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Abstract

This is a series of talks on Ben Hayes’ work on the above subject and his paper. In the
first lecture we build up to define Voiculescu’s microstates free entropy. We also define free
entropy dimension in the contexts of Voiculescu and Kenley Jung. Caution, this part is a bit
long considering the background that’s necessary.

Voiculescu invented free probability to study the isomorphism question of free group factors. The
free product construction gives rise to the consideration of “free independence”, and motivates us
to consider an analogous probability theory to the classical Kolmogorov probability theory which
is based on tensor products and tensor independence. In this first part, we try to retrace Voiculescu’s
steps in building such a theory and defining important analogues of entropy and minkowski dimen-
sion among others.

1 Free Probability
Free probability, as one would expect, is indeed a vast generalization of classical probability. There
are several ways of motivating free probability, but in this exposition, we introduce free probability
rather immediately, and then in the next section we’ll talk about random matrices which are really
the true motivations of free probability.

The material in this section is based on Dimitri Shlyakhtenko’s notes on free probability [Shl04],
and Djalil Chafai’s survey paper on entropy titled “From Boltzmann to random matrices and be-
yond” [Cha15].

Definition 1.1 (Probability spaces). Recall that a classical probability space is a measure space
(X,B, µ). Here B is a sigma algebra, µ is a probability measure, i.e, µ(X) = 1. The set X should
be thought of as a set of events, and for Y ∈ B, the measure µ(Y ) is the probability of an event
occurring in the set Y .

Definition 1.2 (Classical Random Variables). An alternative pount of view on probability theory
involves considering classical random variables, i.e, measurable functions f : X → C. One can
think of a classical random variable as a measurement, which assigns to each event x ∈ X a value
f(x). The probability of the value of f lying in a set A ⊂ C is exactly µ(f−1(A)) = (f∗µ)(A).

Definition 1.3 (The expectation E). Let us say that f ∈ L∞(X,µ) is an essentially bounded
classical random variable. Then the integral

E(f) =

ˆ
f(x)dµ(x)
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has the meaning of the expected value of f . The linear functional given by this: E : L∞(X,µ)→
C is called an expectation. E satisfiesE(1) = 1 and positivity. The reason for the term expectation
is obviously because the interpretation matches with the usual meaning of the word “expectation”.

We now discuss the notion of non-commutative probability:

1.0.1 Non Commutative Probability Spaces

Definition 1.4. An algebraic non-commutative probability space is a pair (A, φ) consisting of a
unital algebra A and a linear functional φ : A→ C such that φ(1) = 1.

Remark here thatA acts as our space of random variables, and φ acts as our expectation functional.
One should note that knowing about a probability space X is the same as knowing about the space
of classical random variables, L∞(X), which is the kind of approach we adopt here. Also observe
that L∞(X) is all the abelian von Neumann algebras, so in our constructions, classical probability
will drop out in the abelian case.

In this exposition, we shall not consider very general algebras A, but stick to A being a finite
von Neumann algebra, and φ being the accompanying trace-state.

Definition 1.5 (Laws of Random Variables). Recall that we assigned to a classical random variable
f it’s law µf . In the non commutative case, suppose a ∈ A is a self adjoint random variable, note
from the spectral theorem, we have a spectral measure νa on R so that

φ(a) =

ˆ
tdνa(t)

This is going to be our Law of a, or distribution of a. The distribution function Fa is given by
Fa(x) = νa(−∞, x).

Definition 1.6 (Moments). We define the moments of a self adjoint random variable a to be as
follows

E(ap) = φ(ap) =

ˆ
xpdµa(x)

For a family F of variables (a1, . . . , an ∈ A), we say that an expression of the form φ(ai1 . . . aip)
is the i1, . . . , ip-th moment of the family f . The collection of all moments can be thought of as a
linear functional µF defined on the algebra of polynomials in n indeterminates t1, . . . , tn by

µF (p) = φ(p(a1, . . . , an))

1.0.2 Independence: classical and free

Definition 1.7 (Classical independence). Two random variables f and g in L∞(X,µ) are called
independent if E(fngm) = E(fn)E(gm) for all n,m ≥ 0. A more useful definition (for the
sake of motivating the condition for free independence) is as follows: f and g are independent if
E(FG) = 0 whenever E(F ) = E(G) = 0 and F is in the algebra W ∗(f) generated by f , while
G ∈ W ∗(g).
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Definition 1.8 (Free Independence). Let F1, F2 ⊂ (A, φ) be two families of non-commutative
random variables. We say that F1 and F2 are freely independent if

φ(a1 . . . an) = 0

whenever aj ∈ Alg(1, Fi(j)), where i(1) 6= i(2), i(2) 6= i(e) and so on; and φ(a1) = φ(a2) =
. . . = 0. There are several equivalent definitions of free independence, but this one is the simplest.

The natural product structure associated with this independence is called the free product. As a
product on von Neumann algebras M and N , it is denoted M ∗ N , and obeys the same kind of
independence result in the non-commutative analogue.

Proposition 1.9. Let M , N be finite von Neumann algebras, and let M ∗ N denote their free
product with respect to their traces. Let πM and πN be the natural embeddings of M and N into
the free product. Then, for any subalgebras A ⊆ M and B ⊆ N , we have πM(A) and πN(B) are
freely independent in M ∗N .

There are some important properties of this free product on von Neumann algebras. For instance,
it is compatible with the free product on groups:

Proposition 1.10. Let Γ1 and Γ2 be locally compact groups. Then

L(Γ1) ∗ L(Γ2) ∼= L(Γ1 ∗ Γ2)

At first sight it may be difficult to come up with examples of freely independent algebras that do
not arise from groups, so we provide a very important example here:

1.0.3 Free Fock Spaces

LetH be a Hilbert space, and let Ω be a vector (called the vacuum vector). We define

F (H) := CΩ⊕H⊕ (H⊗H)⊕ . . .

The inner product φ will be the state with respect to the vacuum vector. For h ∈ H consider the
left creation operator

l(h) : F (H)→ F (H)

given by
l(h)h1 ⊗ . . .⊗ hn = h⊗ h1 ⊗ . . .⊗ hn

(here, h⊗ Ω = h by convention). Then l(h)∗ exists and is given by

l(h)∗h1 ⊗ . . .⊗ hn = 〈h, h1〉h2 ⊗ . . .⊗ hn

and l(h)∗Ω = 0. The operator l(h)∗ is called the left annihilation operator.
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These operators are interesting because they have a very interesting combinatorial information.
Let h1, h2, . . . hn ∈ H. Suppose one is in interested in the joint ∗− distribution of the li’s, i.e,

φ(l
g(1)
i(1) . . . l

g(k)
i(k) )

where i(j) ∈ {1, . . . , n} and g(j) ∈ {., ∗}, j = 1, . . . , k. It is fascinating that φ(l
g(1)
i(1) . . . l

g(k)
i(k) ) = 1

if and only if this describes a non-crossing pairings of [k], (in a way we shall not describe in
detail. We refer the reader to Roland Speicher’s notes [NS06] which talks in detailed about the
combinatorics of free probability), and 0 otherwise. Thus we have,

φ((l1 + l∗1)k) = Ck

for k even,where Ck is the k/2th Catalan number. Since we are dealing with an operator with a
compact spectrum, this information suffices to describe the distribution of (l1 + l∗1), and this is
precisely the semicircular law, given by

dµs =

√
4− x2

2π
χ[−2,2]]dm

This semicircular distribution will become the center piece of free probability as we shall see soon.

Now let A = C∗(l(h) : h ∈ H) and let φ : A → C as usual be given by φ(a) = 〈Ω, aΩ〉. It
is not hard to show that ifH1 ⊥ H2 are two subspaces ofH, then the algebras

C∗(l(h) : h ∈ H1) and C∗(l(h) : h ∈ H2)

are freely independent in (A, φ) Now we talk about one of the main results in classical probability,
and its free analogue.

1.0.4 CLT and Gauss Laws

The classical CLT- Central Limit Theorem is the corner stone of probability. The result was one of
the earliest with the flavor of “universality”, i.e, a universal object amid randomness.

Theorem 1.11 (Classical CLT). Let ai be centered, variance 1, IID random variables. Then

µ

(
a1 + . . .+ an√

n

)
→ µg

where g is the normal distribution given by it’s Radon-Nikodym derivation

dµg =
1√
2π
e−x

2/2dm

The law that satisfies the central limit theorem is given the name Gauss law.
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Theorem 1.12 (Free CLT). Let ai be freely independent non commutative random variables in
(M, τ) with mean 0 and variance 1. Then,

µ

(
a1 + . . .+ an√

n

)
→ µs

where µs is the semicircular distribution as seen before.

The marvelous thing about the free CLT is that it is almost unchanged except the Gauss law is
now the semi-circular law. Before one attempts to prove this result, one must know about the
distribution of a sum a + b of freely independent random variables a and b (the non-commutative
analogue of convolution). This begins the conversation of “free harmonic analysis”, which we
shall not enter into. But we will just say that such an analogue does exist, and involves the usage
of Voiculescu’s R-transform (analogous to the Fourier transform). It turns out that the proof of the
CLT becomes rather easy once the machinery is established. Here is an important result to ponder
about.

Theorem 1.13. L(Fn) ∼= W ∗(s1, . . . , sn) where si are freely independent semicirculars in a large
algebra M .

Classical Probability Free Probability
Bounded random variable on C a ∈ (M, τ) non commutative probability space
Mixed moments E(Xm1

1 Xm2
2 . . . Xmn

n ) Mixed moments τ(ai1 . . . aik)
Classical independence, and tensor product Free independence and free product
CLT, Normal distribution Free CLT, Semicircular distribution
Convolution µX ∗ µY Free convolution µa � µb
Boltzmann entropy Voiculescu’s microstates free entropy

2 Random Matrices
Random matrix theory is a full fledged subject of its own. For the purposes of this series of talks,
we need to discuss two of the great many results which provide us insight in understanding free
probability, in particular, free entropy. They are Wigner’s theorem, and Voiculescu’s asymptotic
freeness which can be thought of a vast generalization of Wigner’s theorem.

Definition 2.1 (Random matrix). An n × n random matrix is a matrix whose entries are random
variables. It can also be thought of as a matrix valued random variable.

Definition 2.2 (Expected distributions). Let XN be a self adjoint random matrix of size N × N .
We think of XN as a function XN : Σ → MN(C) on some probability space (Σ, σ). Integration
with respect to σ has the meaning of taking the expected value, and will be denoted by E.

We are mainly interested in the spectral measure of these matrices, i.e, the the expected proportion
of the eigenvalues of XN that lie in a given interval [a, b]:

ΛN([a, b]) =
1

N
E(#{eigenvalues of XN(t) in [a, b]})
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Let λ1(t), . . . , λn(t) be the eigenvalues of X(t), listed with multiplicity and viewed as random
variables. Let

νtN =
1

N

N∑
j=1

δλj(t)

be a random measure associated with the list of eigenvalues. Then

ΛN([a, b]) = E(νtN([a, b]))

is the expected value of νN . Setting µN = E(νtN) we see that νtN is the distribution of X t
N when

viewed as a random variable in (MN(C), 1
N
Tr). We are interested in studying this quantity (often

times called the empirical spectral distribution).

2.0.1 Asymptotics of Random Matrices

Let XN be a self adjoint random matrix, whose entries are Gij determined as follows: The vari-
ables {gij : i ≤ j} are independent; if i < j then gij is a centered complex Gaussian random
variable of variance 1/N . If i = j then gij is a centered real Gaussian random variable of variance
2/N . Finally, if i > j, gij = gji.

Let µN be the expected value of the distribution of XN . Then,

Theorem 2.3 (Wigner ’58 [Wig58]). as N →∞, we have the following weak convergence:

µN → µs

where µs is the usual semicircular distribution.

Families of certainN×N random matrices behave as free random variables in largeN asymptotics.
For each N , let DN be a diagonal matrix. Assume that the operator norms ‖DN‖ are uniformly
bounded and assume that the distribution of DN converges in moments to a limit measure ν. Let
X

(1)
N , . . . , X

(k)
N be random matrices described as follows: Let Σ = MN(C)k with the measure σ

given by
dσ(A1, . . . , Ak) = CN,ke

− 1
N
Tr(A∗1A1+...+A∗kAk)dA1 . . . dAk

for a suitable constant CN,k. Then X(p)
N is the map

X
(p)
N : (A1, . . . , Ak) 7→

Ap + A∗p
2

More explicitly, if we denote by g(p)
ij the i, j − th entry of X(p)

N , then {g(p)
ij : 1 ≤ i ≤ j ≤ N, 1 ≤

p ≤ k} form a family of independent centered Gaussian random variables, so that: g(p)
ij is a com-

plex Gaussian of variance 1/N if i < j; g(p)
ii is real Gaussian of variance 2/N and g(p)

ij = g
(p)
ji if

i > j.
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The family (X
(1)
N , . . . , X

(k)
N ) is sometimes called the Gaussian Unitary Ensemble, or GUE, be-

cause of the obvious invariance of their joint distribution under conjugation by k unitaries.

Let µN be the distribution of the family (DN , X
(1)
N , . . . , X

(k)
N ), viewed as a linear functional on

the space of polynomials in k + 1 indeterminates. Then Voiculescu proved the following:

Theorem 2.4 (Voiculescu ’91 [Voi91]). Let (d, x1, x2, . . . , xk) be a family of free random variables
in a non-commutative probability space (A, φ), so that d has distribution ν, and x1, . . . , xk have
semicircular distribution. Let µ be the distribution of this family, and let µN be the distribution of
(DN , X

(1)
N , . . . , X

(k)
N ) as described above. Then as N →∞, µN → µ in moments. In other words.

for any t and any j1, . . . , jt ∈ {1, . . . , k}, n0, . . . , nt ∈ {0, 1, 2, . . .} one has

lim
N→∞

E

(
1

N
Tr(Dn0

N X
(j1)
N Dn1

N . . . X
(jt)
N Dnt

N )

)
= φ(dn0xj1d

n1 . . . xjtd
nt)

Note that in particular we have DN and X(1)
N , . . . , X

(k)
N are asymptotically free. One also recovers

Wigner’s theorem as a mere consequence of this. This asymptotic freeness result is very important
to the definition of free entropy as we shall see, because free entropy is defined using matrix
microstates in the asymptotics. The proof of asymptotic freeness is not covered here, and can be
found in the paper. We are now ready to discuss free entropy.

