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1 Introduction

This paper is a continuation of our previous paper with Steven Tschantz [5]
in which we studied the relationship between two sets S and S ′ of Coxeter
generators of a finitely generated Coxeter group W . A basic subset of S is a
maximal subset B of S such that B generates an irreducible, noncyclic, finite
subgroup of W . In [5], we proved the Basic Matching Theorem which says
that there is a natural bijection (matching) between the basic subsets of S
and the basic subsets of S ′. A basic subset B of S matches a basic subset
B′ of S ′ if and only if [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in W . Usually
matching basic subsets generate isomorphic groups, in which case, we say that
the basic subsets match isomorphically ; however, there are exceptions, due
to well known isomorphisms between irreducible and reducible finite Coxeter
groups (for instance the dihedral group D2(6) of order 12 and A1 × A2).
We showed that nonisomorphic matching of basic subsets can be understood
by blowing up Coxeter generating sets. This is a procedure to replace a
given Coxeter generating set S by a Coxeter generating set R such that
|R ∩ S| = |S| − 1 and |R| = |S| + 1. In [5], we proved that there exists a
set of Coxeter generators S ′ of W such that a basic subset B of S matches
a basic subset B′ of S ′ with |〈B〉| > |〈B′〉| if and only if S can be blown up.
We proved that S has maximum rank over all sets of Coxeter generators of
W if and only if S can not be blown up.
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In this paper, we study the procedure of blowing down Coxeter generating
sets. We first determine necessary and sufficient conditions on (W,S) such
that there exists a set of Coxeter generators S ′ of W such that a basic subset
B of S matches a basic subsetB′ of S ′ with |〈B〉| < |〈B′〉|. We then determine
necessary and sufficient conditions on (W,S) such that W has a set of Coxeter
generators S ′ such that |S ′| < |S|. As an application, we determine the set
of all possible ranks of an arbitrary finitely generated Coxeter group.

2 Preliminaries

We continue with the terminology of [5]. In particular, we use Coxeter’s
notation on p. 297 of [2] for the irreducible spherical simplex reflection groups
except that we denote the dihedral group Dk

2 by D2(k). Subscripts denote the
rank of a Coxeter system in Coxeter’s notation. Coxeter’s notation partly
agrees with but differs from Bourbaki’s notation on p.193 of [1]. Coxeter
proved that every finite irreducible Coxeter system is isomorphic to exactly
one of the Coxeter systems An, n ≥ 1, Bn, n ≥ 4, Cn, n ≥ 2, D2(k), k ≥ 5,
E6, E7, E8, F4, G3, G4. See §3 of [5] for definitions. For uniformity of
notation, we define B3 = A3, D2(3) = A2 and D2(4) = C2.

Let (W,S) be a Coxeter system. A basic subset of S is a maximal irre-
ducible subset B of S such that 〈B〉 is a noncyclic finite group. If B is a
basic subset of S, we call B a base of (W,S) and 〈B〉 a basic subgroup of W .

Theorem 2.1 (Basic Matching Theorem, Theorem 4.18 [5]) Let W be a
finitely generated Coxeter group with two sets of Coxeter generators S and
S ′. Let B be a base of (W,S). Then there is a unique irreducible subset B′

of S ′ such that [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in W . Moreover,

1. the set B′ is a base of (W,S ′), and we say that B and B′ match,

2. if |〈B〉| = |〈B′〉|, then B and B′ have the same type and there is an
isomorphism φ : 〈B〉 → 〈B′〉 that restricts to conjugation on [〈B〉, 〈B〉]
by an element of W , and we say that B and B′ match isomorphically,

3. if |〈B〉| < |〈B′〉|, then either B has type B2q+1 and B′ has type C2q+1

for some q ≥ 1 or B has type D2(2q + 1) and B′ has type D2(4q + 2)
for some q ≥ 1. Moreover, there is a monomorphism φ : 〈B〉 → 〈B′〉
that restricts to conjugation on [〈B〉, 〈B〉] by an element of W .
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3 Blowing Down Coxeter Systems

Let (W,S) be a Coxeter system of finite rank. In this section, we determine
necessary and sufficient conditions for a base B of (W,S) to match a base
B′ of (W,S ′) with |〈B〉| < |〈B′〉|. If a base B of (W,S) matches a base B′ of
(W,S ′) with |〈B〉| < |〈B′〉|, then either B is of type B2q+1 and B′ is of type
C2q+1 for some q ≥ 1 or B is of type D2(2q+ 1) and B′ is of type D2(4q+ 2)
for some q ≥ 1 by the Basic Matching Theorem.

If a ∈ S, the neighborhood of a in P-diagram of (W,S) is defined to be
the set N(a) = {s ∈ S : m(s, a) <∞}.

If A ⊆ S, define A⊥ = {s ∈ S : m(s, a) = 2 for all a ∈ A}.

Lemma 3.1 Let B = {x, y} be a base of (W,S) of type D2(2q + 1) that
matches a base B′ of (W,S ′) of type D2(4q + 2) for some q ≥ 1. Then
N(x) ∩N(y) = B ∪B⊥.

Proof: Suppose s ∈ S − B with m(s, x),m(s, y) < ∞. Let M ⊆ S be
a maximal simplex containing {s, x, y}. Then there is a unique maximal
simplex M ′ ⊆ S ′ such that 〈M〉 is conjugate to 〈M ′〉 by Prop. 4.21 of [5].
By conjugating S ′, we may assume that 〈M〉 = 〈M ′〉. Then M ′ contains
B′ and [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in 〈M ′〉 by the Basic Matching
Theorem.

Let B′ = {a, b}. Then m(s′, a) = m(s′, b) = 2 for all s′ ∈ M ′ − B′ by
Theorem 8.7 of [5]. Hence B′ is a component of M ′. Therefore [〈B′〉, 〈B′〉]
is a normal subgroup of 〈M ′〉. Hence [〈B〉, 〈B〉] is a normal subgroup of
〈M〉. Therefore s{x, y}s = {x, y} by Lemma 4.17 of [5], and so sxs = x and
sys = y by the deletion condition. Hence N(x) ∩N(y) = B ∪B⊥. �

Lemma 3.2 Let φ : Bn → Cn be a monomorphism with n odd and n ≥ 3.
Then φ maps bn−1bn to a conjugate of (cn−1cn)2 in Cn.

