homomorphism. By 2), the map
φ1 : A1 → A1 that extends the map φ1(p1(a)) = p1(φ(a)) for all a ∈ A is a
homomorphism. This gives a commutative diagram:

F (A)
φ−→F (A)

↓ p1 ↓ p1
A1

φ1−→ A1

Next we show that φ1 is a monomorphism. Suppose w1 ∈ ker(φ1). Let
w ∈ F (A) be such that p1(w) = w1. Then p1(φ(w)) = 1 and so φ(w) ∈
ker(p1) = N∞ and w ∈ φ−1(N∞) = N∞. Then w1 = p1(w) = 1 ∈ A1 and
φ1 is a monomorphism.

Consider the ascending HNN extension:

A1∗φ = 〈t,A : N∞(R, φ), t−1at = φ(a)〉 for all a ∈ A
with base group A1. Since each relation in N∞(R, φ) is a consequence of
R and the conjugation relations, this group also has presentation P. By
Britton’s lemma A = A1. �
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Suppose G has finite presentation 〈t,A : R, t−1at = φ(a) for a ∈ A〉. Here
φ : F (A) → F (A) is a homomorphism. Let N0 ≡ N(∪∞j=0φ

j(R)) / F (A),

Ni ≡ φ−i(N0) and A be the subgroup of G generated by A, so that G is the
ascending HNN extension, with base A and stable letter t. Let p : F (A)→ A
be the homomorphism extending the map taking a to a for all a ∈ A.

It seems that there is some potential to find a finitely presented group
that is not semistable at ∞ if one could find a finitely presented ascending
HNN extension 〈t,A : R, t−1at = φ(a) for a ∈ A〉, such that the ascend-
ing chain of normal subgroups Nk of F (A) do not stabilize. The following
approach gives a general method of constructing infinite depth ascending
HNN presentations. In particular, when A0 is a non-Hopfian group and
φ0 : A0 → A0 is an epimorphism with non-trivial kernel, then there is a
corresponding ascending HNN extension with infinite depth.

Theorem 4.2. Suppose the group A0 has finite presentation 〈A : R〉 and
φ0 : A0 → A0 is a homomorphism with non-trivial kernel K0 such that the
following diagram (with F (A) the free group on A and q(a) = a for a ∈ A)
commutes:

F (A)
φ−→F (A)

↓ q ↓ q

A0
φ0−→ A0

If the ascending sequence {Ki = φ−i0 (K0) = ker(φi+1
0 )} of normal subgroups

of A0 does not stabilize (in particular when φ0 is an epimorphism), then the
group G with ascending HNN presentation

P ≡ 〈t,A : R, t−1at = φ(a) for all a ∈ A〉
has unbounded depth.

Proof. First observe that if φ0 is an epimorphism, and k ∈ K0 − 1, then
there is kn such that φn0 (kn) = k. In particular, kn ∈ ker(φn+1

0 ) − ker(φn0 ).
Note that ker(q) = N(R) / F (A). If r ∈ N(R), then q(φ(r)) = 1 and so
φ(N(R)) ⊂ N(R) and (retaining the notation of Theorem 4.1)

N0 = N(∪∞i=0φ
i(R)) = N(R) = ker(q).

For the subgroup A of G determined by A there is a commutative diagram:

F (A)
φ−→F (A)

↓ p ↓ p

A
φ1−→ A

Observed that A is a quotient of A0 where the element q(a) is mapped to
p(a) for all a ∈ A and the following diagram commutes:

A0
φ0−→ A0

↓ q0 ↓ q0
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A
φ1−→ A

(∗) If φ0 is an epimorphism, then since q0 is an epimorphism φ1 is also an
epimorphism. In any case, G = A∗φ1 and when φ0 is an epimorphism, φ1 is
an isomorphism.