3 Free Entropy (Caution: some minor edits pending in this sec-
tion

3.1 Motivation
We will need to understand the foundations of Entropy, to really motivate free entropy. Chafai has
written a beautiful survey [Cha15] on the history of entropy, and we refer the reader to that paper
for a detailed list of references in the literature.

3.1.1 Boltzmann

Boltzmann defined Entropy because he wanted to model disorder in a particle system. We provide
this very simple model of combinatorial disorder to motivate the concept of entropy.

Consider a system of n distinguishable particles, each of them being in one of the r possible states
(typically energy levels). We have n = n1 + . . .+ nr where ni is the number of particles in state i.
The vector (n1, . . . , nr) encodes the macroscopic state of the system, while the microscopic state
of the system is encoded by the vector (b1, . . . , bn) ∈ {1, . . . , r}n where bi is the state of the i-th
particle. The number of microscopic states compatible with a fixed macroscopic state (n1, . . . , nr)
is given by the multinomial coefficient (encoding the occurrence of each face of an r-faces dice
thrown n times):

n!

(n1! . . . nr!)
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This integer measures the microscopic degree of freedom given the macroscopic state. As a con-
sequence, the additive degree of freedom per particle is then naturally given by

1

n
log

(
n!

n1! . . . nr!

)
. Now we are interested in the limiting behavior of this quantity. Let us suppose simply that when
n tends to∞ we have ni

n
→ pi, (encoding a discrete probability distribution), for every 1 ≤ i ≤ r.

Then, thanks to our favorite Stirling’s formula, we get, denoting p := (p1, . . . , pr),

S(p) := lim
n→∞

1

n
log

(
n!

n1! . . . nr!

)
= −

r∑
i=1

pilog(pi)

Now we say that this quantity S(p) is the Boltzmann entropy of the discrete probability distribution
p.

The right way to think about Boltzmann entropy is as an asymptotic additive degree of freedom
per particle in a system. When the system is directly described by a probability density function
f : Rd → R+ instead of a discrete probability measure, we may analogously define by passage to
the limit, the continuous Boltzmann entropy of f , denoted S(f) or −H(f) in the old terminology
of Boltzmann himself,

S(f) = −
ˆ
Rd
f(x) log(f(x))dx

More generally, when X is a random variable, denote by S(X) the entropy of its law. One should
not be bogged down by the formula of entropy insofar as one forgets the formulation of it involving
the volume of the microstates of the system.

Boltzmann was seeking to identify a probability density f∗ that maximizes the linear functional
f 7→ S(f) over a convex class C formed by a set of constraints on f . One usually only cares about
a fixed second moment condition. Indeed, it was proved that the Gaussian distribution (normal dis-
tribution) e−1/2x2/

√
2x maximizes Boltzmann entropy under the constraint of fixed variance equal

to 1.

3.1.2 Shannon

The Boltzmann entropy plays also a fundamental role in communication theory, founded in the
1940’s by Claude Elwood Shannon (1916 to 2001), where it is known as “Shannon entropy”. It
has a deep interpretation in terms of uncertainty and information in relation with coding theory. For
example the discrete Boltzmann entropy S(p) computed with a logarithm in base 2 is the average
number of bits per symbol needed to encode a random text with frequencies of symbols given by
the law p. This plays an essential role in lossless coding, and the Huffman algorithm for construct-
ing Shannon entropic codes is probably one of the most used basic algorithm (data compression is
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everywhere)

We focus on a link suggested by Shannon between the Boltzmann entropy and the central limit
theorem. Recall the CLT:

Sn :=
X1 + . . .+Xn√

n
→d

n→∞
e
−1
2
x2

√
2π

whereXi are IID centered random variables with unit variance. Shannon observed that the entropy
S is monotonic along the CLT when n is a power of w, in other words S(S2m+1) ≥ S(S2m) for
every integer m ≥ 0, and this naively follows from:

S(
X1 +X2√

2
) = S(S2) ≥ S(S1) = S(X1)

A rigorous proof of this is due to Stam in [Sta59].

By analogy with the Boltzmann’s H-theorem (see Chafai [Cha15]), a conjecture attributed to Shan-
non says that the Boltzmann entropy S is monotonic along the CLT for any n, more precisely

S(X1) = S(S1) ≤ . . . ≤ S(Sn+1) . . . ≤ S(G)

The idea of proving the CLT using the Boltzmann entropy is very old and goes back to Linnik,
but one should note that proving convergence differs from proving monotonicity, even if these two
aspects are obviously linked.

3.1.3 “free” “entropy”

We have, at this point, seen free probability and entropy, and are thus ready to make sense of “free”
“entropy”. It is obviously an analogue of entropy in free probability. It must be noted that such an
analogue is by no means straightforward to conjure. Voiculescu spent years until he could perfect
his definition in [Voi94]. In fact, even the first paper he published [Voi93] in his series had a pos-
sible definition that was later proved incorrect by himself.

The free entropy (say χ) must necessarily (but not necessarily sufficiently) satisfy certain important
properties, as we have noted before in this section. As we have already discussed, the analogue
of the Gaussian in free probability theory is the semicircular law. Therefore, as we have noted in
section 3.1.1, we should have that the free analogue of the Gaussian maximizes the free entropy
under the constraint of a fixed second moment. That is,

“χ(s) ≥ χ(X) for all centered non commutative RV’s X with E(X2) = 1
′′

Spoiler alert, but this is indeed going to be true, and is proved in the upcoming sections. There is
one more necessary property, called Shannon monotonicity, which is going to be the monotonicity
of entropy along the CLT, in our case of free entropy along the free CLT.

“χ(S1) ≤ . . . ≤ χ(Sn)→ χ(s) for S1, S2, . . . partial sums along the free CLT′′
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Spoiler alert, this is also going to be true, except that the proof is this result is not discussed here.
Shlyakhtenko in his wonderful paper [Shl07] proves this using an analogue of Fisher’s information
measure which Voiculescu introduced in [Voi98a], and in fact also gives an elegant proof of the
classical Shannon monotonicity problem.

We would also like free entropy to satisfy other useful properties that entropy satisfies, like sub-
additivity, additivity for independent random variables (in our case, freely independent) and so
on. But, while have a list of demands we have made for free entropy, we have no clue as to how
define it. This is where we must dwell on the philosophical roots of entropy, which dates back to
Boltzmann. We will need a free entropy functional maximized by the semicircular law at a fixed
second moment, and which is monotonic along the free CLT. Inspired by the micro-macro con-
struction of Boltzmann entropy, one considers an approximation at the level of moments of a non
commutative random variable, by finite dimensional Hermitian matrices. The volume of this set of
all “micro-states”, living an appropriate measure space, will be the object of interest.

3.2 Definition of Free Entropy via Microstates

3.2.1 Setup

Unless otherwise stated, everything that follows is due to Voiculescu, primarily in [Voi94]. Let
(M, τ) be a finite W ∗ probability space. Here M is a finite von Neumann algebra and τ is the
unique faithful normal tracial state. Throughout these notes, we will almost always use self adjoint
operators unless stated otherwise. LetXj ∈M be self adjoint operators. We will denote by Mk the
k×k matrix algebra over C, and τk the unique normalized trace on these matrices. MSA

k will stand
for the k × k self adjoint matrices. Here we consider the measure λ to be the lebesgue measure on
(MSA

k )n corresponding to the Euclidean norm given by the Hilbert-Schmidt norm:∥∥(A1, . . . , An)
∥∥2

HS
= Tr(A2

1 + . . .+ A2
n)

So here we have a measure on the space of n tuples of self adjoint k × k matrices, which is
precisely the lebesgue measure on Rk(k+1)n viewing these n-tuples as vectors in Rk(k+1)n. Note
that the Hilbert Schmidt norm here is the sum of the squares of all the entries of the matrices,
which is the Euclidean norm of the n-tuple viewed as a vector in Rk(k+1)n. Now, we define
ΓR(X1, . . . Xn;m, k, ε) to be the set of n tuples of self adjoint k × k matrices (A1, . . . An) ∈
(MSA

k )n such that ‖Ai‖ ≤ R and |τk(Ai1 , . . . Aip) − τ(Xi1 . . . Xip)| < ε for all (i1, . . . , ip) ∈
(1, . . . , n)p where 1 ≤ p ≤ m. In words, the set ΓR(X1, . . . , Xn;m, k, ε) takes in a parameter R
that bounds the operator norms of the individual matrix approximants, an integer m that acts as
the maximum degree of the monomials that are approximated in trace, and k which determines the
dimension of the matrices. The set ΓR(X1, . . . , Xn;m, k, ε) is the candidate we are interested in be-
cause it contains the set of “microstates” that approximate our operators in distribution. So on our
way to define the entropy, we try and remove the dependance of ΓR(X1, . . . , Xn;m, k, ε) on these
parameters one by one through the process of finding the “asymptotic additive degree of freedom”.
In the future, in case we write ΓR without writing its parameters, we mean ΓR(X1, . . . , Xn;m, k, ε).
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3.2.2 Definition of χ(X1, . . . , Xn)

Definition 3.1. For self adjoint variables X1, . . . Xn in (M, τ) we define the following:

χR(X1, . . . , Xn;m, k, ε) = log λ(ΓR(X1, . . . , Xn;m, k, ε))

χR(X1, . . . , Xn;m, ε) = lim sup
k→∞

(k−2χR(X1, . . . , Xn;m, k, ε) + (n log k)/2)

χR(X1, . . . , Xn) = inf
m∈N,ε>0

χR(X1, . . . , Xn;m, ε)

χ(X1, . . . , Xn) = sup
R>0

χR(X1, . . . , Xn)

This χ(X1, . . . , Xn) is defined to be the Microstates Free Entropy.

Here are a few remarks about the above definition. Firstly, observe that in the third and fourth lines,
one can replace the inf/sup with a limit along the appropriate net. This is because χR(X1, . . . , Xn;m, k, ε)
is a decreasing function with m,R ↑ ∞, and also decreasing as ε ↓ 0.

3.3 Immediate observations and properties

3.3.1 Boundedness on fixed 2nd moment

Although the removal of constraints is clear throughout the definition of χ, there is a lack of
motivation for the normalization constants in line 2. Here we present a boundedness result that
provides the above motivation. We remark that the true reason why one wants this is because in
order for free entropy to be the right analogue of entropy, as said before, we must have that the free
entropy is maximized by the semicircular law. Indeed to this end, we shall see that the free entropy
of the semicircular law is indeed the one we see in the below proposition.

Proposition 3.2. For a fixed second moment, C2 = τ(X2
1 + . . .+X2

n), we have the following:

χR(X1, . . . , Xn;m, k, ε) ≤ nk(k + 1)

2

log

(
2πe

(
C2 + nε

)
n

)
− log k


Proof. We use Shannon’s p-dimensional inequality here. It states the following:

−
ˆ
f log fdλp ≤

p log(2πea2/p)

2

Where f is a probability density function on the space Rp and λp is the Lebesgue measure on the
space, and a2 =

´
(x2

1 + . . .+ x2
p)fdλp. Now, we consider our p to be k(k + 1)n which is now the

same as replacing Rp by (MSA
k )n. We define f to be the indicator density function on our set of

matrix approximants Γ. So, define

f(A1, . . . , An) =
1

λ(ΓR(X1, . . . , Xn;m, k, ε))
when (A1, . . . , An) ∈ ΓR(X1, . . . , Xn;m, k, ε)
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And 0 otherwise. This is indeed the setup we desire. We have

−
ˆ
f log(f)dλp =

1

λp(ΓR)

ˆ
ΓR

χR(X1, . . . , Xn;m, k, ε)dλp = χR(X1, . . . , Xn;m, k, ε)

Now, applying Shannon’s inequality in our setup, we have

χR(X1, . . . , Xn;m, k, ε) ≤
nk(k + 1)

(
log(2πea2)− log(nk(k + 1))

)
2

≤
nk(k + 1)

(
log(2πea2/k)− log(nk)

)
2

It suffices to prove now that a2/k ≤ C2 + nε, i.e,
ˆ

1

k
Tr(A2

1 + . . . A2
n)fdλp =

1

λp(ΓR)

ˆ
ΓR

1

k
Tr(A2

1 + . . . A2
n)fdλp ≤

n∑
j=1

τ(X2
j ) + nε

But now we are only interested in (A1, . . . , An) ∈ ΓR, and these are precisely the n-tuples that
approximate our X1, . . . , Xn in distribution by ε. So, we have that∣∣∣∣∣∣1kTr (A2

1 + . . .+ A2
n

)
− τ

 n∑
i=1

X2
i

∣∣∣∣∣∣ ≤ nε

This gives us the result.

We have as an immediate corollary, the entropy of n self adjoint variables with a given second
moment C2 is bounded above.

Corollary 3.3. Let C2 = τ(
∑n

i=1X
2
i ). We have if m ≥ 2,

χ(X1, . . . , Xn) ≤ n log(2πeC2/n)

2

Proof. Following our definition of free entropy, which was indeed designed to make the above
corollary work, and Proposition 2.2, we have

χR(X1, . . . , Xn;m, ε) = lim sup
k→∞

(k−2χR(X1, . . . , Xn;m, k, ε) + (n log k)/2)

≤ n

2
log

(
2πe(C2 + nε)

n

)
Now taking inf along the appropriate nets, we have our result:

χ(X1, . . . , Xn) ≤ n log(2πeC2/n)

2

12



3.3.2 Subadditivity

This result will be important for us later: we shall be looking at when additivity occurs, and show
that it happens only when the random variables are freely independent, thereby showing that the
free independence is the right kind of independence for free entropy as one would expect (for
classical entropy is additive if and only if the random variables are classically independent).