Proof: See §3 of [5] for the definition of the generators of Bn and Cn. Now
φ(Bn) does not contain the center of Cn, since Z(Bn) = {1}. Therefore either
φ(Bn) = Bn or φ(Bn) = θ(Bn) where θ is the automorphism of Cn defined
by θ(ci) = −ci, for i = 1, . . . , n − 1 and θ(cn) = cn. Now θ restricts to the
identity on [Cn,Cn], and so by composing φ with θ in the latter case, we may
assume that φ(Bn) = Bn. Every automorphism of Bn is inner by Theorem
31 of [3]. Hence φ restricts to conjugation on [Bn,Bn] by an element of Bn.
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As bn−1bn is in [Bn,Bn] and bn−1bn = (cn−1cn)2, we conclude that φ(bn−1bn)
is conjugate to (cn−1cn)2 in Cn. �

Let W be a finitely generated Coxeter group with two sets S and S ′ of
Coxeter generators, and let A be a subset of S. Let A be the intersection of
all subsets B of S such that B contains A and 〈B〉 is conjugate to 〈B′〉 for
some B′ ⊆ S ′. Then A is the smallest subset B of S such that B contains
A and 〈B〉 is conjugate to 〈B′〉 for some B′ ⊆ S ′ by Prop. 4.14 of [5]. If A
is a spherical simplex, then A is a spherical simplex, since for any maximal
spherical simplex M ⊆ S that contains A, there exists a unique maximal
spherical simplex M ′ ⊆ S ′ such that 〈M〉 is conjugate to 〈M ′〉 by Prop. 4.13
of [5].

Lemma 3.3 Let B be a base of (W,S) of type B2q+1 that matches a base
B′ of (W,S ′) of type C2q+1 for some q ≥ 1. Let x, y be the split ends of the

C-diagram of (〈B〉, B). Then {x, y} = B and N(x) ∩N(y) = B ∪B⊥.

Proof: Let C = {x, y}. Then C is a spherical simplex of (W,S) and 〈C〉
is conjugate to 〈C ′〉 for some C ′ ⊆ S ′. By conjugating S ′, we may assume
that 〈C〉 = 〈C ′〉. Let a, b, c be the elements of B′ such that m(a, b) = 4 and
m(b, c) = 3. Now xy ∈ [〈B〉, 〈B〉], and so xy is conjugate to (ab)2 by the
Basic Matching Theorem and Lemma 3.2. Hence there is a w ∈ W such
that w(ab)2w−1 ∈ 〈C ′〉. Now 〈(ab)2〉 = [〈a, b〉, 〈a, b〉]. Let u be the shortest
element of 〈C ′〉w〈a, b〉. Then u{a, b}u−1 ⊆ C ′ by Lemma 4.17 of [5]. As
m(a, b) = 4, we deduce that {a, b} ⊆ C ′ by Lemma 4.9 of [5]. Hence B′ ⊆ C ′

by Lemma 8.1 of [5]. By the Basic Matching Theorem, B ⊆ C. Hence
B ⊆ C. As {x, y} ⊂ B, we have C ⊆ B. Thus C = B.

Suppose s ∈ S −B with m(s, x),m(s, y) <∞. Let M ⊆ S be a maximal
simplex containing {s, x, y}. Then there is a maximal simplex M ′ ⊆ S ′ such
that 〈M〉 is conjugate to 〈M ′〉 by Prop. 4.21 of [5]. By conjugating S ′, we
may assume that 〈M〉 = 〈M ′〉. Now {x, y} ⊆ M , and so B ⊆ M . Hence
B′ ⊆ M ′ by the Basic Matching Theorem. Moreover m(s′, t′) = 2 for all
(s′, t′) ∈ (M ′−B′)×B′ by Theorem 8.2 of [5]. Hence B′ is a component of M ′.
Therefore [〈B′〉, 〈B′〉] is a normal subgroup of 〈M ′〉. By the Basic Matching
Theorem, [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in 〈M〉. Therefore [〈B〉, 〈B〉]
is a normal subgroup of 〈M〉. Then sBs = B by Lemma 4.17 of [5], and so
sts = t for all t ∈ B by the deletion condition. Hence N(x)∩N(y) = B∪B⊥.
�
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The odd diagram ofW is the labeled undirected diagram Ω(W,S) obtained
from the P-diagram of (W,S) be deleting the even labeled edges. If a ∈ S,
we define Odd(a) to be the vertex set of the connected component of Ω(W,S)
containing a. By Prop. 3 on p. 12 of Bourbaki [1], we have that

Odd(a) = {s ∈ S : s is conjugate to a in W}.

We define

EOdd(a) = Odd(a) ∪ {s ∈ S : m(s, b) is even for some b ∈ Odd(a)}.

Lemma 3.4 Let B be a base of (W,S) that matches a base B′ of (W,S ′)
with |〈B〉| < |〈B′〉|. Then there exists r ∈ B − B such that N(r) = B ∪ B⊥
and Odd(r) = {r}, and if K is the component of B⊥ containing r, then K
is of type A1, C2q+1, or D2(4q + 2) for some q ≥ 1; moreover, if K 6= {r},
then K is a basic subset of S and if K ′ is the basic subset of S ′ that matches
K, then K ′ is a component of (B′)⊥ and K ′ ∪ (K ′)⊥ = B′ ∪ (B′)⊥.

Proof: Let C = B. Then C is a spherical simplex of (W,S) and 〈C〉 is
conjugate to 〈C ′〉 for some C ′ ⊆ S ′. By conjugating S ′, we may assume that
〈C〉 = 〈C ′〉. Then C ′ contains B′ by the Basic Matching Theorem. Hence B
is a proper subset of C, since otherwise 〈B′〉 ⊆ 〈C ′〉 = 〈C〉 = 〈B〉 which is
not the case, since |〈B〉| < |〈B′〉|.

Let M ⊆ S be a maximal spherical simplex containing B, and let M ′ ⊆ S ′

be the maximal spherical simplex such that 〈M〉 is conjugate to 〈M ′〉. Then
M ′ contains B′ by the Basic Matching Theorem. Let w be an element of W
such that w〈M〉w−1 = 〈M ′〉. Now B′ ⊆ 〈C〉 ⊆ 〈M〉. Hence wB′w−1 ⊂ 〈M ′〉.
Let u be the shortest element of 〈M ′〉w〈B′〉. Then uB′u−1 ⊆M ′ by Lemma
4.3 of [5]. As B′ is a base of (W,S ′), we have that uB′u−1 = B′ by Lemma
4.10 of [5], and so u acts as a graph automorphism on 〈B′〉. Let z′ be the
longest element of 〈B′〉. Then uz′u−1 = z′. Now w = xuy with x ∈ 〈M ′〉 and
y ∈ 〈B′〉. Hence wz′w−1 = z′, since z′ is in the center of 〈M ′〉. Therefore
z′ is in the center of 〈M〉 = w−1〈M ′〉w. As B ∪ B⊥ is the union of all the
maximal spherical simplices of (W,S) that contain B, we deduce the z′ is in
the center of B⊥. Hence, there are distinct components K1, . . . , Kn of B⊥,
with nontrivial center, such that z′ = z1 · · · zn with zi the longest element
of 〈Ki〉 for each i = 1, . . . , n. As z′ ∈ 〈C〉, we have that Ki ⊆ C for each
i = 1, . . . , n by Prop. 7 on p. 19 of [1], since every reduced form of zi involves
every element of Ki for each i = 1, . . . , n.
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Define a homomorphism ρ : 〈C ′〉 → 〈z′〉 as follows. To begin with, define
ρ(s′) = 1 if s′ ∈ C ′ − B′. By the Basic Matching Theorem, B′ is of type
C2p+1 or D2(4p + 2) for some p ≥ 1. If B′ is of type C2p+1, let a′ ∈ B′ be
such that B′ ∩ Odd(a′) = {a′}, and define ρ(a′) = z′ and ρ(s′) = 1 for each
s′ ∈ B′−{a′}. Suppose B′ is of type D2(4p+2) and B′ = {a′, b′}. By Lemma
8.6 of [5], one of a′ or b′, say a′, has the property that if a′ ∈ A′ ⊆ S ′ and
〈A′〉 is conjugate to 〈A〉 for some A ⊆ S, then B′ ⊆ A′. Define ρ(a′) = z′

