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Abstract. If ðW;SÞ is a Coxeter system, then an element of W is a reflection if it is conjugate
to some element of S. To each Coxeter system there is an associated Coxeter diagram. A
Coxeter system is called reflection preserving if every automorphism of W preserves reflections

in this Coxeter system. As a direct application of our main theorem, we classify all reflection
preserving even Coxeter systems. More generally, if ðW;SÞ is an even Coxeter system, we give
a combinatorial condition on the diagram for ðW;SÞ that determines whether or not two even
systems for W have the same set of reflections. If ðW;SÞ is even and ðW;S0Þ is not even, then
these systems do not have the same set of reflections. A Coxeter group is said to be reflection
independent if any two Coxeter systems ðW;SÞ and ðW;S0Þ have the same set of reflections.
We classify all reflection independent even Coxeter groups.
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1. Introduction

A Coxeter system is a pair ðW;SÞ where W is a group with Coxeter presentation

hSjðstÞmst8s; t 2 Si where for all s; t 2 S, mst 2 f1; 2; . . . ;1g, mst ¼ mts and mst ¼ 1 if

and only if s ¼ t. (The relator ðstÞ1 means that st has infinite order in W.)

The Coxeter diagram of the system ðW;SÞ is the labeled graph VðW;SÞ with vertex

set S, and an edge labeled mst between distinct vertices s and t if and only if mst 6¼ 1.

If ðW;SÞ is a Coxeter system, then the conjugates in W of elements of S are called

the reflections of ðW;SÞ. An elementary quotient argument (see Lemma 2.4) shows

that if ðW;SÞ and ðW;S0Þ are Coxeter systems and S is a subset of the reflections of

ðW;S0Þ then ðW;SÞ and ðW;S0Þ have the same set of reflections. If a is an auto-

morphism of W then ðW; aðSÞÞ is another Coxeter system for W. These two systems

have isomorphic diagrams but may not have the same set of reflections. If for any

two Coxeter systems ðW;SÞ and ðW;S0Þ the reflections of ðW;SÞ and ðW;S0Þ are the
same, then W is called reflection independent. A Coxeter system ðW;SÞ is called

reflection preserving if every automorphism of W preserves reflections in the system

ðW;SÞ. Note that if W is reflection independent, then every Coxeter system ðW;SÞ is
reflection preserving.

A Coxeter group W is said to be rigid if given any two systems ðW;SÞ and ðW;S0Þ,
there is a (labeled) diagram isomorphism between the corresponding Coxeter dia-

grams. This is equivalent to the existence of an automorphism a : W!W which
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satisfies aðSÞ ¼ S0. Hence, a rigid Coxeter group W is reflection independent iff some

Coxeter system for W is reflection preserving. Radcliffe proves in his dissertation [1]

that all right-angled Coxeter groups (those for which mst 2 f2;1g for all s 6¼ t) are

rigid. He goes on to prove that if a Coxeter diagram V for the Coxeter system ðW;SÞ
has all of its edges labeled by integers divisible by 4, then W is rigid. In [2] Bahls

classifies the reflection independent Coxeter groups with all diagram labels divisible

by 4. In [3], he proves that to any given Coxeter group there is at most one even system

corresponding to that group. Other rigidity results can be found in [4] and [5].

A result of Tits (Lemma 3.1) implies that a finitely generated Coxeter group has

only finitely many conjugacy classes of involutions. This can be used to show that for

any Coxeter system, ðW;SÞ there is an integer n such that for any automorphism a of

W, an maps each element of S to a conjugate of itself (see [6] for this and other results

along these lines).

In Theorem 5.1 below, we exhibit a combinatorial condition which (when com-

bined with results from [3] and [7]) determines whether or not two even Coxeter

systems have the same set of reflections. As a direct application, we will indicate how

these results allow characterization of all even reflection preserving Coxeter systems,

even reflection independent Coxeter groups, and even rigid Coxeter groups.

2. Basic Concepts

The notion of a Coxeter system ðW;SÞ and its corresponding diagram were given in

Section 1. There is a notion of a Coxeter graph (used, for example, in [8]) which

differs from that of a Coxeter diagram. We will call a Coxeter group W even if there

is a system ðW;SÞ such that for all s 6¼ t, mst is not odd.

Basic examples of Coxeter groups are furnished by the dihedral groups

Dn ¼ ha; bja2; b2; ðabÞni. Such a group is the symmetry group of a regular n-gon.

The dihedral groups also show us that an even Coxeter group may have a Coxeter

presentation for which not every mij is even: the dihedral group

D6 ¼ ha; bja2; b2; ðabÞ6i
is isomorphic to the group

hc; d; gjc2; d2; g2; ðcdÞ3; ðcgÞ2; ðdgÞ2i
as can be easily verified by setting g ¼ ðabÞ3; d ¼ aba and c ¼ b.

A word w in the letters of the generating set S is called a geodesic (or is said to be

geodesic) if w is of minimal length among all words representing the same element

of the group as w. The following result is usually called the Deletion Condition.

It follows from an elementary van Kampen diagram argument or see, for example, [8].

PROPOSITION 2.1 (The Deletion Condition). If ðW;SÞ is a Coxeter system and the

product a ¼ a1 � � � an is not a geodesic in S, then for some 1Oi < jOn,

a ¼ a1 � � � ai�1aiþ1 � � � aj�1ajþ1 � � � an, i.e. ai and aj may be deleted.
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If ðW;SÞ is a Coxeter system and T � S, then the subgroup WT of W generated by

T is a Coxeter group. The pair ðWT;TÞ is a Coxeter system and the Coxeter diagram

for ðWT;TÞ is a full subdiagram of the diagram for ðW;SÞ (see, for example, Chapter

5 of [8]). Hence, a Coxeter presentation for ðWT;TÞ can be read from the Coxeter

presentation of ðW;SÞ.
If G is a group and HOG is a subgroup, we say that a homomorphism /: G! H

is a retraction if /ðhÞ ¼ h for all h 2 H; thus the inclusion of H into G is a right

inverse to /. The primary advantage to working in an even Coxeter group is the

following.

PROPOSITION 2.2. If ðW;SÞ is an even Coxeter system and V � S then there is a

retraction W!WV whose kernel is the normal closure of S� V.