Proposition 3.4. If 1 ≤ p < n, then we have

χR(X1, . . . , Xn;m, k, ε) ≤ χR(X1, . . . , Xp;m, k, ε) + χR(Xp+1, . . . , Xn;m, k, ε)

Proof. Suppose (A1, . . . , An) ∈ ΓR(X1, . . . , Xn;m, k, ε), we have simply from the definition that
for any monomial P taking p variables with degree ≤ m,∣∣Trk(P (A1, . . . , Ap))− τ(P (X1, . . . Xp))

∣∣ ≤ ε

and for any monomial Q taking n− p variables with degree ≤ m, we have∣∣Trk(Q(Ap+1, . . . , An))− τ(P (Xp+1, . . . Xn))
∣∣ ≤ ε

This shows that

ΓR(X1, . . . , Xn;m, k, ε) ⊆ ΓR(X1, . . . , Xp;m, k, ε)× ΓR(Xp+1, . . . , Xn;m, k, ε)

Taking the product measure and log, we have our result.

The subadditivity result is weaker than the above.

3.3.3 Saturation of χR Based on Operator Norms

The boundedness condition on the norms of matrix approximants is relaxed (as in, we takeR→∞
in the definition), but we would like to know more about this limit. Here we show that it indeed
saturates when R is bigger than all of the operator norms of the bounded self adjoint random
variables.

Theorem 3.5. If ρ = max1≤j≤n
∥∥Xj

∥∥ and R > ρ, then

χR(X1, . . . , Xn) = χ(X1, . . . , Xn)

Proof. We prove an equivalent statement: If ρ < R1 < R2, then χR1(X1, . . . , Xn) =
χR2(X1, . . . , Xn). Since we know that χ is an increasing function with R, it suffices to prove that

χR2(X1, . . . , Xn) ≤ χR1(X1, . . . , Xn)

The strategy we shall adopt is to define a map from ΓR2 to ΓR1 and show that the Jacobian of this
map is bounded from below. Fix an ρ < R0 < R1. Now, we let g : [−R2, R2]→ R be the function
which is linear on the intervals [−R2,−R0], [−R0, R0], [R0, R2], and such that g(−R2) = −R1,
g(−R0) = −R0, g(R0) = R0, and g(R2) = R1. Define G(A1, . . . , An) = (g(A1), . . . , g(An))

13



where the g(Ai) is nothing but the functional calculus for g|Spec(A) applied to the matrix Ai.

Now, we contest that this is the map we desire. We claim that given m ∈ N and ε > 0 there
are m1 > m and ε1 < ε such that

G(ΓR2(X1, . . . , Xn;m1, k, ε1)) ⊆ ΓR1(X1, . . . , Xn;m, k, ε) (1)

Immediately we see that each coordinate in G(A1, . . . , An) has operator norm less than R1 by
definition of the functional calculus. To prove the above inclusion, it suffices to prove that for a
fixed δ > 0,

∥∥g(Aj)− Aj
∥∥

1
= Trk(

∣∣g(Aj)− Aj
∣∣) < δ.

If we show that
τk(E(Aj; [−R2,−R0] ∪ [R0, R2])) ≤ δ

i.e, the trace of the spectral projection of Aj corresponding to the above set on R (intersection with
the spectrum) is less than δ, then we are done. Here we give a sketch of a proof of the claim, and
request the reader to work out the formal details:

This is because on [−R0, R0], g(Aj) andAj agree (with respect to the spectral distribution), and we
only care about the part of the spectrum that is in the above set. Observe that τk(E(Aj; [−R2,−R0]∪
[R0, R2])) is simply recording the (normalized) number of eigenvalues of Aj in that range. Intu-
itively, if there were many eigenvalues in this range, then, for a sufficiently small ε1 and large m1,
it would be hard for Aj to approximate Xj (whose spectrum is contained in [−ρ, ρ]) in distribu-
tion. Note, the role that ε1 and m1 play is as follows: Since Aj ∈ ΓR2(X1, . . . , Xn;m1, k, ε1) we

know that
∣∣∣τk(Apj)∣∣∣ ≤ τ(Xj)

p + ε1 ≤ ρp + ε1, so for very small ε1 and large m1, we have that the
spectrum of Aj is “very similar” to the spectrum of Xj , (since the polynomials are dense- the case
when m1 →∞ and the approximations are very close for ε1 → 0).

Now that we have proved (1), our goal is to investigate the Jacobian of this transformation.
Through a quick computation, we see that the absolute value of the Jacobian of the map A →
G(A), where A ∈MSA

k is given by∣∣J(G)
∣∣ =

∏
i 6=j

g(λi)− g(λj)

λi − λj
g′(λ1) . . . g′(λk)

where A has eigenvalues λ1 < . . . < λn, and λj 6= R0 (this can be guaranteed from the choice of
R0). Now, we assume that τk(E(A; [−R2,−R0] ∪ [R0, R2])) < δ, which is what our matrices in
ΓR2 satisfied. Firstly, observe that for all λi,j , we have

∣∣g(λi)− g(λj)
∣∣ ≤ R1 − R0, and similarly∣∣λi − λj∣∣ < R2 −R0. Recall that τk(E(A; [−R2,−R0] ∪ [R0, R2])) < δ just tells us that k(1− δ)

eigenvalues of A lie inside [−R0, R0]. Now using this, we get the evident “very weak” lower
bound: (

R1 −R0

R2 −R0

)k(k+1)−(k(1−δ))2

≤
∣∣J(G)

∣∣
Hence, directly applying this inequality, we have

χR1(X1, . . . , Xn;m, k, ε) ≥ log λ(G(ΓR2(X1, . . . , Xn;m1, k, ε1)))
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Simplifying using the jacobian, we have

χR1(X1, . . . , Xn;m, k, ε) ≥ χR2(X1, . . . , Xn;m1; k, ε1) + n(k + k2(2δ − δ2)) log
R1 −R0

R2 −R0

Then, removing k, we have

χR1(X1, . . . , Xn;m, ε) ≥ χR2(X1, . . . , Xn;m1, ε1) + 2nδ log
R1 −R0

R2 −R0

But, we see that δ can be made arbitrarily small using m1 and ε1, so we have

χR1(X1, . . . Xn) ≤ χR2(X1, . . . , Xn)

which gives us our result.

The above theorem can be made more refined by looking at the following proposition.

Proposition 3.6. Define ΓR1,...Rn(X1, . . . , Xn;m, k, ε) to be defined like our original ΓR, except
we require that

∥∥Aj∥∥ ≤ Rj . Then, for
∥∥Xj

∥∥ < Rj < R′j we have

χR1,...Rn(X1, . . . , Xn) = χR′1,...,R′n(X1, . . . , Xn)

Proof. The proof is a run through of exactly the same idea as before. Except now, define ‖Xi‖ <
Ri0 < Ri, and gi : [−R′i, R′i] → R is piecewise linear between [−R′i,−Ri0 ], [−Ri0 , Ri0 ], [Ri0 , R

′
i]

and such that g(±R′i) = ±Ri, g(±Ri0) = ±Ri0 . The rest of the proof is immediate as we follow
the same strategy but with this setup.

3.3.4 Limits in Distribution

We consider a notion of convergence in operators, called convergence in distribution, and observe
the connections with the entropy of the limiting operators. We remind the reader about another one
of the important properties we want free entropy to possess: Monotonicity along the free central
limit theorem. This proposition will be towards that direction, although the real problem at hand is
very hard and requires tools beyond the scope of this presentation. See [Shl07]

Proposition 3.7. Let (X1, . . . , Xn) and (X
(p)
1 , . . . , X

(p)
n ) (p ∈ N) be n-tuples of self adjoint ran-

dom variables in (M, τ), so that (X
(p)
1 , . . . , X

(p)
n ) converges in distribution to (X1, . . . , Xn), i.e,

lim
p→∞

τ(X
(p)
i1
. . . X

(p)
im

) = τ(Xi1 , . . . , Xim)

for all 1 ≤ ij ≤ n, 1 ≤ j ≤ m, m ∈ N, then one has

lim sup
p→∞

χR(X
(p)
1 , . . . , X(p)

n ) ≤ χR(X1, . . . , Xn)
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Proof. Suppose (A1, . . . , An) ∈ ΓR(X
(p)
1 , . . . , X

(p)
n ;m, k, ε), we observe that for a sufficiently

large p, for all monomials P , we have from the convergence in distributions of (X
(p)
1 , . . . , X

(p)
n ) to

(X1, . . . , Xn), that
∣∣∣τ(P (X

(p)
1 , . . . , X

(p)
n )− τ(P (X1, . . . , Xn))

∣∣∣ < ε, so we have∣∣τk(P (A1, . . . , An))− τ(P (X1, . . . , Xn))
∣∣ < 2ε

Hence, (A1, . . . , An) ∈ ΓR(X1, . . . , Xn;m, k, 2ε). Therefore we have

ΓR(X
(p)
1 , . . . , X(p)

n ;m, k, ε) ⊆ ΓR(X1, . . . , Xn;m, k, 2ε)

Now, we see that for sufficiently large p,

χR(X
(p)
1 , . . . , X(p)

n ) ≤ χR(X1, . . . , Xn;m, 2ε)

⇒ lim sup
p→∞

χR(X
(p)
1 , . . . , X(p)

n ) ≤ χR(X1, . . . , Xn;m, 2ε)

⇒ lim sup
p→∞

χR(X
(p)
1 , . . . , X(p)

n ) ≤ χR(X1, . . . , Xn)

as required.

Corollary 3.8. If, moreover supp∈N

∥∥∥X(p)
j

∥∥∥ <∞, for 1 ≤ j ≤ n, then

lim sup
p→∞

χ(X
(p)
1 , . . . , X(p)

n ) ≤ χ(X1, . . . , X
(p)
n )

Proof. Let R > 0 be such that R >
∥∥∥X(p)

j

∥∥∥ for all p and 1 ≤ j ≤ n. Then from Theorem 2.6 and
Proposition 2.8 we see that

lim sup
p→∞

χR(X
(p)
1 , . . . , X(p)

n ) = lim sup
p→∞

χ(X
(p)
1 , . . . , X(p)

n ) ≤ χ(X1, . . . , Xn) = χR(X1, . . . , Xn)

as required.

3.3.5 Conditioning

As a quick note, we take a look at conditional free entropy, a quantity that might be of use. We
consider our usual setup of a non commutative probability space (M, τ).

Definition 3.9. Let X1, . . . , Xn, Y1, . . . , Yn be self adjoint random variables in (M, τ). Suppose
χ(Y1, . . . , Yn) > −∞, then the conditional free entropy is given by:

χ(X1, . . . , Xn|Y1, . . . , Yn) = χ(X1, . . . , Xn, Y1, . . . , Yn)− χ(Y1, . . . , Yn)

Proposition 3.10. If χ(Y1, . . . , Ym) >∞ then

χ(X1, . . . , Xn|Y1, . . . Ym) ≤ χ(X1, . . . Xn)

Proof. This is just a direct application of subadditivity.
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3.4 How to compute Free Entropy?
We begin with the computation of free entropy for one variable. We seek herein a formula similar
to the “logarithmic energy” integral we see in Boltzmann theory. We will need a couple of crucial
lemmas. Before we start the hard work, we remark we are dealing in general with volumes, and so
we will be on the lookout for familiar subsets whose volumes can be computed, that approximate
our microstate space.

3.4.1 A nice formula for χ(X)

We begin with a very powerful lemma in linear algebra 101.

Lemma 3.11 (Hoffman Wielandt inequality). Let A,B ∈ Msa
k and let λ1 ≤ λ2 . . . ≤ λk and

µ1 ≤ . . . ≤ µk be their eigenvalues. Then∑
1≤j≤k

(λj − µj)2 ≤ Tr(A−B)2

Proof. An involved proof of this is provided in [AGZ09] in chapter 2, section 2.1.5.

Now, in the following lemma, we describe the volume of a set that could prove to be useful in
approximating the microstate space.

Lemma 3.12. LetA ∈Msa
k have eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µk and let ε > 0 and 0 < α < 1/2.

If
Ω = {B ∈Msa

k |Tr(B − UAU∗)2 ≤ kε2θ for some U unitary}

where θ = (α + 2α2)(α + 2)−1, then

λ(Ω) = kk/2·εk·
(
Γ(k/2 + 1)

)−1·(1+2α)k(k−1)/2·e2k2ε·πk2/2·2k(k−1)/2·

 ∏
1≤j≤k

j!

−1

·
∏

1≤i<j≤k

((µi−µj)2+ε)

Before we begin the proof, we remark that Ω is the set of matrices that approximate some element
in the unitary orbit of the matrix A. This is useful because one can approximate the measure of the
unitary orbit, as we shall see.

Proof. From the Hoffman Wielandt inequality, we see that any B ∈ Ω, with eigenvalues λ1 ≤
λ2 . . . ≤ λk satisfies

∑
j(λj−µj)2 ≤ kε2θ. Also, in the other direction, any matrix with eigenvalues

satisfying the above condition will be in Ω, with U being the unitary that diagonalizes A. Hence,
we have

Ω = {B ∈Msa
k : (λ1, . . . , λk) ∈ D,λ1 ≤ . . . ≤ λk the eigenvalues of B}

where
D = {(λ1, . . . , λk) ∈ Rk :

∑
j

(λj − µj)2 ≤ kε2, λ1 ≤ . . . ≤ λk}
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The k-dimensional volume of D is bounded by the volume of the k-dimensional ball of radius√
kε2θ (this is evident because the constraint is precisely meaning that (λj)j=1,2,...,k sits inside the

ball of such radius centered at (µj)j=1,2,...,k), which is

πk/2 ·
(
Γ(k/2 + 1)−1

)
(kθε2)k/2

where Γ is the Γ-function. This is just the formula for the volume of the k-dimensional ball. Now,
we use a theorem from [Meh91] (theorem 3.3.1), to get the following bound:

λ(Ω) ≤ πk/2Γ(k/2 + 1)−1(kθε2)k/2 · Ck · J

where

Ck = (2π)k(k−1)/2

 ∏
1≤i≤k

j!