and ρ(b′) = 1. In both cases, ρ is well defined and ρ(z′) = z′.
As z′ = z1 · · · zn, there is an i such that ρ(zi) = z′. By reindexing, we may

assume i = 1. Let K = K1. Then there exists r ∈ K such that ρ(r) = z′. As
r ∈ B, we have that {r} ⊆ B. Let A = {r}. Then 〈A〉 is conjugate in 〈C ′〉
to 〈A′〉 for some A′ ⊆ C ′ by Prop. 4.14 of [5]. Now ρ(〈A′〉) = ρ(〈A〉) = 〈z′〉.
Hence a′ ∈ A′. Then B′ ⊆ A′ by Lemma 8.1 of [5] or the choice of a′. Hence
B ⊆ A by the Basic Matching Theorem, and so B ⊆ A. Hence {r} = B.

As K is a component of B⊥, we have B∪B⊥ ⊆ N(r). Suppose s ∈ N(r).
Let M ⊆ S be a maximal spherical simplex containing {r, s}. Then there is
a maximal spherical simplex M ′ ⊆ S ′ such that 〈M〉 is conjugate to 〈M ′〉.
Then {r} ⊆ M , and so B ⊆ M . Therefore s ∈ B ∪ B⊥, since B is a basic
subset of M . Thus N(r) = B ∪B⊥.

As [〈K〉, 〈K〉] is in the kernel of ρ, we have that z1 is not in [〈K〉, 〈K〉].
Therefore K is of type A1, C2q+1, D2(4q + 2), E7, or G3 for some q ≥ 1.
Suppose K is of type C2q+1 for some q ≥ 1. Let a ∈ K be such that
K ∩ Odd(a) = {a}. Then a[〈K〉, 〈K〉] = z1[〈K〉, 〈K〉]. As the restriction of
ρ to 〈K〉 factors through 〈K〉/[〈K〉, 〈K〉], we may assume that r = a. Then
Odd(r) = {r}.

If K = {r}, then we are done. Suppose K 6= {r}. Then K is a basic
subset of S, since N(r) = B ∪ B⊥ and K is a component of B⊥. Let K ′ is
the basic subset of C ′ that matches K. Then K ′ is the basic subset of S ′

that matches K by the Basic Matching Theorem. Let M ′ ⊆ S ′ be a maximal
spherical simplex that contains B′, and let M ⊆ S be the maximal spherical
simplex such that 〈M〉 is conjugate to 〈M ′〉. Then M contains B by the
Basic Matching Theorem. Now K ⊆ C ⊆ M and K is a basic subset of M .
Therefore K ′ is a basic subset of M ′ by the Basic Matching Theorem. Hence
K ′ is a component of M ′. Therefore K ′ is a component of (B′)⊥.

Suppose s′ ∈ (K ′)⊥. Let M ′ ⊆ S ′ be a maximal spherical simplex that
contains K ′∪{s′}, and let M ⊆ S be the maximal spherical simplex such that
〈M〉 is conjugate to 〈M ′〉. Then K ⊆ M by the Basic Matching Theorem.
Hence M contains r, and so B ⊆ {r} ⊆M . Therefore M ′ contains B′ by the
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Basic Matching Theorem. Hence s′ ∈ B′ ∪ (B′)⊥. Therefore (K ′) ∪ (K ′)⊥ =
B′ ∪ (B′)⊥. If K is of type C2q+1 or D2(4q + 2), we are done.

Suppose K is of type E7 or G3. Then ρ(s) = z′ for each s in K, since s and
r are conjugate in 〈K〉 for each s ∈ K. Hence {s} = B and N(s) = B∪B⊥ for
each s ∈ K by the above argument. Therefore Odd(r) = K and EOdd(r) =
B ∪B⊥. Suppose n > 1. By Lemma 28 of [4], there is an automorphism θ of
W such that θ(s) = s for all s ∈ S −K, and θ(s) = sz2 · · · zn for all s ∈ K.
The longest element of 〈θ(K)〉 is z1 · · · zn = z′. Now replace S by θ(S). Let
θ(B) denote B with respect to the Coxeter generators θ(S) and S ′. Then
θ(B) ⊆ θ(C), since 〈θ(C)〉 = 〈C〉 = 〈C ′〉. If θ(B) is a proper subset of θ(C),
we return to the start of the proof. As C is finite, we will eventually be done
or have θ(B) = θ(C). Thus we may assume without loss of generality that
n = 1 and z′ = z1.

Let `′ be the longest element of 〈K ′〉. Define a homomorphism η : 〈C ′〉 →
〈`′〉 as follows. Define η(s′) = 1 for all s′ ∈ C ′ −K ′ and define η(s′) = `′ for
all s′ ∈ K ′. Then η is well defined and η(`′) = `′. By the same argument as
above, `′ is in the center of B⊥ and there is a component L of B⊥ such that
L ⊆ C and L has nontrivial center, and if ` is the longest element of 〈L〉,
then η(`) = `′ and η(t) = `′ for some t ∈ L. As z′ ∈ B′ ⊆ C ′ −K ′, we have
that η(z′) = 1, and so L 6= K.

Let A = {t}. Then 〈A〉 is conjugate in 〈C ′〉 to 〈A′〉 for some A′ ⊆ C ′

by Prop. 4.14 of [5]. Now η(〈A′〉) = η(〈A〉) = 〈`′〉. Hence s′ ∈ A′ for some
s′ ∈ K ′. Now killing s′ in 〈C ′〉 kills K ′. As [〈K〉, 〈K〉] = [〈K ′〉, 〈K ′〉] and
〈A〉 is conjugate to 〈A′〉 in 〈C〉, the group 〈A〉 contains an element that kills
[〈K〉, 〈K〉] in 〈C〉. Therefore A contains an element s ∈ K. Now {s} ⊆ A.
As {s} = B, we have B ⊆ A. Therefore {t} = B. As before, N(t) = B∪B⊥.