Proof. Define NðS� VÞ to be the normal closure of S� V in W. An elementary

examination of presentations shows that the presentation for W=NðS� VÞ, obtained
from the Coxeter presentation for W by adding the relations t ¼ 1 for all t 2 S� V,

reduces to the obvious Coxeter presentation for WV. (

If ðstÞ2nþ1 is a relation in a Coxeter presentation, then s and t are conjugate,

s ¼ ðtsÞntðstÞn. Hence, in a general Coxeter diagram, vertices s and t are conjugate if

there is an odd path between them. It is worth noting that in an even system, no two

distinct generators s 6¼ t 2 S are conjugate to one another.

PROPOSITION 2.3. If ðW;SÞ is a Coxeter system and V � S then W=NðVÞ is iso-
morphic to the subgroup of W generated by the set of all s 2 S such that in the Coxeter

diagram for ðW;SÞ, s is not connected to an element of V by an odd path.

This fact allows us to prove the following, which will be key to the proof of the

main theorem.

LEMMA 2.4. If ðW;SÞ and ðW;S0Þ are Coxeter systems and S is a subset of the

reflections of ðW;S0Þ then the reflections of ðW;SÞ and ðW;S0Þ are the same.

Proof. It suffices to show each element of S0 is conjugate to an element of S. Let A0

be the subset of S0 consisting of elements of S0 which are reflections of ðW;SÞ. If
s0 2 S0 � A0 then, there is no odd path in the diagram for ðW;S0Þ from s0 to an

element in A0. Hence by Proposition 2.3, s0 is not in the kernel of the quotient map

from W to W=NðA0Þ. But, W=NðA0Þ ¼W=NðSÞ ¼ f1g, the desired contradiction. (

We assume knowledge of van Kampen diagrams for the following proof.

LEMMA 2.5. Suppose ðW;SÞ is a Coxeter system, u ¼ s1 � � � sn is geodesic in S and u

is a reflection in ðW;SÞ. Then n ¼ 2mþ 1 for some integer m and

s1 � � � sm ¼ ðsmþ2 � � � s2mþ1Þ�1. (i.e. u is a conjugate of smþ1.)
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Proof. The Deletion Condition clearly implies that n is odd when u is a reflection.

As u is a reflection, we can write u as a1 � � � aktak � � � a1 for t and all ai in S. By the

Deletion Condition we may assume that a1 � � � akt (and so tak � � � a1) is geodesic. In a

van Kampen diagram (Figure 1) for the trivial word a1 � � � aktak � � � a1s2mþ1 � � � s1, the
string of 2-cells sharing opposite edges and beginning with the edge t must end at an

edge labeled si. As s1 � � � si�1 ¼ a1 � � � akb ¼ s2mþ1 � � � siþ1 and u is geodesic,

i ¼ mþ 1. (

Given a Coxeter diagram V, we call a collection of vertices r a simplex of V if the

vertices in r generate a complete subdiagram r̂, of V. The dimension dimðrÞ of the
simplex r is defined to be jrj � 1. Clearly r̂ is simply the 1-skeleton of an abstract

dimðrÞ-simplex generated by r in the usual topological sense.

A simplex r � V is said to be maximal if there is no simplex r0 � V such that

r � r0, where the inclusion is strict. We say that r is spherical if the subgroup Wr

generated by r is finite, and in this case we say that Wr is spherical with respect to S

(or with respect to V). We typically say simply that Wr is spherical when the Coxeter

presentation (or diagram) is clear.

A maximal spherical simplex is a spherical simplex that is not properly contained in

another spherical simplex.

Consider a subgroup ofW generated by C, a collection of vertices in V which is not

a simplex. Then WC is not finite, as there will be distinct elements s; t 2 C such that

t s

β

i

a1

1a

ak

ak

s 2m+1

s i+1

s i-1

s1

β

Figure 1. Lemma 2.5.
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mst ¼ 1; thus every spherical subgroup is generated by a simplex. However, it need

not be the case that every simplex is spherical; this we shall see later.

Throughout the remainder of this paper, ‘diagram’ will be taken to mean ‘Coxeter

diagram’.

3. Preliminary Lemmas

In this section we prove a result (Lemma 3.2) which will be of prime importance in

proving our classification. This lemma will provide a way of relating the spherical

simplices of one Coxeter diagram for a group W with the spherical simplices of

another diagram for the same group.

The first piece in the puzzle is furnished by the following result of Tits, which is

given as an exercise in [9].

LEMMA 3.1. Let ðW;SÞ be a Coxeter system. Then every finite subgroup of W is a

subgroup of a conjugate of a spherical (with respect to S) subgroup.

Consider two Coxeter systems ðW;SÞ and ðW;S0Þ for W, and their respective

diagrams V and V0. The above lemma tells us that for any spherical simplex r in V
there is a spherical simplex r0 in V0 and a group element w such that Wr � wWr0w

�1.

In case this containment is actually equality, we can say more.

LEMMA 3.2. Suppose ðW;SÞ and ðW;S0Þ are even Coxeter systems with corre-

sponding diagrams V and V0. Let ri (for i 2 f1; 2; . . . ; ng) be simplices in V such that

r ¼ \ri 6¼ ;. Suppose that for each i, r0i is a simplex in V0 such that for some wi 2W,

Wri
¼ wiWr0

i
w�1i . Let r0 ¼ \r0i. Then there exists w 2W such that Wr ¼ wWr0w

�1.

Proof. We prove the lemma for the case k ¼ 2, and an obvious induction proves

the result in general.

From Theorem 2.7.4. in [10] (due to Kilmoyer) we have

Wr ¼ ðw1Wr0
1
w�11 Þ \ ðw2Wr0

2
w�12 Þ ¼ wW�rw

�1 ¼ vW~rv
�1;

where w; v 2W, �r � r01, and ~r � r02. Hence, �r ¼ ~r � r0 because ðW;S0Þ is even.
Similarly,

Wr0 ¼ ðw�11 Wr1
w1Þ \ ðw�12 Wr2

w2Þ ¼ uWr̂u
�1

for some r̂ � r.
We have

Wr � wWr0w
�1 � wuWru

�1w�1:

The restriction of the retraction W!Wr (with kernel NðS� rÞ), applied to

wuWru
�1w�1 is an injection and so an isomorphism to Wr. Therefore,

Wr ¼ wuWru
�1w�1 and so, Wr ¼ wWr0w

�1. (
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4. The Structure of Even Diagrams for the Same Coxeter Group

Suppose we are given two even Coxeter presentations for a Coxeter groupW and the

diagrams corresponding to those presentations. We now know from the previous

section how it is that intersections of simplices from one diagram relate to inter-

sections of those in the other. We now expand upon these ideas.