Let Ni = φ−i(N0) / F (A). By Theorem 4.1.1 Ni−1 ≤ Ni. For i > 0 we
show Ni 6= Ni−1 when Ki 6= Ki−1, so that P has unbounded depth when
{Ki} does not stabilize. Choose an ∈ Kn −Kn−1. Choose ān ∈ F (A) such
q(ān) = an. Then

q(φn−1(ān)) = φn−10 q(ān) = φn−10 (an) 6= 1

so φn−1(ān) 6∈ N0 = ker(q) and ān 6∈ Nn−1. But,

qφn(ān) = φ0(q(φ
n−1(ān))) = φ0(a) = 1

so φn(ān) ∈ ker(q) = N0 and ān ∈ Nn −Nn−1. �

Example 3. When A0 is non-Hopfian and φ0 maps A0 onto A0 with non-
trivial kernel, Theorem 4.2 produces a corresponding ascending HNN exten-
sion with unbounded depth.

Let A0 = BS(2, 3) = 〈a, b : b−1a2b = a3〉, and φ : F ({a, b}) → F ({a, b})
by a → a2 and b → b, observe that φi([b−iabi, a]) = [b−ia2

i
bi, a2

i
] ≈

[a3
i
, a2

i
] = 1, so that [b−iabi, a] ∈ Ni. If [b−iabi, a] ∈ Ni−1 then φi−1([b−iabi, a]) ∈

N0 where N0 = N(b−1a2ba−3) / F ({a, b})). But

φi−1([b−iabi, a]) = [b−ia2
i−1
bi, a2

i−1
] ≈ [b−1a3

i−1
b, a2

i−1
]

a reduced word of syllable length 8 in (the HNN extension) 〈a, b : b−1a2 =
a3〉. In particular, the following ascending HNN extension presentation with
stable letter t and base group generated by {a, b} has infinite depth:

〈t, a, b : b−1a2b = a3, t−1at = a2, t−1bt = b〉.

Since φ1 is an isomorphism (see (∗)), 〈A〉 = 〈a, b〉 is normal in G and the
main theorem of M. Mihalik’s paper [Mih83] implies G is semistable at ∞.
So this particular approach cannot yield a non-semistable at ∞ ascending
HNN extension of unbounded depth when φ0 is an epimorphism.

The remainder of this section is of general interest in understanding pre-
sentations of ascending HNN extensions, but not important to the proof of
our main theorem.

Remark 2. Consider a homomorphisms φ : F (A) → F (A) for A finite
where φ has non-trivial kernel. One might wonder if it is possible to have a
such a homomorphism so that (even with R = ∅), the presentation 〈t,A :
t−1at = φ(a) for a ∈ A〉 does not have finite depth? I.e. is it possible
that the ascending collection of normal subgroups of F (A) defined by Nk =
〈∪ki=1ker(φ

i)〉 does not stabilize? The answer is no.
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Consider the sequence F (A) → φ(F (A)) → φ2(F(A)) → · · · of epimor-
phisms where each map is φ. For i > 0, φi(F (A)) is a free group of rank
≤ rank(φi−1(F (A))). So, for some integer m ≥ 0, rank(φm(F (A))) =
rank(φm+1(F (A))). As finitely generated free groups are Hopfian, the epi-
morphism φ : φm(F (A))→ φm+1(F (A)) is an isomorphism and ker(φm) =
ker(φm+1).

Next we show that any homomorphism φ : F (A) → F (A) defining an
ascending HNN extension can be replaced by a monomorphism.

Lemma 4.3. Suppose A is a finite set, R is a finite subset of the free group
F (A) and φ : F (A) → F (A) is a homomorphism. Then there is a finite
set B, a finite set R′ ⊂ F (B), a monomorphism φ′ : F (B) → F (B) and an
isomorphism of ascending HNN extensions:

〈t,A : R, t−1at = φ(a) for a ∈ A〉 ρ−→〈t,B : R′, t−1bt = φ′(b) for b ∈ B〉
Furthermore, if

qA : F (A ∪ {t})→ 〈t,A : R, t−1at = φ(a) for a ∈ A〉 and

qB : F (B ∪ {t})→ 〈t,B : R′, t−1bt = φ′(b) for b ∈ B〉
are the natural projections, then there is a epimorphism