By the same argument as above, L is of type A1, C2q+1, D2(4q + 2), E7,
or G3, and if L is of type A1, C2q+1, or D2(4q+ 2), we are done. Suppose L
is of type E7 or G3. Then by the same argument as above, Odd(t) = L and
EOdd(t) = B ∪ B⊥, and we may assume that ` = `′. By Lemma 38 of [4],
there is an automorphism β of W such that β(s) = s for all s ∈ S− (K ∪L),
and β(s) = s`z′ for each s ∈ K∪L. Then β(`) = z′ and β(z′) = `. As β fixes
each element of S − (K ∪ L) and β leaves 〈C〉 invariant, we may replace S
by β(S). Then K is replaced by β(L) and β(K) is removed as a possibility
for replacing L, since 〈β(K)〉 = 〈K ′〉. In the above procedure only Coxeter
generators of components of B⊥ of type E7 or G3 are replaced. By repeating
this procedure a finite number of times, we can remove the possibility that
L is of type E7 or G3, and we are done. �
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A cycle of S is a sequence {c1, . . . , cn} of distinct elements of S so that
m(ci, ci+1) < ∞ for i = 1, . . . , n − 1 and m(cn, c1) < ∞. A chord of cycle
C = {c1, . . . , cn} of S is a pair of distinct elements ci, cj of C such that
m(ci, cj) < ∞ and ci, cj are neither consecutive terms of the cycle nor the
end terms of the cycle.

Lemma 3.5 Let B be a base of (W,S) that matches a base B′ of (W,S ′)
with |〈B〉| < |〈B′〉|. If B is of type D2(2q + 1), let B = {x, y}. If B is of
type B2q+1, let {x, y} be the set of split ends of the C-diagram of (〈B〉, B).
Then {x, y} is not part of a chord-free cycle of S of length at least 4.

Proof: On the contrary, suppose C ⊆ S is a chord-free cycle of length at
least 4 that contains {x, y}. We may assume that |S| is as small as possible.
By Lemmas 3.1 and 3.3, we have that {x, y} = B and N(x)∩N(y) = B∪B⊥.
By Lemma 3.4, there is an r ∈ B − B such that N(r) = B ∪ B⊥ and
Odd(r) = {r}. Now C ∩ (B ∪ B⊥) = {x, y}, since C is cord-free of length
at least 4. Let a ∈ C − B. Then (B ∪ B⊥) − {r} is an (a, r)-separator of
S, that is, every path from a to r in the P-diagram of (W,S) passes through
(B ∪B⊥)− {r}.

Let S0 be a c-minimal separator (see §6 of [5]) of S such that S0 is
conjugate to a subset of (B ∪B⊥)−{r}. By Lemma 4.9 of [5], we have that
S0 = S1 ∪ S2 with S1 a spherical simplex, S2 ⊆ S⊥1 , and wS2w

−1 ⊆ S if and
only if w = 1. Then S2 ⊆ (B∪B⊥)−{r}. By Theorem 6.1 of [5], there exists
S ′0 ⊆ S ′, a reduced visual graph of groups decomposition Λ for (W,S), and a
reduced visual graph of groups decomposition Λ′ for (W,S ′) such that 〈S0〉 is
conjugate to 〈S ′0〉, and the edge groups of Λ and Λ′ are conjugate to 〈S0〉, and
there is a 1-1 correspondence between the vertices of Λ and the vertices of
Λ′ such that each vertex group of Λ is conjugate to the corresponding vertex
group of Λ′.

Now r is not in an edge group of Λ, since r is not conjugate to an element
of (B ∪ B⊥) − {r}. Let V be the vertex group of Λ that contains r. Then
N(r) ⊂ V , and so B ∪ B⊥ ⊂ V . Now {x, y} is not contained in an edge
group E of Λ, since otherwise r ∈ {x, y} ⊂ E. We claim that C ⊂ V . On
the contrary, suppose C 6⊂ V . Let C = {c1, . . . , cn} with x = c1 and cn = y,
and m(ci, ci+1) < ∞ for each i = 1, . . . , n − 1. Let k be the first index such
that ck 6∈ V and let ` be the last index such that c` 6∈ V . Then ck−1 is in an
edge group E of Λ that is a subgroup of V and c`+1 is in an edge group F of
Λ that is a subgroup of V . Now E = F , since the graph of Λ is a tree. As
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{x, y} 6⊂ E, we have that {ck−1, c`+1} 6= {x, y}. Now E is conjugate to 〈S0〉,
and so there exists S3 ⊆ S⊥2 such that E = 〈S3 ∪ S2〉 and S3 is conjugate to
S1. Hence S3 is a spherical simplex. Now (C − B) ∩ (B ∪ B⊥) = ∅, since C
is chord-free. As S2 ⊆ B ∪B⊥, we deduce that {ck−1, c`+1} ∩ S3 6= ∅, and so
ck−1 and c`+1 are joined by a chord, which is a contradiction. Thus C ⊂ V .

By conjugating S ′, we may assume that V is a vertex group V ′ of Λ′.
Then B′ ⊂ V ′ be the Basic Matching Theorem. Now rank(V ) < |S|, and so
we have a contradiction to the minimality of |S|. �

Lemma 3.6 (Blow-Down Lemma) Let (W,S) be a Coxeter system of finite
rank, and let B be a base of (W,S) of type B2q+1 or D2(2q + 1) for some
q ≥ 1. If |B| = 2, let B = {x, y}. If B is of type B2q+1, let {x, y} be
the set of split ends of the C-diagram of (〈B〉, B). Let r ∈ B⊥ such that
N(r) = B ∪ B⊥ and {r} is a component of B⊥. Suppose N(y) = B ∪ B⊥.
Let ` be the longest element of 〈B〉, let a = r`, let S ′ = (S − {r, y}) ∪ {a},
and let B′ = (B − {y}) ∪ {a}. Then S ′ is a set of Coxeter generators for W
such that

1. the set B′ is a base of (W,S ′) that matches B with |〈B〉| < |〈B′〉|,

2. (B′)⊥ = B⊥ − {r},

3. the neighborhood of a satisfies N(a) = B′ ∪ (B′)⊥,

4. the basic subsets of S and S ′ are the same except for B and B′.

Proof: Consider the Coxeter presentation

W = 〈S | (st)m(s,t) : s, t ∈ S and m(s, t) <∞〉.

Let ` be the longest element of 〈B〉. Then `2 = 1. Regard ` as a reduced
word in the elements of B. Add the generator a and the relation a = r` to
the above presentation of W . Then we can add the relators a2 and (sa)2 and
(as)2 for all s ∈ B⊥ − {r}. As `s` = s for all s ∈ B − {x, y}, we can add the
relators (sa)2 and (as)2 for all s ∈ B − {x, y}.

Next delete the generator r and the relation a = r` and replace r by a`
in the remaining relators. The relator r2 is replaced by (a`)2. We delete the
relators (sa`)2 and (a`s)2 for s ∈ B∪B⊥−{r, x, y}, since they are equivalent
to (a`)2.
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As `x` = y and `a` = a, we have xa`xa` = xa`x`a`` = xaya, and so we
can replace (xa`)2 by xaya. Likewise (a`x)2 can be replaced by ayax, and
(ya`)2 can be replaced by yaxa, and (a`y)2 can be replaced by axay.

Next we delete the generator y and the relators xaya, ayax, ayax, axay,
and replace y by axa in the remaining relators. We have eliminated all the
relators originally involving r except for (a`)2.