−1

and

J = sup

 ∏
1≤i<leqk

(λi − λj)2 : (λ1, . . . , λn) ∈ D


We are left to find an appropriate upper bound for J . If (λ1, . . . , λn) ∈ D, let δj = εjθ

−1/2 be
defined so that

∑
j δ

2
j ≤ kε2 and

(λi − λj)2 ≤ (1 + 2α)(µi − µj)2 + (1 + 2α−1)(ε2i + ε2j)

after substitution and simplification, we have

≤ (1 + 2α)((µi − µj)2 + δ2
i + δ2

j )

Plugging this into the product, we now have∏
1≤i<j≤k

(λi − λj)2 ≤ (1 + 2α)k(k−1)/2 ·
∏

1≤i<j≤k

(
(µi − µj)2 + ε+ δ2

i + δ2
j

)
Note, we added the epsilon to try and massage out the δ’s. Now we provide an approximation to
the term on the right. We have,∑

1≤i<j≤k

(log((µi − µj)2 + ε+ δ2
i + δ2

j )− log((µi − µj)2 + ε))

=
∑

1≤i<j≤k

log

(
1 +

δ2
i + δ2

j

(µi − µj)2 + ε

)
≤

∑
1≤i<j≤k

δ2
i + δ2

j

(µi − µj)2 + ε

≤
∑

1≤i<j≤k

δ2
i + δ2

j

ε
≤ 2k · 1

ε
· kε2 = 2k2ε
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Hence, we have,∏
1≤i<j≤k

(log((µi − µj)2 + ε+ δ2
i + δ2

j ) ≤ e2k2ε
∏

1≤i<j≤k

((µi − µj)2 + ε)

We therefore have,

J ≤
∏

1≤i<j≤k

((µi − µj)2 + ε)(1 + 2α)k(k−1)/2e2k2ε

Combining all the terms, gives us the required conclusion.

One should not tremble at the horrendous formula we have provided, as asymptotically most terms
will vanish. Now, we will look at the true reason why we are considering this set.

Lemma 3.13. Let ε > 0 be given. Then, there exists is a ω > 0, and an N ∈ N so that the
following is satisfied: Given A,B ∈Msa

k and ‖A‖ ≤ 1,∣∣τk(Ap)− τk(Bp)
∣∣ < ω (1 ≤ p ≤ N)

implies that there exists a unitary U ∈Msa
k so that

τk((B − UAU∗)2) < ε

The lemma says that the microstate space will be a subset of the set Ωk, in an informal way. In
order to prove this we will have to develop some machinery.

Proof. Firstly, we show that it suffices to assume that ‖B‖ ≤ 1. This follows from a continuity
type argument as follows. Suppose for given ε > 0, we haveN and ω as in the lemma, ifB ∈Msa

k ,
‖B‖ > 1 such that for all 1 ≤ p ≤ N , we have∣∣τk(Ap)− τk(Bp)

∣∣ < ω

implies the existence of a U ∈ U(Msa
k ) so that

τk((B − UAU∗)2) < ε

Consider ρ : R → [−1, 1] to be the continuous retraction of R to [−1, 1] fixing the interval, and
sending x 7→ x

|x| . Now consider the functional calculus ρ(B), and note that what ρ does is to cut off
the spectrum of B beyond [−1, 1], so that

∥∥ρ(B)
∥∥ ≤ 1. Now, from the fact that B approximates A

nicely in moments (1 ≤ p ≤ N) where ‖A‖ ≤ 1, we have that there are δ > 0 and M ∈ N so that
for all k ∈ N, we have τk(B2M) < 1 + δ further implying that∣∣τk(Bp)− τk(ρ(B)p)

∣∣ < ω

One also has in particular, the second moment of their difference is small

τk((B − ρ(B))2) < ε
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Hence, we can replace B by ρ(B), thereby proving that it suffices to consider ‖B‖ ≤ 1.

Now, for A ∈ Msa
k let µA and FA denote the distribution of A with respect to τn and the dis-

tribution function of µA respectively, that is,

FA(t) = µA((−∞, t)) = τn(E(A; (−∞, t)))

where recall that the notation E(A,Ω) is the spectral measure with respect to A. Now, the Levy-
metric on distribution functions is given by the following:

d(F1,F2) = inf{ε > 0 : F1(t− ε)− eε ≤ F2(t) ≤ F1(t+ ε) + ε for all t ∈ R}

Firstly, observe that this metric induces the weak topology on the space of probability measures on
[−1, 1] and also that this space of measures is a compact space. Secondly, as a consequence of the
fact that the following metric:

r(µν) =
∞∑
p=1

2−p

∣∣∣∣∣
ˆ 1

−1

tpdµ(t)−
ˆ 1

−1

tpdν(t)

∣∣∣∣∣
also induces the same weak topology on the space of measures, we have the following: Given
δ > 0 there are ω > 0 and N ∈ N so that for all k ∈ N, A,B ∈Msa

k , ‖A‖ ≤ 1, ‖B‖ ≤ 1, if∣∣τk(Ap)− τk(Bp)
∣∣ < ω (1 ≤ p ≤ N)

then
d(FµA ,FµB) < δ

Now we begin with some estimates. Choose an appropriate N and ω such that

d(FµA ,FµB) < (10M)−3

for some given M ∈ N satisfying 103/M < ε.

The main idea of the proof is to locate the unitary U , which will extend from a sum of partial
isometries which each transport the spectral projections from A to B, maintaining some close ap-
proximations.

Begin by partitioning the ambient spectrum [−1, 1] into 2M3 small intervals depending on−M3 ≤
a < M3, I(a) = [a(M−3), (a + 1)(M−3)). We also want the very last of these intervals,
i.e, a = M3 − 1 to be closed on the right. Now, for each −M ≤ j < M , pick aj between
jM2 ≤ aj < (j + 1)M2, such that µA(I(aj) ≤ M−2. Note that choosing M sufficiently large
will mean that this can definitely be accomplished because the eigenvalues of a matrix are discrete
points on the spectrum. From the bound for the Levy distance, we infer the following inequal-
ity, which is basically informing us of the closeness of the distributions, when restricted to some
special intervals:

µA([(aj + 1)M−3, aj+1M
−3))− µB([(aj + 1/2)M−3, (aj+1 + 1/2)M−3)) ≤ 1

10M3
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(changing the right endpoints appropriately for j = −M − 1 and j = M so that we don’t cross
the limits). Let Uj be partial isometries that transport the part of the spectrum of A to that of B, as
described in the above inequality: (here, −M − 1 ≤ j ≤M )

U∗j Uj ≤ E(A; [(aj + 1)M−3, aj+1M
−3))

and
UjU

∗
j ≤ E(B; [(aj + 1/2)M−3, (aj+1M

−3)))

From the estimates, we have

τn(E(A, [(aj + 1)M−3, aj+1M
−3))) ≤ 1

10M3

Therefore, expanding,∑
j

τn(U∗j Uj) ≥ 1− (M + 2)

10M3
−M ×M−2 ≥ 1− 2

M

We also have a norm estimate below:∥∥UjA−BUj∥∥ ≤ ∥∥∥∥UjA− j

M
Uj

∥∥∥∥+

∥∥∥∥ jM Uj −BUj
∥∥∥∥ ≤ 8

M

Now, let W =
∑

j Uj . W is a partial isometry, and there is a unitary extending W , let it be U . This
will be the unitary that we seek in the lemma. Indeed,

‖WA−BW‖ ≤ 8

M

and
τn((U −W )∗(U −W )) ≤ 2

M

so that
τn((B − UAU∗)2) = τn((BU − UA)∗(BU − UA))

≤
√
τn((BW −WA)∗(BW −WA)) + 2

√
τn((U −W )∗(U −W ))

≤ (
8

M
+

4

M1/2
)2 ≤ 103

M
< ε

Thus, we have the result.

We will be needing the following deterministic result which will show up as an additive constant
in our formula for free entropy.

Lemma 3.14.

lim
k→∞

(
−
log
∏

1≤j≤k j!

k2
+
log(k)

2

)
=

3

4
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Proof. From Stirling’s formula, we have

1

k2

log(
∏

1≤j≤k

j!)− log(
∏

1≤j≤k

jj)

 = −1

2

From the fact that
∏

1≤j≤k j! =
∏

1≤j≤k j
k−j we have by liberally using Stirling’s formula,

lim
k→∞

− 1

k2
log(

∏
1≤j≤k

j!) +
log(k)

2

 =
1

4
+ lim

k→∞

− 1

2k2
log(

∏
1≤j≤k

jk) +
log(k)

2


=

1

4
+ lim

k→∞

(
− log(k!)

2k
+
log(k)

2

)
=

3

4

We are now ready to state and prove the main result of this section.

Theorem 3.15. Let X be a self adjoint random variable, and µ be its distribution. Then,

χ(X) =

ˆ ˆ
log|s− t|dµ(s)dµ(t) +

3

4
+
log(2π)

2

We split the proof in two, (1) being the proof of LHS ≤ RHS, and (2) being the other direction.

Proof. (1): This direction is the relatively easier direction. Assume without loss of generality that
supp(µ) ⊆ [−1, 1] and let Ak ∈Msa

k with ‖Ak‖ ≤ 1 and

Ak ∈ Γ1

(
X;N, k,

w

2

)
where N , w are like in the setting of lemma 3.14. As we have been seeking we get from applying
the lemma,

Γ2(X;N, k,
w

2
) ⊂ Ωk

, where Ωk is the set

Ωk = {B ∈Msa
k : Tr(B − UAkU∗)2 ≤ kε2θ, for some U ∈ U(Mk)}

Now just using the estimates we found for this volume, and the deterministic result, we have

χ(X;N,
w

2
) ≤ lim sup

k→∞
(k−2log(Ωk) + log(k)/2)

≤ log(1 + 2α)/2 + 2ε+ log(2π)/2 + 1/2

(ˆ ˆ
log((s− t)2 + ε)dµ(s)dµ(t)

)
+ 3/4

Hence, by taking limits across the appropriate nets, we have the result:

χ(X) ≤ log(2π)

2
+ 3/4 +

ˆ ˆ
log|s− t|dµ(s)dµ(t)
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Proof. (2): First, we remark that it suffices to prove the inequality under the assumption that
supp(µ) = [a, b] and µ has a well defined density ρ on [a, b] which is positive and is in C∞.
Indeed, it suffices to prove the reduced statement, for if µ is a weak limit of probability measures
µn, each having support in [a, b] and density in C∞ and

lim
n→∞

ˆ ˆ
log|s− t|dµn(s)dµn(s) =

ˆ ˆ
log|s− t|dµ(s)dµ(t)

then our required inequality (for −µ) follows from a direct application of Corollary 3.9.

Now, first we are reduced to finding such µn as above. This is seen as follows. Define µ̃n = µ∗P1/n,
where Pε is the Poisson kernel. The logarithmic energies (given by our proposed formula for
free entropy) of µn will converge to the logarithmic energy of µ, because of the observation that
Pε ∗ log|·| = log|·+ iε|. Now we can then choose µn = (1+ εn)φ(µ̃n) where φ is the characteristic
function of a sufficiently large interval that [a, b] and εn converges down to 0.

Now, the proof is complete is we show the result for µ satisfying these additional constraints
we have established. Define

a < a
(k)
1 < b

(k)
1 < a

(k)
2 < . . . < a

(k)
k < b

(k)
k = b

so that every part of this partition has µ- measure (integral of the density) (2k)−1. From a continuity-
type argument for the density, we can say that there is a δ > 0 such that the lengths of the intervals
of the partition are bigger than δ/k. Now, define the following set of matrices (which will nicely
approximate X , and thereby becoming a subset of the microstate space):

Ξk = {A ∈M : a
(k)
j ≤ λj(A) ≤ b

(k)
j , 1 ≤ j ≤ k}

where λ1(A) ≤ . . . ≤ λn(A) are the eigenvalues of A. By squinting at the definition, one can spot
that

Ξk ⊂ Γ(X;mk, k, εk)

for some mk →∞ and εk → 0 as k →∞. Applying the limiting arguments, we have

χ(X) ≥ lim sup
k→∞

(
logλ(Ξk)

k2
+
log(k)

2

)
What now stands between us and the end of the proof is some routine manipulation and substitu-
tions. From the bound we had established earlier on the size of a set such as Ξk, we have

λ(Ξk) ≥ (2k)k(k−1)/2 ·

 ∏
1≤j≤k

j!

−1

· (δk−1)k ·
∏

1≤p<q≤k

(a(k)
q − b(k)

p )2

Substituting this into the above inequality and applying the deterministic calculation we made in
Lemma 3.15, we have

χ(X) ≥ 2π

2
+

3

4
+ lim sup

k→∞
k−2log

∏
1≤p<q=k

(a(k)
q − b(k)

p )2
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We aim to rewrite the above expression, especially the last limsup. Let g : [0, 1] → [a, b] is the
inverse of the function

t 7→
ˆ t

a

dµ(s)

Then, we have the last limsup in the above expression becomes

lim sup
k→∞

k−2
∑

1≤p<q=k

log
∣∣g(2qk−1)− g((2p+ 1)k−1)

∣∣2
Now, with a bit of realignment, we have that the above expression is equal to
ˆ ˆ

0≤s<t≤1

log
∣∣g(t)− g(s)

∣∣2dsdt =

ˆ 1

0

ˆ 1

0

log
∣∣g(t)− g(s)

∣∣dsdt =

ˆ ˆ
log|s− t|dµ(s)dµ(t)

This finishes the proof.