ρ′ : F (A ∪ {t})→ F (B ∪ {t}) such that:

1) ρ′(t) = t
2) ρ′ ◦ qB = qA ◦ ρ and
3) ρ′(R) = R′, (for NG(R) the normal closure of R in G)
ρ′(NF (A)(R)) = NF (B)(R′) and ρ′(NF (A∪{t})(R)) = NF (B∪{t})(R′)

In particular, the following diagram commutes:

F (A ∪ {t}) ρ′−→F (B ∪ {t})
↓ qA ↓ qB

〈t,A : R, t−1at = φ(a)〉 ρ−→〈t,B : R′, t−1bt = φ′(b)〉
(Basically ρ is conjugation by tm for some m ≥ 0.)

Proof. Since free groups are Hopfian, there is an integer m ≥ 0 such that
φ : φm(F (A)) → φm+1(F (A)) is an isomorphism (see Remark 2). Let B
be a finite set of free generators for φm(F (A)) (so F (B) ≡ φm(F (A))) and
let φ′ : F (B) → F (B) be defined so that φ′(b) is a B-word for φ(b) for
each b ∈ B. Note that φ′ is a monomorphism, since φ : φm(F (A)) →
φm+1(F (A)) < F (B) is a monomorphism.

Define ρ′ : F (A∪{t})→ F (B∪{t}) such that ρ′(t) = t and ρ′(a) = φm(a)
for all a ∈ A. Note that ρ′ is an epimorphism. Let R′ = φm(R) (written as
B-words) and then 3) holds. Since ρ′ of each relation of 〈t,A : R, t−1at =
φ(a)〉 is a relator of 〈t,B : R′, t−1bt = φ′(b)〉, the homomorphism ρ can be
defined so that 2) holds. Since ρ′ is an epimorphism, ρ is an epimorphism.
(Basically, ρ is conjugation by tm.)
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To show ρ is an isomorphism, it remains to show that if w ∈ ker(ρqA) then
w ∈ ker(qA) (i.e. ρ is a monomorphism). First observe that the exponent
sum of t in w is zero. Next observe that, w ∈ ker(ρqA) (respectively w ∈
ker(qA)) iff t−jwtj ∈ ker(ρqA) (respectively t−jwtj ∈ ker(qA)) for every in-
teger j ≥ 0. Select a positive integer j such that any initial segment of t−jwtj

has t-exponent sum ≤ 0. In F (A ∪ {t}), w = (t−n1w1t
n1) · · · (t−nswst

ns)
where ni ≥ 0 and each wi ∈ F (A). Let w̄ ≡ φn1(w1) · · ·φns(ws)(∈ F (A)).
Now, qA(w) = qA(w̄) and w̄ ∈ ker(qBρ

′). Note that ρ′(w̄) = φm(w̄) ∈
ker(qB)(< F (B)). By Theorem 4.1, φm(w̄) ∈ (φ′)−k(N(∪∞i=0(φ

′)i(R′))) for
some integer k ≥ 0. By 3) we have, φm(w̄) ∈ φ−k(N(∪∞i=0φ

i(φm(R)))) and
so w̄ ∈ φ−k−m(N(∪∞i=mφi(R))). By Theorem 4.1, w̄ (and hence w) is an
element of ker(qA). �

5. Bounded Depth HNN extensions are semistabile at ∞

The group G is an ascending HNN extension of a finitely generated
group A and G has bounded depth. We use the notation of §3. Let
A = {a1, . . . , an} be a finite generating set for A and

P ≡ 〈t,A : R, t−1at = φ(a) for all a ∈ A〉

a finite presentation for G, where each element of R is an A-word. Let X
be the Cayley 2-complex for this presentation, and Λ be the Cayley graph
of A with generating set A. We assume ∗ ∈ Λ ⊂ X where ∗ is the identity
vertex for X. We must show condition (2) of Theorem 2.3 is satisfied for
each compact set C in X. We will show that there is an integer N(C) ≥ 0
(defined in Lemma 5.1) such that tNAt−N is co-semistable at ∞ in X with
respect to C. This requires that we find a compact set D(C) such that loops
in X − (tNAt−N )D(C) can be pushed to infinity by proper homotopies in

X − C. In every instance D(C) will have the form tN(C){∗, t−1, . . . , t−M}
for some integer M that depends on C and the depth of the presentation P
for G.