We delete the relators (saxa)2 and (axas)2 for all s ∈ B ∪B⊥−{r, x, y},
since that are equivalent to (axa)2 = ax2a. The relator y2 is replaced by
(axa)2 which we can delete.

Assume first that B is of type B2q+1. The relators (xy)2 and (yx)2 are
replaced by (xa)4 and (ax)4. Let t ∈ B be such that m(t, y) = 3. Then
m(t, x) = 3. Now (ty)3 = (taxa)3 = (atxa)3 = a(tx)3a, and so (ty)3 can
be deleted. Likewise (yt)3 can be deleted. The relator (a`)2 can be deleted,
since it is redundant. Then we obtain a Coxeter presentation for W with
Coxeter generators S ′ and (〈B′〉, B′) of type C2q+1.

Now assume that B is of type D2(2q + 1). The relators (xy)2q+1 and
(yx)2q+1 are replaced by (xa)4q+2 and (ax)4q+2. The relator (a`)2 can be
deleted, since it is redundant. Then we obtain a Coxeter presentation for W
with Coxeter generators S ′ and (〈B′〉, B′) of type D2(4q + 2).

As a = r` and {r} is a component of B⊥, we have that B⊥−{r} ⊆ (B′)⊥.
Suppose s ∈ (B′)⊥. Then s ∈ S − (B ∪ {r}). As s commutes with a = r`,
we have that s ∈ N(r) = B ∪B⊥ by Lemma 8.3 of [5]. Hence s ∈ B⊥−{r}.
Therefore (B′)⊥ = B⊥ − {r}.

Clearly, we have B′ ∪ (B′)⊥ ⊆ N(a). Suppose s ∈ N(a) − B′. Then
s ∈ N(r) = B ∪ B⊥ by Lemma 8.3 of [5]. Hence s ∈ B⊥ − {r} = (B′)⊥,
and so N(a) = B′ ∪ (B′)⊥. Therefore B′ is a base of (W,S ′) and B′ is
the only base of (W,S ′) that contains a. The base B′ matches B, since
[〈B′〉, 〈B′〉] = [〈B〉, 〈B〉]. As N(y) = B ∪ B⊥, we have that B is the only
base of (W,S) that contains y. Therefore the basic subsets of S and S ′ are
the same except for B and B′. �

Let B and r ∈ B⊥ be as in the Blow-Down Lemma. We call r a sink for
the base B. Let B′ and S ′ be as in the Blow-Down Lemma. We say that
(W,S ′) is obtained by blowing down (W,S) along the base B. We also say
that B′ has been obtained by blowing down B.
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Theorem 3.7 (Blow-Down Theorem) Let (W,S) be a Coxeter system of
finite rank, and let B be a base of (W,S) of type B2p+1 or D2(2p + 1) for
some p ≥ 1. If |B| = 2, let B = {x, y}. If B is of type B2p+1, let {x, y} be the
set of split ends of the C-diagram of (〈B〉, B). Then W has a set of Coxeter
generators S ′ such that B matches a base B′ of (W,S ′) with |〈B〉| < |〈B′〉| if
and only if

1. the neighborhoods of x and y satisfy N(x) ∩N(y) = B ∪B⊥,

2. the set {x, y} is not part of a chord-free cycle of S of length at least 4,

3. there exists r ∈ B⊥ such that N(r) = B∪B⊥ and Odd(r) = {r}, and if
K is the component of B⊥ containing r, then K is of type A1, C2q+1,
or D2(4q + 2) for some q ≥ 1.

Proof: Suppose W has a set of Coxeter generators S ′ such that B matches
a base B′ of (W,S ′) with |〈B〉| < |〈B′〉|. Then condition (1) follows from
Lemmas 3.1 and 3.3, condition (2) follows from Lemma 3.5, and condition
(3) follows from Lemma 3.4.

Conversely, suppose conditions (1), (2), and (3) are satisfied. Let S0 =
B ∪B⊥, and let T = S−S0. Let Tx be the set of all t ∈ T such that there is
a sequence t1, . . . , tn in T such that m(x, t1) < ∞, m(ti, ti+1) < ∞ for each
i = 1, . . . , n− 1, and tn = t. Define Ty similarly. We claim that Tx ∩ Ty = ∅.
On the contrary suppose that Tx ∩ Ty 6= ∅. Then there is a cycle C of S
such that C ∩ S0 = {x, y}. Assume that C is as short as possible. Then C
is chord-free. By condition (1), we deduce that C has length at least 4, but
this contradicts condition (2). Therefore Tx ∩ Ty = ∅.

Let S1 = S − Ty and S2 = S0 ∪ Ty. Then S = S1 ∪ S2 and S1 ∩ S2 = S0,
and m(a, b) = ∞ for all a ∈ S1 − S0 and b ∈ S2 − S0. Let ` be the longest
element of 〈B〉. Then `S0`

−1 = S0 and the triple (S1, `, S2) determines an
elementary twist (see §5 of [5]) of (W,S) giving a new Coxeter generating set
S∗ = S1 ∪ `S2`

−1. As `y`−1 = x, we have `Ty`
−1 ⊆ Tx with respect to S∗,

and so by replacing S by S∗, we may assume Ty = ∅. Then N(y) = B ∪B⊥.
If K = {r}, then we can blow down B. Hence W has a set of Coxeter

generators S ′ such that B matches a base B′ of (W,S ′) with |〈B〉| < |〈B′〉|
by Lemma 3.6. If K 6= {r}, we can blow up S along K by Theorems 8.4
and 8.8 of [5]. This creates a sink for B, which allows us to blow down B.
Therefore W has a set of Coxeter generators S ′ such that B matches a base
B′ of (W,S ′) with |〈B〉| < |〈B′〉| by Lemma 3.6. �

11



The proof of the Blown-Down Theorem indicates that we may have to
blow up along one base in order to create a sink before we can blow down
along another base. For example, the base D2(3) of the Coxeter system
C3 ×D2(3) can be blown down only after the system is blown up along the
base C3 to yield the system B3×A1×D2(3). Then A1 is a sink for the base
D2(3), and so now we can blow down D2(3) to obtain the system B3×D2(6).
If we blow up a Coxeter system and then blow down the resulting Coxeter
system, the initial and final systems have the same rank. For example, the
initial system C3×D2(3) has the same rank as the final system B3×D2(6).

4 Contracting Coxeter Systems

In this section, we determine necessary and sufficient conditions on (W,S)
such that W has a set of Coxeter generators S ′ such that |S ′| < |S|.

Theorem 4.1 (Contracting Theorem) Let (W,S) be a Coxeter system of
finite rank. Then W has a set of Coxeter generators S ′ such that |S ′| < |S|
if and only if there is a base B of (W,S) of type B2p+1 or D2(2p + 1) for
some p ≥ 1 satisfying conditions (1), (2), (3) of the Blow-Down Theorem
with K = {r}.

