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Abstract

Coxeter groups have presentations 〈S : (st)mst∀s, t ∈ S〉 where
for all s, t ∈ S, mst ∈ {1, 2, . . . ,∞}, mst = mts and mst = 1 if
and only if s = t. A fundamental question in the theory of Coxeter
groups is: Given two such “Coxeter” presentations, do they present
the same group? There are two known ways to change a Coxeter
presentation, generally referred to as twisting and simplex exchange.
We solve the isomorphism question for Coxeter groups with an even
Coxeter presentation (one in which mst is even or ∞ when s 6= t).
More specifically, we give an algorithm that describes a sequence of
twists and triangle-edge exchanges that either converts an arbitrary
finitely generated Coxeter presentation into a unique even presentation
or identifies the group as a non-even Coxeter group. Our technique
can be used to produce all Coxeter presentations for a given even
Coxeter group.

Subject Classification: Primary 20F55, Secondary 20E34

1 Introduction.

A Coxeter system is a pair (W, S) such that W is a group with Coxeter
presentation 〈S : (st)mst∀s, t ∈ S〉 where for all s, t ∈ S, mst ∈ {1, 2, . . . ,∞},
mst = mts and mst = 1 if and only if s = t. (The relation (st)∞ means
that st has infinite order in W .) Note that all s ∈ S are order 2 and that if
mst = 2 then s and t commute.
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There are two diagrams associated to a Coxeter group that appear regu-
larly in the literature. The diagrams VD(W, S) and VF (W, S) for the Coxeter
system (W, S) are labeled graphs with vertex set S. In VF there is an edge
labeled mst between distinct vertices s and t if and only if mst 6= ∞. In
VD there is a edge labeled mst between distinct vertices s and t if and only
if mst 6= 2. The vertices of components of VD generate factors of a direct
product decomposition of W and the vertices of components of VF generate
factors of a free product decomposition of W . While it is traditional to call
VD the Coxeter graph or Coxeter diagram for (W, S), in this paper we only
consider VF diagrams and we call such diagrams, Coxeter diagrams or simply
diagrams.

A Coxeter presentation is even if all mst for s 6= t are even or ∞. In this
case we call the corresponding Coxeter group and diagram even.

A Coxeter group is rigid if any two Coxeter presentations for this group
are isomorphic presentations. In [1], Bahls shows that any Coxeter group
can have at most one even presentation. In § 5, we classify the even rigid
Coxeter groups. Rigidity and a variety of analogous notions are designed to
give insight into a fundamental problem in the theory of Coxeter groups.

The Coxeter Isomorphism Question: Given two Coxeter presenta-
tions, do they present isomorphic groups?

The Coxeter presentations 〈x, y, z : x2, y2, z2, (xy)3, (xz)2, (yz)2〉 and 〈a, b :
a2, b2, (ab)6〉 present isomorphic groups, but only the latter is even. In par-
ticular, the Coxeter group presented here is not rigid.

In this paper we produce an algorithm to decide if an arbitrary Coxeter
presentation presents a finitely generated even Coxeter group. Furthermore,
we can decide if two (finite) Coxeter presentations present the same even
Coxeter group. This solves the even Coxeter isomorphism question.

Our Theorem 7 is used by Patrick Bahl’s in his thesis [1] to show that
there is an unique even Coxeter presentation for a finitely generated even
Coxeter group. We in turn use Bahl’s result in the final stage of our al-
gorithm to decide if two finite Coxeter presentations present the same even
Coxeter group. The proof of a vital combinatorial lemma hinges on the vi-
sual decomposition theorem of [7]. A critical tool in our algorithm is that of
twisting in Coxeter diagrams. This method of producing different Coxeter
diagrams (and different presentations) for the same Coxeter group was intro-
duced by N. Brady, J. McCammond, B. Mühlherr and W. Neumann in [5].
At this time the only known way to produce different Coxeter diagrams for
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a given Coxeter group is by twisting or simplex exchange.
Our main theorem is the following:

Theorem 1 Suppose (W, S) is an even Coxeter system and V ′ is a Coxeter
diagram for W with odd labeled edge [xy]. Then there is a diagram V ′′ for W
obtained from V ′ by first performing a twist around [xy] and then replacing
a triangle [xyu] by an edge with even label.

The proof of our theorem specifically defines the set to be twisted and
a vertex u so that triangle [xyu] may be replaced by an even edge. The
resulting diagram for W has (one) fewer odd labeled edges than the original.
Thus we have a simple algorithm to change a non-even diagram for a finitely
generated even Coxeter group W into the unique even diagram for W .

If (W, S) is an arbitrary Coxeter system with diagram V containing an
odd edge [xy], then either the described twist and triangle replacement can be
carried out or W is not an even Coxeter group. Hence one can decide if a given
finitely generated Coxeter group is even or not. Given two finitely generated
Coxeter systems (W1, S1) and (W2, S2) with diagrams V1 and V2 respectively,
one can decide if W1 and W2 are isomorphic even Coxeter groups. Simply
apply our algorithm repeatedly to V1 and V2 until either an odd edge cannot
be replaced by an even one using our technique (in which case one of the
groups is not even), or until all odd edges are replaced in both diagrams. In
the later scenario, Bahls’ even rigidity result implies that the resulting even
diagrams are diagram isomorphic if and only if W1 and W2 are isomorphic.

It is also evident that given a Coxeter system for a finitely generated even
Coxeter group, one can use the methods of this paper to produce all other
Coxeter systems for that group.

2 Preliminaries.

In this section, we describe: twisting in Coxeter diagrams as introduced in
[5], visual decompositions of Coxeter groups [7], and techniques to construct
quotient maps of Coxeter groups that match quotient maps of Coxeter dia-
grams.

(1) Twisting. In an arbitrary Coxeter system (W, S), twisting makes sense
for any subset of S that generates a finite subgroup of W . We only need twist
around pairs of distinct vertices x, y ∈ S such that mxy is an odd integer.
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Suppose V is a Coxeter diagram for the Coxeter system (W, S). Given
x, y ∈ S, define lk(x) (the “link” of x) to be the set of all vertices of V that
are connected to x by an edge. Define lk2(x) (the “2-link” of x) to be the set
of all vertices of V that are connected to x by an edge labeled 2. Define st(x)
(the “star” of x) to be lk(x)∪ {x}. Define lk2(x, y) (the “2-link” of x and y)
to be lk2(x) ∩ lk2(y), i.e. the set of all vertices in V that are connected to
both x and y by an edge labeled 2. So each s ∈ lk2(x, y) commutes with both
x and y. Denote b−1ab by ab. Now suppose x and y are distinct elements
of S and mxy = 2n + 1. Let d be the (unique) element of length 2n + 1 in
〈x, y〉. Note that xd = y and yd = x. Suppose U ⊂ S − {x, y} and for each
edge [us] such that s ∈ S − (U ∪ {x, y}) and u ∈ U , s ∈ lk2(x, y). Then
the twisting theorem of [5] implies that (W, S ′) is a Coxeter system, where
S ′ = Ud ∪ (S −U) and a diagram for (W, S ′) is obtained from V by changing
each edge of V that connects a vertex u ∈ U to a vertex v ∈ {x, y} to connect
instead from u to vd, and leaving other edges unchanged.

(2) Visual Decompositions of Coxeter Groups. Suppose V is the dia-
gram for a Coxeter system (W, S) and some subset C of S separates vertices
of V , then a simple examination of presentations, shows that W decomposes
as 〈A〉 ∗〈C〉 〈B〉, where A ∪ B = S, A is C union the vertices of some set of
components of V − C and B is C ∪ (S − A). This type of decomposition
extends in a natural way to graphs of groups decompositions of W . Such
decompositions are called “visual” decompositions of W since they are easily
seen in V and the main theorem of [7] states that given any graph of groups
decomposition of W there is a visual decomposition that basically refines the
given decomposition. More specifically, any vertex (edge) group of the visual
decomposition of W is a subgroup of a conjugate of a vertex (edge) group of
the given decomposition. For our purposes this result is particularly useful
when we have two different diagrams for W so that visual decompositions
with respect to the two diagrams can be played against one another.

(3) Coxeter Quotients. Suppose (W, S) is a Coxeter system with diagram
V . If T ⊂ W then let N(T ) be the normal closure of T in W . If T ⊂ S then
W/N(T ) is a Coxeter group with diagram obtained from V by removing the
vertices of T and all vertices that connect to a vertex of T by a path with
all odd labeled edges. In this paper, we often consider a diagram for an even
Coxeter system (W, S) and another diagram V ′ for the system (W, S ′) where
V ′ may have odd labeled edges. Our Theorem 7 describes a 1-1 correspon-
dence between the set of edges with label > 2 in V and those edges with
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label > 2 in V ′. If an edge [xy] of V ′ has odd label and [xy] corresponds
to the edge [ab] of V , then in fact, the cyclic group 〈xy〉 is conjugate to the
group 〈(ab)2〉. A diagram for W/N(xy) is obtained from V ′ by collapsing
the edge [xy] to a point. If [xyu] is a triangle then our Proposition 2 states
that [xu] and [yu] are labeled 2. Hence additional “collapsing” in V ′ is not
generated by the collapsing of [xy] (see Lemma 8). A diagram for W/N(xy)
is obtained from V by changing the label on [ab] to 2. In this way, we can be
sure that W/N(xy) is an even Coxeter group with a diagram that preserves
potentially desirable aspects of V ′. Other quotients of diagrams for (W, S)
and (W, S ′) are obtained when we find subsets σ ⊂ S and σ′ ⊂ S ′ such that
〈σ〉 and 〈σ′〉 are conjugate. If f : 〈σ′〉 → Z2(= {−1, 1}) is a homomorphism,
and N is the normal closure in W of ker(f), then Lemma 18 describes how
to obtain an even diagram for W/N from V . Understanding how quotients
of W correspond to quotients of two different diagrams for W is crucial to
the success of our arguments in this paper.

3 A Reduction and Outline

First some terminology. An edge loop in a diagram that does not cross itself
is a circuit. An edge connecting two non-consecutive vertices of a circuit is
a chord.

The proof of the main theorem can be easily derived from the following
three propositions.

Proposition 2 Suppose W is a finitely generated even Coxeter group. If
V ′ is a diagram for W with odd labeled edge [xy] then any triangle of V ′

containing [xy] has two edges labeled 2.

Proposition 3 Suppose V is an even diagram for the Coxeter group W , [xy]
is an odd edge in a diagram V ′ for W and every edge [xc] of V ′ for c 6= y is
such that c ∈ lk2(x, y). Then there exists a vertex u ∈ lk2(x, y) such that if
[uc] is an edge with c 6∈ {x, y}, then [uc] has label 2, c ∈ lk2(x, y), and any
simplex σ′ of V ′ that contains u (respectively x and y) and is such that 〈σ′〉
is conjugate to 〈σ〉 for σ a simplex of V , contains {x, y} (respectively u).

Proposition 4 If W is a finitely generated even Coxeter group and V ′ is a
diagram for W , then every circuit in V ′ of length at least 4 and containing
an odd labeled edge, has a chord.
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The proofs of these propositions will be given in Section 4 (Proposition 2),
Section 6 (Proposition 3), Section 7 (base case of Proposition 4) and Section
8 (inductive step of Proposition 4).

In the remainder of this section we apply these three propositions to
prove:

Proposition 5 Suppose W is a finitely generated even Coxeter group and
V ′ is a diagram for W with odd labeled edge [xy] such that every circuit
containing [xy] of length ≥ 4 has a chord, then after a twist, a triangle
containing [xy] can be replaced by an edge with even label. (In particular, the
main theorem is reduced to Proposition 4.)

Proof: Our hypothesis and Proposition 2 imply:

Claim 5.1 Every path in V ′ from x to y either contains the edge [xy] or
intersects lk2(x, y). �

Suppose U is the union of all components C of V ′ − ({x, y} ∪ lk2(x, y)) such
that there is an edge from x to C. Then by Claim 5.1, there is no edge from y
to U . If there is a vertex t ∈ V ′− ({x, y}∪U) that connects to U by an edge,
then t ∈ lk2(x, y) and so U can be twisted around {x, y}, to form the diagram
V̂ ′ for W . Note that after twisting, vertices of U that were connected to x
are replaced in V̂ ′ by vertices that connect to y instead. I.e. in V̂ ′, each edge
(other than [xy]) containing x has its other vertex in lk2(x, y).