The first fact of which we shall make use is the following:

LEMMA 4.1. Suppose that V and V0 are two even diagrams corresponding to the same

Coxeter group W. If r is a maximal spherical simplex in V, then there exists a unique

maximal spherical simplex r0 in V0 such that Wr ¼ wWr0w
�1.

Proof. This follows from Lemma 3.1 and an elementary quotient argument.

Namely, Lemma 3.1 implies that Wr is contained in wWr0w
�1 for some r0 in V0 and

then that Wr0 is contained in wWr00w
�1 for some r00 in V. Because ðW;SÞ is even, we

may show that r ¼ r00 by using the quotient map which identifies every element of r
to 1. Then the finiteness of Wr implies that Wr ¼ wWr0w

�1. (

The spherical simplices of an even Coxeter diagram have an elementary decom-

position structure. The following two results are classical, and elementary proofs can

be found in the PhD qualifying paper [2], of the first author.

LEMMA 4.2. Let V be an even Coxeter diagram. Then the subgroup generated by a

spherical simplex r is isomorphic to one of the following direct products:

Ym

i¼1
Dni or

Ym

i¼1
Dni � Zr

2

where each ni is even.

What can we say about two decompositions for the same such subgroup? The

decompositions are almost as ‘fine’ as they can be, in that the factors are very nearly

indecomposable. In fact, we have the following result (see [2]):

LEMMA 4.3. Suppose the dihedral group Dn decomposes nontrivially as a direct

product Dn ffi H� K. Then n ¼ 2k where k is odd, H ffi Dk, and K ffi Z2.

This lemma allows us to consider any decomposition of the form
Q

Dni and create

a ‘finest’ decomposition merely by splitting those Dni where ni ¼ 2ki for ki odd, into

the direct product of two groups: Dni ffi Dki � Z2.

Now consider two such ‘finest’ decompositions of a given group. These decompo-

sitions will be very similar to one another, by the Krull–Schmidt Theorem (see [11]).

THEOREM 4.4 (Krull–Schmidt). Suppose that a group G satisfies both the ascending

and descending chain conditions for normal subgroups (in particular, finite groups

clearly satisfy both of these properties). Given any two decompositions of G,
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G ffi H1 �H2 � � � � �Hm

and

G ffi K1 � K2 � � � � � Kn

into indecomposable groups Hi and Kj, then m ¼ n and there is a permutation / such

that Hi ffi K/ðiÞ.

So suppose we are given two even spherical simplices r1 and r2 which generate

isomorphic groups G1 and G2. Decomposing both groups into indecomposable

factors according to the structure of the corresponding simplices, we have two iso-

morphic decompositions

Y
Dni �

Y
Dmj
� ðZ2Þr

and

Y
Dki �

Y
Dlj � ðZ2Þs;

where all of the ni and ki are divisible by 4, and all of the mj and lj are odd. Because

all of the factors are indecomposable and because the groups Gi are finite, the Krull–

Schmidt Theorem states that there must be a bijection between the factors in these

decompositions as given above. Thus the even dihedral groups in each decomposi-

tion match up with one another, as do the odd ones, and since by hypothesis both of

the simplices that we began with are even, we see that each of the factors of the

original decompositions of the form D2bi for bi odd match up as well. The result is

that both simplices r1 and r2 must have the same edge labels, and are therefore

isomorphic as graphs.

This gives us the following result. (Recall that a simplex r is a set of vertices in a

diagram V, whereas r̂ is the full subdiagram of V generated by r.)

LEMMA 4.5. If r and r0 are even spherical simplices and Wr ffiWr0 , then r̂ and r̂0 are
isomorphic as labeled diagrams.

Now suppose that we are given two even diagrams V and V0 for the same Coxeter

group, and consider maximal spherical simplices ri in V and r0i in V0 such that for

each i there is an element wi 2W so that Wri
¼ wiWr0

i
w�1i . We know now that for

every i, r̂i and r̂0i are isomorphic as labeled diagrams. If Ci ðC0iÞ is the commutator

subgroup of Wri
(Wr0

i
) then in W, NðCiÞ ¼ NðC0iÞ. A Coxeter diagram for the

Coxeter group W=NðCiÞ ¼W=NðC0iÞ is obtained from V (V0) by changing all edge

labels in r̂i (r̂0i) to 2. Doing the same for all Ci (C
0
i) produces diagrams for isomorphic

right-angled Coxeter groups with the same unlabeled underlying graphs as V and V0.
As right-angled groups are rigid, we conclude that V and V0 have isomorphic

unlabeled graphs.
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LEMMA 4.6. If V and V0 are even diagrams corresponding to the same Coxeter group

W, then V and V0 are isomorphic as unlabeled graphs.

There is one more fact of which we take note. It will be necessary in the proof of

the classification theorem given below. Note that this result holds for right-angled

groups as well.

LEMMA 4.7. Let V and V0 be even diagrams for the same Coxeter group W. Then for

any even integer n, the number of edges labeled n in V is the number of edges labeled n

in V0.
Proof. Suppose that this result were not true, so that there exists a Coxeter group

W with even diagrams V and V0 for which there is an integer k > 2 and there are a

different number of edges labeled k in V than there are in V0. Let us furthermore

assume that we have picked W, V, V0, and k so that the number of edges labeled k

appearing in V is minimum over such witnesses to the falsity of the result.

Then consider an edge labeled k in V with end points in the maximal spherical

simplex r. There is a maximal spherical simplex r0 � V0 such that Wr ¼ wWr0w
�1 for

some w 2W. Hence, r̂ and r̂0 contain the same number of edges labeled k.

