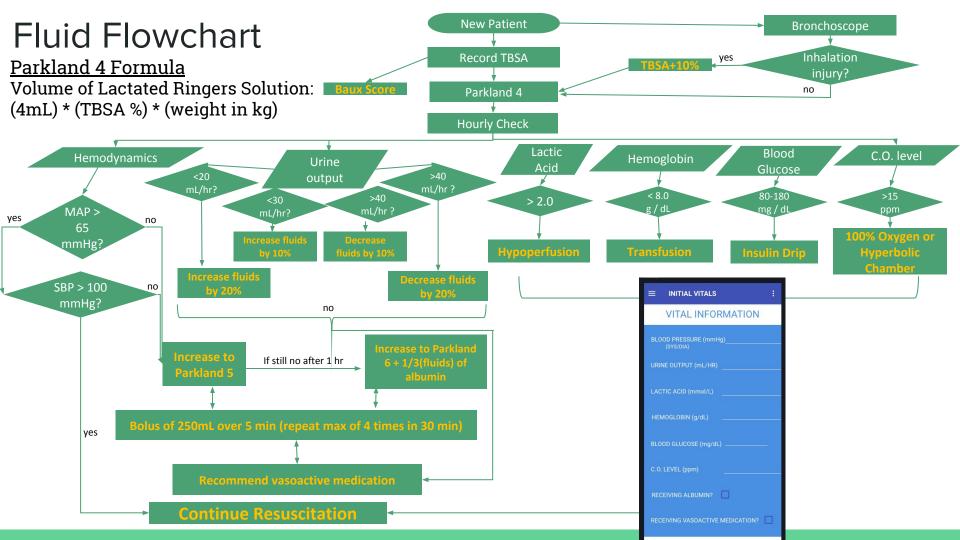
Burn Resuscitation and Management for Early Responders

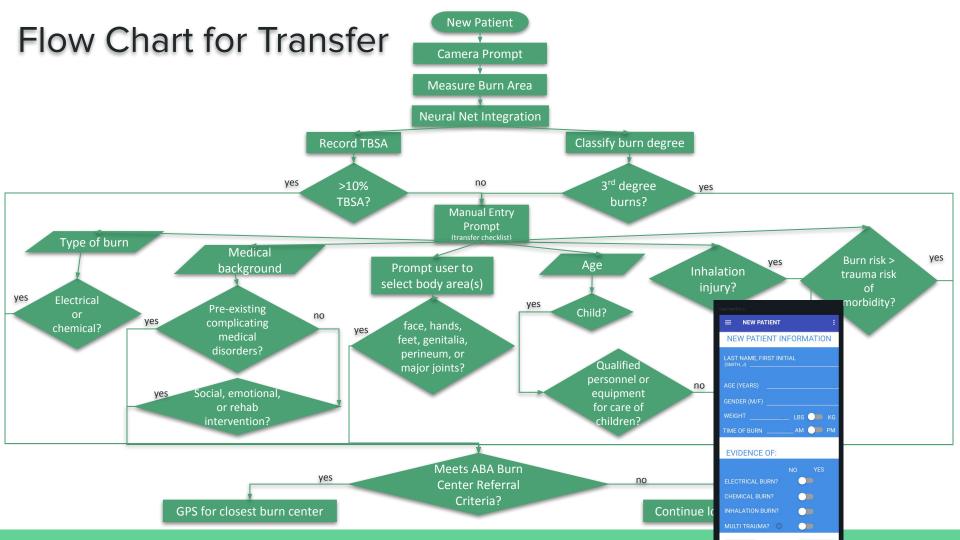
BMExtra Group:

Jacob Ayers (BME), Hannah Kang (BME), Dominique Szymkiewicz (BME), Nora Ward (BME), Thomas Yates (BME), Eric Yeats (CompE)

Contact: Avinash Kumar M.D.