3.4.2 Some computations

We compute the free entropy for the semicircular distribution, and thereby show that it has the
highest entropy for a fixed variance. We also show that a distribution admits atoms only if the free
entropy of the distribution is −∞. To show that the other direction of the result is false, i.e, one
can have an atomless distribution with free entropy being −∞.

While the fact that full free entropy dimension is a strictly weaker condition than finite free entropy
is very well known, an explicit example in the literature only appeared recently in [NCon]. Here is
the example they constructed.

Example 1. Let In ⊂ [0, 1] be a disjoint sequence of intervals such that the Lebesgue measure
λ(In) < e−12n , so that these interval thicknesses are rapidly decaying. Define a function f as
follows:

f : R→ R≥0

t 7→
∞∑
n=1

2−n
χIn(t)

λ(In)

By construction, f is non negative and integrable, and is also a probability density function. Let
µ be the measure with density given by f . We claim that the (negative) logarithmic energy of µ is
infinite. Indeed,

ˆ ˆ
R2

log |x− y|dµ(x)dµ(y) ≤
∞∑
n=1

ˆ ˆ
I2n

log |x− y|dµ(x)dµ(y)

≤
∞∑
n=1

log(r−12n)4−n = −∞
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3.4.3 Additivity of Free Entropy

In [Voi91] Voiculescu proved an incredibly powerful result (which we have discussed here in The-
orem 2.61) and this turns out to be the essential ingredient in this section. We are interested in
showing that χ(X1, . . . , Xn) = χ(X1) + . . . + χ(Xn) if X1, . . . , Xn are freely independent. Es-
sentially, we want to be showing that the n-tuples of microstates of X1, X2, . . . , Xn individually,
asymptotically become microstates of X1, . . . , Xn. But from Voiculescu’s asymptotic freeness, we
know that independent random matrix tuples become asymptotically free in the large N limit. It is
therefore encouraging to pursue free additivity from this point of view.

We first fix up some notation. Denote by U(k) the unitary group U(Mk) and by µ the corre-
sponding Haar probability measure. If A ∈ Msa

k , let O(A) denote its unitary orbit {UAU∗ : U ∈
U(k)}. Also denote by ΓR(X1, . . . , Xn;Y1, . . . , Yp;m, k, ε) the set of (A1, . . . , An;B1, . . . , Bp) ∈
(Msa

k )n × (Mk)
p such that monomials of these matrices approximate the corresponding monomi-

als, i.e, τ of a *-monomial in X1, . . . , Y1, . . . of degree ≤ m is within ε of τk of the corresponding
*-monomial in A1, . . . , B1, . . ., and the operators norms are bounded by R. If we remove the R in
the notation, just denote the set without the bounds on the uniform norms.

Now we record some variants of theorems in [Voi91].

Lemma 3.16. Let U0, . . . , Un be unitary, with Haar distributions and *-free in (M, τ) and let
N ∈ N and ε > 0 be given. Further, define W (k) to be a special unitary, which is the diagonal
unitary diag(exp(2πij/k) : 0 ≤ j ≤ k − 1). Let ωk be the following set:

ωk = {(V1, . . . , Vn) ∈ (U(k))n : (W (k), V1, . . . , Vn) ∈ Γ1(U0, . . . , Un;N, k, ε)}

Then, we have
lim
k→∞

µ⊗n(ωk) = 1

Now, we modify this for a slightly stronger asymptotic freeness result:

Lemma 3.17. Let U1, . . . , Un be unitaries with Haar distributions and X = X∗ with distribution
as Lebesgue measure on [0, 1] and assume X,U1, . . . , Un are *-free in (M, τ). Let further N ∈ N
and ε > 0 be given and let hj : [0, 1] → R (1 ≤ j ≤ n) be continuous functions. As before, if
Dj(k) = diag(hj(s/k) : 0 ≤ s ≤ k − 1) and if

ωk = {(V1, . . . , Vn) ∈ U(k)n : (D1(k), . . . , V1, . . .) ∈ Γ(h1(x), . . . ;U1, . . . ;N, k, ε)}

Then, we have
lim
k→∞

µ⊗n(ωk) = 1

Proof. If hj(t) = Pj(exp(2πit)) for Laurent polynomials Pj , the lemma follows immediately
from the previous lemma (changing ε,N ) (why?). The general case is then obtained by a routine
approximation argument, approximating the hj by Pj(exp(2πit)) in L2 norm.

The following lemma is the crucial step in the proof of free additivity.
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Lemma 3.18. Let U1, . . . , Un, X be like in the previous lemma. Assume that hj : [0, 1] → R are
C1 functions and h′j(t) > 0 for all t ∈ [0, 1]. Define further,

Ω(hj; k) = {A ∈Msa
k : hj(2s/2k) ≤ λs+1(A) ≤ hj((2s+ 1)/2k), 0 ≤ s ≤ k − 1}

where λ1(A) ≤ . . . ≤ λk(A) are the eigenvalues of A. If

Θ(k) = {(A1, . . . , An) ∈
∏

1≤j≤n

Ω(hj; k) : (A1, . . . , An) ∈ Γ(U1h1(X)U∗1 , . . . , Unhn(X)U∗n);N, k, ε}

Then,

lim
k→∞

λ(Θ(k))

λ(Ω(h1; k)× . . .× Ω(hn; k))
= 1

Proof. Let ωk be the set defined in lemma 3.18, except with N1, ε1 replacing N, ε. Firstly, remark
the following: If A ∈ Msa

k is such that hj(2s/2k) ≤ λj(A) ≤ hj((2s + 1)/2k) and if Dj =
diag(hj(s/k) : 0 ≤ s ≤ k − 1) then there is a unitary U , and a C independent of k such that

∣∣A− UDjU
∗∣∣

2
≤ C

k

Now, if we define the set of diagonal matrices with such restricted eigenvalues:

∆k = {diag(λ
(j)
1 , . . . , λ

(j)
k )1≤j≤n :

hj(s/k) ≤ λ
(j)
s+1 ≤ hj((2s+ 1)/2k), 1 ≤ j ≤ n, 0 ≤ s ≤ k − 1}

, then we simply have that the set
∏

1≤j≤n Ω(hj, k) is the disjoint union of products of the uni-
tary orbits of n-tuples in ∆k, i.e,

∏
1≤j≤nO(Tj), with (T1, . . . , Tn) ∈ ∆k. Now that we have

described this disintegration, the lemma will follow if we prove that there is ηk a lower bound for
the ratio of the volume of (

∏
1≤j≤nO(Tj)) ∩ Θ(k) to the volume of

∏
1≤j≤nO(Tj), uniform in

(T1, . . . , Tn) ∈ ∆k such that ηk → 1 as k →∞.

Now supposem is the mapm((V1, . . . , Vn)) = (V1T1V
∗

1 , . . . , VnTnV
∗
n ). Observe thatm is (U(k))n-

equivariant and (U(k))n and
∏

1≤j≤nO(Tj) have unique (U(k))n invariant probability measures.
It is easy to see that

m(ωk) ⊂

 ∏
1≤j≤n

O(Tj)

 ∩Θ(k)

We now set
ηk = µ⊗n(ωk) ≤ µ⊗n(m−1(m(ωk))) = (m∗µ

⊗n)(m(ωk))

Now, from the strengthened asymptotic freeness result, we have the conclusion directly follows.

We are now ready to prove the main result of this section.
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Theorem 3.19. If the self adjoint random variables X1, . . . , Xn are free, then

χ(X1, . . . , Xn) = χ(X1) + . . .+ χ(Xn)

Proof. Firstly, note that it suffices to prove the≥ inequality, since we already established the other
direction for any general n−tuple. One can also say the above statement for operatorsX1, . . . , Xn

such that there are free X(m)
1 , . . . , X

(m)
n such that limm→∞ χ(X

(m)
j ) = χ(Xj) and the distribution

of X(m)
j converges to the distribution of Xj .

We can reduce the proof to the case when the measure µj which is the distribution of Xj , has
support an interval [a, b] and has a C∞ density on [a, b] which is > 0 on [a, b]. We can also assume
additionally that with X,U1, . . . , Un like in the previous lemma,

Xj = Ujhj(X)U∗j

where hj : [0, 1] → R is C∞ and h′j(t) > 0 for all t ∈ [0, 1]. From the bound on the ratio we had
from the previous lemma, we have

lim
k→∞

(logλ(Θ(k))− logλ(Ω(h1, k)× . . .× Ω(hn, k))) = 0

Now applying the routine calculations,

χ(X1, . . . , Xn;N, ε) ≥
∑
1≤j≤

lim sup
k→∞

(k−2logλ(Ω(hj, k)) + log(k)/2)

From the calculation we made previously in the section on computing free entropy of a single
variable, we have

lim sup
k→∞

(k−2logλ(Ω(hj, k)) + log(k)/2) = χ(hj(X)) = χ(Xj)

Therefore, we have the desired inequality:

χ(X1, . . . , Xn;N, ε) ≥ χ(X1) + . . .+ χ(Xn)

and thus,
χ(X1, . . . , Xn) ≥ χ(X1) + . . .+ χ(Xn)

3.4.4 Non commutative power series transformations

We have seen so far how to compute free entropy for a single variable, how to compute free entropy
for multiple variables in the case that they are free. But what if they are not free? This situation
is quite intractable because it is closely tied with the Connes’ embedding problem, which is far
from solved. In this section we consider the effect of analytic noncommutative functional calculus
on free entropy. This should be viewed as an infinitesimal change of variables formula. This is a
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very potent result, as it can be used as a tool to compute free entropy. Given that we know the free
entropy of n free semicirculars, we can easily find using this formula, the free entropy of a nice
large subset of the von Neumann algebra generated by the free semicirculars.

We begin by discussing some structure that is required to define a non commutative Jacobian,
and an analytical functional calculus.

LetM⊗πM op be the projective tensor product ofM with its opposite algebra (with its natural invo-
lutive Banach-algebra structure). Let α : M ⊗π M op → B(M) be the contractive homomorphism
given by

α(a⊗ b) = LaRb

where La and Rb are the left multiplication and right multiplication operators. We shall denote by
LR(M) the algebra α(M ⊗π M op). We have the following inequality,∣∣α(x)m

∣∣
p

= ‖x‖π|m|p
for 1 ≤ p ≤ ∞, hence, LR(M) acts boundedly on Lp(M). For p = 2, we have the map

β : LR(M)→ C∗(M,M ′)

where M and M ′ are with respect to the standard form of M on L2(M).Furthermore, let γ be the
*-homomorphism

γ : C∗(M,M ′)→M⊗M op

Note also that M ⊗M op is a finite factor with the cannonical trace τ ⊗ τ .

Now that we have laid out the foundations, let us define a noncommutative determinant called
the Kadison Fuglede determinant. Consider a typical element T ∈ Mn ⊗ LR(M). If T is an
invertible element, define its positive determinant |det| to be the Kadison Fuglede determinant of
(idn ⊗ (γ ◦ β))(T ) in Mn ⊗ (M ⊗M op). That is, we have

|det|(T ) = exp(
Trn ⊗ (τ ⊗ τ)

2
)log((idn ⊗ (γ ◦ β))(T ∗T ))

We leave it to the reader to verify that |det|(I) = 1 and |det|(T1T2) = |det|(T1)|det|(T2). Note
that the chosen normalization (τ ⊗ Trn)(I) = n so τ ⊗ Trn is not a state if n ≥ 2.

Now we introduce the notion of a non commutative power series with a multiradius of conver-
gence. Let t1, t2, . . . , tn be non commuting indeterminates and let

F (t1, . . . , tn) =
∞∑
k=0

∑
1≤i1...ik≤n

ci1...ikti1 . . . tik

be a non-commutative power series with complex coefficients. For Rj ≥ 0, (1 ≤ j ≤ n) are real
numbers, we say that (R1, . . . , Rn) is a multiradius of convergence of F if

∞∑
k=0

∑
1≤i1,...,ik≤n

∣∣ci1...ik∣∣Ri1 . . . Rik <∞
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For convenience denote this number by M(F ;R1, . . . , Rn). Suppose quite generally, X1, . . . , Xn

are elements of a Banach algebra and (‖X1‖, . . . , ‖Xn‖) is a multiradius of convergence, then it
easy to see that F (X1, . . . , Xn) is well defined. Also clearly,

M(F ; ‖X1‖, . . . , ‖Xn‖) ≥
∥∥F (X1, . . . , Xn)

∥∥
Now, if (R1, . . . , Rn) is a multiradius of convergence of F then the map taking (X1, . . . , Xn) to
F (X1, . . . , Xn) is an analytic function on∏

1≤j≤n

{Xj ∈M :
∥∥Xj

∥∥ < Rj}

with values in M . By abusing notation, denote this analytic function by F . Then the ‘differential’
of F at (X1, . . . , Xn) is defined to be

DF (X1, . . . , Xn) = (D1F (X1, . . . , Xn), . . . , DjF (X1 . . . , Xn) . . . , DnF (X1, . . . , Xn))

where the DjF (X1, . . . , Xn) is given by

DjF (X1, . . . , Xn) =
∞∑
k=1

∑
1≤i1,...,ik≤n

ci1...ik
∑
is=j

LXi1 ...Xis−1
RXis+1

...Xin

Note that by our definition, Dj(F (X1, . . . , Xn)) ∈ LR(M). Now, more generally, suppose
F1, . . . , Fn are non-commutative power series and (R1, . . . , Rn) is a common multiradius of con-
vergence we get an analytic function F which maps

Mn ⊃
n∏
j=1

{Xj ∈M :
∥∥Xj

∥∥ < Rj} 7→Mn

whereF (X1, . . . , Xn) = (F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn)). The differentialDF (X1, . . . , Xn)
is an element of LR(M)⊗Mk, and we can write DF =

(
DiFj

)
1≤i,j≤n. The “positive Jacobian”

of F at (X1, . . . , Xn) is then defined by

|J |(F )(X1, . . . , Xn) = |det|(DF (X1, . . . , Xn))

This is very analogous to the classical Jacobian as we clearly see. In fact, if G = (G1, . . . , Gn) is
another such analytic map and (M(F1;R1, . . . , Rn), . . . ,M(Fn;R1, . . . , Rn)) is a common multi-
radius of convergence for G1, . . . , Gn, then the composition G ◦ F is well defined and we leave it
to the reader to verify the chain rule:

|J |(G ◦ F )(X1, . . . , Xn) = |J |(G)(F (X1, . . . , Xn)) · |J |(F )(X1, . . . , Xn)

. One more small thing to note before we proceed is that we would like to have F (X1, . . . , Xn) to
be self adjoint (because we’re only dealing with self adjoint operators), and so we define the power
series F ∗ by

F ∗(t1, . . . , tn) =
∞∑
k=0

∑
1≤i1...ik≤n

ci1...iktik . . . ti1

29



so that if Xj are self adjoint,

F ∗(X1, . . . , Xn) = (F (X1, . . . , Xn))∗

In particular, if F = F ∗, then F (X1, . . . , Xn) is self adjoint. We are now ready to address the main
theorem of this section.