Proposition 3 implies that the triangle [xyu] of V̂ ′ can be replaced by the
edge [yb] with label 2 times the order of xy, finishing Proposition 5. More
specifically, form the diagram Ṽ ′ from V̂ ′ by removing the vertices x and u,
adding a vertex b and edge from y to b with label 2 times the order of xy,
and for each vertex c of lk(x)−{u, y} = lk(u)−{x, y}, add an edge labeled 2
from c to b. So V̂ ′ is a diagram for W satisfying the conclusion of Proposition
5 and Ṽ ′ has fewer odd edges than V ′. •

4 A Matching Theorem and the Proof of Propo-

sition 2

We show that given two diagrams for an even Coxeter group, there is a
bijection between the set of edges with labels greater than 2 of one diagram
and that set of edges of the other diagram. The bijection is such that the

6



commutator subgroups of the groups generated by the vertices of matching
edges are conjugate. This result is then used to prove Proposition 2. Through
the remainder of the paper we rely on [4] as a reference for basic facts about
Coxeter groups.

If V is a diagram for a Coxeter group W , then a simplex σ is spherical
if 〈σ〉 is a finite subgroup of W and σ is maximal spherical if σ is spherical
and properly contained in no other spherical simplex. Maximal spherical
simplices of V give (up to conjugation), the maximal finite subgroups of W .
Hence if V and V ′ are diagrams for W and σ is a maximal spherical simplex
of V , then there is a maximal spherical simplex σ′ of V ′ such that 〈σ〉 is
conjugate to 〈σ′〉. In [7], the groups generated by maximal simplices of V are
shown to be (up to conjugation) the maximal FA subgroups of W . Hence
if σ is a maximal simplex of V , then there is a maximal simplex σ′ of V ′

such that 〈σ〉 is conjugate to 〈σ′〉. In [9], Serre shows that, 〈σ〉 is FA for any
simplex σ of V . In particular, for any graph of groups decomposition of W ,
〈σ〉 is a subgroup of a conjugate of a vertex group of the decomposition.

If a triangle [xyz] in a diagram V for a Coxeter group has edge labels
(a, b, c), then 〈x, y, z〉 is finite if and only if 1

a
+ 1

b
+ 1

c
> 1. A result of Tits

(see [4]), implies that if A is a finite subgroup of a Coxeter group W , and
(W, S) is a Coxeter system, then there is a subset T of S such that 〈T 〉 is
finite and A is a subgroup of a conjugate of 〈T 〉. If (W, S) is even, and T ⊂ S
is such that 〈T 〉 is finite, then 〈T 〉 decomposes as a direct product of groups
each factor of which is dihedral or Z2. It is straightforward to see that none
of the finite triangle groups (2,3,3), (2,3,4) and (2,3,5) are isomorphic to a
subgroup of a direct product of dihedral groups. Tits’ result then implies
that these finite triangle groups are not subgroups of an even Coxeter group.

Remark 1 For any integer n, Dn ≡ 〈u, v : u2, v2, (uv)n〉. The commutator
subgroup of Dn is generated by uv if n is odd and by (uv)2 if n is even.
We have D2(2k+1) ≡ 〈u, v : u2, v2, (uv)2(2k+1)〉 = 〈u, vuv〉 × 〈(uv)2k+1〉 ≡
D2k+1 × Z2. In this case, the commutator subgroups of 〈u, v〉 and 〈u, vuv〉
are equal and generated by (uv)2. If n is not of the form 2(2k+1) then Dn is
irreducible (with respect to direct product decompositions). There are other
finite “basic” Coxeter groups that decompose as a direct product of Z2 and
another Coxeter group, but none of these are subgroups of an even Coxeter
group.

Lemma 6 Suppose the group G decomposes as direct products Πq
i=1Ai =

Πq
i=1Bi where each Ai and Bi is either Z2 or Dk for k 6= 2(2m + 1), (i.e.
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Dk is an irreducible dihedral group). If Bi = 〈x, y : x2, y2, (xy)n〉 then there
exists a unique integer j such that Aj = 〈u, v : u2, v2, (uv)n〉 and

(i) For odd n, there exists a p such that xy = (uv)p and 〈xy〉 = 〈uv〉

(ii) For even n, there exists a p and t such that xy = (uv)pt where t has
order ≤ 2 and commutes with u and v and 〈(xy)2〉 = 〈(uv)2〉.

In particular, the commutator subgroups of Bi and Aj agree.

Proof: In either case, for all t ∈ G, txyt−1 = (xy)±1. Say xy = a1 · · ·aq

where ai ∈ Ai. Since xy does not have order 2, we may assume that a1 has
order greater than 2. Say A1 = 〈u, v : u2, v2, (uv)m〉. Then a1 = (uv)p and
(xy)±1 = u(xy)u = a−1

1 a2 · · ·aq. As a1 6= a−1
1 , we must have ai = a−1

i for all
i ≥ 2. If xy has odd order, then each ai is trivial or has odd order. In this
case, ai = 1 for all i ≥ 2 and xy = a1. If n is even then xy = a1t where t has
order 2 and commutes with u and v.

In any case, the cyclic group 〈xy〉 is normal in G and the quotient of G
by 〈xy〉 has irreducible decomposition obtained from Πq

j=1Bj by replacing Bi

by Z2. Suppose n is odd, and a1 = (uv)p. By the Krull-Schmidt theorem
(see [10]), 〈(uv)p〉 must have index 2 in A1 and so 〈(uv)p〉 = 〈uv〉 as desired.
This implies that uv and xy = (uv)p have the same order and so m = n.

Now suppose n is even. In this case, (xy)2 = a2
1 = (uv)2p. The quotient of

G by the normal subgroup 〈(xy)2〉 has decomposition obtained from Πq
j=1Bj

by replacing Bi by Z2 ×Z2. Hence the quotient of A1 by 〈(uv)2p〉 is Z2 ×Z2.
If m is odd, then Dm does not map onto Z2 × Z2 so uv has even order. If
(uv)2 6∈ 〈(uv)2p〉, then 1, u, uv, (uv)2 and (uv)3 would represent 5 different
(uv)2p-cosets of 〈u, v〉 which is impossible. Hence 〈(uv)2p〉 = 〈(uv)2〉. This
implies that xy and uv have the same order and so m = n.

In either case 〈(xy)2〉 = 〈(uv)2〉. The uniqueness follows by construction.
•

Remark 2 If V is a diagram for a Coxeter system (W, S) and [ab] is an
even labeled edge of V , then a simple examination of presentations shows
that W/N((ab2)) (the quotient of W by the normal closure of {(ab)2}) is a
Coxeter group with diagram obtained from V by changing the label of [ab]
to 2 . The subgroup 〈S − {t}〉 for t ∈ {a, b} injects under the quotient.

Theorem 7 Suppose W is a finitely generated even Coxeter group with dia-
grams V and V ′ (not necessarily even). There is a unique bijection α between
the edges [xy] of V ′ with label > 2 and the edges [ab] of V with label > 2 such

8



that if α([xy]) = [ab], then the commutator subgroup of 〈x, y〉 is conjugate to
the commutator subgroup of 〈a, b〉.

Proof: Observe that the Theorem can be reduced to the case when all
edges of V have even labels. So we make that assumption. Let σ′ be a
maximal spherical simplex of V ′ containing [xy] and σ the maximal spherical
simplex of V such that 〈σ′〉 is conjugate to 〈σ〉. By conjugating, we assume
〈σ′〉 = 〈σ〉. Let e′1, . . . , e

′
n be the edges of 〈σ′〉 not labeled by 2. Then 〈σ′〉

naturally decomposes as a direct product A′ ∼= Πm
i=1A

′
i and for i ∈ {1, . . . , n},

A′
i is the dihedral group Dki

where ki is the label of e′i when e′i has odd label
or label a multiple of 4, and ki is half the label of e′i if e′i has label two times
an odd. So if e′i = [xy] has label 2 times an odd integer q, then q = ki and
D2q = 〈x, y〉 decomposes as in Remark 1 as Z2 × Dq = 〈(xy)q〉 × 〈x, yxy〉.
All other A′

j are copies of Z2. Similarly decompose 〈σ〉 as the direct product
A ∼= Πm

i=1Ai. (Note that the number of factors in the decompositions of 〈σ〉
and 〈σ′〉 are the same and there is a bijection φ of the set of A′

i to the set of
Ai such that φ(A′

i) is isomorphic to A′
i, by Krull-Schmidt.)

Now apply Lemma 6 to get a map α from the edges with label > 2 of V ′

to those of V . If [ab] and [cd] are distinct edges of V with labels > 2, then
〈(ab)2〉 is not conjugate to 〈(cd)2〉 since 〈(cd)2〉 injects under the quotient of
W by N((ab)2) (see Remark 2). Hence there is exactly one choice for α. By
considering maximal spherical simplices in V , we see that α is onto.

It remains to show that α is injective. I.e. if [xy] and [st] are edges
of V ′ then the commutator subgroup of 〈x, y〉 and 〈s, t〉 are not conjugate.
Otherwise, we see that for some w ∈ W , 〈x, y〉 ∩ w〈s, t〉w−1 contains the
commutator subgroup of 〈x, y〉. Now, 〈x, y〉 ∩ w〈s, t〉w−1 = u〈T 〉u−1 for
T ⊂ {x, y} and u ∈ 〈x, y〉. Hence T = {x, y}. Let S ′ be the vertex set of V ′

so V ′ is the diagram of the Coxeter system (W, S ′). It is well understood [6]
when 〈x, y〉 can be conjugate to 〈s, t〉 for {x, y} 6= {s, t}. In particular, there
must be sets Ti ⊂ S for i ∈ {1, . . . , n} and {si, ti, si+1, ti+1} ⊂ Ti such that
〈Ti〉 is finite {s, t} = {s1, t1}, {si, ti} = ai{si+1, ti+1}a

−1
i for some ai ∈ 〈Ti〉

and {x, y} = {sn+1, tn+1}. But as 〈T1〉 has a direct product decomposition
such that each factor is dihedral or Z2, {s, t} cannot be conjugated off of
itself by an element of 〈T1〉. Hence α is injective. •

In the preprint [8], we generalize Theorem 7 from even Coxeter groups
to general Coxeter groups and from dihedral groups to noncyclic, maximal,
finite, irreducible, visual subgroups.
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Proof of Proposition 2: Suppose W is a finitely generated even Coxeter
group, V ′ is a diagram for W with odd labeled edge [xy] and [xyz] is a
triangle in V ′. We wish to show this triangle has two edges labeled 2. Let V
be an even diagram for W . Suppose [xy] is labeled 2k+1 and corresponds to
the edge [ab] of V . Also assume that [xz] is labeled m > 2 and corresponds
to [cd] 6= [ab]. Then either [zy] is labeled 2, or [zy] corresponds to [ef ] 6∈
{[cd], [ab]}. Observe that N(xy) = N((ab)2). We consider the quotient map
q : W → W/N(xy) and observe that 〈c, d〉 injects under q. (A diagram for
W/N(xy) = W/N((ab2)) is obtained from V by changing the label of [ab] to
2.)

If [zy] is labeled 2, then (xz)2 ∈ ker(q). Either 〈xz〉 is conjugate to 〈(cd)2〉
and (cd)2 has odd order, or 〈(xz)2〉 is conjugate to 〈(cd)2〉. In the first case,
(cd)4 is in ker(q) which is impossible. In the second case, (cd)2 is in ker(q)
which is also impossible. We conclude [zy] does not have label 2.

If [yz] corresponds to [ef ], then again let q : W → W/N(xy) = W/N((ab)2)
be the quotient map. We have q(zx) = q(zy). If the labels of [xz] and [zy]
are odd, then q(〈(cd)2〉) = q(〈xz〉) = q(〈yz〉) = q(〈(ef)2〉). But this is
impossible as q(〈(cd)2〉) 6= q(〈(ef)2〉) in W/N((ab)2). If the labels of [xz]
and [zy] are even, then q(〈(cd)2〉) = q(〈(xz)2〉) = q(〈(zy)2〉) = q(〈(ef)2〉)
which is again impossible. If the label of [xz] is odd and the label of [zy]
is even then q(〈(cd)4〉) = q(〈(xz)2〉) = q(〈(zy)2〉) = q(〈(ef)2〉). Again,
q(〈(cd)4〉) 6= q(〈(ef)2〉) in W/N((ab)2). Similarly if the label of [xz] is even
and the label of [zy] is odd. •

If [xy] is an edge in a general diagram of a Coxeter group W , the quotient
group W/N(xy) is a Coxeter group with diagram obtained by first collapsing
the edge [xy] and then collapsing other edges and identifying other pairs of
edges as a consequence of the collapse of [xy]. As a direct consequence of
Proposition 2 we have the following result that will be useful throughout the
remainder of the paper:

Lemma 8 Suppose W is a finitely generated even Coxeter group and V ′ is a
diagram with odd labeled edge [xy]. Then the diagram for W/N(xy) obtained
from V ′ by collapsing the edge [xy] is such that no other edge of V ′ is collapsed
and the only edges of V ′ that are identified are those in a triangle containing
[xy]. •
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5 Classifying the Rigid Even Coxeter Groups

In this section we develop several propositions and lemmas, and end with a
proof of Theorem 17, a classification of the rigid even Coxeter groups. Several
of our arguments are based on minimal counterexample ideas. The following
definition is used extensively. For a Coxeter diagram V , let T (V ) be the
product of all edge labels of V .