Let C (C0) be the commutator subgroup of Wr (Wr0 ). In W, NðCÞ ¼ NðC0Þ.
Diagrams for W=NðCÞ ¼W=NðC0Þ are obtained from V (V0) by changing the labels

of all edges in r̂ (r̂0) to 2. Since we have eliminated the same number of edges labeled

k from both diagrams, the two new diagrams also have a different number of edges

labeled k. But because we chose r so that it contained an edge labeled k, we have

eliminated at least one such edge, and have obtained a ‘smaller’ counterexample,

whereas we assumed that we had a minimal counterexample. Thus the result is

proved. (

Remark. Lemmas 4.5, 4.6, and 4.7 are used by Bahls in [3] to show that in fact two

even diagrams for a Coxeter group are isomorphic as labeled graphs (See Theorem

5.2).

5. The Main Theorem

In this section we state our main theorem and indicate some of its consequences.

For a vertex x in a Coxeter diagram V, let stðxÞ denote the set containing x and all

vertices adjacent to x by some edge. This is called the star of x. The 2-star of x,

written st2ðxÞ, is defined to be the set containing x and all vertices in V which are

adjacent to x via an edge labeled 2. (Thus if s 2 st2ðxÞ, s and x commute.) Define the

link lkðxÞ of the vertex x to be stðxÞ � fxg and the 2-link lk2ðxÞ of the vertex x to be

st2ðxÞ � fxg. For a given vertex x 2 V (or V0), denote by sx the (spherical) simplex

which is formed by taking the intersection of all of the maximal spherical simplices

containing x. Note that, in particular, sx satisfies the hypotheses of Lemma 3.2.

Our main theorem is:
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THEOREM 5.1. Suppose that V is an even Coxeter diagram corresponding to the

system ðW;SÞ.

(1) If there are distinct vertices x and y in V such that stðxÞ � st2ðyÞ, then there is an

automorphism a of W taking x to xy (which is not a reflection in ðW;SÞ). (i.e.
ðW;SÞ and ðW; aðSÞÞ have a different set of reflections.)

(2) If there are distinct vertices x; y; z 2 V and an edge ½yz� in V with label n > 2 such

that y; z 2 sx then there is an automorphism a of W taking x to xðyzÞ
n
2 (which is not

a reflection in ðW;SÞ).
(3) If no pair or triple of vertices, as described in (1) and (2), exists in V then the

reflections of ðW;SÞ and ðW;S0Þ are the same for any other even system ðW;S0Þ.

This result characterizes all reflection preserving even Coxeter systems. If an even

Coxeter group W is rigid, then our result determines if W is reflection independent.

For an even Coxeter system ðW;SÞ and corresponding diagram V, a simplex r is

spherical iff there are no consecutive edges ½xy� and ½yz� in r̂, both with labels > 2 (see

Lemma 5.6 below). If one were interested in a more ‘algorithmic’ condition than that

given in (2) of Theorem 5.1, then the following may suffice.

Remark. If x; y and z are distinct vertices in V, and ½yz� has label n > 2, then

y; z 2 sx iff edges ½xy� and ½xz� exist and have label 2 and there is no vertex w 2 lkðxÞ
such that one of the groups Wfw;x;yg;Wfw;x;zg and Wfw;y;zg is infinite (equivalently one

of the subdiagrams of V generated by fw; x; yg; fw; x; zg and fw; y; zg is not a

f2; 2;mg triangle).

Remark. Following the results in [3] and [7], we can prove a great deal more

concerning the uniqueness of representations of even Coxeter groups.

In [3], Bahls proves the following theorem:

THEOREM 5.2. Any two even diagrams V and V0 for the same Coxeter group W are

isomorphic by a diagram isomorphism w which satisfies the following two conditions:

(1) If r � V and r0 � V0 are simplices generating conjugate spherical subgroups, then w
takes the collection of vertices of r to the collection of vertices of r0.

(2) If ½xy� � V and ½x0y0� � V0 are edges will labels greater than 2 such that the groups

hðxyÞ2i and hðx0y0Þ2i are conjugate, then fwðxÞ;wðyÞg ¼ fx0; y0g.

As a consequence, there is at most one even diagram (up to isomorphism) for any

given Coxeter group. Mihalik proves in [7] that there is a simple combinatorial

condition which may be used to check whether or not an even Coxeter group is rigid.

In particular, he proves the following result:

THEOREM 5.3. Suppose that ðW;SÞ is a finitely generated even Coxeter system with

diagram V. Then W has a noneven system if and only if there is an edge ½ab� of V with
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label 2ð2kþ 1Þ for k > 0 such that with the exception of ½ab� each edge containing a has
label 2, and for each such edge ½ac� there is also an edge ½bc� with label 2.

As a consequence of the proof of our result, it can be shown that if an even

Coxeter group has a noneven presentation, then it is not reflection independent.

Thus we have

THEOREM 5.4. Suppose that ðW;SÞ is an even Coxeter system. If ðW;SÞ is reflection
independent, then W is rigid.

We can use this fact to determine whether or not a given even Coxeter system

ðW;SÞ represents a reflection independent group W. First we check to see if W is

rigid, using Mihalik’s criterion given above. If it is not rigid, it cannot be reflection

independent. If W is rigid, then we may use the main theorem from this paper to

determine whether or not the given system is reflection preserving. If ðW;SÞ is

reflection preserving, the fact that it is rigid ensures that it is also reflection inde-

pendent. If ðW;SÞ is not reflection preserving, it cannot be reflection independent

either.

Therefore the results of this paper, in conjunction with those from [3] and [7], may

be used to completely characterize those even Coxeter systems which are rigid,

reflection preserving, or reflection independent.

Finally, in order to highlight the distinction between reflection independence and

reflection preservation, we indicate an example of a Coxeter group which is not

reflection independent, but for which every Coxeter system is reflection preserving.

Consider the group presented by

ha; x; y; zja2; x2; y2; z2; ðxyÞ4; ðyzÞ3; ðayÞ2; ðazÞ2i:
It can be shown using elementary techniques that this group is isomorphic to that

presented by

hx0; y0; t0jx02; y02; t02; ðx0y0Þ4; ðy0t0Þ6i
and that these are the only two means of presenting this group. The second of these

presentations is seen to be reflection preserving by Theorem 5.1, and Lemma 3.1 may

be utilized to show that the first presentation is also reflection preserving. How-

ever, as the group is not rigid, it cannot be reflection independent, by Theorem 5.4

above.