Remark 3. In the case that A is finitely presented, it is interesting to
note that our proof will show that for our choice of D(C), each loop in
X − (t−NAtN )D is homotopically trivial in X − (t−NAtN )D (see Theorem
5.9). This sort of behavior is related to the main theorems of [Wri92],
[GGMb] and [GG12], and is called strongly coaxial when A is infinite cyclic.

Recall that P : X → R is such that for each vertex v ∈ G ⊂ X, P (v) is
the exponent sum of t in v and we say v is in level P (v). The next lemma
is a direct consequence of the normal form for elements of G (each element
g ∈ G has the form tnat−m for some n,m ≥ 0 and a ∈ A).

Lemma 5.1. Suppose C is a finite subcomplex of X. For each vertex v ∈ C,
write

v = tn(v)avt
−m(v) for av ∈ A and n(v),m(v) ≥ 0, and
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N(C) = max{n(v) : v ∈ C} and M(v, C) = N(C)− n(v) +m(v)(≥ 0).

Then vtM(v,C) ∈ tN(C)A.
Note that by definition, N(C)−M(v, C) = n(v)−m(v) = P (v).

Proof. For v ∈ C,

v = tN(C)(tn(v)−N(C)avt
N(C)−n(v))t−M(v,C).

If a′v = tn(v)−N(C)avt
N(C)−n(v)(∈ φN(C)−n(v)(A) < A) then vtM(v,C) =

tN(C)a′. �

Geometrically this say that for each vertex v of C, the edge path at v
with each edge labeled t and of length M(v, C) ends in tN(C)A.

Lemma 5.2. Suppose C is a finite subcomplex of X. Let

M(C) = max{M(v, C) : v is a vertex of C}.

Then for each vertex v ∈ C

v ∈ (tN(C)At−N(C))(tN(C){∗, t−1, . . . , t−M(C)}) and

for positive integers M,N and w ∈ (tNAt−N )(tN{∗, t−1, . . . , t−M}) we have

wA ⊂ (tNAt−N )(tN{∗, t−1, . . . , t−M}).

Proof. The first conclusion follows from Lemma 5.1. Note that w = tNat−m

for some a ∈ A and m ∈ {0, . . . ,M}.
Then wA ⊂ tNa(t−mAtm)t−m and as t−mAtm ⊂ A:

wA ⊂ tNAt−m ⊂ (tNAt−N )(tN{∗, t−1, . . . , t−M}).

�

For integers N,M ≥ 0 define D(N,M) ≡ tNA{∗, t−1, . . . , t−M}. If C is
compact in X, and B is the bounded depth of our ascending HNN presen-
tation P we will use the set D(N(C),M(C) +B + 1) to play the roll of the

compact set D in X and tN(C)At−N(C) to play the roll of J when apply-
ing Theorem 2.3. First we must understand the set (tNAt−N )D(N,M) =
tNA{∗, t−1, . . . , t−M} and a few geometric definitions will help. If v, w ∈ G,
we say the coset wA is n levels directly below vA if there is an edge path of
length n with each edge labeled t from a vertex of wA to a vertex of vA.
Note that if wA is n levels directly below vA then for every vertex u of wA,
the edge path at u of length n and with each edge labeled t ends in vA. We
say vA is n levels directly above wA. Any coset wA has exactly one coset
n(≥ 0) levels directly above it, but the cosets one level directly below vA
are in 1-1 correspondence with the cosets of A in G. This means

Lemma 5.3. The set D(N,M) = tNA{∗, t−1, . . . , t−M} is the union of
cosets vA that are n levels directly below tNA for n ∈ {0, 1, . . . ,M}.
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Note. In order to avoid confusion we may use the notation H · E instead
of HE when H is a subgroup of G and E a subset of X.