The Deletion Condition for Coxeter groups implies the following:

Lemma 9 Suppose (W, S) is a Coxeter system, Γ the Cayley graph of W
with respect to S and T ⊂ S. If u and v are vertices of Γ (i.e. elements of W ),
then there is a unique closest vertex w of the coset v〈T 〉 to u. Furthermore,
if α is a geodesic from u to w, and β is a geodesic at w in the letters of T ,
then αβ is geodesic. •

Proposition 10 Suppose (W, S) is an even Coxeter system, a, b ∈ S and ab
has finite order > 2. If y ∈ W is such that y conjugates (ab)2 to (ab)±2 then
y can be written geodesically as uv where u ∈ 〈a, b〉 and v ∈ lk2(a, b).

Proof: We first show that y conjugates 〈a, b〉 to itself. We have (ab)2 ∈
〈a, b〉 ∩ y〈〈a, b〉y−1 = v〈T 〉v−1 for T ⊂ {a, b} and v ∈ 〈a, b〉. If T is a single
element, then (ab)2 is conjugate to a or b. This is impossible as (ab)2 has
even length. Hence T = 〈a, b〉 and so 〈a, b〉 = y〈a, b〉y−1.

Let Γ be the Cayley graph of W with respect to S. Write y = x1y1x2

where xi ∈ 〈a, b〉 and y1 is the shortest element of the double coset 〈a, b〉y〈a, b〉.
We show that y1 commutes with a and b. If α is a geodesic in Γ from 1 to y1

then aα, bα, αa and αb are geodesic by the choice of y1. Hence by Lemma 9 if
β1 and β2 are geodesic paths at 1 and y1 respectively, in the letters a, b, then
the paths (β−1

1 , α) and (α, β2) are geodesic. Now, since y1ay−1
1 and y1by

−1
1

are in 〈a, b〉 they must both be of length 1. I.e. (since (W, S) is even) y1

commutes with a and b. Furthermore, y = x1x2y1. Results in [3] and [2]
imply y1 is a product of an element of 〈a, b〉 and an element of lk2(a, b). •

Remark 3 For matching edges [xy] and [ab], Theorem 7 concludes that xy
or (xy)2 is conjugate to (ab)p or (ab)2p. Hence if c is the conjugating element,
then cabc−1 commutes with (xy)2 and by Proposition 10, cabc−1 = uv for
u ∈ 〈x, y〉 and v ∈ lk2(x, y). Similarly, c−1xyc is conjugate to u′v′ for u′ ∈
〈a, b〉 and v′ ∈ lk2(a, b). Hence, certain cases included under Theorem 7 can
be improved to say: (xy) is conjugate to (ab)pt, where t commutes with a
and b and t2 = 1.
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Proposition 11 Suppose (W, S) is an even Coxeter system with diagram V ,
(W, S ′) is another Coxeter system with diagram V ′, [xy] and [yz] are distinct
edges of V ′ with labels > 2. If [ab] and [cd] are edges of V which correspond
to [xy] and [yz] respectively, then {a, b}∩{c, d} contains exactly one element.
I.e. The edges [ab] and [cd] share exactly one vertex.

Proof: Suppose that [xy] has label k > 2 and [yz] has label m > 2. Observe
that [ab] is labeled l where l = k or l = 2k and [cd] by n where n = m or
n = 2m. The set {a, b} ∩ {c, d} 6= {a, b} by the uniqueness of pairing of
Theorem 7. Assume that {a, b} ∩ {c, d} = ∅. Now xy or (xy)2 is equal to
w(ab)2pw−1 for some w ∈ W . By conjugation we may assume that either yz
or (yz)2 is equal to (cd)2r.

Claim 11.1 Not both a and b commute with both c and d.

Proof: Otherwise there is a maximal spherical simplex σ containing a, b, c
and d. The group 〈σ〉 is conjugate to 〈σ′〉 for σ′ a simplex of V ′ containing
x, y and z, which is impossible as 〈x, y, z〉 is not finite. �

Consider the retraction α : W → 〈a, b, c, d〉 ≡ G with kernel N(S −
{a, b, c, d}).

Claim 11.2 Either a or b is an element of lk2(c, d) and either c or d is an
element of lk2(a, b).

Proof: Let α(x) ≡ x̄, α(y) ≡ ȳ, α(z) ≡ z̄ and α(w) ≡ w̄. As (ab)2p =
w−1(xy)w or w−1(xy)2w, Proposition 10 implies w̄−1ȳw̄ = u1v1, where u1 ∈
〈a, b〉 and v1 ∈ lk2(a, b) (where lk2 is taken in 〈a, b, c, d〉), and ȳ = u2v2 where
u2 ∈ 〈c, d〉 and v2 ∈ lk2(c, d). Note that v1 = c or d or 1 and v2 = a or b or 1.
If v2 = 1, then ȳ ∈ 〈c, d〉. The element w̄−1ȳw̄ conjugates (ab)2 to (ba)2. As
ȳ (∈ 〈c, d〉) is in the kernel of the retraction of 〈a, b, c, d〉 to 〈a, b〉 (with kernel
N({c, d})), this is impossible unless (ab)2 = (ba)2. If ab has order 4, then
xy has order 4 and Remark 3 implies xyt = w(ab)qw−1 where t has order 2
and commutes with x and y. In this case we see that w−1ȳw conjugates ab
to ba. Again this is impossible as ȳ ∈ 〈c, d〉 is in the kernel of a retraction of
〈a, b, c, d〉 to 〈a, b〉 and ab 6= ba. Similarly, v1 6= 1. �

Without loss, we assume that a ∈ lk2(c, d) and c ∈ lk2(a, b). (See Figure
1.)

Recall, T (V ′) is the product of the edge labels of V ′. Assume that V ′ is
a minimal (under T ) counterexample to Proposition 11.
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Claim 11.3 There is no edge [bd].

Proof: Otherwise, [bd] has label > 2 by Claim 11.1. If the edge [st] of
V ′ corresponds to [bd] and st has even label 2k, then [bd] has label 2k and
W/N((bd)2) is a smaller counterexample to our proposition. Hence we may
assume that [st] has odd label. By Proposition 2, {s, t} 6= {x, z}, and by
Lemma 8, W/N(st) = W/N((bd)2) is a smaller counterexample. �

Claim 11.4 There is no edge [xz].

Proof: Otherwise, let σ′ be a maximal simplex of V ′ containing the triangle
[xyz]. By [7], there is a simplex σ of V such that 〈σ′〉 is conjugate to 〈σ〉.
Thus, {a, b, c, d} ⊂ σ contradicting Claim 11.3. �

Claim 11.5 In V ′, the only edges not labeled 2 are [xy], [yz].

Proof: By the minimality assumption, there are no edges of V ′ with even
label > 2. If [st] is distinct from [xy] and [yz], and with odd label, then the
quotient of W by N(st) gives a smaller counterexample by Lemma 8. �

Let S ′ be the vertex set of V ′. Let λ be the retraction of W to 〈x, y, z〉
with kernel N(S ′−{x, y, z}). Observe that the groups 〈b, c〉, 〈a, d〉, and 〈a, c〉
inject under λ, for otherwise (ab)2 or (cd)2 is in ker(λ) (see Figure 1) which
they are not.

Now 〈x, y, z〉 = 〈x, y〉 ∗〈y〉 〈y, z〉. A maximal simplex σ of V containing
{a, b, c} is such that 〈σ〉 is conjugate to a 〈σ′〉 for σ′ a maximal simplex of V ′.
Hence λ(〈a, b, c〉) is a subgroup of a conjugate of 〈x, y〉 or 〈y, z〉. As λ((ab)2)
is in the kernel of the quotient of 〈x, y, z〉 by N(xy), and 〈y, z〉 injects under
this quotient, λ(〈a, b, c〉) is a subgroup of a conjugate of 〈x, y〉. Similarly,
λ(〈a, c, d〉)is a subgroup of a conjugate of 〈y, z〉. Hence (simply consider edge
and vertex stabilizers of the Bass-Serre tree for 〈x, y〉 ∗〈y〉 〈y, z〉) λ(〈a, c〉) is

13



a

6

d

6
bc

6
x

zy

c

d

a

6

6

2 2 2 2 6

y

a x

c

3 3

Figure 2:

a subgroup of a conjugate of 〈y〉. But this is impossible as 〈y〉 has order 2.
This finishes the proof of Proposition 11. •

Example 1 Three diagrams for an even Coxeter group are shown in Figure
2. Isomorphisms between presentations determined by these diagrams are
given by:
a → a, c → c, d → d, x → bab and y → (ab)3 (a triangle/edge exchange) and
a → a, c → c, x → x, y → y and z → axadaxa (a twist of {d} around [ax]).
The correspondence of Proposition 7 between edges of the first and last di-
agram of Figure 2, match the adjacent edges [ac] and [ad] with the non-
adjacent edges [ac] and [xz], respectively.

Proposition 12 Suppose (W, S) is an even Coxeter system with diagram
V , (W, S ′) is another Coxeter system with diagram V ′, [ab] and [ac] are
distinct edges of V with labels > 2. If [xy] and [zv] are edges of V ′ which
correspond to [ab] and [ac] respectively, then either there is an odd edge path
in V ′ connecting a vertex of {x, y} and a vertex of {z, v}, or {x, y} ∩ {z, v}
contains exactly one element.

Proof: Suppose there is no odd edge path in V ′ with one vertex in {x, y}
and one vertex in {z, v}, {x, y}∩{z, v} = ∅, and V ′ is a minimal (over T (V ′))
such counterexample to our proposition.

Claim 12.1 The only edges of V ′ not labeled 2 are [xy] and [zv].

Proof: By the minimality of T (V ′), there is no edge of V ′ with a label that
is even and > 2, other than possibly [xy] and [zv]. Also by the minimality
of T (V ′) and Lemma 8 there is no edge of V ′ with odd label other than [xy]
or [zv]. �
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By Claim 12.1 and Theorem 7, the only edges of V not labeled 2 are
[ab] and [ac]. Let σ be a maximal spherical simplex of V containing {a, b}
and σ′ be a maximal spherical simplex in V ′ such that w̄〈σ′〉w̄−1 = 〈σ〉 for
some w̄ ∈ W . Then {x, y} ⊂ σ′. If neither z nor v is an element of σ′

then W/N(σ) = W/N(σ′) is a Coxeter group with diagram obtained from V
(respectively V ′) by removing the vertices of σ (respectively σ′). But one of
these diagrams has all edges labeled 2 and the other has an edge with label
> 2, which is impossible. We conclude that v or z is an element of σ′ and so
v or z is an element of lk2(x, y). Similarly, x or y is an element of lk2(z, v).
Say z ∈ lk2(x, y) and y ∈ lk2(z, v). See Figure 3.

Consider the retraction τ of W to 〈a, b, c〉 with kernel N(S − {a, b, c}).
By Theorem 7, {(xy)2, (zv)2} ∩ ker(τ) = ∅. Hence {x, y, z, v, zy, xz, yv} ∩
ker(τ) = ∅ (see Figure 3). There is no edge [bc] as every simplex of V ′ (and
hence every simplex of V ) is spherical. Observe that 〈a, b, c〉 = 〈a, b〉 ∗〈a〉
〈a, c〉. Note that τ(xy) has order > 2, and is an element of a conjugate of
〈a, b〉. Hence τ(xy) cannot be an element of distinct conjugates of 〈a, b〉, or
some conjugate of 〈a, c〉, since otherwise, (simply consider vertex and edge
stabilizers of the Bass-Serre tree for 〈a, b〉 ∗〈a〉 〈a, c〉) τ(xy) is an element of a
conjugate of 〈a〉, an order 2 group. Therefore, τ(〈x, y, z〉) is a subgroup of a
conjugate of 〈a, b〉 and τ(〈y, z, v〉) is a subgroup of a conjugate of 〈a, c〉. But
this implies (again consider vertex and edge stabilizers of the Bass-Serre tree
for 〈a, b〉 ∗〈a〉 〈a, c〉) that α(〈z, y〉) is a subgroup of a conjugate of 〈a〉. This is
impossible and the proof of the proposition is complete. •

The following result is used in [1], so we cannot use [1] to simplify the
proof.