3.4.5 Infinitesimal change of variables formula

We present a formula for the free entropy of a transformation of the n- self adjoint random vari-
ables. However, this transformation satisfies some constraints as we shall see. It admits non-
commutative power series of X1, . . . , Xn that are, as noncommutative polynomials in n variables,
invertible, in an appropriate sense, and “stable” under small perturbations.

Proposition 3.20. Let Xj (1 ≤ j ≤ n) be self adjoint random variables in (M, τ). Let F1, . . . , Fn
andG1, . . . , Gn be self adjoint noncommutative power series, in the sense that we have seen before.
Let (‖X1‖+ ε, . . . , ‖Xn‖+ ε) is a multiradius of convergence for the F ′js for some ε > 0 and(

M(F1; ‖X1‖+ ε, . . . , ‖Xn‖+ ε), . . . ,M(Fn : ‖X1‖+ ε, . . . , ‖Xn‖+ ε)
)

is a multiradius of convergence for the Gj’s. Assume moreover the left invertibility condition:

Gj(F1(t1, . . . , tn), . . . , Fn(t1, . . . , tn)) = tj (1 ≤ j ≤ n)

Then, we have

χ(F1(X1 . . . , Xn), . . . , Fn(X1, . . . , Xn)) ≥ log|J |(F1, . . . , Fn)(X1, . . . , Xn) + χ(X1, . . . , Xn)

Proof. Firstly, fix
∥∥Xj

∥∥ < Rj <
∥∥Xj

∥∥ + ε and M(Fj; ‖X1‖ + ε, . . . , ‖Xn‖ + ε) > ρj >
M(Fj;R1, . . . , Rn). From this information, we immediately get the following: given m, ε there
are some m1 ≥ m and 0 < ε1 < ε such that

(A1, . . . , An)→ F (A1, . . . , An) =
(
F1(A1, . . . , An), . . . , Fn(A1, . . . , An)

)
will provide an embedding of ΓR1,...,Rn(X1, . . . , Xn;m1, k, ε1) into

Γρ1,...,ρn(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn);m, k, ε)

Note also that the map G = (G1, . . . , Gn) has a multiradius of convergence strictly larger than
(ρ1, . . . , ρn). Recall that in the classical case, if f is holomorphic on an an open ball, it’s derivative
is also holomorphic on the same interior. By an easy analogue of this statement (which we leave
to the reader to write down and check), we have

∥∥DG(A1, . . . , An)
∥∥ ≤ C whenever

∥∥Aj∥∥ ≤ ρj ,
where C is independent of k. Note that in the above statement, the norm of the differential is
the norm of the operator on L2(Mk, τk). Similarly, we have

∥∥DF (A1, . . . , An)
∥∥ ≤ C when-

ever DG(F1(A1, . . . , An), . . . , Fn(A1, . . . , An))DF (A1, . . . , An) = Id(Mk)n . From the above two
statements, we have that the spectrum of (DF (A1, . . . , An))∗(DF (A1, . . . , An)) is contained in
[C−2, C2].
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Our strategy from this point onwards is to deal with DF (A1, . . . , An). Our usage of the left
invertibility condition has provided us with a bound on the spectrum. Since the log of a differen-
tial operator is almost always hard to deal with, we first approximate it with a polynomial. Given
δ > 0, there is an n× n matrix P with noncommutative polynomial entries such that∥∥DF (A1, . . . , An)− P (LA1 , . . . , LAn , R1, . . . , RAn)

∥∥ < δ

Now, if C−1 − δ > 0, choosing a polynomial Q(t) such that
∣∣Q(t)− log(t)

∣∣ < δ on [(C−1 −
δ)2, (C + δ)2] we have the following inequality:∥∥log((DF (A1, . . . , An))∗DF (A1, . . . , An))−Q((P (LA1 , . . . , RAn))∗P (LA1 , . . . , RAn))

∥∥
≤ δ + 2δ(C + δ)(C−1 − δ)−2

Adding and subtracting log((P (LA1 , . . . , RAn))∗P (LA1 , . . . , RAn)) inside the norm, and applying
functional calculus, we get the δ term. The other term is got by applying mean value theorem (the
idea is that if 0 ≤ X ≤ Y, =⇒ log(X) ≤ log(Y )) (Note that the exactness of these soft estimates
doesn’t matter too much to the proof, as they will disappear in the limit). Now, observe in the
formula for the Kadison-Fuglede determinant,

(Trn ⊗ τk2)(idn ⊗ (γ ◦ β))(Q(P (LA1 , . . . , RAn)))

= (Trn ⊗ τk ⊗ τk)(Q(P (A1 ⊗ I, . . . , An ⊗ I, I ⊗ A1, . . . , I ⊗ An)))

is a polynomial of degree ≤ 2 in the noncommutative moments τk(At1 , . . . , Atm). This is very
useful for us, because being a microstate precisely means that approximation occurs at such a
(polynomial) level. Note also that the we can replace the Ai’s with Xi in (M, τ) and the same facts
will hold true. Now, choosing ε1 sufficiently small, and m1 sufficiently large, if (A1, . . . , An) ∈
ΓR1,...,Rn(X1, . . . , Xn;m1, k, ε1) then,

(Trn ⊗ τk ⊗ τk)(idn ⊗ (γ ◦ β))(DF (A1, . . . , An)∗DF (A1, . . . , An))

−(Trn ⊗ τ ⊗ τ)(idn ⊗ (γ ◦ β))(DF (X1, . . . , Xn)∗DF (X1, . . . , Xn))

≤ 3δ + 4δ(C + δ)(C−1 − δ)−2

for all k ∈ N. On the other hand, we have from the definition of the Jacobian on the transformation
on the microstate space,

χR1,...,Rn(X1, . . . , Xn;m1, k, ε1) + inf{log|J |(F )(A1, . . . , An) :

(A1, . . . , An) ∈ ΓR1,...,Rn(X1, . . . , Xn;m1, k1, ε1)}
≤ χρ1,...,ρn(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn);m, k, ε)

From what we have derived, we can replace the Jacobian term with what we require, as follows:
Given m ∈ N, ε > 0 and η > 0 there are m1 ∈ N, 0 < ε1 < ε such that

χR1,...,Rn(X1, . . . , Xn;m1, k, ε1) + log|J |(F )(X1, . . . , Xn)− η

≤ χρ1,...,ρn(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn);m, k, ε)

for all k ∈ N. Routinely removing the m, k, ε, we have the required result.
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Theorem 3.21. Let the setup be as defined in the previous proposition. If moreover,

(M(G1;
∥∥F1(X1, . . . , Xn)

∥∥+ ε, . . . ,
∥∥Fn(X1, . . . , Xn)

∥∥+ ε), . . . ,

M(Fn;
∥∥F1(X1, . . . , Xn)

∥∥+ ε, . . . ,
∥∥Fn(X1, . . . , Xn)

∥∥+ ε))

is a multiradius of convergence for the Fj’s, then

χ(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn)) = log|J |((F1, . . . , Fn))(X1, . . . , Xn) + χ(X1, . . . , Xn)

Proof. Note that in order to get the equality, from the previous proposition, it suffices to show that
the assumptions imply

Fj(G1(t1, . . . , tn), . . . , Gn(t1, . . . , tn)) = tj

Note that DF at 0 in Mn, is a scalar n×n matrix and therefore G ◦F = Id implies that DF (0) is
invertible. By the inverse function theorem, we infer that F ◦ G = id in a neighborhood of F (0).
By analyticity of F ◦ G, we have F ◦ G = id on {(T1, . . . , Tn) ∈ Mn :

∥∥Tj∥∥ < ρj, 1 ≤ j ≤ n}.
Choosing M to be a sufficiently large implies that F ◦ G = id at the level of noncommutative
power series.

3.4.6 Examples and corollaries

The formula that we derived in the above section has several important applications. First of all,
it provides a source for numerous examples in free entropy. It is also noteworthy to remark here
that such a transformation formula is not known to hold in the non-microstates free entropy case
[Voi98a], which is also called infinitesimal free entropy. This non-microstates free entropy was
constructed using a free analogue of the Fisher’s information measure, and is arguably the more
friendlier definition of free entropy today. It is unfortunate that such transformational formulas are
still a mystery here.

Proposition 3.22. 1. If c1, . . . , cn ∈ R then χ(X1 + c1I, . . . , Xn + cnI) = χ(X1, . . . , Xn)

2. If A = (aij)1≤i,j≤n is an invertible real n× n matrix, then

χ

∑
j

a1jXj, . . . ,
∑
j

anjXj

 = χ(X1, . . . , Xn) + log
∣∣det(A)

∣∣
3. If X1, . . . , Xn are linearly dependent, then χ(X1, . . . , Xn) = −∞.

Proof. Recall that the inverse of an affine transformation is also an affine transformation. Hence,
the transformations from (1) and (2) have inverses, and satisfy the conditions of the theorem.
Therefore we have the results. For part (3), suppose X1, . . . , Xn are linearly dependent, then there
is A ∈ GL(m,R) with

∣∣det(A)
∣∣ < 1 so that∑

j

akjXj = Xk (1 ≤ k ≤ n)

Now applying (b) to this, we have χ(X1, . . . , Xn) = ±∞. But since free entropy is always < ∞,
we have the result.
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Lemma 3.23. Let X1, . . . , Xn, Y1, . . . , Yn be self adjoint random variables in (M, τ) and as-
sume that Y1 = X1, Y2 = X2 + P2(X1), . . ., Yj = Xj + Pj(X1, . . . , Xj−1), . . ., Yn = Xn +
Pn(X1, . . . , Xn−1) where P2, . . . , Pn are noncommutative polynomials. Then χ(X1, . . . , Xn) =
χ(Y1, . . . , Yn).

Proof. Firstly remark that by some algebraic manipulation, one can derive polynomials Rj , such
thatXj = Yj+Rj(Y1, . . . , Yj−1). Assume that Pj = P ∗j andRj = R∗j . Defining Fj(X1, . . . , Xn) =
Xj+Pj(X1, . . . , Xn) andGj(Y1, . . . , Yn) = Yj+Rj(Y1, . . . , Yj−1) we may apply the main theorem
to get χ(X1, . . . , Xn) ≤ χ(Y1, . . . , Yn). The reverse inequality follows by symmetry, i.e, replacing
the roles of Xj and Yj .

The following proposition offers a more generalized version of the previous lemma.

Proposition 3.24. Let X1, . . . , Xn, Y1, . . . , Yn be self adjoint random variables in (M, τ) and
assume X1 = Y1 and Yj − Xj ∈ W ∗(X1, . . . , Xj−1) if 2 ≤ j ≤ n. Then χ(X1, . . . , Xn) =
χ(Y1, . . . , Yn).

Proof. Like in the previous lemma, there is some symmetry going on between the X’s and the
Y ’s, sicne the assumptions imply that Xj −Yj ∈ W ∗(Y1, . . . , Yj−1), (2 ≤ j ≤ n). It will suffice to
then show that χ(X1, . . . , Xn) ≤ χ(Y1, . . . , Yn). Let P (t)

j (X1, . . . , Xj−1), (t ∈ N, 2 ≤ j ≤ n) be
noncommutative polynomials, such that

Xj + P
(t)
j (X1, . . . , Xj−1)→ Yj

strongly, as t→∞. By the previous lemma, and an old result Prop 3.8, we have

χ(Y1, . . . , Yn) ≥ lim sup
t→∞

χ(X1, X2 + P
(t)
2 (X1), . . . , P (t)

n (X1, . . . , Xn−1))

= χ(X1, . . . , Xn)

Hence proved.

We end this section with a useful proposition that is in the same flavor as above.

Proposition 3.25. Let Y1, . . . , Ym+n be self adjoint free random variables so that χ(Yj) > −∞,
1 ≤ j ≤ m+ n. Let further Xj = X∗j ∈ W ∗(Ym+1, . . . , Ym+n), 1 ≤ j ≤ m. Then

χ(X1 + Y1, . . . , Xn + Yn) ≥ χ(Y1, . . . , Yn)

Proof. We have

χ(X1 + Y1, . . . , Xn + Yn) + χ(Ym+1, . . . , Ym+n) ≥ χ(X1 + Y1, . . . , Xm + Ym, Ym+1, . . . , Ym+n)

But from the above proposition, we have

χ(X1 + Y1, . . . , Xm + Ym, Ym+1, . . . , Ym+n)− χ(Ym+1, . . . , Ym+n) =

χ(Y1, . . . , Ym, Ym+1, . . . , Ym+n)− χ(Ym+1, . . . , Ym+n)

And now from the mutual freeness of the Yi’s, we have simply the above expression is equal to∑
χ(Yi) = χ(Y1, . . . , Yn)

which concludes our result.
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These above results indicate to us that free entropy is a quantity that speaks more about the von
Neumann subalgebra generated by the set, and not plainly about the set itself. This agrees more
with the intuition of treating free entropy as a measure quantity. (Next when we define free entropy
dimension, it makes more sense to define such a quantity for an algebra, rather than a set of random
variables.)