Presentation Overview

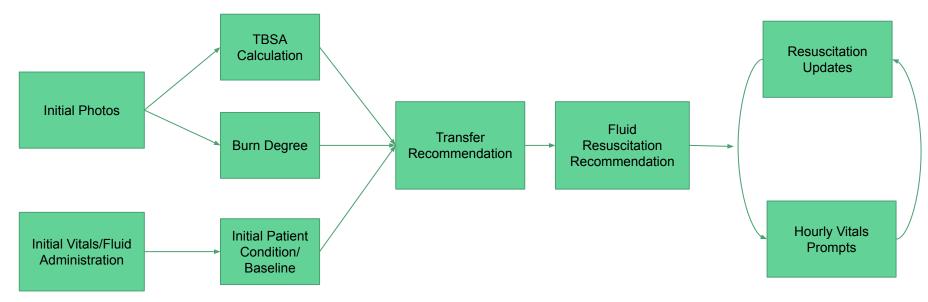


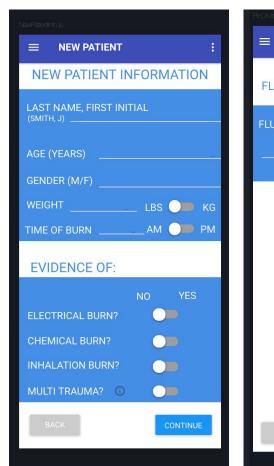

Validation Stage Performance Goals

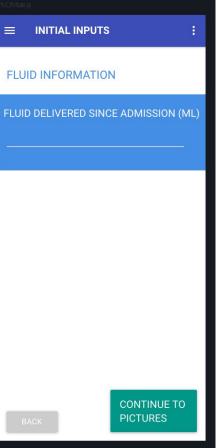
- Camera application/Neural Network integrated into app
 - Easy to use by end user
 - Successfully take photo and calculate TBSA from photo
- Patient information capture recorded within App
 - Age, gender, weight
 - Burn type
- Neural Net Analysis
 - Image analysis
 - Burn Degree
- Required Qualifications
 - o TBSA
 - Burn Degree
 - Transfer Recommendation
 - Fluid Resuscitation Recommendation

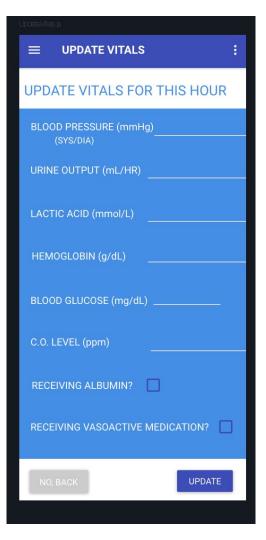
Important Information Capture

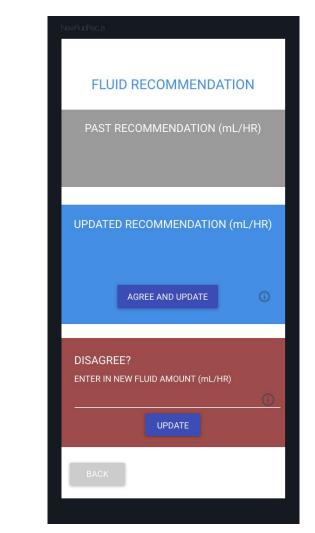

Information Needed	User Interface Slide Location	
Patient Personal Information (name, age, gender, weight, initial conditions/existing medical considerations)	New Patient	
Initial Measurements (Fluid administered before trauma center check in)	Initial Inputs	
Initial Measurements (patient baseline vitals before administration of additional fluids)	Initial Vitals	
Neural Net Photo Diagnostic Output (TBSA calculation, burn degree, initial fluid administration recommendation)	Solution	
Old Vitals Information	Vital History - specifically 1-2 hours previously found in Vital History for X slide	
Fluid Administration Log	Fluid History	
Past/Initial Photos Viewed at a Later Time	Past Pictures	
Vitals Update (capturing patient vitals and hour that information is collected)	Update Vitals	