Lemma 13 Suppose V is an even diagram for the finitely generated Coxeter
group W and V ′ is another diagram for W . If [abc] is a triangle of V having

15



at least two edges with label > 2, then the edges of [abc] with label > 2
correspond to edges with label > 2 of a triangle [xyz] of V ′.

Proof: Let σ be a maximal simplex of V containing [abc]. By [7], there is a
maximal simplex σ′ in V ′ such that 〈σ〉 is conjugate to 〈σ′〉. By Theorem 7
applied to σ and σ′ and the uniqueness conclusion of Theorem 7 applied to V
and V ′, σ′ contains the edges of V ′ corresponding to those of [abc] that have
label > 2. First we show the edges of σ′ with label > 2 and corresponding
to those of [abc] with label > 2 are mutually adjacent. If not, say [xy] and
[zv] are two such non-adjacent edges. By Proposition 12 (applied to the even
Coxeter group 〈σ〉) there is an odd labeled edge (in σ′) adjacent to [xy], but
this is impossible by Proposition 2.

If an edge of [abc] is labeled 2, we are finished. Otherwise, the edges of 〈σ′〉
corresponding to those of [abc] must have even labels by Proposition 2 and
either form a triangle or triad. If a triad is formed, then we may assume that
[ab] corresponds to [xy] in V ′, [bc] corresponds to [xz] and [ac] corresponds to
[xv]. Now assume that V is a minimal (with respect to T (V )) counterexample
to the Lemma. Then V = σ and V ′ = σ′. By minimality, every edge of V
except [ab], [bc] and [ac] has label 2. Similarly for V ′. In particular, V and
V ′ are even. By conjugation, we may assume that 〈(xy)2〉 = 〈(ab)2〉. As
x conjugates (ab)2 to (ba)2, Proposition 10 implies that, x = u1t1 where
u1 ∈ 〈a, b〉 and t1 ∈ lk2(a, b). Similarly, x = w2u2t2w

−1
2 where w2 ∈ W ,

u2 ∈ 〈b, c〉 and t2 ∈ lk2(b, c) and x = w3u3t3w
−1
3 where w3 ∈ W , u3 ∈ 〈a, c〉

and t3 ∈ lk2(a, c).
Now x ∈ (〈{a, b} ∪ lk2(a, b)〉) ∩ (w2〈{b, c} ∪ lk2(b, c)〉w

−1
2 ) ∩ (w3〈{a, c} ∪

lk2(a, c)〉w−1
3 ) = v〈T 〉v−1 where T ⊂ {a, b} ∪ lk2(a, b). Clearly, c 6∈ T . As

no conjugate of a is an element of w2〈{b, c} ∪ lk2(b, c)〉w
−1
2 , a 6∈ T . Simi-

larly, b 6∈ T . But then T is central in W , implying x is central, the desired
contradiction. •

Lemma 14 Suppose V is an even diagram for the finitely generated Coxeter
group W and V ′ is another diagram for W . If [xyz] is a triangle of V ′

having at least two edges with label > 2, then the edges of [xyz] with label > 2
correspond to edges with label > 2 of a triangle [abc] of V .

Proof: By Proposition 2 each edge of [xyz] has even label. Suppose V ′ is a
minimal (with respect to T (V ′)) counterexample. By Lemma 8, V ′ contains
no odd labeled edge, and so V ′ is even. Now apply Lemma 13. •
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Remark 4 Observe in each of the last two lemmas that if we begin with
a triangle with exactly one edge labeled 2, we do not conclude that the
corresponding triangle has an edge labeled 2. This can now be resolved by
combining the last two lemmas. More specifically, we see that if W is an
even Coxeter group, V and V ′ are diagrams for W and [abc] is a triangle of
V with only one edge with label 2, then there is a corresponding triangle
[xyz] of V ′ with only one edge labeled 2. If [abc] has no edge labeled 2 then
[xyz] has no edge labeled 2.

As a direct application of Lemma 13 and Lemma 14 we have an analogue
for Proposition 2.

Lemma 15 Suppose W is an even Coxeter group, V and V ′ are diagrams
for W , [xy] is an odd labeled edge of V ′ and [ab] the edge of V corresponding
to [xy]. Then any triangle containing [ab] has two edges labeled 2. •

Proposition 16 Suppose V is an even diagram for the finitely generated
Coxeter group W and V ′ is another diagram for W . If [xy] is an odd labeled
edge of V ′ and [ab] is the corresponding edge of V , then with the exception
of [ab], every edge adjacent to a is labeled 2 or every edge adjacent to b is
labeled 2.

Proof: Suppose [xy] has label 2k + 1. It suffices to show:

Claim 16.1 There is no edge path ([ca], [ab], [bd]) in V such that each edge
has label > 2.

Proof: Since [xy] has odd label, Lemma 15 implies the path ([ca], [ab], [bd])
does not form a triangle. Suppose that [ca] and [bd] correspond to [uv] and [st]
respectively in V ′. By Proposition 12, select a shortest path with odd labeled
edges, e1, . . . , en from {u, v} to {x, y}. Assume that ei = [xi−1xi] for all i.
If ej = [st], then a diagram V̄ ′ for W/N({x0x1, . . . , xj−2xj−1}) is obtained
from V ′ by collapsing each edge of the set {e1, . . . , ej−1}. The corresponding
diagram V̄ for W/N({x0x1, . . . , xj−2xj−1}), is obtained from V by replacing
each label of an edge corresponding to one of {e1, . . . , ej−1} by 2. In V̄ ′, [uv]
and [st] are adjacent, but [ca] and [bd] are not, contradicting Proposition
11. We conclude that [st] is not in {e1, . . . , en}. Similarly, if d1, . . . , dm is a
shortest odd labeled edge path from {x, y} to {s, t}, we may assume that [uv]
is not in {d1, . . . , dm}. Assume that di = [yi−1yi] for all i. A diagram Ṽ ′ is
obtained for the group W̃ ≡ W/N({x0x1, . . . , xn−1xn, xy, y0y1, . . . , ym−1ym})
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by collapsing the edges e1, . . . , en, [xy], d1, . . . , dm of V ′. Hence in Ṽ ′, [uv] and
[st] are adjacent. Let Ṽ be the diagram for W̃ obtained from V by changing
the edge labels of the edges of V corresponding to e1, . . . , en, [xy], d1, . . . , dm

to 2. In Ṽ , [ca] and [bd] are not adjacent, contradicting Proposition 11. � •

The following theorem classifies even rigid Coxeter groups.

Theorem 17 If V is an even diagram for the Coxeter group W then W has
a diagram that is not even if and only if there is an edge [ab] in V with label
2(2k + 1) for k > 0, such that with the exception of [ab], every edge of V
containing a is labeled 2 and if [ac] is such an edge, then there is an edge [bc]
with label 2.

Proof: If [ab] is an edge as described in the theorem, then 〈a, b : a2 =
b2 = (ab)2(2k+1) = 1〉 is isomorphic to the group 〈x, y, z : x2 = y2 = z2 =
(xz)2 = (yz)2 = (zy)2k+1 = 1〉 by the map extending x → a, y → bab and
z → (ab)2k+1. It is elementary to see that the edge [ab] in V can be replaced
by the triangle [xyz] to give a new diagram for W .

The proof of the converse is more delicate. Recall that T (V ) is the product
of all edge labels in V . We assume from this point on that V is a minimal
(with respect to T ) counterexample to our theorem. Let V ′ be a diagram for
W with odd labeled edge [xy]. Assume that [xy] corresponds to the edge [ab]
of V .

Claim 17.1 With the exception of [ab] every edge of V is labeled 2 (and hence
[xy] is the only edge of V ′ not labeled 2.)

Proof: If [cd] is an edge labeled n > 2 and {c, d} ∩ {a, b} = ∅, then the
quotient of W by N((cd)2) is a “smaller” counterexample. If [ac] has label
n > 2, then there is no edge [bc] by Lemma 15. Again the quotient of W by
N((ac)2) is a smaller counterexample. Similarly, there is no edge [bc] with
label > 2. �

Claim 17.2 Suppose σ and σ′ are simplices of V and V ′ respectively such
that 〈σ〉 is conjugate to 〈σ′〉. Then σ contains {a, b} if and only if σ′ contains
{x, y}. Also, σ contains exactly one element of {a, b} if and only if σ′ contains
exactly one element of {x, y}.

Proof: The group 〈σ〉 (respectively 〈σ′〉) is non-abelian if and only if {a, b} ⊂
σ (respectively {x, y} ⊂ σ′). Hence the first conclusion of the lemma follows.

The group W/N(σ) (respectively W/N(σ′)) is abelian iff a or b ∈ σ
(respectively x or y ∈ σ′). But W/N(σ) = W/N(σ′). �
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To finish Theorem 17, it suffices to show that V cannot contain edges [ad]
and [bc] (d 6= b and c 6= a) such that there is no edge between b and d and
no edge between a and c. (There may or may not be an edge [cd].) Assume
otherwise. Let σ(a, d) and σ(a, b) be maximal simplices of V containing
{a, d} and {a, b} respectively. Let σ = σ(a, d)∩σ(a, b). Note that a ∈ σ, but
{b, c, d} ∩ σ = ∅. By conjugation we may assume that σ′(a, b) is a maximal
simplex of V ′ such that 〈σ′(a, b)〉 = 〈σ(a, b)〉 and that w〈σ′(a, d)〉w−1 =
〈σ(a, d)〉 for σ′(a, d) a maximal simplex of V ′ and w ∈ W . Then 〈σ〉 =
〈σ′(a, b)〉 ∩ w〈σ′(a, d)〉w−1 = v〈T 〉v−1, for some v ∈ 〈σ′(a, b)〉, and T ⊂
σ′(a, b). By Claim 17.2 either x or y, but not both is an element of T .

Let q be the retraction of W to 〈a, b, c, d〉 with kernel N(S − {a, b, c, d}).
Then, q(〈a〉) = q(〈σ(a, b)〉 ∩ 〈σ(a, d)〉) = q(v〈T 〉v−1). Observe that x is
conjugate to y, 〈xy〉 is conjugate to 〈(ab)2〉 and q(ab) has order 2(2k + 1).
Thus, q(x) 6= 1 6= q(y) and so q(〈a〉) is conjugate to q(〈x〉) and q(〈y〉). Hence
q(a) is conjugate to q(x) and q(y). Similarly for b. This implies q(a) and q(b)
are conjugate, the desired contradiction. Theorem 17 is finished. •

6 The Proof of Proposition 3

It remains to prove Propositions 3 and 4. In this section we complete the
former.
Proof of Proposition 3. Suppose V is an even diagram for the Coxeter
group W , [xy] is an odd edge in a diagram V ′ for W and every edge [xc] of
V ′ for c 6= y is such that c ∈ lk2(x, y). We wish to show the exists of a vertex
u ∈ lk2(x, y) such that if [uc] is an edge with c 6∈ {x, y}, then [uc] has label
2, c ∈ lk2(x, y), and any simplex σ′ of V ′ that contains u (respectively x and
y) and is such that 〈σ′〉 is conjugate to 〈σ〉 for σ a simplex of V , contains
{x, y} (respectively u).

Lemma 18 Suppose (W, S) is an even Coxeter system with diagram V , V ′

is another diagram for W , and 〈σ′〉 = w〈σ〉w for σ′ a simplex of V ′, σ a
simplex of V and w ∈ W . If f : 〈σ′〉 → Z2 ≡ {−1, 1} is a homomorphism,
let N be the normal closure in W of ker(f). Then W/N is an even Coxeter
group with diagram obtained from V by removing the vertices of σ1 ≡ {s ∈
σ : f(wsw−1) = 1} and identifying the vertices of σ − σ1.

Proof: The kernel of f is generated by K ′, the normal closure in 〈σ′〉 of
{s ∈ σ′ : f(s) = 1} ∪ {st : s, t ∈ σ′, f(s) = f(t) 6= 1}. Hence N is the normal
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closure of K ′ in W .
As 〈σ′〉 = w〈σ〉w−1, K ′ can also be described as the normal closure in

w〈σ〉w−1 of K = {wsw−1 : s ∈ σ and f(wsw−1) = 1} ∪ {wstw−1 : s, t ∈ σ
and f(wsw−1) = f(wtw−1) 6= 1. Now, in W , the normal closure of K ′, K
and w−1Kw are the same. •

Lemma 19 Suppose (W, S) is an even Coxeter system with diagram V and
V ′ is another diagram for W with odd edge [xy]. There exists a vertex u ∈
V ′ − {x, y} such that u is contained in the intersection of all simplicies σ′

containing {x, y} and such that 〈σ′〉 is conjugate to 〈σ〉 for σ a simplex of
V . Furthermore if σ′ is a simplex of V ′ containing u and such that 〈σ′〉 is
conjugate to 〈σ〉 for σ a simplex of V , then {x, y} ⊂ σ′.