Let Q(M) = {∗, t−1, t−2, . . . , t−M} (M ≥ 0) and notice that the next
lemma says that it is easy to check if a vertex v of X is in either A ·Q(M),
K0 (a special component of X−A ·Q(M)) or a component of X−A ·Q(M)
other than K0. If v is in a level > 0 then v ∈ K0. If v is in level 0 through
−M then v is in A · Q if the edge path from v to level 0, with each edge
labeled t, ends in A (i.e. vA is −P (v) levels directly below A); and v is in
K0 otherwise. If v is in a level < −M , then v is in K0 if the edge path from
v to level 0, with each edge labeled t, does not end in A; and otherwise, v
belongs to a component of X − A · Q other than K0. Note that tn ∈ K0

for all n > 0, so that under the quotient of X by A, the image of K0 is not
contained in a compact set. If v ∈ K where K is a component of X −A ·Q
other than K0 then vtn ∈ K for all n < 0, so under the quotient of X by A,
the image of K is not contained in a compact set. Our terminology for this
is that K and K0 are A-unbounded components of X −A ·Q.

Lemma 5.4. Let Q(M) = {∗, t−1, t−2, . . . , t−M} for M ≥ 0. Then
1) A ·Q(M) is the set of all vertices v ∈ X such that P (v) ∈ {−M, . . . , 0}

and vt−P (v) ∈ A. Furthermore, if v ∈ A ·Q(M) then vA ⊂ A ·Q(M).
2) X − A · Q(M) has an A-unbounded component K0 with stabilizer A

and the vertex v of X −A ·Q(M) is in K0 if and only if either P (v) ≥ −M
or both P (v) < −M and vt−P (v) 6∈ A,

3) if K is any component of X − A · Q(M) other than K0, then K is

A-unbounded, and if v is a vertex of K, then P (v) < −M and vt−P (v) ∈ A.

Proof. Part 1): This part follows directly from Lemma 5.3 (with N = 0).
Part 2): Let K0 be the component of X −A ·Q that contains the vertex

t. Let v be a vertex of X, then by normal forms, v = tlat−m where a ∈ A
and l,m ≥ 0. If P (v) > 0, then l > m and the normal form for v defines
an edge path from t to v in levels 1 and above, and hence avoiding A · Q.
So if P (v) > 0, then v ∈ K0. Note that P (at) = 1 for all a ∈ A, so that A
stabilizes K0.

Suppose v ∈ X−A·Q and P (v) ∈ {−M, . . . , 0}, then by part 1), vt−P (v) 6∈
A and no point of the edge path beginning at v with labeling t−P (v) is a
point of A · Q. Since P (vt−P (v)+1) = 1, the edge path at v with labeling

t−P (v)+1 avoids A · Q and ends at a point of K0. So if v ∈ X − A · Q and
P (v) ∈ {−M, . . . , 0} then v ∈ K0.

Suppose v ∈ X − A · Q and P (v) < −M . Note that P (vt−P (v)) = 0. If

vt−P (v) 6∈ A, then we have already shown that vt−P (v) ∈ K0, and by part
1), no point of the path with labeling t−P (v) at v intersects A · Q. Hence
v ∈ K0.

For the converse, suppose v ∈ K0 and P (v) < −M . We must show

vt−P (v) 6∈ A. Let α be an edge path in X − A · Q from t to v. Let β
be a tail of α where w, the initial point of β, is the last point of α with
P (w) = −M . The first edge of β is labeled t−1. Note that conjugation



18 MIHALIK

relations allow us to move each A-edge of β up to level −M so there is
an edge path from w to v labeled (x1, . . . xi, t

−k) where k > 0 and xi ∈
{a1, . . . , an}±1. Hence vtk ∈ wA and P (vtk) = −M . By Part 1), w 6∈ A ·Q
implies wA ∩ A ·Q = ∅, so vtk 6∈ A ·Q. Again by Part 1), vtkt−P (vtk) 6∈ A.