Proof: Suppose there is a base B of (W,S) of type B2p+1 or D2(2p+ 1) for
some p ≥ 1 satisfying conditions (1), (2), (3) of the Blow-Down Theorem with
K = {r}. By twisting (W,S) as in the proof of the Blow-Down Theorem,
leaving B ∪ B⊥ invariant, we may assume that N(y) = B ∪ B⊥. Then W
has a set of Coxeter generators S ′ such that |S ′| = |S| − 1 by Lemma 3.6.

Conversely, suppose W has a set of Coxeter generators S ′ such that |S ′| <
|S|. We may assume that S ′ has the maximum possible number of basic
subsets that isomorphically match basic subsets of S. Now S has a basic
subset B that nonisomorphically matches a basic subset B′ of S ′ by the
Simplex Matching Theorem (Theorem 7.7 of [5]). Then |〈B〉| 6= |〈B′〉| by the
Basic Matching Theorem.

Assume first that |〈B〉| < |〈B′〉|. Then B satisfies conditions (1), (2), (3)
of the Blow-Down Theorem. Let r and K be as in Lemma 3.4. If K = {r},
we are done. Suppose that K is of type C2q+1 or D2(4q+ 2) for some q ≥ 1.
Then K is a basic subset of S. Let K ′ be the basic subset of S ′ that matches
K. We claim that K isomorphically matches K ′. On the contrary, suppose
that K nonisomorphically matches K ′. By Lemma 3.4, we have that K ′ is
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a component of (B′)⊥ and (K ′) ∪ (K ′)⊥ = B′ ∪ (B′)⊥. By Theorems 8.4-8.8
of [5], we can blow up S ′ along B′, and after twisting as in the proof of the
Blow-Down Theorem, leaving (K ′) ∪ (K ′)⊥ invariant, we can blow down K ′

to obtain a set of Coxeter generators S ′′ such that |S ′′| = |S ′| and S ′′ has
two more basic subsets than S ′ isomorphically matching basic subsets of S,
which contradicts the choice of S ′. Thus K isomorphically matches K ′.

Let z′ be the longest element of 〈B′〉. As in the proof of Lemma 3.4, the
element z′ is in the center of B⊥. By applying the automorphism θ of W
defined by θ(s) = s for all s ∈ S − {r} and θ(r) = rz2 · · · zn as in the proof
of Lemma 3.4, if necessary, we may assume that z′ is the longest element
of 〈K〉. By Theorems 8.5 and 8.7 of [5], the group W has a set of Coxeter
generators S ′′ such that K matches a base K ′′ of (W,S ′′) with |〈K〉| > |〈K ′′〉|.
Therefore W has a set of Coxeter generators S ′′ such that K ′ matches a base
K ′′ of (W,S ′′) with |〈K ′〉| > |〈K ′′〉|. Let `′ be the longest element of 〈K ′〉. If
K ′ is of type C2q+1, let a′ ∈ K ′ be such that K ′ ∩ Odd(a′) = {a′}. If K ′ is
of type D2(4q + 2), let a′ ∈ K ′ be as in Lemma 8.6 of [5]. As in the proof
of Lemma 3.4, define a homomorphism η : 〈C ′〉 → 〈`′〉 as follows. Define
η(s′) = 1 for all s′ ∈ C ′ − {a′} and define η(a′) = `′. Then η is well defined
and η(`′) = `′. By the argument in the proof of Lemma 3.4, the element `′ is
in the center of B⊥ and there is a component L of B⊥ such that L ⊆ C and
L has nontrivial center, and if ` is the longest element of 〈L〉, then η(`) = `′

and η(t) = `′ for some t ∈ L. Moreover L is of type A1, C2q+1, D2(4q + 2),
E7, or G3 for some q ≥ 1, and if L is of type C2q+1, then L ∩Odd(t) = {t}.
As η(z′) = 1, we have that L 6= K.

Let A = {t}. As t ∈ B, we have that {t} ⊆ B. Then 〈A〉 is conjugate in
〈C ′〉 to 〈A′〉 for some A′ ⊆ C ′ by Prop. 4.14 of [5]. Now η(〈A′〉) = η(〈A〉) =
〈`′〉. Hence a′ ∈ A′. Therefore B′ ⊆ A′ by Lemmas 8.1 and 8.6 of [5]. Hence
B ⊆ A by the Basic Matching Theorem, and so B ⊆ A. Therefore {t} = B.
As before, N(t) = B ∪ B⊥, and so Odd(t) ⊆ L. If L = {t}, we are done,
and so we may assume that L is not of type A1. As before, by applying an
automorphism, we may assume that ` = `′.

By Lemma 38 of [4], there is an automorphism β of W such that β(s) = s
for all s ∈ S − ({r} ∪ Odd(t)), and β(r) = r`z′, and β(s) = s`z′ for all
s ∈ Odd(t). Then β(`) = z′ and β(z′) = `. As β fixes each element of
S − (K ∪ L) and β leaves 〈C〉 invariant, we may replace S by β(S). Then
K is replaced by β(L), and β(K) is removed as a possibility for replacing L,
since β(K) matches K ′ and 〈β(K)〉 and 〈K ′〉 have the same longest element.
By the argument in Lemma 3.4, we may assume that β(L) is of type C2q+1
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or D2(4q + 2).
In the above procedure only Coxeter generators of components of B⊥ of

type C2q+1, D2(4q+ 2), E7, or G3 are replaced. By repeating this procedure
a finite number of times, we can remove that possibility that L is of type
C2q+1, D2(4q + 2), E7, or G3. Then L = {t}, and we are done.

Assume now that |〈B〉| > |〈B′〉|. Then B′ satisfies conditions (1), (2),
(3) of the Blown-Down Theorem. Let r′ and K ′ be as in Lemma 3.4. If
K ′ = {r′}, we can blow down B′ to obtain a set of Coxeter generators S ′′ such
that |S ′′| = |S ′|− 1 and S ′′ has one more basic subset than S ′ isomorphically
matching basic subsets of S, which contradicts the choice of S ′. Therefore
K ′ is of type C2q+1 or D2(4q + 2) for some q ≥ 1. As N(r′) = B′ ∪ (B′)⊥,
we have that K ′ is a basic subset of S ′ and K ′ ∪ (K ′)⊥ = B′ ∪ (B′)⊥.

Let K be the basic subset of S that matches K ′. Then K isomorphically
matches K ′, since otherwise by Theorems 8.4-8.8 of [5], we can blow up S ′

along K ′ and then blow down B′ to obtain a set of Coxeter generators S ′′ such
that |S ′′| = |S ′| and S ′′ has two more basic subsets than S ′ isomorphically
matching basic subsets of S, which contradicts the choice of S ′.