Proof: Assume V ′ is a minimal (with respect to T (V ′)) counterexample.
Let δ′ be the intersection of all simplices σ′ of V ′, containing {x, y} and such
that 〈σ′〉 is conjugate to 〈σ〉 for some simplex σ of V . As 〈x, y〉 is not an even
Coxeter group, δ′ 6= {x, y}. If u ∈ δ′−{x, y}, there is no odd path in V ′ from
u to x or y, by Proposition 2 and Lemma 8. For each u ∈ δ′ −{x, y} assume
there is a simplex β ′ of V ′ such that 〈β ′〉 is conjugate to 〈β〉 for β a simplex
of V and u ∈ β ′, but {x, y} 6⊂ β ′. By intersecting, we may assume that each
such β ′ ⊂ δ′. Select one such β ′. By Lemma 18, the map of 〈β ′〉 to Z2 that
sends β ′−{x, y} to 1 and β ′∩{x, y} to −1 defines a smaller counterexample.
•

Let δ′ be the intersection of all simplices σ′ of V ′ such that {x, y} ⊂ σ′

and 〈σ′〉 is conjugate to 〈σ〉 for some simplex σ of V . By Lemma 19, δ′

contains a vertex v such that if v ∈ σ′, where σ′ is a simplex of V ′ and 〈σ′〉
is conjugate to 〈σ〉 for some simplex σ of V , then {x, y} ⊂ σ′. We call such
a δ′-vertex {x, y}-linked or simply linked.

It suffices to show that δ′ contains a linked vertex v′, such that every
edge of V ′ containing v′ is labeled 2. Otherwise, assume that V ′ is a minimal
counterexample. Then each linked vertex belongs to an edge with label > 2.

Suppose [st] is an edge of V ′ with label > 2 and neither s nor t is
linked. If [st] has even (respectively odd) label, then the even Coxeter group
W/N((st)2) (respectively W/N(st)), with diagram V̄ ′, obtained from V ′ by
changing the label of [st] to a 2 (respectively identifying s and t), is a smaller
counterexample. (Note that if a vertex is not {x, y}-linked in V ′, then it is
not {x, y}-linked in V̄ ′, and an {x, y}-linked vertex of V ′ may not be {x, y}-
linked in V̄ ′.) Hence, every edge with label > 2 (other than [xy]) contains a
linked vertex.
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Now 〈δ′〉 is conjugate to 〈δ〉 for some simplex δ of V . Then δ′ contains
more vertices than δ. (If the odd edges of δ′ are collapsed to single vertices
and each even > 2 label of V ′ is changed to 2, we obtain the (unique) diagram
for a right angled (all edge labels are 2) Coxeter group. The diagram for this
group is also obtained from δ if each even > 2 label of δ is changed to 2. This
latter description of this diagram has the same number of vertices as δ, but
the former diagram has fewer vertices (from the collapse of [xy]) than δ′.)

We obtain the desired contradiction by showing δ has at least as many
vertices as δ′. Let A′ (A) be the set of vertices of δ′ (δ) that belong to an
edge of V ′ (V ) with label > 2. As 〈δ′〉 is finite, no two adjacent edges of δ′

have labels > 2. Similarly for δ. The matching of Theorem 7 for δ′ and δ
respects the matching for V ′ and V . Hence δ′ contains an edge with label
> 2 iff δ contains the matching edge. So the number of vertices of A′ that
belong to an edge of δ′ with label > 2 agrees with the number of vertices of
A that belong to an edge of δ with label > 2.

Suppose [st] is an edge of V ′ with label > 2 and s ∈ δ′, t 6∈ δ′ and s is not a
vertex of an edge in δ′ with label > 2. Suppose [ab] is the edge of V matching
[st]. Then {a, b} 6⊂ δ. Considering the quotient of W by N(δ) = N(δ′), we
see {a, b} ∩ δ 6= ∅. Hence we assume b ∈ δ and a 6∈ δ. We wish to see that b
does not belong to an edge of δ with label > 2. Suppose [bc] is such an edge
and [uv] is an edge of δ′ matching [bc]. By Proposition 12 there is an odd
edge path from [st] to [uv]. The first edge of this path cannot be [tp], since
then p ∈ δ′ and Proposition 2 is violated. Hence the first edge must be [sp]
and by assumption, p 6∈ δ′, so p 6∈ {u, v}. If [pq] is the next edge, then q ∈ δ′

and again Proposition 2 is violated. We conclude that b does not belong to
an edge of δ with label > 2.

Recall from Proposition 11 that if edges with label > 2 of V ′ are adjacent,
then their matching edges in V are adjacent. We show that |A′| = |A| by
verifying the following three statements.

First, if [st] and [uv] are (non-adjacent) edges with labels > 2 of V ′ such
that {s, u} ⊂ δ′, t, v 6∈ δ′, and neither s nor u belongs to an edge of δ′

with label > 2, then the corresponding edges of V , call them [ab] and [cd]
respectively, are not adjacent. Otherwise, there is an odd edge path from [st]
to [uv]. A contradiction is obtained as in the former argument.

Suppose [st] and [sp] are edges of V ′ with labels > 2, s ∈ δ′, {t, p} ⊂ V ′−δ′

and s not a vertex of an edge of δ′ with label > 2. Then if [ab] and [ac] are
the edges of V corresponding to [st] and [sp] respectively, either a ∈ δ and
a is not adjacent to an edge of δ with label > 2 or {b, c} ⊂ δ and neither b
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nor c is adjacent to an edge of δ with label > 2. We show the latter scenario
cannot occur. Otherwise, the triangle [abc] is contained in a maximal simplex
τ of V , and 〈τ〉 is conjugate to 〈τ ′〉 for τ ′ a maximal simplex of V ′. Hence
{s, t, p} forms a triangle, no edge of which has odd label. By Proposition
2 and Lemma 8, there is no odd edge path from {t, p} to δ′ and no odd
edge path between t and p. Let K be the kernel of the map of 〈σ′〉 to Z2

that takes σ′ − {s} to 1 and s to −1. A diagram for W̄ ≡ W/N(K) is
obtained from V ′ by removing the vertices σ′ − {s} and all vertices that can
be connected to σ′−{s} by an odd labeled edge path. The subgroup 〈s, t, p〉
of W injects under this quotient map. By Lemma 18, a diagram for W/N(K)
is obtained from V by removing some vertices of δ and identifying all others.
Neither b nor c are removed since Theorem 7 (applied to W/N(K) and the
two diagrams for this group) implies that the edges [st] and [sp] correspond
to [ab] and [ac] respectively. Similarly b and c are not identified.

Finally, suppose [st] and [sp] are edges of V ′ with labels > 2, {t, p} ⊂ δ′,
s ∈ V ′− δ′ and neither t nor p a vertex of an edge of δ′ with label > 2. Then
if [ab] and [ac] are the edges of V corresponding to [st] and [sp] respectively,
either a ∈ δ and a is not adjacent to an edge of δ with label > 2 or {b, c} ⊂ δ
and neither b nor c is adjacent to an edge of δ with label > 2. We show
the former scenario cannot occur. As {s, t, p} forms a triangle, no edge of
this triangle has odd label. If each odd labeled edge of V ′ is identified to a
vertex then the resulting diagram is even with Coxeter group W̄ a quotient
of W . Another diagram for W̄ is obtained from V by changing labels on
edges corresponding to odd labeled edges to 2. The triangles [stp] and [abc]
induce triangles in the respective diagrams for W̄ and the conjugate simplices
groups 〈σ′〉 and 〈σ〉 induce conjugate simplex groups in W̄ . Since both of
these diagrams are even, the previous argument shows this is impossible.

By a completely analogous argument, we have:

Claim 3.1 If σ′ ⊂ δ′ is such that 〈σ′〉 is conjugate to 〈σ〉 for σ ⊂ δ, then
|A′ ∩ σ′| = |A ∩ σ|. �

Let B′ (B) be the vertices of δ′ (δ) that do not belong to an edge with
label > 2. So δ′ − A′ = B′ and δ − A = B. It suffices to show |B′| ≤ |B|.
If b′ ∈ B′, then there exists a simplex σ′

b′ ⊂ δ′ such that b′ ∈ σ′
b′ , 〈σ

′
b′〉 is

conjugate to 〈σb′〉 for some simplex σb′ ⊂ δ and not both x and y are in
σ′

b′ . Since σ′
b′ can contain no linked vertex, it must be right angled and so

|σ′
b′ | = |σb′|. By Claim 3.1, |σ′

b′ ∩ A′| = |σb′ ∩ A|, so |σ′
b′ ∩ B′| = |σb′ ∩ B|.

Claim 3.2 If σ′
1, . . . , σ

′
n are subsets of δ′, and 〈σ′

i〉 is right angled and con-
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jugate to 〈σi〉 for σi ⊂ δ then |B′ ∩ (∩n
i=1σ

′
i)| = |B ∩ (∩n

i=1σi)|.

Proof: Since V is an even diagram, 〈∩n
i=1σ

′
i〉 is conjugate to 〈σ〉 for σ ⊂

∩n
i=1σi. Hence |B′ ∩ (∩n

i=1σ
′
i)| ≤ |B ∩ (∩n

i=1σi)|, and it remains to show
the reverse inequality. We present the case n = 2. The general case is
completely analogous. Assume 〈σ1∩σ2〉 is conjugate to 〈σ̄′

1〉 for σ̄′
1 ⊂ σ′

1, and
also conjugate to 〈σ̄′

2〉 for σ̄′
2 ⊂ σ′

2. As 〈σ̄′
1〉 is conjugate to 〈σ̄′

2〉, if v ∈ σ̄′
1

then there is an odd edge path from v to some vertex of σ̄′
2. But if v ∈ B′,

it belongs only to edges labeled 2. Hence σ̄′
1 ∩ B′ = σ̄′

2 ∩ B′ = σ̄′
1 ∩ σ̄′

2 ∩ B′.
Also, |σ1 ∩ σ2 ∩ B| = |σ̄′

i ∩ B′| = |σ̄′
1 ∩ σ̄′

2 ∩ B′| ≤ |σ′
1 ∩ σ′

2 ∩ B′|. �

The sets σ′
b′ ∩ B′ for b′ ∈ δ′ ∩ B′ cover B′. (although it is not clear if

the sets σb′ cover B). Claim 3.2 and the Inclusion-Exclusion Principle imply
|B′| ≤ |B| and the proof of Proposition 3 is complete. •

7 Circuits of Size 4

Our goal for this section is to prove the base case of Proposition 4, the case
of circuits of length 4.

Proposition 20 Suppose (W, S) is an even Coxeter system with diagram V
and V ′ is another diagram for W . If [xy], [yz], [zv] and [vx] are distinct
edges of V ′, and [xy] and [yz] have odd labels then there is a chord (labeled
2) between v and y.

Proof: The edges [vx] and [vz] have label 2, by Proposition 2 and Lemma 8
(collapse the edge [xy] to see that [vz] has label 2). By Proposition 2 there
is no edge [xz]. Suppose V ′ is a minimal counterexample (with respect to
T (V ′)). We prove a collection of claims.

Claim 20.1
(1) Every even label of an edge of V ′ is 2.
(2) If u 6= y is adjacent to x (resp. z) then [ux] (resp. [uz]) has label 2.
(3) Every odd labeled edge of V ′ is adjacent to y or v.
(4) If [yu] (resp. [vu]) has odd label then (uv)2 = 1 (resp. (uy)2 = 1).

Proof: Otherwise a quotient map leads to a smaller counterexample. �

Let V̄ be the full subcomplex of V ′ with vertex set {v} union all vertices
of the odd labeled edges. (In particular, {x, y, z, v} ⊂ V̄ .)
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Claim 20.2 Suppose 〈σ′〉 is conjugate to 〈σ〉 for σ′ and σ non-trivial simplices
of V ′ and V respectively.
(1) The simplex σ′ contains a vertex of V̄ .
(2) If σ′ contains a vertex of V ′ − V̄ then σ′ contains two vertices of V̄ .