Then vt−P (v) = vtkt−P (v)−k = vtkt−P (vtk) 6∈ A. This completes part 2).

Part 3): If v ∈ K 6= K0 then by Part 2), P (v) < −M and vt−P (v) ∈ A. �

We need a slightly stronger version of Lemma 5.4. Recall that Q(M) =
{∗, t−1, t−2, . . . , t−M}. Then

tNA ·Q(M) = tNAt−N (tN (Q(M))).

Observe that for any integer m ≥ 0 the stabilizer of tmΛ is tmAt−m.

Lemma 5.5. Let M,N ≥ 0 be integers:
1) The set tNA · Q(M)(= D(N,M)) consists of the vertices v ∈ X such

that P (v) ∈ {N,N − 1, . . . , N −M} and vtN−P (v) ∈ tNA. Furthermore, if
v ∈ tNA ·Q(M) then vA ⊂ tNA ·Q(M).

2) Let K0 be the component of X−A ·Q(N) described by part 2 of Lemma
5.4. Then tNK0 is a (tNAt−N )-unbounded component of X − tNA · Q(N)
with stabilizer tNAt−N , and the vertex v of X − tNA ·Q is in tNK0 if and
only if either P (v) ≥ N −M or P (v) < N −M and vtN−P (v) 6∈ tNA,

3) if K is any component of X − A · Q other than K0 then tNK is a
(tNAt−N )-unbounded component of X − tNA ·Q(M), and if v is a vertex of

tNK, then P (v) < N −M and vtN−P (v) ∈ tNA.

Proof. Part 1): If v ∈ tNA · Q(M), then P (v) ∈ {N,N − 1, . . . , N −M}.
Note that P (t−Nv) = −N + P (v) ∈ {0, . . . ,−M}. Lemma 5.4 implies,

t−Nv ∈ A ·Q if and only if t−Nvt−P (t−Nv) ∈ A if and only if vtN−P (v) ∈ tNA.
Furthermore if v ∈ tNA ·Q(M) then t−Nv ∈ A ·Q(M) and by Lemma 5.4,
t−NvA ⊂ A ·Q(M) so that vA ⊂ tNA ·Q(M).

Part 2): By Lemma 5.4, tNK0 is a component of X − tN (A · Q(M)).
Since t ∈ K0, t

N+1 ∈ tNK0, and so the proper ray at tN+1 with all edge
labels t belongs to tNK0. In particular, tNK0 is tNAt−N -unbounded. Since
A stabilizes A · Q(M), tNAt−N stabilizes tNA · Q(M). The vertex v of X
belongs to tNK0 if and only if t−Nv ∈ K0, (by Lemma 5.4) if and only if

P (t−Nv) ≥ −M or both P (t−Nv) < −M and t−Nvt−P (t−Nv) 6∈ A, if and

only if P (v) ≥ N −M or both P (v) < N −M and vtN−P (v) 6∈ tNA.
Part 3): Suppose v is a vertex of tNK then t−Nv ∈ K. By Lemma

5.4, P (t−Nv) < −M (so P (v) < N − M) and t−Nvt−P (t−Nv) ∈ A (so

vtN−P (v) ∈ tNA). �

Geometrically, the only difference between Lemma 5.5 and Lemma 5.4
is that in order to check if a vertex v in a level of X less than N , belongs
to either tNA · Q(M), tNK0 or tNK for K a component of X − A · Q(M)
different than K0, one simply checks if the end point of the path at v with
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each edge labeled t and ending in level N , ends in tNA or not. It is also
important to observe the following remark.