User Interface - Beginning Prototype

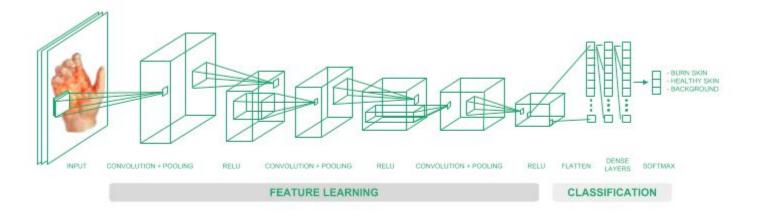

User Interface - Basic Design Ideas


User Interface - Basic Design Ideas



als js	s OurAnalysis js				
■ INITIAL VITALS	:		SOLUTION	:	
VITAL INFORMAITON					
BLOOD PRESSURE (mmHg) (SYS/DIA)		тс	TAL BURN SURFACE A	REA (TBSA)	
URINE OUTPUT (mL/HR)					
LACTIC ACID (mmol/L)			BURN DEGREE		
HEMOGLOBIN (g/dL)					
BLOOD GLUCOSE (mg/dL)		FLUI	RESUCITATION RECO	MMENDATION	
C.O. LEVEL (ppm)				()	
RECEIVING ALBUMIN?			TRANSFER RECOMM	IENDED	
RECEIVING VASOACTIVE MED				Ū	
ВАСК СОМ	ITINUE TO CHART	В	ACK	ADD VITALS	


```
1 import React, { Component } from "react";
 2 import Button117 from "../symbols/button117";
 3 import { Center } from "@builderx/utils";
 4 import Button612 from "../symbols/button612";
 5 import { View, StyleSheet, Text } from "react-native";
 6
 7 export default class EndRes extends Component {
 8
     render() {
 9
      return (
10
         <View style={styles.root}>
11
          <Center vertical>
12
            <View style={styles.rect} />
13
          </Center>
14
       <Center horizontal>
15
             <Button117 style={styles.button117} />
```


```
export default class SecurityAuth extends Component {
 render() {
     <View style={styles.root}>
         source={require("../assets/a3d677392ee343199bc8e0bfbba7037f (1).jpeg")}
         style={styles.logo}
       15
       <View style={{...styles.gray, flex: 0.6, flexDirection: 'column', justifyContent: 'flex-start', alignItems: 'stretch'}} >
         <View style={{flex: 1, flexDirection: 'row', alignItems: 'center'}}>
           <Text style={styles.text}>USERNAME</Text>
           <DisabledTextbox style={styles.DisabledTextbox} />
         </View>
         <View style={{flex: 1, flexDirection: 'row', alignItems: 'center'}}>
           <Text style={styles.text}>PASSWORD</Text>
           <DisabledTextbox style={styles.DisabledTextbox} />
         </View>
         <View style={{flex: 1, flexDirection: 'row', justifyContent: 'center', alignItems: 'center'}}>
             style={{...styles.button}}
             root={() => {}
               this.props.navigation.push("Patient");
             onPress={() => {
               this.props.navigation.push("Patient");
         </View>
       </View>
```

TBSA Algorithm and ConvNet on App

```
@ReactMethod
public void calcTBSA(String imgb64, Callback errorCallback, Callback successCallback) {
   try {
        // convert Base64 to single-precision floating point
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inDither = true;
        options.inPreferredConfig = Bitmap.Config.ARGB 8888;
        byte[] decodedString = Base64.decode(imgb64, Base64.DEFAULT);
        Bitmap image = BitmapFactory.decodeByteArray(decodedString, offset: 0, decodedString.length);
        int[] results = {0, 0, 0};
        // cut up image into 50x50 images, should already be BGR
        // feed each image to the neural network
        for (int row = 0; row < image.getHeight() - INPUT SIZE; row+=INPUT SIZE) {</pre>
            for (int col = 0; col < image.getWidth() - INPUT SIZE; col += INPUT SIZE) {</pre>
                // slice image and get bytebuffer
                Bitmap subimage = Bitmap.createBitmap(image, col, row, INPUT SIZE, INPUT SIZE);
                BvteBuffer bvteBuffer = convertBitmapToBvteBuffer(subimage);
                float[][] result = new float[1][labels.size()];
                tflite,run(bvteBuffer, result);
                int ind = argMax(result);
                results[ind] += 1;
        successCallback.invoke(...args: Double.toString(d: (double)results[0]/(results[0]+results[1])));
   } catch (Exception e) {
        errorCallback.invoke(e.getMessage());
    }
```

Neural Network Model

- Convolutional Neural Network
 - \circ 50x50x3 Images \Rightarrow Softmax Output

Image Classification Update

- Dr Kumar provided an additional 100+ images for classification, training
 - Burned Count: 12,758
 - Healthy Count: 14,097
 - Background Count: 28020
- Total: 54,875

Neural Net Update

- Neural Net Trainer
 - Through 10 Epochs with 54,875 subimages:
 - Maximum Accuracy = ~85%
 - Minimum Loss = ~.447
 - Features = 100/Conv Layer
 - \circ Saved into .pb file for mobile version
- Neural Net Predictor
 - Input any image
 - Image is split into 50x50 subimages and classified
 - \circ $\hfill Reconstructed and colored based on classification$
 - Control BSA Error: 7%-17%
 - This error translates to .3%-3% error in TBSA

Validation Metrics

- Compare our app to current gold standard
 - Sensitivity (Burn Images)
 - Specificity (Background and Healthy Skin)
 - Similarity Metric
 - Compare the "masks" created by code and doctors
- Determine effect on patient care
 - Average time
 - Compare fluid recommendations
 - Quality of Care

Capturing Validation Metrics

- Excel spreadsheet
 - Widely used within the Burn ICU to calculate TBSA
 - Easily formatted to record/analyze data
- Provider Survey
 - Feedback on integration/ease of use
 - Look for potential errors
 - Qualitatively determine effect of this app

Next Steps

- Continued Work on App Deployment
 - Integration of subparts
 - Performance testing
- Validation/Testing
 - Creation of capture forms
 - Discussion on validation timeline