3.5 Some remarks on free entropy
Here we do not discuss the “non-microstates free entropy” which is greatly discussed in Voiculescu’s
6th paper on Fisher’s Information [Voi98a]. This is a kind of infinitesimal free entropy derived from
a non commutative analogue of the fisher’s information measure. A very important open problem
in the literature now is to decide if microstates free entropy is equal to the non microstates free
entropy. In an important paper [BCG03] Biane, Capitaine and Guionnet prove that the microstates
free entropy is bounded from above by the non microstates free entropy. This in particular has
several consequences. Most importantly, upper bounds on the non microstates case (which are
usually more easy to find) can easily translate to the microstates case.

On another note, many have worked on tweaking the definitions of the above microstates free
entropy, which already seems too “magical”, in the sense that everything seems to work despite
having to go through such a complicated construction. Yoann Dabrowski has recently posted a pa-
per on arxiv [Dab16] starting a program to prove that one can replace the limsup with liminf in the
definition of free entropy. He has not completely proved it but has settled a few cases. Belinschi
and Berkovici showed in 2003 [BB03] that one can stop worrying about bounding the operator
norm in the definition, i.e, the quantity χ∞ defined exactly like χ, except ignoring the bound R on
the operator norm of the matrices, is equal to the quantity χ.

4 Free Entropy Dimension (Caution: Some edits pending in
this section

Voiculescu in [Voi94] introduces free entropy dimension as a coarser measure of the information
content of an n-tuple of self adjoint random variables. The real reason for defining this quantity was
to draw a parallel between the relationship of Lebesgue measure (vol) with the Minkowski dimen-
sion. The Minkowski dimension of a subset of Rn reveals the so called “intrinsic” dimension of the
subset, and therefore, an analogous quantity defined on an n-tuple of self adjoint random variables
could perhaps shed light on the von Neumann algebra they generate, in particular, the potential of
it to be a free group factor on m-generates. It is many people’s hopes and dreams that this ana-
logue (free entropy dimension) would be a von Neumann algebra invariant, i.e, if X1, . . . , Xn and
Y1, . . . , Yn generate the same von Neumann algebra, then their free entropy dimensions align. This
statement, if it were true, would actually resolve the free group factor isomorphism problem, as we
shall see. But it turns out this is a farfetched dream. In this section, it is shown that free entropy
dimension is an algebra invariant. It is also shown that it is a noncommutative “smooth” functional
calculus invariant. The notion of smoothness is defined and described, and the noncommutative
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power series we defined in the earlier section satisfies this criterion. However, it is possible to
improve the result with slightly better algebras. In fact, in a later work of Kenley Jung [Jun02b],
it is shown that it is in fact an invariant if the von Neumann algebra generated is hyperfinite. The
techniques used in Jung’s work will be discussed in this section as they are extremely useful in
matters related to the microstates approach. Unfortunately, the general von Neumann algebra case
is hopeless, even the C∗ algebra case for that matter.

4.1 Motivation for defining Free Entropy Dimension
We studied the motivation for defining free entropy, very well. It was a kind of “lebesgue measure”
quantity, precisely the limiting logarithm of the lebesgue measure of a subset of Rn. Therefore,
the focus is really on the “microstate space” of the operator, and free entropy gives us a measure of
such a space. Ideally, the driving goal of free probability is arguably to learn more about the oper-
ator itself from it’s distribution, and in particular in our case the microstate space. To just throw an
example where the importance of this is seen, consider the Connes’ embedding problem. It asks
whether every type II1 factor on a separable Hilbert space can be embedded into the ultrapower
of the hyperfinite type II1 factor by a free ultrafilter. This problem can be resolved if one settles
the following problem. Suppose X1, . . . , Xn are self adjoint random variables in (R, τ) where R
is the hyperfinite II1 factor, can χ(X1, . . . , Xn) > −∞ (obviously we want n ≥ 2, else we can
just take an atomic distribution). For results about the relation of this problem to other questions
in operator algebra and Banach space theory, see [Kir93]. There has been a lot of progress in the
area of Connes’ embedding, but the main problem remains far from solved.

Voiculescu saw potential in the notion of Minkowski dimension which is a kind of fractal dimen-
sion, to produce a new quantity of use in free probability. 1 Before defining Minkowski dimension,
consider the following example. Say 0 ≤ d ≤ n and E is a bounded subset of a d-dimensional
subspace of Rn. For instance let E = Bd(0, 1)×{0}n−d, where Bd(0, 1) is the d-dimensional unit
ball. Define Eδ to be the δ neighborhood of E, i,e,

⋃
x∈E B(x, δ). From the triangle inequality, one

has
Bd(0, 1)×Bn−d(0, δ) ⊆ Eδ ⊆ Bd(0, 2)×Bn−d(0, δ)

for all 0 ≤ δ ≤ 1, with the appropriate identifications in Rn. From this and the formula for
n-dimensional volume of the unit ball, we have the existence of constants c, C such that

cδn−d ≤ voln(Eδ) ≤ Cδn−d

In particular, taking logarithms,

lim
δ→0

log(voln(Eδ))

log(δ)
= n− d

1The material about Minkowski dimension is along the lines of Terry Tao’s blog
post on Hausdorff dimension https://terrytao.wordpress.com/2009/05/19/
245c-notes-5-hausdorff-dimension-optional/. The reader is advised to read it for a complete
understanding of the topic
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written in a better way,

lim
δ→0

n− log(voln(Eδ))

log(δ)
= d

This rather trivial exercise actually motivates us to define the following quantity:

Definition 4.1 (Minkowski dimension). Define the upper Minkowski dimension to be

dim(E) = lim sup
δ→0

n− log(voln(Eδ))

log(δ)

Define the lower Minkowski dimension to be

dim(E) = lim inf
δ→0

n− log(voln(Eδ))

log(δ)

and if dim(E) = dim(E), say the setE has Minkowski dimension dim(E) = dim(E) = dim(E).

Observe that in line with the initial example discussed, Minkowski dimension in Rn reveals the
“intrinsic” dimension of the R-vector space the set is living in. To shed more light on this, we now
provide some very illuminating examples.

Example 2. As a singularity, we see directly from applying the formula that dim(∅) = −∞.

Example 3. The unit ball in Rn has full Minkowski dimension. A collection of discrete points in
Rn have null Minkowski dimension. We’ve also seen how subsets can have integral Minkowski
dimension between 0 and n (as an exercise, one can prove that the Minkowski dimension of
a nonempty subset has to be between this interval). Now, the question is about non integral
Minkowski dimension. Let C be the cantor set whose elements are of the form

∑∞
i=1 ai4

−i where
ai ∈ {0, 3}. Then, the Minkowski dimension of this set is 1/2.

Example 4. It is easy to see that any bounded setE ⊂ Rn with dim(E) < n has lebesgue measure
(in Rn) 0. In other words, every positive measured set has full Minkowski dimension. But it is not
true that a null lebesgue measured set does not have full Minkowski dimension. We would like
the reader to remember this example, as it would provide a very useful analogy. It is also a good
exercise to prove the above two claims.

Example 5. This example provides a more concrete picture of a non integral Minkowski dimension
set. Consider the topologists’ sine curve, i.e, f(x) = sin(1/x). The graph of this function (a
bounded segment of it including the unit square centered at the origin) has Minkowski dimension
3/2.

Example 6 (Problem). Let P be a polynomial in n variables, and let A be a ‘nice’ (?) bounded
subset of the algebraic variety of this polynomial (the set of roots in Rn). Then, the Minkowski
dimension of A is at most n− 1.
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Now, we do not get deeper into the study of Minkowski dimension, which involves studying Haus-
dorff measures and so on, although a deeper understanding of Minkowski dimension is sure to
provide more insight on free entropy dimension. For our purposes, it is quite sufficient to be well
aware of the above material. After Voiculescu provided his free entropy dimension, Jung found
a more cleaner way to re derive it, and we shall be discussing this point of view too, mainly be-
cause of the great utility it has found in modern research in the area. Jung used some alternative
formulations of Minkowski dimension as his foundation.

Definition 4.2. Packing numbers:

• N ext
δ (E): The minimum number of δ balls with centers in Rn that cover the set E.

• N int
δ (E): The minimum number of δ balls with centers in E that cover E.

• Nnet
δ (E): (also called δ-metric entropy) cardinality of the largest δ net in E. (δ net just

means a collection of sets each of whose diameter is less than δ).

• Npack
δ (E): The largest number of δ balls that are disjoint, with centers in E.

On first observation, one can easily see that these are closely related to each other and to the
volume, voln(Eδ).

The following lemma precisely relates these quantities.

Lemma 4.3. For any bounded set E ⊆ Rn and any δ > 0,

Nnet
2δ = Npack

δ ≤ voln(Eδ)

voln(Bn(0, δ))
≤ 2nN ext

δ

and
N ext
δ ≤ N int

δ ≤ Nnet
δ

The proof of this result is not tedious, but simply a routine application of triangle inequality. Con-
sequently (from the above lemma), we have

dim(E) = lim sup
δ→0

log(N∗δ (E))

log(1/δ)

where ∗ is any of ext, int, net, pack. This alternative formula for Minkowski dimension is of a very
different flavor. It involves more of a discrete/counting approach, rather than a geometric volume
based approach. Some situations can benefit with the usage of the original definition, while some
other can benefit with this alternative “packing” definition.

Remark 1. We want to remark here that the logarithm of the packing and covering numbers are
sometimes referred to as entropy numbers, and are somewhat analogues to the concepts of thermo-
dynamic entropy and information theoretic entropy, in that they measure the amount of disorder in
the metric space or fractal at scale ε, and also measure how many bits or digits one would need to
specify a point of the space to accuracy ε.
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Remark 2. The first construction of Minkowski dimension we have seen involves the usage of
notions of volume, which do not necessarily generalize to arbitrary metric spaces. However, the
intrinsic notion of a Minkowski dimension does indeed generalize to the arbitrary metric space,
and one can use the second approach we have provided to make sense of this, as there is no usage
of volumes and measures.

4.2 Definition
The first definition (presented in [Voi94]) is the one we will primarily use in this paper. It is based
on the first kind of Minkowski dimension we saw, using ε-neighborhood volumes. We instead
compute the entropy of a small perturbation of the operator by a ε scaled semicircular.

Definition 4.4. Let X1, . . . , Xn be self adjoint random variables in (M, τ). The free entropy di-
mension is defined by

δ(X1, . . . , Xn) = n+ lim sup
ε→0

χ(X1 + εS1, . . . , Xn + εSn)∣∣log(ε)
∣∣

where {S1, . . . , Sn} is a semicircular family and the algebras generated by {X1, . . . Xn} and
{S1, . . . , Sn} are free.

One sees immediately:

Remark 3. The above definition is well defined. In other words, it is independent of the particular
choice of S1, . . . , Sn

Proof. This is true because the free entropy only cares about the distribution, and since the S ′is are
free, the distribution is given by the additive convolution.

Subadditivity of δ is also immediate from the subadditivity of χ. Now we look at the alternate
definition of Jung [Jun02a] using the packing formulation of Minkowski dimension. We will need
to set up some notation to define a suitable packing number. Instead of the notation we have used
let us instead say Kε(X, d) be the covering number (which we called N ext

δ ) and Pε(X, d) be the
packing number (which we calledNpack

δ ). Here we are working on (X, d), any metric space. In our
situation, say (M, τ) is a non commutative probability space, (Msa

k )n is the space of n-tuples of self
adjoint k × k matrices with trk is the normalized trace state. We have a metric ρk on X = (Msa

k )n

induced by the normalized Hilbert Schmidt norm, ‖.‖2
k1/2

. We shall be using our packing numbers on
this metric space (X, ρk).

Definition 4.5. For any k,m ∈ N, R, γ, ε > 0, define

Pε,R(a1, . . . , an;m, k, γ) = Pε(ΓR(a1, . . . , an;m, k, ε), ρk)

Pε,R(a1, . . . , an;m, γ) = lim sup
k→∞

1

k2
log(Pε,R(a1, . . . , an;m, k, γ))

Pε,R(a1, . . . , an) = inf
m∈N,γ>0

{Pε,R(a1, . . . , an;m, γ)}

Pε(a1, . . . , an) = sup
R>0
{Pε,R(a1, . . . , an)}
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Similarly define Kε(a1, . . . , an) replacing the packing number by the covering number.

Proposition 4.6. If h1, . . . hn is a set of free semicirculars, freely independent from a1, . . . , an, then

δ(a1, . . . , an) = n+ lim sup
ε→0

χ(a1 + εh1, . . . , an + εhn)∣∣log(ε)
∣∣ = lim sup

ε→0

Kε(a1, . . . , an)

log(ε)

= lim sup
ε→0

Pε(a1, . . . , an)∣∣log(ε)
∣∣

From the inequality
Pε(X, d) ≥ K2ε(X, d) ≥ P4ε(X, d)

it suffices to just prove the last equality. Now, in [Voi98b] Voiculescu provides a strengthened
asymptotic freeness result which is an improvement of what we saw in section 2. Using this, Jung
derives the left hand side inequality by finding bounds on the volume of the microstate space. The
other direction is a rather easy argument. See [Jun02a] for a detailed proof.

Kenley Jung remarks in the end of his paper that in the case of freeness or in the case of a sin-
gle random variable, the ε neighborhood definition is more convenient, while on the other hand the
packing formulation is more fruitful when providing formulas for generators of M when M has a
simple algebraic decomposition into a tensor product of a von Neumann algebra N with the k × k
matrices or into a direct sum of algebras.