Remark 4. For any integers M,N ≥ 0 the set tNA · Q(M)(= D(N,M))
and any component of X −D(N,M) is a union of cosets vA.

Lemma 5.6. Suppose M,N ≥ 0 are integers and v is a vertex of the com-
ponent tNK0 of X − tNA ·Q(M). Then for any integer n ≥ 0, (vtnA) ∩A ·
Q(M) = ∅.

Proof. By 1) of Lemma 5.5, it suffices to show that vtn 6∈ tNA ·Q(M). But
this follows directly from parts 1) and 2) of Lemma 5.5. �

(∗) From this point on we assume the presentation P has bounded depth
B ≥ 0.

Lemma 5.7. If α is an edge path loop in X and im(P (α)) ⊂ (−∞, L],
then α is homotopically trivial by a homotopy H such that im(P (H)) ⊂
(−∞, L+B].

Proof. Using only conjugation 2-cells, α, is homotopic (by a homotopy H1)
to an edge path loop β, each of whose vertices is in level L. In particular,
each edge of β is labeled by an element of A and im(P (H1)) ⊂ (−∞, L].
The word w determined by the edge labeling of β is in the kernel of the
epimorphism p : F (A)→ A. So w ∈ ∪Bi=0φ

−i(N0(R, φ)). By Remark 1, the
loop β (and hence α) is homotopically trivial by a homotopy H such that
im(P (H)) ⊂ (−∞, L+B]. �

Lemma 5.8. Suppose M,N ≥ 0 are integers, α is a loop in X−tNA ·Q(M)
and B is the bounded depth of the presentation P .

1) If α has image in a component of X − tNA ·Q(M) other than tNK0,
then α is homotopically trivial by a homotopy H such that P (H) has image
in (−∞, B +N −M ],

2) if α has image in tNK0, v is a vertex of α and rv is the proper edge
path ray at v with each edge labeled t, then there is proper homotopy H :
[0,∞)×[0, 1]→ tNK0 where H(x, 0) = H(x, 1) = rv(x), and H(0, y) = α(y).

Proof. Part 1): By 3) of Lemma 5.5, im(P (α)) ⊂ (−∞, N −M ]. Lemma
5.7 finishes part 1).

Part 2): Let H be the homotopy that strings together the homotopies He

of Lemma 3.1 for each A-edge e of α. The image of H avoids tNA · Q(M)
by Lemma 5.6 and so is in tNK0. The homotopy H is proper since it is a
combination of finitely many proper homotopies. �

By Lemma 5.2, if C is a compact subset of X, there are integers M(C)
and N(C) such that C ⊂ tNA ·Q(M).

Theorem 5.9. Suppose G is an ascending HNN extension of the finitely
presented group A and X is the Cayley 2-complex for the HNN presentation
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with stable letter t and base A (with a finite presentation of A as a sub-
presentation). If M,N ≥ 0 are integers and α is a loop in X−tNA·Q(M) (=
X− tNAt−N ·(tNQ(M))) then α is homotopically trivial in X− tNA ·Q(M).

Proof. We present the case where N = 0 as all others are completely analo-
gous. Let Λ be the Cayley 2-complex for A, determined by the presentation
of A within our HNN presentation of G. If K is a component of X − A ·Q
other than K0 and α is an edge path loop in K, then each vertex v of α is
such that P (v) < −M . Using conjugation relations α is homotopic in K to
an A-loop α1 in level −M − 1. Then α1 lies in a copy of Λ in level −M − 1
and so is homotopically trivial in level −M − 1.

If α is an edge path loop in K0, then by Lemma 5.6, conjugation relations
can be used to show that α is homotopic to a loop α1 in a single level and
this homotopy avoids A ·Q. Lemma 5.6 also implies that α1 is in a copy of
Λ that avoids A · Q. As α1 is homotopically trivial in that copy of Λ, α1

(and hence α) is homotopically trivial in X −A ·Q. �

Suppose M,N ≥ 0 are integers and s is a proper edge path ray in X −
tNA·Q(M) with initial vertex v ∈ K0. If q is the quotient of X by the action
of tNAt−N and qs has image in a compact subset of (tNAt−M )\X (so s is
tNAt−N -bounded), then each vertex of s is within edge path distance ≤ K
of tNA and Ps has image in the closed interval [N −K,N +K].