6. Structure Lemmas

In this section we prove part of the main theorem. We also use results from Section 4

to prove a collection of structural lemmas which are used in Section 7 to finish the

proof of the main theorem.

By the Deletion Condition, all reflections have odd length. Hence the following

Lemma verifies part (1) of our theorem.
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LEMMA 6.1. Suppose V is an even diagram corresponding to the Coxeter system

ðW;SÞ. If there are vertices x 6¼ y in V such that stðxÞ � st2ðyÞ, then there is an

automorphism of W taking x to xy.

Proof. It is easy to check that the map a: W!W extending the map aðxÞ ¼ xy

and aðsÞ ¼ s for all s 2 S� fxg is a homomorphism. Since this map is clearly an

involution, it is an automorphism. (
We will frequently need to determine whether or not a two-dimensional simplex is

spherical. The following result can be found in [9], for example.

LEMMA 6.2. Let r be a two-dimensional simplex in a Coxeter diagram V. Then r is

spherical if and only if the sum of the reciprocals of the edge labels of r̂ exceeds 1. In

particular, the only even spherical two-dimensional simplices are those with labels

f2; 2; ng for n even.

LEMMA 6.3. Suppose V is an even diagram corresponding to the Coxeter system

ðW;SÞ. If x; y; z are distinct vertices of V, ½yz� is an edge of V with label n > 2 and

y; z 2 sx then there is an automorphism of W taking x to xðyzÞ
n
2.

Proof. By Lemma 6.2, x commutes with both y and z. Suppose a is a vertex of

V � fx; y; zg such that xa has finite order. Then a commutes with both y and z, as the

edge ½xa� lies in a maximal spherical simplex (which must contain sx). Consider the
map a of S into W which takes x to xðyzÞ

n
2 and each s 2 S� fxg to itself. To see that

a extends to a homomorphism of W, it suffices to show that if a 2 S and ðxaÞm is a

Coxeter relation of ðW;SÞ (with m 6¼ 1) then ðxðyzÞ
n
2aÞm is the trivial element of W.

The relation x2 becomes ðxðyzÞ
n
2Þ2. As x has order 2 and commutes with the order 2

element ðyzÞ
n
2, ðxðyzÞ

n
2Þ2 ¼ 1 in W. The relation ðxyÞ2 becomes ðxðyzÞ

n
2yÞ2. This ele-

ment is trivial in W as the order 2 element x commutes with y and z and ðyzÞ
n
2y is a

conjugate of y or z and hence has order 2. Similarly for the relation ðxzÞ2. If

a 2 S� fx; y; zg and ðaxÞm is a Coxeter relation with m 6¼ 1, then as a and x

commute with y and z inW, ðaxðyzÞ
n
2Þm ¼ ðaxÞmðyzÞm

n
2 ¼ 1 inW. Hence, a extends to

a homomorphism of W. Clearly, a is an involution and hence an automorphism

of W. (

By Lemma 2.5, xðyzÞ
n
2 is not a reflection of ðW;SÞ and we have finished part (2) of

our theorem.

If u is a word in the letters of a generating set for a group, then let �u be the

corresponding element of the group. The following result is of prime importance in

finishing the proof of the main theorem.

LEMMA 6.4. Suppose that we are given maximal spherical simplices ri and r0i of the
even Coxeter systems ðW;SÞ and ðW;S0Þ, respectively, for i ¼ 1; . . . ; k such that

Wri
¼ wiWr0

i
w�1i . Define r ¼ \ri and r0 ¼ \r0i and say Wr ¼ wWr0w

�1. Suppose that

Wr (and therefore Wr0) is right-angled. Let x be an element of r. If

x ¼ a1 �u1a
�1
1 ¼ a2 �u2a

�1
2 for geodesics ui in the letters of r0 and ai 2W, then �u1 ¼ �u2.
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If we additionally assume that x is central inWri
, then every letter of ui is central inWr0

i
.

Proof. As Wr0 is right-angled and finite, and therefore Abelian, each letter of ui
occurs exactly once. Note that x is an element of the normal closure in W of the set

of letters of u1, and so each letter of u2 must be a letter of u1. (This may be shown by

considering the quotient map which identifies to 1 all letters occurring in u1.) Sim-

ilarly each letter of u1 appears in u2. Thus �u1 ¼ �u2.

Now assume that x is central in Wri
. Then �u1 is central in Wr0

i
. We show that each

letter of u1 commutes with every letter in r0i. Consider a letter s 2 r0i. If s 2 r0, we see s
commutes with every letter of u1 simply because Wr0 is Abelian. If s 2 r0i � r0 and t is

any letter in u1, then by the fact that s�u1 ¼ �u1s, taking the retraction which maps

from W onto Wfs;tg shows that s and t must also commute. (

7. The Proof of the Main Theorem

Proof of Theorem 5.1. Suppose ðW;SÞ and ðW;S0Þ are even with diagrams V and

V0, respectively. Then, by Lemma 2.4 and the results of the previous section, we need

only prove that if there are no two (resp. three) distinct vertices x; y (resp. x; y; z) in V
such that these vertices satisfy condition (1) (resp. (2)) of Theorem 5.1, then each

element of S is conjugate to an element of S0.

Assume some s 2 S is not a reflection in ðW;S0Þ. By Lemma 3.2, ss 6¼ fsg. We

proceed with a least criminal argument based on the following:

Minimality condition: Choose x 2 S such that x is not a reflection of ðW;S0Þ and so

that if y 2 S such that jsyj < jsxj, then y is a reflection of ðW;S0Þ.
The argument splits naturally into two cases: When Wsx is Abelian and when it is

not. We first consider the case Wsx Abelian, as the validity of this case will be used to

establish the second case.

For the remainder of the proof we let frjg be the collection of maximal spherical

simplices which contain x, and we let r0j denote the maximal spherical simplex of V0
conjugate to rj, for each j. We also note that if y 2 sx, then sy � sx. This fact will be
used without mention in the proofs that follow.

Case 1. Wsx is Abelian.