Let z be the longest element of 〈B〉. As in the proof of Lemma 3.4, the
element z is in the center of (B′)⊥, and by applying an automorphism, we
may assume that z is the longest element of 〈K ′〉. Let ` be the longest element
of 〈K〉. If K is of type C2q+1, let a ∈ K be such that K ∩ Odd(a) = {a}.
If K is of type D2(4q + 2), let a ∈ K be as in Lemma 8.6 of [5]. As in the
proof of Lemma 3.4, define a homomorphism η : 〈C〉 → 〈`〉 as follows. Define
η(s) = 1 for all s ∈ C − {a} and define η(a) = `. Then η is well defined and
η(`) = `. By the argument in the proof of Lemma 3.4, the element ` is in the
center of (B′)⊥ and there is a component L′ of (B′)⊥ such that L′ ⊆ C ′ and
L′ has nontrivial center, and if `′ is the longest element of 〈L′〉, then η(`′) = `
and η(t′) = ` for some t′ ∈ L′. Moreover L′ is of type A1, C2q+1, D2(4q+ 2),
E7, or G3 for some q ≥ 1, and if L′ is of type C2q+1, then L′∩Odd(t′) = {t′}.
As η(z) = 1, we have that L′ 6= K ′.

Let A′ = {t′}. As t′ ∈ B′, we have that {t′} ⊆ B′. Then 〈A′〉 is conjugate
in 〈C〉 to 〈A〉 for some A ⊆ C by Prop. 4.14 of [5]. Now η(〈A〉) = η(〈A′〉) =
〈`〉. Hence a ∈ A. Therefore B ⊆ A by Lemmas 8.1 and 8.6 of [5]. Hence
B′ ⊆ A′ by the Basic Matching Theorem, and so B′ ⊆ A′. Therefore {t′} =
B′. As before, N(t′) = B′ ∪ (B′)⊥, and so Odd(t′) ⊆ L′. If L′ = {t′}, we
derive a contradiction as before. Therefore L′ is not of type A1. By applying
an automorphism, we may assume that ` = `′.
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By Lemma 38 of [4], there is an automorphism β of W such that β(s′) = s′

for all s′ ∈ S ′ − ({r′} ∪ Odd(t′)), and β(r′) = r′`z, and β(s′) = s′`z for all
s′ ∈ Odd(t′). Then β(`) = z and β(z) = `. As β fixes each element of
S ′− (K ′∪L′) and β leaves 〈C ′〉 invariant, we may replace S ′ by β(S ′). Then
K ′ is replaced by β(L′), and β(K ′) is removed as a possibility for replacing L′,
since β(K ′) matches K and 〈β(K ′)〉 and 〈K〉 have the same longest element.
By the argument in Lemma 3.4, we may assume that β(L′) is of type C2q+1

or D2(4q + 2).
In the above procedure only Coxeter generators of components of (B′)⊥ of

type C2q+1, D2(4q+2), E7, or G3 are replaced. By repeating this procedure a
finite number of times, we can remove the possibility that L′ is of type C2q+1,
D2(4q + 2), E7, or G3. Then L′ is of type A1 and we have a contradiction
as before. Thus the case |〈B〉| > |〈B′〉| leads to a contradiction. �

5 The Rank Spectrum of a Coxeter Group

In this section, we describe how to determine the set of all possible ranks
of an arbitrary finitely generated Coxeter group W by inspection of any
presentation diagram for W .

Let (W,S) be a Coxeter system of finite rank. Suppose that S1, S2 ⊆ S,
with S = S1 ∪ S2 and S0 = S1 ∩ S2, are such that m(a, b) = ∞ for all
a ∈ S1 − S0 and b ∈ S2 − S0. Let ` ∈ 〈S0〉 such that `S0`

−1 = S0. The
triple (S1, `, S2) determines an elementary twist of (W,S) giving a new set
of Coxeter generators S∗ = S1 ∪ `S2`

−1 for W such that S1 ∩ `S2`
−1 = S0.

Let B be a base of (W,S) of type B2p+1 or D2(2p + 1) for some p ≥ 1
that satisfies the conditions (1), (2), (3) of the Blown-Down Theorem with
K = {r}. As B is a simplex, either B ⊆ S1 or B ⊆ S2. If B ⊆ S1, define
B∗ = B. If B ⊆ S2, define B∗ = `B`−1. If B ⊆ S0, then `B`−1 = B by
Lemma 4.10 of [5], and so B∗ is well defined. If r ∈ S1, define r∗ = r. If
r ∈ S2, define r∗ = `r`−1. If r ∈ S0, then `r`−1 = r by Lemma 4.8 of [5], and
so r∗ is well defined.

Lemma 5.1 The set B∗ is a base of (W,S∗) of type B2p+1 or D2(2p + 1)
for some p ≥ 1 that satisfies the conditions (1), (2), (3) of the Blown-Down
Theorem with {r∗} a component of B⊥∗ .
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Proof: As B∗ is conjugate to B, we deduce that B∗ is a base of (W,S∗) of
type B2p+1 or D2(2p + 1) for some p ≥ 1 by the Basic Matching Theorem.
By the Blow-Down Theorem, W has a set of Coxeter generators S ′ such that
B matches a base B′ of (W,S ′) with |〈B〉| < |〈B′〉|. Hence B∗ matches B′

with |〈B∗〉| < |〈B′〉|. Therefore B∗ satisfies conditions (1) and (2) of the
Blow-Down Theorem.

As B ∪ {r} is a simplex, either B ∪ {r} ⊆ S1 or B ∪ {r} ⊆ S2. Hence
r∗ ∈ (B∗)

⊥. Let s∗ ∈ N(r∗)− (B∗ ∪ {r∗}). Assume first that B ∪ {r} ⊆ S1.
Then B∗ = B and r∗ = r. Suppose s∗ ∈ S1. Then s∗ ∈ N(r) = B ∪ B⊥.
Hence s∗ ∈ B⊥, and so s∗ ∈ (B∗)

⊥ and m(r∗, s∗) = 2. Now suppose that
s∗ ∈ `S2`

−1 − S0. Then r ∈ S0 and r = `r`−1 and s∗ = `s`−1 for some
s ∈ S2 − S0. Hence s ∈ N(r) = B ∪ B⊥. As B ⊂ S1, we have that s ∈ B⊥.
Therefore m(r, s) = 2, and so m(r∗, s∗) = 2. Moreover, B ⊆ S0, since
s ∈ S2 − S0. Hence B∗ = `B`−1, and so s∗ ∈ (B∗)

⊥.
Assume now that B ∪ {r} ⊆ S2. Then B∗ = `B`−1 and r∗ = `r`−1.

Suppose s∗ ∈ S1 − S0. Then r∗ ∈ S0, and so r∗ = r. Hence s∗ ∈ N(r) =
B ∪ B⊥. Now s∗ ∈ B⊥, since s∗ ∈ S1 − S0. Hence m(r∗, s∗) = 2. Moreover
B ⊆ S0, and so B∗ = B. Hence s∗ ∈ (B∗)

⊥. Now suppose s∗ ∈ `S2`
−1.