Lemma 5.10. Suppose M,N ≥ 0 are integers, s is a proper edge path ray
in the tNK0 component of X − tNA · Q(M) and s(0) = v. Let rv be the
proper edge path ray at v, each of whose edges is labeled t. If Ps has image
in a closed interval then s is properly homotopic to rv by a homotopy with
image in tNK0.

Proof. Assume that the image of Ps is [L,M ]. By Lemma 5.6, one can use
conjugation relations to slide each A-edge of s along t-edges to level M ,
by a homotopy with image in tNK0. So s is properly homotopic to s′, the
resulting proper ray which (after removing any backtracking edges (t, t−1)
or (t−1, t)) is a proper A-ray. Let r′ be the proper edge path ray at the
initial point of s′ with all edges labeled t (so r′ is a sub-ray of rv). Let H
be the proper homotopy of s′ to r′ defined in Lemma 3.3. By Lemma 5.6,
H has image in tNK0. �

Proof. (of Theorem 1.2) Let X be the Cayley 2-complex of P. By Propo-
sition 2.2, tNAt−N is semistable at ∞ in X for all N ≥ 0 and in §2 we
reduced the proof of Theorem 1.2 to showing that for each compact set C
in X there is an integer N ≥ 0 such that tNAt−N is co-semistable at ∞ in
X with respect to C. That means:

For any finite subcomplex C of X there is an integer N ≥ 0, and compact
set D such that for any proper tNAt−N -bounded ray s in X − tNAt−ND
and loop α in X − tNAt−ND such that α(0) = s(0), there is a proper
homotopy H : [0, 1] × [0,∞) → X − C such that H(0, t) = H(1, t) = s(t)
and H(t, 0) = α.
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Start with a finite subcomplex C of X. The integer N(C) ≥ 0 will play
the part of N . Recall that B is the bounded depth of the presentation P.
Let

D = tN(C)Q(M(C) +B + 1)

Recall Q(M) = {∗, t−1, . . . , t−M}. By Lemma 5.2, for each vertex v ∈ C:

vA ⊂ tN(C)At−N(C)(tN(C)Q(M(C)))

⊂ tN(C)At−N(C)(tN(C)Q(M(C) +B + 1)) =

tN(C)At−N(C)D = tN(C)A ·Q(M(C) +B + 1).

If v ∈ C, then v ∈ tN(C)AQ(M(C)) so that P (v) ∈ [N(C) −M(C), N(C)].

Suppose α is a loop in X − tN(C)At−N(C)D. Then α is either in tN(C)K0

where K0 is the special component of X −A ·Q(M(C) +B + 1) (described

in part 2) of Lemma 5.4) or α is in tN(C)K for some component K of

X −A ·Q(M(C) +B + 1) other than K0. If α belongs to tN(C)K, then by
part 1) of Lemma 5.8, α is homotopically trivial by a homotopy H such that

im(P (H)) ⊂ (−∞, B+N(C)−(M(C)+B+1)] = (−∞, N(C)−M(C)−1].

Since P (C) ⊂ [N(C) −M(C), N(C)], the homotopy H kills α in X − C
(actually in X −A · C).

If α is in tN(C)K0, and s is a tN(C)Dt−N(C)-bounded proper ray in tN(C)K0

such that α(0) = s(0), then by Lemma 5.10, s is properly homotopic
(rel{s(0)}) to r the proper edge path ray at s(0), each of whose edges is

labeled t, by a homotopy with image in tN(C)K0 ⊂ X − C. Combining the
homotopy of r to s with one given by part 2) of Lemma 5.8 (also in tN(C)K0)
completes the proof. �
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