Let s0 be the (right-angled) simplex in V0 such that Wsx ¼ wWs0w
�1 for some

w 2W.

Consider the product z0 ¼ z01 � � � z0l with z0i 2 s0 such that x ¼ wz0w�1. Note that this

product must have length at least 2 (or x would be a reflection in V0).

CLAIM 7.1. There is some i 2 f1; . . . ; lg such that sz0
i
¼ s0.

Proof. Suppose this were not the case. Then sz0
i
is a proper subset of s0, and there is

a proper subset si of sx such that Wsi is conjugate to Wsz0
i

(by Lemma 3.2). The

definition of sx implies that x 62 si. By our minimality condition, some element of si is
conjugate to z0i. That is, for every z0i appearing in z0, there is a generator zi 2 sx such

that zi ¼ wiz
0
iw
�1
i for some element wi 2W. Since Wsx ¼ wWs0w

�1, we have

PATRICK BAHLS AND MICHAEL MIHALIK74



zi ¼ wu0iw
�1 for some u0i 2Ws0 . By Lemma 6.4 u0i ¼ z0i and so zi ¼ wz0iw

�1 for each z0i
appearing in z0.

Thus we have

x ¼ wz0w�1 ¼ wz01 � � � z0lw�1 ¼ ww�1z1w � � �w�1zlww�1 ¼ z1 � � � zl

which cannot be. Thus it must be that some z0i appearing in z0 satisfies sz0
i
¼ s0. (

Without loss we may assume that z01 satisfies the conclusion of Claim 7.1.

CLAIM 7.2. A Coxeter diagram for W=NðxÞ ¼W=Nðz0Þ is obtained from V0 by
removing the vertex z01 (and all incident edges) and changing all edge labels greater than

2 between a vertex of lkðz01Þ and a point of fz02; . . . ; z0lg to the label 2.

Proof. Consider the presentation of W=NðxÞ ¼W=Nðz0Þ obtained by adding the

relation z01 ¼ z02 � � � z0l to the relations of P0 (� the presentation defined by V0). Let P0 be
the equivalent presentation forW=Nðz0Þobtained by removing the generator z01 and the

relation z01 ¼ z02 � � � z0l and replacing each occurrence of z01 in a relation by the word

z02 � � � z0l. LetR0 be the set of relations ofP0 that do not contain the letter z01. The relation
ðz01Þ

2 of P0 is changed to ðz02 � � � z0lÞ
2, which is easily seen to be a consequence of the

relations of R0 (as the z0j commute and have order 2). If z0i 2 s0 � fz01g then the relation

ðz01z0iÞ
2 ofP0 becomes ðz02 � � � z0lz0iÞ

2 inP
0
,which is alsoa consequenceof the relations ofR0.

Suppose a 2 S0 � s0, and ðz01aÞ
n is a relation of P0. As sz0

1
¼ s0, a maximal spherical

simplex of V0 containing the edge ½z01a� also contains s0. Hence, if n > 2, then

ðaz0iÞ
2 2 R0 for all i 2 f2; . . . ; lg. This implies that ðz02 � � � z0laÞ

2 (and therefore

ðz02 � � � z0laÞ
n) is a consequence of R0.

If instead, n ¼ 2, then again ðz0iaÞ
mi 2 R0 for all i 2 f2; . . . ; lg and at most one mi is

larger than 2. If all mi ¼ 2, then as above ðz01aÞ
2 is a consequence of R0. If some

mi 6¼ 2 (say for simplicity m2 > 2) then ðz02aÞ
2 is a consequence of R0 [ fðz02 � � � z0laÞ

2g.
As ðz02 � � � z0laÞ

2 is a consequence of R0 [ fðz02aÞ
2g we are finished. (

The following is clear.

CLAIM 7.3. A diagram for W=NðxÞ is obtained from V by removing x (and all incident

edges).

Now for each element or subset A ofW, let A be the image of A under the quotient

map ofW toW=NðxÞ. Claim 7.2 implies that f�z02; . . . ; �z0lg is central inW�r0
i
for all i. As

�z02 is conjugate to some product of �zj in W=NðxÞ (where the elements �zi are defined as

in Claim 7.1), each of these �zj is central in W�ri
for all i, by Lemma 6.4. If �zj is central

in W�ri
then by Claim 7.3, zj is central in Wri

, but no zj is central in all Wri
as

stðxÞ 6� st2ðzjÞ. This is the desired contradiction and Case 1 is finished.

Case 2. Wsx is not Abelian.

The only case to consider is when sx contains an edge ½xy� with label n > 2. By our

hypotheses all other labels on edges with both vertices in sx are 2.

SayV-simplexWsx is conjugate toWs0 for s0 aV0-simplex. Then byLemma4.5, ŝx and
ŝ0 are isomorphic as labeled diagrams. Let ½x0y0� be the edge of s0 with label n. Let
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Z ¼ sx � fx; yg and Z0 ¼ s0 � fx0; y0g. Then Z and Z0 are central in Wsx and Ws0 ,

respectively. As sz � sx for all z 2 Z and since by hypothesis, not both x and y are in sz
for any z 2 Z, sz is Abelian for all z 2 Z. Assume Z ¼ fz1; . . . ; zkg. By Case 1, we may

assume that each zi 2 Z is conjugate to z0i 2 Z0. Because x does not commute with y, x

must be conjugate to an element of order 2 inWs0 which is not central inWs0 . Thus x is

one of the elements wq0z0w�1, where z0 is a (possibly trivial) element of WZ0 and q0 is

in the set

Q ¼ fx0; y0; x0y0x0; y0x0y0; . . . ; ðx0y0Þn=2�1x0; ðy0x0Þn=2�1y0g:

Note that the element ðx0y0Þn=2 ¼ ðy0x0Þn=2 is central in Ws0 and so x cannot be

conjugate to an element of the form ðx0y0Þn=2z0.
If z0 is trivial, we are done, since each of the elements in Q is a reflection. Suppose

that this is not the case. If x is wq0z0w�1 where q0 is of the form ðx0y0Þkx0, then because

each of the elements z0i commutes with both x0 and y0, we may write x as

wðx0y0Þkx0z0w�1 ¼ wðx0y0Þk=2ðx0z0Þðy0x0Þk=2w�1

when k is even and

wðx0y0Þkx0z0w�1 ¼ wðx0y0Þ
k�1
2 x0ðy0z0Þx0ðy0x0Þ

k�1
2 w�1

when k is odd. A completely analogous argument shows that y is conjugate to x0z00 or

y0z00 for some z00 2WZ0 . An examination of the quotient of Wsx ¼ wWs0w
�1 by its

center shows that x and y are not conjugate to x0z0 and x0z00, respectively or y0z0 and

y0z00, respectively. Hence, we may assume that x is conjugate to x0z0 and y to y0z00. In

particular NðxÞ ¼ Nðx0z0Þ.
On one hand, a diagram for the group W=NðxÞ is found by merely removing the

vertex x and all incident edges from the diagram for ðW;SÞ. On the other hand, we

will produce a diagram for the isomorphic group W=Nðx0z0Þ by considering the effect

of adding the relation x0 ¼ z0�1 ¼ z0 ¼ z01 � � � z0s to the presentation P0 for the system

ðW;S0Þ and by Tietze transformations changing this presentation to a Coxeter

presentation. (Recall that a Tietze transformation is an operation on a group pre-

sentation which results in a second presentation, for an isomorphic group. Precisely,

if one is given the presentation hSjRi, one may add a generator s while simulta-

neously adding the relation s ¼ wðSÞ expressing s as a word in the original genera-

tors, or one may add a relation r ¼ 1 which follows as a consequence of the original

relations R. Corresponding to each of these transformations is an ‘inverse’ trans-

formation, removing a generator or removing a relation.)

First alter this presentation for W=Nðx0z0Þ by removing the generator x0 and the

relation x0 ¼ z01 � � � z0s and replace every occurrence of x0 in the remaining relations

with the product z0. Call the resulting presentation P
0
.

Let R0 be the set of relations of P0 that do not contain the letter x0. The relation

ðx0Þ2 has been changed to ðz0Þ2, which is a consequence of R0 (since all of the z0i have
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order 2 and commute with one another in W). The relation ðx0z0jÞ
2 is changed to

ðz0z0jÞ
2 in P

0
, which is also a consequence of R0.

Next consider the relation ðx0y0Þn. As every z0i commutes with y0 in W, the relation

ðz0y0Þn is a consequence of R0 (in fact, z0y0Þ2 follows).

If there is a relation of the form ðx0a0Þp (for a0 not in s0) in P0, a different approach

must be used. We will show that p ¼ 2, and the corresponding relator ðz0a0Þ2 in P
0
,

can be removed from P
0
as a consequence of other relators, but in doing so a Coxeter

relation of the form ðz0ia0Þ
k (for k > 2) must also be changed to ðz0ia0Þ

2.

CLAIM 7.4. If a0 2 S0 � s0 and x0a0 has order p, then p ¼ 2.

Proof. If p > 2, then a maximal spherical simplex b0 containing a0 and x0 does not

contain y0, and x0 2 b0 \ s0 � fx0g [ Z0. Let b be a maximal simplex in V, conjugate
to b0. Now b does not contain x, for otherwise, b would equal some ri and Wsx

contains more elements than Wb0\s0 contrary to Lemma 3.2. So b \ sx � fyg [ Z.

Now for each t 2 b \ sx,Wst is Abelian and so byCase 1, t is conjugate to an element

of b0 \ s0. As no two elements of b \ sx are conjugate and jb \ sxj ¼ jb0 \ s0j some

element of b \ sx is conjugate to x0 (i.e. x0 is conjugate to y or some zi). If x
0 were

conjugate to zi 2 Z, then as zi is conjugate to z
0
i,x
0 is conjugate to z0i, which is impossible.

Hence, we must have x0 conjugate to y. But this is also impossible as y is conjugate

to y0z00 and clearly x0 is not conjugate to y0z00, as if this were the case, the quotient

map which identifies y and all z0i with 1 would also identify x0 to 1, a contradic-

tion. (

CLAIM 7.5. If a0 2 ðS0 � s0Þ \ stðx0Þ then a0y0 has order 2.

Proof. If not, there is a maximal spherical simplex b0 containing a0 and x0 (but not

y0). Now x0 2 b0 \ s0 and b0 is conjugate to a maximal simplex b in V which does not

contain x. Since Wb\sx is Abelian and conjugate to Wb0\s0 , x
0 is conjugate to an

element of sx � fxg ¼ fyg [ Z. If x0 were conjugate to zi 2 Z, then x0 is conjugate to

z0i which is impossible. If x0 were conjugate to y, then x0 would be conjugate to y0z00

which it is clearly not, as in the proof of Claim 7.4. This completes the proof of our

claim. (

CLAIM 7.6. A diagram for W=Nðx0z0Þ is obtained from V0 by removing the vertex x0

(and all incident edges) and changing some labels > 2 on edges between vertices of

ðS0 � s0Þ \ stðx0Þ and Z0 to the label 2.

Proof. If a0 2 ðS0 � s0Þ \ stðx0Þ then by Claims 7.4 and 7.5, there exists a maximal

spherical simplex b0 in V0, containing a0; x0 and y0. Now,Wb0 is conjugate toWb for b a

maximal spherical simplex in V. Observe that b must contain x (otherwise

x j2Nðb [ ZÞ ¼ Nðb0 [ Z0Þ, but x ¼ x0z0) and therefore sx. This implies b0 contains s0.
As Wb0 is finite, at most one edge ½a0z0i� has label > 2. Our relation ðz0a0Þ2 is a con-

sequence of R0 if z0ia
0 has order 2 for all i. Otherwise we assume ða0z01Þ

k is a relation

with k > 2. The relations ðz0a0Þ2, ða0z01Þ
k, ðz0iz0jÞ

2 for all i 6¼ j, ðz0iÞ
2 for all i, and ða0z0iÞ

2

for i > 1 are equivalent to (i.e. have the same normal closure in the free group on S0
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as) the relations ðz0iz0jÞ
2 for all i 6¼ j, ðz0iÞ

2 for all i, and ða0z0iÞ
2 for all i. Making the

corresponding replacements in our presentation for W=Nðz0x0Þ gives a Coxeter pre-

sentation of W=Nðz0x0Þ with diagram as described in the statement of our claim. (

If v is a vertex of a diagram V then we define the spoke of v in V (written spðv;VÞ) to
be the subdiagram of V consisting of all labeled edges containing v.