Proof: If σ′ contains no vertex of V̄ then W/N(σ′) is a smaller counterex-
ample. If σ′ contains a vertex of V ′ − V̄ and t is the only vertex of σ′ ∩ V̄ ,
then by Lemma 18 W/N(σ′ − {t}) is a smaller counterexample. �

Claim 20.3 Suppose [x′y] is an odd labeled edge of V ′ (so (x′v) has order
2). Then there is a vertex t ∈ V̄ such that (tv) has odd order, and for every
simplex σ′ of V ′ containing {x′, v} and such that 〈σ′〉 is conjugate to 〈σ〉 for
σ a simplex of V , t ∈ σ′. (By Proposition 2, σ′ cannot contain a vertex t′ 6= t
such that (t′v) has odd order. In this sense, t is unique.)
Proof: Suppose σ′ is a simplex of V ′ containing {x′, v} and such that 〈σ′〉
is conjugate to 〈σ〉 for some simplex σ of V , then {x, y, z}∩ ∈ σ′ = ∅. There
is no vertex t ∈ σ′ such that [yt] is an odd labeled edge by Proposition 2. If
there is no vertex t ∈ σ′ such that (tv) has odd order, then (by Lemma 18)
W/N({x′v} ∪ (σ′ − {x′, v})) is an even Coxeter group and the diagram for
this Coxeter group obtained from V ′ by identifying x′ and v, and removing
the vertices of σ′ − {x′, v}, contains a triangle that violates Proposition 2.

Now suppose that σ′
1 and σ′

2 are simplices of V ′ as above, and ti is a vertex
of σ′

i such that tiv has odd order and t1 6= t2. Then {x′, v} ⊂ σ′
1 ∩ σ′

2 ≡ σ′.
But then there is a t3 ∈ σ′ such that (t3v) has odd order. As t3 is in both σ′

1

and σ′
2, we have a contradiction to Proposition 2. �

Note that in the previous lemma ty has order 2.
By a completely analogous argument we have:

Claim 20.4 Suppose [vt′] is an odd labeled edge of V ′ (so (t′y) has order
2). Then there is a vertex x′ ∈ V̄ such that (x′y) has odd order, and for
every simplex every simplex σ′ of V ′ containing {t′, y} and such that 〈σ′〉 is
conjugate to 〈σ〉 for σ a simplex of V , x′ ∈ σ′. (By Proposition 2, σ′ cannot
contain a vertex x′′ 6= x′ such that (x′′y) has odd order. In this sense, x′ is
unique.) �

Let x ≡ x1, x2, . . . , xn = z be the vertices of V̄ such that (xiy) has odd
order. Let ti be the vertex of Claim 20.3 for {xi, v}, so that (tiv) has odd
order and (tixi) has order 2.

Next we show that ti 6= tj for i 6= j. Otherwise, consider simplicies σ′
1

and σ′
2 containing triangles [tixiy] and [tixjy] respectively, such that 〈σ′

i〉 is
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Figure 4:

conjugate to 〈σi〉 for some simplex σi of V . But then Claim 20.4 implies
xi = xj , which is nonsense.

Similarly there is no edge between ti and xj for i 6= j (see Figure 4).
Hence we have:

Claim 20.5 The only edges of V̄ are [vxi], [vti], [yxi], [yti] and [xiti]. �

Claim 20.6 If s is a vertex of V ′ − V̄ , then there is no pair of edges e1, e2

such that e1 connects s to a point of {xi, ti} and e2 connects s to a point of
{xj , tj} for i 6= j.

Proof: Otherwise let σ′
1 and σ′

2 be maximal simplices containing e1 and e2

respectively. Now, s ∈ σ′
1 ∩ σ′

2 ≡ σ′. By Claim 20.2, σ′ contains two vertices
of V̄ and so tl or xl is an element of σ′ for some l. But this is impossible by
Claim 20.5 �

Claim 20.7 The set {v, y} separates x from z.

Proof: Suppose there is an edge path [xs1], [s1s2], . . . , [smz] that does not
intersect {v, y}. By Claim 20.6, there is a smallest integer 1 < i ≤ m such
that si is not connected to x or t1 by an edge. Note that si−1 6∈ V̄ and si−1

is connected to x or t1 by an edge. Also, by Claim 20.6 (with si−1 in place
of s) si 6∈ V̄ . Let σ′ be a maximal simplex of V ′ containing {si−1, si}. By
Claim 20.2 there is j 6= 1 and vertex u ∈ {xj , tj} ∩ σ′. But this is impossible
by Claim 20.6 applied to si−1. �

By Proposition 11 and Lemma 15 the odd labeled edges of V ′ containing
v correspond to edges of V with common vertex a and the odd labeled edges
of V ′ containing y correspond to edges of V with common vertex b. The
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subcomplex of V composed of the edges with label > 2 and adjacent to a,
and the subcomplex of V ′ composed of the edges with label > 2 and adjacent
to b have trivial intersection by Proposition 12.

Let σ′
1 be a maximal simplex of V ′ containing the triangle [x, t1, v] and let

σ′
2 be a maximal simplex of V ′ containing the triangle [x, t1, y]. Let σ1 and

σ2 be simplices of V such that 〈σ′
i〉 is conjugate to 〈σi〉. Now, σ1 contains an

edge [ac] (with label > 2) corresponding to [t1v] and no vertex c′ 6= c such
that [ac′] has label > 2. Similarly, σ2 contains an edge [bd] corresponding to
[xy] and no vertex d′ 6= d such that [bd′] has label > 2. By conjugation we
assume that 〈σ1〉 = 〈σ′

1〉 and say 〈σ′
2〉 = w〈σ2〉w

−1 for some w ∈ W . We have
{x, t1} ⊂ 〈σ′〉 ≡ 〈σ′

1〉 ∩ 〈σ′
2〉 = 〈σ1〉 ∩ w〈σ2〉w

−1 = g〈σ〉g−1 for σ ⊂ σ1 and
g ∈ 〈σ1〉. Since V is even, σ ⊂ σ2. If s ∈ σ is a vertex of an edge of V with
label > 2, then s ∈ {a, b, c, d}. Since σ′ (and hence σ) is right angled, a or c
is not in σ, and b or d is not in σ. Since W/N(σ′) = W/N(σ) is right angled
a and b are elements of σ. We now have that 〈a, b〉 is isomorphic to Z2 ×Z2.

In a completely analogous manner we find a simplex τ ′ of V ′ containing
{z, tn} such that 〈τ ′〉 is conjugate to 〈τ〉 where τ is a simplex of V containing
{a, b}. Let C be the component of V ′ − {v, y} containing {x, t1} and D =
Λ′ − C (so {z, tn} ⊂ D). W decomposes as the amalgamated product 〈C ∪
{v, y}〉∗〈v,y〉〈D〉. Since 〈x, t1〉 ∼ Z2×Z2 is not a subgroup of a conjugate of the
edge group 〈v, y〉 ∼ Z2 ∗ Z2, 〈x, t1〉 cannot stabilize a vertex of T (the Bass-
Serre tree for 〈C ∪{v, y}〉 ∗〈v,y〉 〈D〉), other than 〈C ∪{v, y}〉. Since {x, t1} ⊂
g〈σ〉g−1 and since g〈σ〉g−1 stabilizes some vertex of T , g〈σ〉g−1 stabilizes
〈C∪{v, y}〉. Equivalently, g〈σ〉g−1 < 〈C∪{v, y}〉. So 〈σ〉 < g−1〈C∪{v, y}〉g
and 〈σ〉 stabilizes the vertex g−1〈C ∪ {v, y}〉 of T . Similarly, 〈z, tn〉 only
stabilizes the vertex 〈D〉 of T . As some conjugate w〈τ〉w−1 contains 〈z, tn〉,
w〈τ〉w−1 stabilizes 〈D〉 and so 〈τ〉 stabilizes the vertex w−1〈D〉 of T . But
then 〈a, b〉 ∼ Z2 × Z2 stabilizes distinct vertices of T . This is impossible as
Z2×Z2 is not a subgroup of Z2 ∗Z2. This completes the proof of Proposition
20 •

Proposition 21 Suppose W is a finitely generated Coxeter group with even
diagram V and diagram V ′ which is not even. If in V ′, [xy] has odd label,
[xu] and [yz] have even labels, and [uz] has odd label, then the circuit (xyzu)
has [xz] or [yu] as a chord.

Proof: Otherwise assume V ′ is a minimal counterexample to the Propo-
sition. Then we may assume that every even edge of V ′ is labeled 2 and
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by Proposition 20 and Lemma 8 there are no odd labeled edges, other than
[xy] and [uz]. Let σ′ be a maximal simplex of V ′ containing {u, x}. Then
z, y 6∈ σ′. By Lemma 18, W/N({ux} ∪ (σ′ − {u, x})) is an even Coxeter
group with diagram obtained from V ′ by identifying u and x, and removing
the vertices of σ′ − {u, x}. This contradicts Proposition 2 and the proof is
complete. •

Lemma 22 Suppose Z
n
2 = 〈a, b, s3, . . . , sn〉 = 〈a, b, e3, . . . , en〉 ≡ G. Then

there is a retraction h : G → 〈a, b〉 such that h(a) = a, h(b) = b, h(ei) ∈
{a, b}, and h(si) ∈ {a, 1} for all i.

Proof: Let Mn,n be the coefficient matrix for si. I.e. si = mi,1a + mi,2b +
mi,3e3 + · · ·+ mi,nen, where each mi,j ∈ {0, 1}.

The matrix M is invertible. As the block [mi,j ] for j > 2 and i > 2 is
invertible, a sequence of elementary row operations (only involving rows 3
through n) can be used to transform M to the matrix M̄ where m̄i,i = 1 for
all i, m̄i,j = 0 for i < j and for i > j > 2.

We now define h. If m̄i,1 = 1 and m̄i,2 = 1 then h(ei) = b.
If m̄i,1 = 1 and m̄i,2 = 0 then h(ei) = a.
If m̄i,1 = 0 and m̄i,2 = 1 then h(ei) = b.
If m̄i,1 = 0 and m̄i,2 = 0 then h(ei) = a.
To understand the effect this has on h(si), some notation is helpful. In M̄ ,

if m̄i,1 = 1, then replace it by 1a. If m̄i,2 = 1, then replace it by 1b. If h(ei) = a
(respectively b) replace m̄i,i by 1a (respectively 1b). In each row of M̄ (except
the second) there are an even number of 1b-entries. Reversing the above row
operations to obtain M from M̄ we see that if m̄j,j = 1a (respectively 1b)
then mi,j ∈ {0, 1a}, (respectively mi,j ∈ {0, 1b}) and h(ej) = a (respectively
h(ej) = b). Furthermore, each row of M (except the second) contains an
even number of 1b-entries. I.e. h(si) ∈ {1, a}. •

Proposition 23 Suppose W is a finitely generated Coxeter group with even
diagram V and diagram V ′ which is not even. If [xy] has odd label in V ′ and
(xyst) is a circuit in V ′, then this circuit has [xs] or [yt] as a chord.

Proof: Assume V ′ is a minimal counterexample to the proposition. By
Propositions 20 and 21, [xy] is the only odd labeled edge of (xyst). Each even
edge of V ′ is labeled 2. By Lemma 8, any odd labeled edge not containing x
or y must contain a vertex of {s, t} and this edge must be connected to the
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diagonally opposite vertex of {x, y} by an edge labeled 2. By Proposition
20, there can be at most one odd labeled edge containing a given vertex of
{x, y, s, t}.

Case 1. The only odd edge of V ′ is [xy].

By Lemma 18 every simplex σ′ of V ′ such that 〈σ′〉 is conjugate to 〈σ〉
for σ a simplex of V is either {u} for u ∈ {x, y, s, t} or contains two vertices
of {x, y, s, t}, but not three. By Lemma 19 there is a vertex u ∈ V ′ such
that if σ′ is a simplex of V ′ containing u and 〈σ′〉 is conjugate to 〈σ〉 for σ a
simplex of V , then {x, y} ⊂ σ′, and if τ ′ is a simplex of V ′ containing {x, y}
and 〈τ ′〉 is conjugate to 〈τ〉 for τ a simplex of V , then τ ′ contains u.

We show that {x, y} separates u from t. Otherwise, choose a shortest
edge path avoiding {x, y} from u to t. Let v be the first vertex of this
path that is not adjacent to both x and y and let v′ be the previous vertex.
Choose a maximal simplex σ′

1 containing {x, y, v′} and a maximal simplex
σ′

2 containing {v, v′}. Let σ′ = σ′
1 ∩σ′

2. Assume σ′
2 does not contain x. Then

σ′ does not contain x, s or t, which is impossible.
Now as {x, y} separates V ′, [7] implies that W visually decomposes (with

respect to V ′) as 〈A〉 ∗〈x,y〉 〈B〉, where A ∪ B is the vertex set of V ′ and
A and B properly contain {x, y}. By [7], there is a nontrivial visual (with
respect to V ) decomposition C ∗E D of W such that E is a subgroup of a
conjugate of 〈x, y〉. As V is even, E is a proper subgroup of a conjugate
of 〈x, y〉. Then W visually decomposes nontrivially (with respect to V ′) as
〈F 〉 ∗〈H〉 〈G〉 where 〈H〉 is a subgroup of a conjugate of E and hence 〈H〉 is
conjugate to a proper subgroup of 〈x, y〉. This implies H is trivial {x} or
{y}. We have, F ∪ G is the vertex set of V ′ and H is a proper subset of F
and G. As 〈x, y, s, t〉 is 1-ended, we must have {x, y, s, t} a subset of F or G.
Assume {x, y, s, t} ⊂ F . Let e be a vertex of G − H and σ′ be a maximal
simplex of V ′ containing e. Then σ′ ∩ {x, y, s, t} is either ∅ or v′. This is
impossible as σ′ must contain two vertices of {x, y, s, t}. Case 1 is complete.