Then s∗ = `s`−1 for some s ∈ S2. As 1 < m(r∗, s∗) < ∞, we have that 1 <
m(r, s) < ∞. Hence s ∈ N(r) = B ∪ B⊥. Moreover s ∈ B⊥, since s∗ 6∈ B∗.
Hence m(r, s) = 2, and so m(r∗, s∗) = 2. Moreover s∗ ∈ (B∗)

⊥. Thus, in all
cases, N(r∗) = B∗ ∪ (B∗)

⊥ and {r∗} is a component of (B∗)
⊥. Therefore B∗

satisfies condition (3) of the Blow-Down Theorem with K = {r∗}. �

Let B be a base of (W,S) of type B2p+1 or D2(2p + 1) for some p ≥ 1
satisfying conditions (1), (2), (3) of The Blow-Down Theorem with K = {r}.
We call r a sink for B. A element r of S may be a sink for more than one base
of (W,S). For example, A1 is a sink for the two bases of A1×D2(3)×D2(3). A
base may have more than one sink. For example, the base of A1×A1×D2(3)
has two sinks.

Lemma 5.2 Let B be a base of (W,S) of type B2p+1 or D2(2p+1) for some
p ≥ 1 that satisfies the hypothesis of the Blow-Down Lemma with sink r.
Let S ′ be the set of Coxeter generators obtained by blowing down S along B.
Let C be a base of (W,S) of type B2q+1 or D2(2q + 1) for some q ≥ 1 that
satisfies the conditions (1), (2), (3) of the Blow-Down Theorem with sink s.
If B 6= C and r 6= s, then C is a base of (W,S ′) that satisfies the conditions
(1), (2), (3) of the Blow-Down Theorem with sink s.
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Proof: Let B′ be the base of (W,S ′) obtained by blowing down B. Then
S and S ′ have the same basic subsets except for B and B′. Therefore C
is a base of (W,S ′). By the Blow-Down Theorem, W has a set of Coxeter
generators S ′′ such that C matches a base C ′′ of (W,S ′′) with |〈C〉| < |〈C ′′〉|.
Therefore C satisfies the conditions (1) and (2) of the Blow-Down Theorem.
As Odd(s) = {s}, we have that s 6∈ B. Therefore s ∈ S ′.

Let a be the element of S ′ that is not in S. Then a = r` with ` the longest
element of 〈B〉. If a 6∈ N(s), then N(s) = C ∪ C⊥ and {s} is a component
of C⊥ with respect to S ′, since s is a sink for C with respect to S. Suppose
a ∈ N(s). Then s ∈ N(r) by Lemma 8.3 of [5]. Hence s ∈ B⊥. Therefore
m(a, s) = 2. As B ∪ {r} ⊆ N(s), we have that B ∪ {r} ⊆ C ∪ C⊥. As
B 6= C, we have that B ⊆ C⊥. As Odd(r) = {r}, we have that r 6∈ C, and so
r ∈ C⊥. Therefore a ∈ C⊥. Hence N(s) = C ∪ C⊥ and {s} is a component
of C⊥ with respect to S ′. Thus C satisfies condition (3) of the Blow-Down
Theorem, with sink s, with respect to S ′. �

Lemma 5.3 Let B be a base of (W,S) of type C2p+1 or D2(4p+2) for some
p ≥ 1 along which (W,S) can be blown up. Let S ′ be the set of Coxeter
generators obtained by blowing up S along B. Let C be a base of (W,S) of
type B2q+1 or D2(2q+1) for some q ≥ 1 that satisfies the conditions (1), (2),
(3) of the Blow-Down Theorem with sink s. If B 6= C, then C is a base of
(W,S ′) that satisfies the conditions (1), (2), (3) of the Blow-Down Theorem
with sink s.

Proof: Let B′ be the base of (W,S ′) obtained by blowing up B. Then
S and S ′ have the same basic subsets except for B and B′. Therefore C
is a base of (W,S ′). By the Blow-Down Theorem, W has a set of Coxeter
generators S ′′ such that C matches a base C ′′ of (W,S ′′) with |〈C〉| < |〈C ′′〉|.
Therefore C satisfies the conditions (1) and (2) of the Blow-Down Theorem.
As Odd(s) = {s}, we have that s 6∈ B. Therefore s ∈ S ′.

Let z be the longest element of 〈B〉. If B is of type C2p+1, let a, b, c be the
elements of B such that m(a, b) = 4 and m(b, c) = 3. Then N(a) = B ∪ B⊥
by Theorem 8.2 of [5]. If B is of type D2(4p + 2), let B = {a, b} with
N(a) = B ∪ B⊥. In either case, let d = aba. Then d and z are the elements
of S ′ that are not in S by Theorems 8.4 and 8.8 of [5].

If d and z are not elements of N(s), then N(s) = C ∪ C⊥ and {s} is a
component of C⊥ with respect to S ′, since s is a sink for C with respect to
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S. Suppose d or z is an element of N(s). Then s ∈ N(a) = B ∪ B⊥ by
Lemma 8.3 of [5]. Hence s ∈ B⊥. Therefore m(d, s) = 2 and m(z, s) = 2.
As B ⊆ N(s), we have that B ⊆ C ∪C⊥. As B 6= C, we have that B ⊆ C⊥.
Therefore {d, z} ⊆ C⊥. Hence N(s) = C ∪ C⊥ and {s} is a component
of C⊥ with respect to S ′. Thus C satisfies condition (3) of the Blow-Down
Theorem, with sink s, with respect to S ′. �

Theorem 5.4 (Rank Spectrum Theorem) Let {B1, . . . , Bk}, k ≥ 0, be a
maximal set of bases of (W,S) of type B2p+1 or D2(2p + 1) for some p ≥ 1
that satisfy the conditions of the Blown-Down Theorem with distinct sinks
{s1, . . . , sk}. Let C1, . . . , C`, ` ≥ 0, be the bases of (W,S) of type C2q+1 or
D2(4q+ 2) for some q ≥ 1 along which (W,S) can be blown up. Then the set
of all possible ranks of W is |S| − k, . . . , |S|+ `.

Proof: By Lemmas 5.1 and 5.2, we get a sequence of Coxeter generators
S0, . . . , Sk for W such that S = S0 and Si is obtained from Si−1 by twisting
Si, as in Theorem 3.7, and then blowing down along a base conjugate to Bi

for each i = 1, . . . , k. Then Sk has minimum rank over all sets of Coxeter
generators of W by Theorem 4.1 and Lemma 5.3. In particular, the mininum
rank of W is |S| − k.

Let ai ∈ Ci be the element of Ci, for i = 1, . . . , ` that is removed in the
blowing up process. As N(ai) = Ci ∪ C⊥i for each i, we have that Ci is the
only base of (W,S) that contains ai for each i. Then we have a sequence
of Coxeter generators S(0), . . . , S(`) for W such that S = S(0) and S(i) is
obtained from S(i−1) by blowing up S(i) along Ci for each i = 1, . . . , `. Then
S(`) has maximum rank over all sets of Coxeter generators of W by Theorem
9.1 of [5]. In particular, the maximum rank of W is |S|+ `. Thus the set of
all possible ranks of W is |S| − k, . . . , |S|+ `. �

The numbers k and ` in the Rank Spectrum Theorem can be determined
by inspecting the presentation diagram of (W,S). For example, k = ` = 1
for the system A1 ×D2(3)×D2(6).
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