CLAIM 7.7. The diagrams spðx;VÞ and spðx0;V0Þ are isomorphic as labeled diagrams.

Proof. By Claim 7.4, all edges in spðx0;V0Þ have label 2 except ½x0y0�. If

a 2 lkðxÞ � fyg, then any maximal spherical simplex containing ½ax� contains y and

so the edge label of ½ax� is 2. So, all edges of spðx;VÞ have label 2 except ½xy�. It
suffices to show spðx;VÞ and spðx0;V0Þ have the same number of edges. Let V and V0

be the subdiagrams of V and V0, respectively for W=NðZÞ ¼W=NðZ0Þ obtained by

removing the vertices of Z and Z0 from V and V0, respectively. By Lemma 4.6, V and

V0 have the same number of edges. Under the quotient map from W to W=NðZÞ, the
image of x is conjugate to the image of x0 and so diagrams for

W=NðZ [ fxgÞ ¼W=NðZ0 [ fx0gÞ can be obtained by removing spðx;VÞ from V and

spðx0;V0Þ from V0. As the resulting diagrams have the same numbers of edges (by

Lemma 4.6), spðx;VÞ and spðx0;V0Þ have the same number of edges. As the number

of edges in spðx;VÞ (and spðx0;V0Þ) is jZj plus the number of edges in spðx;VÞ (and
jZ0j plus the number of edges in spðx0;V0Þ, respectively), we are finished. (

If a 2 stðxÞ then there is a maximal spherical simplex containing ½ax� and therefore

sx. Hence azi has finite order for all i. As stðxÞ 6� st2ðziÞ there exists a 2 stðxÞ such
that ½azi� has label k > 2. Choose a maximal spherical simplex b containing ½ax� (and
therefore sx). If b0 is the maximal spherical simplex of V0 such thatWb is conjugate to

Wb0 then s0 � b0. As ½azi� � b, zi is not central in Wb.

CLAIM 7.8. The element z0i is not central in Wb0 .

Proof. Recall, if d is a geodesic in a Coxeter system ðW;SÞ, then �d is the corre-

sponding element in W. Say wziw
�1 ¼ z0i for w 2W. If vWbv

�1 ¼Wb0 , then say

vziv
�1 ¼ �q0 2Wb0 for some geodesic q0 in ðWb0 ; b

0Þ. Now, w�1z0iw ¼ v�1 �q0v and so

vw�1z0iwv
�1 ¼ �q0. By Lemma 2.5, we may assume the geodesic q0 is written as

q01t
0ðq01Þ

�1, where t0 2 b0 and q01 is geodesic in b0. As ðW;S0Þ is even, t0 ¼ z0i and if z0i is

central in Wb0 , then z0i ¼ �q0 ¼ vziv
�1. But this implies zi is central in Wb, the desired

contradiction. (
By Claim 7.8 there is a spherical triangle ½x0z0ie0� in V0 with label k > 2 on ½z0ie0� and

the other two labels equal to 2. As spðxÞ has one edge labeled n and the rest labeled

by 2, the Coxeter diagram forW=NðxÞ obtained from V by removing the vertex x has

one fewer edge with label > 2 than V. Now consider the effect on V0 when the

relation x0z0 is added to the Coxeter presentation with generating set S0 and a

Coxeter presentation is formed as in Claim 7.6. Certainly the vertex x0 is removed

and so the resulting diagram for W=NðxÞ ¼W=Nðx0z0Þ has at least one fewer edge

with label > 2 than V0. But by Claim 7.6, the edge ½e0z0i� of V0 with label k > 2 is
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replaced in the diagram of W=Nðx0z0Þ by an edge labeled 2. Hence, the diagram for

W=Nðx0z0Þ has at least two fewer edges with label > 2 than V0. Now comparing the

number of edges with label > 2 in the two diagrams for W=NðxÞ ¼W=Nðx0z0Þ
contradicts Lemma 4.7.

This completes the non-Abelian case and our proof of Theorem 5.1.

As an immediate corollary we have (

COROLLARY 7.9. If the Coxeter system ðW;SÞ is right-angled, then W is reflection

independent if and only if every vertex in VðW;SÞ is the intersection of the maximal

simplices containing it.

Proof.Note that maximal simplices of V are maximal spherical simplices, since in a

right-angled Coxeter group every simplex is spherical.

By Lemma 3.2, if sx ¼ fxg for every x then our group is reflection independent.

If for some vertex x there is some other vertex y in sx then stðxÞ � st2ðyÞ, since
every edge has label 2. Thus our group is not reflection independent. (

Two vertices of a Coxeter diagram are in the same odd component iff there is an

edge path with odd labels between them.

PROPOSITION 7.10. Suppose ðW;SÞ and ðW;S0Þ are Coxeter systems with diagrams

V and V0. If ðW;SÞ and ðW;S0Þ have the same set of reflections, then there is a bijection

w, from the set of odd components of V to the set of odd components of V0 such that for

any odd component C of V, WC is isomorphic to WwðCÞ.

Proof.As noted in Section 2, distinct elements x and y of S are conjugate iff they are

in the same odd component of V. SupposeC is an odd component of V, x 2 C and x is

conjugate to x0 an element of the odd component C0 of V0. Then each element of C is

conjugate to each element of C0 and so NðCÞ ¼ NðC0Þ (in W). This defines a bijection

between the odd components of V and V0. Observe that there are retractions of W to

WS�C and WS0�C0 with kernel NðCÞ ¼ NðC0Þ. I.e. WS�C is isomorphic to WS0�C0 . In

fact, ifD is a union of odd components of V andD0 is the corresponding union of odd

components of V0, ThenWS�D is isomorphic toWS0�D0 . If we takeD ¼ S� C forC an

odd component of W, then we have WC isomorphic to WC0 . (

This proposition implies that if ðW;SÞ is an even Coxeter system and ðW;S0Þ is not
even, then ðW;SÞ and ðW;S0Þ do not have the same set of reflections.
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