Hence there must be an odd edge at s or t.

Case 2. Assume there is an odd edge [tv] but no odd edge at s.

There is an edge [yv] labeled 2 by Lemma 8 and an edge [vx] labeled 2
by Proposition 21. There are no odd labeled edges, other than [xy] and [vt].
Every simplex σ′ (with at least two vertices) such that 〈σ′〉 is conjugate to
〈σ〉 for some simplex σ of V must contain at least two vertices of {x, y, s, t, v}.
If there is an edge [sv], then it is labeled 2. By Lemma 19 there is a vertex
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u of V ′ such that if σ′ is a simplex of V ′, 〈σ′〉 is conjugate to 〈σ〉 for some
simplex σ of V and {x, y} ⊂ σ′ then u ∈ σ′, and if α′ is a simplex of V ′, 〈α′〉
is conjugate to 〈α〉 for some simplex α of V and u ∈ α′ then {x, y} ⊂ α′.
Note that u 6= v.

Let [ab] and [cd] be the edges of V corresponding to (see Theorem 7) [xy]
and [tv] respectively. Note that {a, b} ∩ {c, d} = ∅ by Proposition 12.

Claim 23.1 {x, y, v} separates u from t (and s).

Proof: Otherwise, there are consecutive vertices u = u0, . . . , un = t such
that no ui ∈ {x, y, v}. Assume that i is the first integer such that ui does not
commute with x and y. Suppose ui does not commute with x (the case ui

does not commute with y is completely analogous). Let σ′ = σ′
1 ∩ σ′

2 where
σ′

1 is a maximal simplex containing {x, y, ui−1} and σ′
2 is a maximal simplex

containing {ui−1, ui}. Then {t, s, x} ∩ σ′ = ∅ and so {ui−1, y, v} ⊂ σ′.
Observe that σ′ − {y} ⊂ lk2(x, y).
Suppose σ is a simplex in V such that 〈σ〉 is conjugate to 〈σ′〉. By

conjugation, we may assume that 〈σ〉 = 〈σ′〉. We may assume that a, c ∈ σ
and b, d 6∈ σ, since 〈σ〉 is abelian. Let N = N(σ−{a, c}). Note that y, v 6∈ N .

Now we show:

(∗) If p ∈ 〈σ′ − {y}〉, then yp 6∈ N .

Suppose yp ∈ N . As yp conjugates xy(= w(ab)2w−1) to yx, w−1ypw con-
jugates (ab)2 to (ba)2. Proposition 10 implies that w−1ypw = ef for e ∈
lk2(a, b) and f of odd length in 〈a, b〉. As yp ∈ 〈σ〉, yp = ag for g ∈ 〈σ−{a}〉.
(Else, yp = g ∈ 〈σ − {a}〉 implying ef = w−1gw implying (the odd length
element of 〈a, b〉) f = ew−1gw. But ew−1gw ∈ N(S − {a, b}) so this is
impossible.) But ag 6∈ N and (∗) is proved.

Let q : W → W/N be the quotient map. Note that q〈σ′〉 = q〈σ〉 =
〈q(a), q(c)〉 ≡ Z2 × Z2. As y, v and yv are not elements of N , q〈σ′〉 =
〈q(y), q(v)〉. To finish the claim, we show that W/N is a smaller counterex-
ample. (Note that N is nontrivial, as ui−1 ∈ σ′ − {y, v}.)

First we show that if m ∈ σ′ −{y, v} then q(m) ∈ {1, q(v)}: If q(m) 6= 1,
then q(m) ∈ {q(y), q(v), q(yv)}. If q(m) = q(y) then q(my) = 1 implying
my ∈ N , contrary to (∗). If q(m) = q(yv), then q(mvy) = 1 implying
mvy ∈ N , contrary to (∗). Hence q(m) = q(v).

If K is the kernel of the restriction of q to 〈σ′〉, then the normal closure
of K in W is N . As K is generated by {m ∈ σ′ : q(m) = 1} ∪ {mv : m ∈ σ′

and q(m) = q(v)} , a diagram for the even Coxeter group W/N is obtained
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from V ′ by removing the vertices of (σ′−{y, v})∩ker(q) and identifying the
remaining vertices of σ′ − {y, v} with v. �

We can now finish Case 2. By [7] there is a simplex σ in V such that
σ separates V and 〈σ〉 is a subgroup of a conjugate of 〈x, y, v〉. Note that
the edge [ab] corresponding to [xy] is not in σ. (Otherwise, the pigeon-
hole principle implies σ = {a, b} and 〈a, b〉 is conjugate to 〈x, y, v〉. This is
impossible since u 6∈ σ′.) The edge [cd] corresponding to [tv] is not in σ.
(Otherwise the image of 〈c, d〉 in W/N(xy) (= W/N((ab)2)) is abelian. But
〈c, d〉 injects under this quotient.) Hence 〈σ〉 is abelian. For k odd, the order
2-elements of the dihedral group Dk are precisely the odd length elements.
It is straightforward to see (for odd k) that Dk does not contain a copy of
Z2 × Z2. Hence 〈σ〉 is either isomorphic to Z2 or Z2 × Z2. Again applying
[7], either an edge (labeled 2) or vertex of V ′ must separate V ′ and the group
generated by the vertices of this separating set is a subgroup of a conjugate
of 〈x, y, v〉.

We next show no vertex w of V ′ can separate V ′. Otherwise, there is
a component C of V ′ − {w} such that {x, y, s, t, v} ⊂ C ∪ {w} (the group
〈x, y, s, t, v〉 is 1-ended). But if k is a vertex of a component K 6= C of
V ′ −{w}, then a maximal simplex of V ′ containing k would contain at most
one vertex of {x, y, s, t, v}, which is impossible.

If an edge labeled 2 separates V ′ and the group for this edge is conju-
gate to a subgroup of 〈x, y, v〉, then the only candidates are the edges [xv],
[yv] and [xt]. The groups for these edges are all conjugate. All cases are
completely similar, and we assume [yv] separates V ′. Then (by [7]) there
is an edge separating V such that the corresponding group is conjugate to
〈y, v〉. We may assume that this edge is [ac]. By conjugation, we may as-
sume that 〈y, v〉 = 〈a, c〉. Note that vy conjugates xy(= w1(ab)2w−1

1 ) to
yx(= w1(ba)2w−1

1 ).
If vy = c, then cw1(ab)2w−1

1 c = w1(ba)2w−1
1 . But in W/N({c}), (ab)2 6=

(ba)2, so this is impossible. If vy = a, then choose g ∈ 〈x, y〉 such that
gvyg−1 = xv. As xv conjugates tv(= w2(cd)2w−1

2 ) to vt(= w2(dc)2w−1
2 ),

gag−1 conjugates w2(cd)2w−1
2 to w2(dc)2w−1

2 . But in W/N({a}, (cd)2 6= (dc)2,
so this is impossible. The only other possibility is vy = ac. Hence we have
{y, v} = {a, c}.

The group 〈x, y, s, t, v〉 is 1-ended and hence {x, y, s, t, v} is a subset of
{v, y} union a component C of V ′ − {v, y}. Let σ′ be a maximal simplex
containing a vertex of a component of V ′ − {v, y} other than C. Then σ′
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must also contain {v, y}(= {a, c}) and each edge label of σ′ is 2. Assume
that 〈σ′〉 = w〈σ〉w−1 for σ a simplex of V . Then a, c ∈ σ, waw−1 = a and
wcw−1 = c. We wish to apply Lemma 22 to obtain a smaller counterexample.

Write 〈σ′〉 = 〈a, c, e3, . . . , en〉 = 〈a, c, ws3w
−1, . . . , wsnw

−1〉 = 〈wσw−1〉
and suppose h is the retraction of this group to 〈a, c〉 defined in Lemma 22.
By the definition of σ′, ker(h) is nontrivial. If h(wsiw

−1) = a, then observe
that wsiw

−1a = w(sia)w−1. Thus, an even diagram for W/N(ker(h)) is
obtained from V by removing all si such that h(wsiw

−1) = 1 and identifying
si with a if h(wsiw

−1) = a. Another diagram for W/N(ker(h)) is obtained
from V ′ by identifying ei with v when h(ei) = v and identifying ej with y
when h(ej) = y. Then W/N(ker(h)) is a smaller counterexample, finishing
Case 2.

Now the final case.

Case 3. Assume there are edges [tv] and [su] with odd labels.
There are edges [uy] [ux] [vy] and [vx] with labeled 2. (See Figure 5)

Let {a, b, c, d, e, f} ⊂ V be vertices such that the edge correspondence of
Theorem 7 relates [xy] to [ab], [tv] to [cd] and [us] to [ef ]. By Proposition
12, the edges [ab], [cd] and [ef ] are mutually disjoint. By Theorem 17 there
is an edge [gh] ∈ {[ab], [cd], [ef ]} such that every other edge of V containing
g is labeled 2 and such that if [gk] is such an edge, then [kh] is also an edge
of V . We call g a special vertex of [gh]. A quotient argument shows that
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each of [ab], [cd], [ef ] contains a special vertex. E.g. if the edge labels on [cd]
and [ef ] are changed to 2, then Theorem 17 implies that [ab] must have a
special vertex. The next claim implies that there cannot be an edge [uv] in
the minimal counterexample.

Lemma 24 Suppose (W, S) is a finitely generated even Coxeter system, V ′

is a diagram for W with non-intersecting odd edges [xy], [tv] and [us], and
even edges [xu], [xv], [xt] [yu], [ys], [yv], [ts] and [uv], (and so a tetrahedron
[xyuv] and triangles [xtv] and [suy]). Then there is an edge (labeled 2) [yt]
or [xs].

Proof: If an edge not listed in the hypothesis, connects two vertices of
{x, y, u, v, t, s}, it must have label 2 by Proposition 2. Assume V ′ is a minimal
counterexample to the lemma. Let V be the even diagram for (W, S), and
assume the edges [xy], [tv] and [su] of V ′ correspond to the edges [ab], [cd]
and [ef ], respectively, of V . Again, [ab], [cd] and [ef ] are mutually disjoint.
All even edges of V ′ are labeled 2 by the minimality of V ′. Every odd edge
of V ′ contains a vertex of {x, y, u, v, t, s} (otherwise collapse for a smaller
counterexample). Suppose V ′ contained an odd edge other than [xy], [tv] or
[us]. Then this edge must contain x, y, s or t (otherwise collapse). If [xw] is
an odd edge for w 6= y, there must be an edge [ws] (or collapsing would give
a smaller counterexample). In this situation, Proposition 20 implies there is
an edge [xs] and we are finished. Similarly if there is an odd edge at y, s or
t. Hence we may assume there is no odd edge of V ′ other than [xy], [tv] and
[us].

We assume a, d and f are special vertices of [ab], [cd] and [ef ] respectively.
Observe that if σ is a simplex of V containing a then σ ∪ {b} is a simplex
of V . Similarly for d and f . Let σ′

1 be a maximal simplex of V ′ containing
{x, y, v, u}. Then 〈σ′

1〉 is conjugate to 〈σ1〉 for σ1 a (maximal) simplex of V .
Now {a, b} ⊂ σ1. Either c or d is an element of σ1, but not both (as t 6∈ σ′

1).
Hence c ∈ σ1. Similarly, e ∈ σ1. Note that {a, b} does not commute with
{c, d} or {e, f}. Considering the triangles [yus] and [tvx], we see that {b}
commutes with {e, f, c, d}.

Consider the circuit (tvus). By Proposition 21, there must be an edge
(chord) [tu] or [vs]. If both exist, then {c, d} commutes with {e, f} and
there is a maximal simplex of V containing {b, c, d, e, f}, implying there is
a maximal simplex in V ′ containing {t, v, u, s} and either x or y, which is
impossible in our minimal counterexample.
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Figure 6:

Now suppose [vs] is an edge of V ′, but [tu] is not. (See Figure 6.) Let σ′
2

be a maximal simplex of V ′ containing {u, s, y, v}. Then 〈σ′
2〉 is conjugate to

〈σ2〉 for σ2 a (maximal) simplex of V and {e, f, b, c} ⊂ σ2. Choose a maximal
simplex σ′

3 of V ′ containing {t, v, x}. Then there exists σ3, a maximal simplex
of V containing {c, d, b} and such that 〈σ′

3〉 is conjugate to 〈σ3〉. Let σ′
4

be a maximal simplex of V ′ containing {t, v, s}. Then there exists σ4, a
maximal simplex of V containing {c, d} and either f or e, and such that 〈σ′

4〉
is conjugate to 〈σ4〉. But then either {b, c, d, f} or {b, c, d, e} is a simplex.
This implies there is a simplex σ′ of V ′ containing {t, v}, a vertex of {x, y}
and a vertex of {u, s}. This is impossible and [vs] is not an edge of V ′.

Next assume that [tu] is an edge, but [sv] is not an edge of V ′. (See Figure
7.) We may assume that {x, y, u, v} ⊂ σ′

1 and {a, b, c, e} ⊂ σ1 as above. Also,
{x, u, v, t} ⊂ σ′

2 and {c, d, b, e} ⊂ σ2; {u, s, y} ⊂ σ′
3 and {e, f, b} ⊂ σ3; and

{t, u, s} ⊂ σ′
4 and σ4 contains {e, f} and either c or d. But then either

{e, f, c, b} or {e, f, d, b} is a simplex.
This implies there exists a simplex σ′ of V ′ containing {u, s}, a vertex of

{x, y} and a vertex of {v, t}. This is impossible. •

Remark 5 Consider the circuit (suxt). There must be an (labeled 2) edge
[ut] or [uv], or collapsing [vt] gives a smaller counterexample. Consider the
circuit (syvt). There must be an (labeled 2) edge [vs] or [uv], or collapsing
[us] gives a smaller counterexample. Either of these observations (along with
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Lemma 24) could be used in conjunction with the ideas of §7 to complete a
proof of Case 3.

Lemma 24 implies [uv] is not an edge of V ′. At this point Figure 8 is our
model. If σ′ is a simplex of V ′ such that 〈σ′〉 is conjugate to 〈σ〉, for σ a
simplex of V , and σ′ contains a vertex of V ′ − {x, y, t, s, u, v}, then σ′ must
contain two vertices of {x, y, t, s, u, v}.

Claim 23.2 The set {x, y, u, v} separates V ′.

Proof: Suppose not. By Lemma 19, there is a vertex z of V ′ − {x, y} such
that every simplex σ′ of V ′ containing [xy] and such that 〈σ′〉 is conjugate to
〈σ〉 for σ a simplex of V , contains z and every simplex σ′ of V ′ containing z
such that 〈σ′〉 is conjugate to 〈σ〉 for σ a simplex of V , contains [xy]. Clearly
z 6∈ {v, u, t, s}. Suppose z = z0, z1, . . . , zn = t are consecutive vertices of
V ′−{x, y, u, v}. Assume that i is the first integer such that zi is not adjacent
to both x and y. Both cases are analogous, and we assume that zi is not
adjacent to y. Let σ′

1 be a maximal simplex of V ′ containing {x, y, zi−1}, σ′
2 a

maximal simplex containing {zi−1, zi}. Let σ′ = σ′
1∩σ′

2. Then {y, s, t}∩σ′ =
∅. Then σ′ must contain zi−1 and either {x, u} or {x, v} ({v, u} is not a
possibility by Lemma 24). Both cases have analogous proofs and we assume
{x, u} ⊂ σ′. Say σ is a simplex of V and 〈σ〉 is conjugate to 〈σ′〉. Then we
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may assume b, e ∈ σ and a, c, d, f 6∈ σ. Let N = N(σ−{b, e}). Each vertex of
σ′−{x} commutes with x and y. An argument completely analogous to that
for statement (∗) in the proof of Claim 23.1 implies that if p ∈ 〈σ′ − {x}〉,
then xp 6∈ N . Just as in the argument following the proof of (∗), this implies
W/N is a smaller counterexample. �

By [7] there is a full subgraph A separating V such that 〈A〉 is conjugate
to a subgroup of 〈u, v, x, y〉 = 〈u, x, y〉∗〈x,y〉〈v, x, y〉. The edge [ab] is not in A,
for otherwise, a conjugate of 〈a, b〉 is a subgroup of 〈u, x, y〉 or 〈v, x, y〉. But all
three of these groups have the same order. This would imply 〈a, b〉 is conju-
gate to 〈u, x, y〉 or 〈v, x, y〉, but clearly N({a, b}) is not equal to N({u, x, y})
or N({v, x, y}). As in Case 2 (consider W/N(xy)) neither [cd] nor [ef ] is an
edge of A. So, A is right angled. The group 〈x, y, u, v〉 = 〈x, y, v〉∗〈x,y〉〈x, y, u〉
is 2-ended and contains no copy of Z2 ×Z2 ×Z2. This implies that 〈A〉 = 1,
Z2, Z2×Z2, Z2 ∗Z2, or Z2×Z2 ∗Z2

Z2×Z2. Using [7] again, a subset B of the
vertices of V ′ separates V ′ such that 〈B〉 is right angled and a subgroup of a
conjugate of 〈A〉 and so a subgroup of a conjugate of 〈x, y, u, v〉. This implies
that B is a subset of {u, x, v}, {u, y, v}, {x, t}, or {y, s}. By Corollary 6 of
[7], we may assume that 〈A〉 is conjugate to 〈B〉. Note that {x, y, u, v, s, t} is
a subset of B union a component of the compliment of B. Select a maximal
simplex σ′ intersecting another component of the compliment of B. Then
σ′ ∩ B must be equal to {x, t}, {x, v}, {x, u}, {y, v}, {y, s} or {y, u} and be
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conjugate to a simplex of V . Now proceed as in Case 2, to finish Case 3 and
Proposition 23 •

8 The Proof of Proposition 4

In this section we finish the proof of Proposition 4. Throughout this section,
we assume that V ′ is a smallest diagram for an even Coxeter group such that
V ′ contains a circuit l without chords, the length of l is ≥ 5 and l contains
an odd labeled edge [xy]. By the minimality of V ′, all even edges of V ′ are
labeled 2. By Lemma 8, Proposition 23 and the minimality of V ′, all edges
of l other than [xy] are labeled 2.

Claim 4.1 If l′ is a circuit of V ′ containing 2 odd labeled edges, then l′ has
a chord.

Proof: Otherwise, the diagram obtained from V ′ by collapsing one of the
edges of l′ contradicts Proposition 23 or is a smaller example than V ′. �

Claim 4.2 If [xu] has odd label, then u = y.

Proof: By Lemma 8, u is connected to a vertex of l − st(x) by an edge.
Say the consecutive vertices of l are x = a0, a1, . . . , an = y. Let i be the
largest integer such that [uai] is an edge of V ′. By Propositions 2 and 20,
i < n−1. The circuit with consecutive vertices (yxuai . . . an−1) has no chord,
contradicting Claim 4.1. �

Claim 4.3 If [uv] 6= [xy] is an odd labeled edge, then [uv] has one vertex on
l and the other vertex in lk2(x, y).

Proof: If neither u nor v is a vertex of l, then W/N(uv) is a smaller example.
Assume v is a vertex of l. If v is not adjacent to x or y (i.e. no edge of V ′

connects v to x or y) and u 6∈ lk2(x, y), then the quotient of W by N(uv)
gives a smaller example. If v is adjacent to x, then u is not a vertex of l (as l
has no chord), but u is adjacent to y or again W/N(uv) is a smaller example.
Now by Claim 4.1 (applied to the circuit (vuyx)), u is adjacent to x. �

Claim 4.4 If [uv] is an odd labeled edge of V ′ then [uv] is contained in a
circuit of length ≥ 5 without chords.

Proof: Suppose otherwise. We assume that v ∈ l and u ∈ lk2(x, y). If s, t
are the vertices of l adjacent to v, then s, t ∈ lk2(u) or [uv] belongs to a
circuit of length ≥ 5 without chords (all edges of this path not containing u

36



are in l). Note that no vertex of l − {s, t} belongs to lk2(v) (and so no such
vertex belongs to lk2(u, v)).

Next we show that if [vw] is such that w 6= u and w 6∈ lk2(u, v) (equiva-
lently, w is not adjacent to u), then there is no edge path in V ′− (lk2(u, v)∪
{v}) connecting w to u or a vertex of l. Otherwise, there is a circuit con-
taining [uv] and avoiding lk2(u, v). A shortest such circuit has length ≥ 5 by
Propositions 2 and 23, contrary to the original supposition.

Now, let U be the union of all components K of V ′ − (lk2(u, v) ∪ {v})
such that u 6∈ K and for some vertex w ∈ K, [wv] is an edge. Note that
there is no edge connecting a vertex of U to u and U ∩ l = ∅. Twist U around
[uv] to form the diagram V ′′ for W . If z 6= u and [vz] is an edge of V ′′, then
z ∈ lk2(u, v). By Proposition 3 there is a vertex w ( 6∈ {s, t}) of V ′′ such that
the triangle [uvw] can be replaced by an edge [uz] with label 2 times the
label of [uv]. The resulting diagram for W is smaller than V ′ and contains a
faithful copy of l (with v replaced by z). �

Claim 4.5 If v is a vertex of l not adjacent to x or y, then there is no odd
edge at v.

Proof: Assume that [uv] is such an odd edge. By Claim 4.3, u ∈ lk2(x, y).
Let l′ be a simple edge path without chords containing [uv] and having length
≥ 5. Then x or y is a vertex of l′ (otherwise, W/N(xy) is a smaller example).
We may assume x is a vertex of l′. By Claim 4.3, y ∈ lk2(u, v). This is
impossible as [yv] would be a chord in l. �

Claim 4.6 If s 6= y and t 6= x are vertices of l adjacent to x and y respectively,
then there is not an odd labeled edge at s and an odd labeled edge at t.

Proof: Otherwise, say [su] and [tv] have odd labels. By Claims 4.2 and 4.4
u 6= v. By Claim 4.3, u, v ∈ lk2(x, y). Assume ls and lt are circuits without
chords and of length ≥ 5 containing [su] and [tv] respectively. By Claim 4.3,
ls and lt contain y and x respectively. Hence the paths (suy) and (tvx) are
contained in ls and lt respectively. Since there is no edge from t to s, Claim
4.3 implies that v ∈ lk2(s, u). By Claim 4.3, lt contains s or u and so the
vertex of lt following the path (tvx) must be s or u, but this is impossible as
both are connected to v by an edge (creating a chord in lt.) �

We can now complete the reduction.

Case 1. Suppose the only odd labeled edge of V ′ is [xy].

Then say (xyst) is a subpath of l. Let σ′ be a simplex of V ′ containing
{s, t} such that 〈σ′〉 is conjugate to 〈σ〉 for some simplex σ of V . By Lemma
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18, the quotient of W by N({st} ∪ (σ′ − {s, t})) is an even Coxeter group.
A diagram for this group is obtained from V ′ by identifying s and t and
removing the vertices of σ′−{s, t}. This diagram contains a circuit of length
≥ 4, with odd labeled edge [xy] and no chords. This diagram is smaller than
V ′, contradicting Proposition 23 or the minimality of V ′.

Case 2. Suppose V ′ contains exactly two odd labeled edges.

Say (uxyst) is a subpath of l and [uv] is an odd labeled edge. By Claim
4.3, v ∈ lk2(x, y). If [cd] is an edge of l such that {c, d}∩{u, x, y} = ∅, and σ′

is a simplex of V ′ containing [cd] such that 〈σ′〉 is conjugate to 〈σ〉 for some
simplex σ of V , then σ′ must contain v (otherwise, the quotient of W by
N({cd}∪ (σ′−{c, d}) gives a smaller example). In particular, v is connected
to each vertex of l by an edge.

Let l′ be a circuit in V ′ of length ≥ 5, containing [uv], and without chords.
Then l ∩ l′ = {u, y}. Note that (uvy) is a subpath of l′. Let σ′ be a simplex
of V ′ containing [stv] such that 〈σ′〉 is conjugate to 〈σ〉 for some simplex σ
of V . Then u, x, y 6∈ σ′ and the only vertex of l′ in σ′ is v. A diagram for
the even Coxeter group W/N(σ′ −{v}) is obtained from V ′ by removing the
vertices of σ′ − {v}. But this diagram contains a faithful copy of l′ and so
contradicts the minimality of V ′. The proof of Proposition 4 is complete. •
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