4.3 Computing Free Entropy Dimension
We have built some intuitive reasons as to why free entropy dimension should be an important
quantity. Here we provide a formula for the free entropy dimension of one variable, and notice
several consequences of this formula.

4.3.1 Formula for δ(X)

Theorem 4.7. Let X be a self adjoint random variable in (M, tau) and let µ be the spectral
distribution of X . Then,

δ(X) = 1−
∑
t∈R

(µ({t}))2

Proof. This is quite a long proof. The goal of this proof would be to evaluate a certain integral.
We already know the formula of free entropy, so we basically need to evaluate:

lim
ε→0

χ(X + εS)∣∣log(ε)
∣∣ =

´
log|s− t|dµε(s)dµε(t) + 3

4
+ log(2π)

2∣∣log(ε)
∣∣ =

´
log|s− t|dµε(s)dµε(t)∣∣log(ε)

∣∣
where S is a semicircular free fromX , and µε is the spectral distribution of the perturbationX+εS.
First of all, if the distribution of such a perturbation has any atoms, then we run into a problem.
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But the beauty of these small perturbations is the fact that the distribution is indeed absolutely
continuous with respect to the lebesgue measure and its density νε is in Lp (1 ≤ p ≤ ∞) and

‖νε‖ ≤ ε−1+1/pC

for a constant C independent of p and ε. The above is a consequence of a proposition (Prop 4.7)
in Voiculescu’s previous paper [Voi93]. Now, the above integral is problematic at the diagonal (on
R2), which is the behavior we are mainly interested in, therefore we make a small change that we
hope shouldn’t affect our computation. We have

0 ≤
ˆ ˆ

νε(s)νε(t)log|s− t+ i4ε|dsdt−
ˆ ˆ

νε(s)νε(t)log|s− t|dsdt

=

ˆ ˆ
νε(s)νε(t)log

∣∣∣∣1 + i
4ε

s− t

∣∣∣∣
We show below that the above integral is bounded, thereby providing a valid alternative for our
computation, as we wanted. Let a > 0 be a constant such that a > 4(‖X‖ + ‖S‖), and thus
satisfying supp(µε) ⊂ [−a/4, a/4] for 0 ≤ ε ≤ 1 (from the spectral theorem). Define the function

gε(x) := log
∣∣1 + iεx−1

∣∣
for −a ≤ x ≤ a. Then, from a basic computation, we know that gε ∈ Lp(−a, a) for 1 ≤ p < ∞
and

‖gε‖p ≤ Cε1/p

Let

hε(s) =

ˆ
log

∣∣∣∣1 + i
4ε

s− t

∣∣∣∣νε(t)dt
From the previous estimates, we have a constant K such that

‖hε‖∞ ≤ ‖νε‖2‖g4ε‖2 ≤ K

Hence, we have
ˆ ˆ

νε(s)νε(t)log

∣∣∣∣1 + i
4ε

s− t

∣∣∣∣dsdt ≤ ‖νε‖1‖hε‖∞ ≤ K

so that

lim
ε→0

∣∣´ ´ log|s− t+ 14ε|dµε(s)dµε(t)−
´ ´

log|s− t|dµε(s)dµε(t)
∣∣∣∣log(ε)

∣∣ = 0

Hence it will suffice to prove that

lim
ε→0

´ ´
log|s− t+ i4ε|dµε(s)dµε(t)∣∣log(ε)

∣∣ = −
∑
t∈R

(µ({t}))2

From this point on, we will need a crucial observation. After the observation, we will split our
domain of the integral (R2) into two parts which are each easy to compute.
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From the Courant minimax principle which gives the eigenvalues of a symmetric matrix, we see
that upon normalizing S so that ‖S‖ = 1,

τ(E(X + εS; (−∞, b− ε))) ≤ τ(E(X; (−∞, b))) ≤ τ(E(X + εS; (−∞, b+ ε)))

Hence
µε(−∞, b− ε) ≤ µ(−∞, b) ≤ µε(−∞, b+ ε)

More generally, we have that if b1 ≤ b2,

µε([b1, b2]) ≤ µ([b1 − ε, b2 + ε])

µ([b1, b2]) ≤ µε([b1 − ε, b2 + ε])

We now look at the region of R3 given by |s− t| > εδ for some 0 < δ < 1 and 0 < ε < 1. Here,∣∣∣´ ´|s−t|>εδ log|s− t+ i4ε|dµε(s)µε(t)
∣∣∣∣∣log(ε)

∣∣ ≤ log(1 + a+ 4ε)∣∣log(ε)
∣∣ + δ

therefore we get the bound

lim sup
ε→0

∣∣∣´ ´|s−t|>εδ log|s− t+ i4ε|dµε(s)dµε(t)
∣∣∣∣∣log(ε)

∣∣ ≤ δ

We now have a clue that the diagonal is the part of the integral that matters. Denote by ∆(a, b)
the set {(s, t) ∈ R2 : a ≤ |s− t| ≤ b} and by ∆ denote the diagonal of R2. Observe that
(µ⊗µ)(∆(0, r)) ↓ (µ⊗µ)(∆) if r ↓ 0 and hence if 0 < r1 < r2 and r2 ↓ 0, then from the previous
computation,

(µ⊗ µ)(∆(r1, r2)) ↓ 0

We now try to compute what happens on the diagonal.

µε ⊗ µε(∆(0, r)) ≤ (µ⊗ µε)

⋃
n∈Z

[(n− 1)ε− r, (n+ 2)ε+ r)× [nε, (n+ 1)ε)



≤ (µ⊗ µε)(∆(0, r + ε)) ≤ (µ⊗ µ)

⋃
n∈Z

[nε, (n+ 1)ε)× [(n− 2)ε− r, (n+ 3ε+ r))


≤ (µ⊗ µ)(∆(0, r + 2ε))

Applying similar steps using the inequalities (we found from applying minimax principles), we
have

(µ⊗ µ)(∆(0, r)) ≤ (µε ⊗ µε)(∆(0, r + 2ε))
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In particular this implies that if 2ε < r1(ε) < r2(ε) and r2 ↓ 0, then (µε⊗ µε)(∆(r1(ε), r2(ε))) ↓ 0.
Also from the sandwiching µ⊗ µ(∆(0, r)) we observed earlier,

(µε ⊗ µε)(∆(0, r(ε))) ↓ (µ⊗ µ)(∆)

Now, we get down to evaluating the interval. On ∆(4ε, εδ), we have∣∣log|s− t+ i4ε|
∣∣ ≤ ∣∣log(ε)

∣∣
and on ∆(0, 4ε) we have log|s− t+ i4ε| ∈ [log(4ε), log(8ε)], and hence

log|s− t+ i4ε|∣∣log(ε)
∣∣ ∈

[
−1,−1 +

log(8)∣∣log(ε)
∣∣
]
→ε→0 {−1}

Now evaluating the integral,

lim
ε→0

ˆ ˆ
∆(0,4ε)

log|s− t+ i4ε|dµε(s)dµε(t) = − lim
ε→0

(µε ⊗ µε)(∆(0, 4ε)) = −(µ⊗ µ)(∆)

Thus, we have shown that

lim sup
ε→0

∣∣∣∣∣∣log(ε)
∣∣−1
ˆ ˆ

log|s− t+ i4ε|dµε(s)dµε(t) + (µ⊗ µ)(∆)

∣∣∣∣ ≤ δ

and since δ was arbitrary, we have that

δ(X) = 1− µ⊗ µ(∆) = −
∑
r∈R

(µ({t})2

Hence proved.

4.3.2 For multiple variables

Just like in the situation of free entropy, one cannot provide a direct formula for the free entropy
dimension of an n− tuple of operators, unless of course in special case. This is partly because of
the dependance of free entropy dimension on the actual free entropy and the lack of such formulae
therein. Here, we prove some inequalities under less general circumstances.

Proposition 4.8. Let (X1, . . . , Xn) be a free family of self adjoint random variables in (M, τ) and
let µj be the distribution of Xj . Then

δ(X1, . . . , Xn) = δ(X1) + . . .+ δ(Xn)

Proof. Firstly, let a, b, c, d be random variables such that a and b are freely independent, and c and
d are freely independent, then, a + c and b + d are freely independent. Hence, from the definition
4.4, we directly have the result.

One also has the general inequality that works (whose equality is satisfied precisely when the
variables are free).

Proposition 4.9. For X1, X2, . . . , Xn as usual, we have

δ(X1, . . . , Xn) ≤
n∑
i=1

δ(Xi)

Proof. This is straightforward from the subadditivity of free entropy.
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4.3.3 Significance and relevance of this quantity

Suppose a non commutative random variable X in (M, τ) has no atoms, i.e, it is diffuse, then
through a functional transformation, one can obtain the semicircular distribution, and therefore the
von Neumann algebra generated by X will be isomorphic to the free group factor. The isomor-
phism W ∗(s) ∼= LF1 = L(Z) follows from the fact that the pontryagin dual of Z is indeed T
which is isomorphic as measure space to the spectrum of the semicircular operator, [0, 1]. There-
fore, the absence of atoms is precisely the necessary and sufficient condition for an operator to
generate a free group factor. This absence of atoms is particularly characterized, as we have seen,
by possessing full free entropy dimension. In a more appetizing language, we can now say in the
one variable case, that the free entropy dimension gives us a free-group factoresque dimension of
the von Neumann algebra generated by X . Ofcourse, we will be discussing this in more rigorous
terms in the next section.

It is important to discuss the relationship between free entropy and free entropy dimension. Re-
call that we had stated that the Minkowski dimension of a subset of Rn is less than n only if the
lebesgue measure of that subset is 0. An analogous statement can be said in the free case. The free
entropy dimension of an n-tuple of operators is less than n only if the free entropy of the n-tuple is
−∞ (not 0 as in the other case, because we consider a log of the lebesgue measure). Indeed, one
has χ(X1, . . . , Xn) > −∞ implies the absence of atoms in the distributions of each Xi. But more
generally, one has

lim sup
ε→0

χ(X1 + εS1, . . . , Xn + εSn)∣∣log(ε)
∣∣ = 0

since the numerator is bounded. Thus, full free entropy dimension is attained. Other similar ana-
logues can be stated and proved in a similar manner.

Lastly note that free entropy dimension is a positive quantity, simply because the measures we
are dealing with are probability measures, so the sum of the squares of the atomic masses cannot
be greater than 1.

4.4 The free group factor problem

4.4.1 Revisiting free group factors

In 2.3.6, we defined the group von Neumann algebras. In the special case of Γ = Fn free group
on n generators we have the free group factors (an exercise is to check why these are factors. In
general, any group with infinitely long conjugacy classes will yield a factor). When n = 1, it is easy
to identify what the von Neumann algebra is. It has to be abelian first of all, so that tells us that it is
an L∞ space. Consider L(Z) = L(F1). For the action of L(Z) on l2(Z), δ0 is a cyclic vector. Let x
be the unitary operator corresponding to 1 ∈ Z. Recall that Z and T are Pontryagin duals to each
other via the map Z×T 3 (n, ζ) 7→ ζn. Using this duality, define a unitary U : l2(Z)→ L2(T,m)
(where m is the normalized lebesgue measure), such that [U(ξ)](ζ) =

∑
n∈Z ξ(n)ζn. One can

easily check that UxU∗ = f where f on L∞(T) is the identity function f(ξ) = ξ. Note that a
net (fα) ⊂ L∞(X,µ) converges in the weak∗ topology if and only if the multiplication operators
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(mfα) ⊂ B(L2(X,µ)) converges in the WOT. Using this fact, and the density of polynomials, we
can conclude

UL(Z)U∗ = UC〈x〉WOTU
∗ = UC〈x〉U∗WOT = C〈f〉WOT = C〈f〉wk∗ = L∞(T,m)

This gives us L(Z) ∼= L∞(T,m).

Now, we’d like to know more about the case when n > 2. It is here that we define the notion
of a free product. It will require some work to define this, because we want important properties
like those around Proposition 2.5.3, to hold. Now, the notion of free product of von Neumann alge-
bras existed long ago, as one can see in the paper [Chi73]. But there has been much development
in notation and technology since the introduction of the study of free group factors by Voiculescu.
We present here a relatively modern construction, as given in [PAD10].

Let M1 and M2 be two tracial von Neumann algebras (the reader is advised to think of group
von Neumann algebras, in particular the free group von Neumann algebras). Set for i = 1, 2,
Hi = L2(Mi, τi), the GNS constructions with respect to φ, and ξi = 1̂Mi

. First we construct a
free product on the level of Hilbert spaces, so that we can represent Mi on that. Denote by H◦i the
orthogonal complement of Cξi in Hi. The Hilbert space free product (H1, ξ1) ∗ (H2, ξ2) is (H, ξ)
given by the direct Hilbertian sum:

H = Cξ ⊕
⊕
n≥1

 ⊕
i1 6=i2 6=... 6=in

H◦i1 ⊗ . . .⊗H
◦
in


where ξ is a unit vector. We set

Hl(i) = Cξ ⊕
⊕
n≥1

 ⊕
i1 6=i2 6=... 6=in,i1 6=i

H◦i1 ⊗ . . .⊗H
◦
in


Now define the unitary operator Vi : Hi ⊗Hl(i)→ H as follows:

ξi ⊗ ξ 7→ ξ

ξi ⊗ η 7→ η, ∀η ∈ H◦i1 . . .⊗H
◦
in , i1 6= i

η ⊗ ξ 7→ η, ∀η ∈ H◦i
η ⊗ η′ 7→ η ⊗ η′, ∀η ∈ H◦i , η′ ∈ H◦i1 ⊗ . . .⊗H

◦
in , i1 6= i

Similarly, set
Hr(i) = Cξ ⊕

⊕
n≥1

⊕
i1 6=i2 6=... 6=in,in 6=i

H◦i1 ⊗ . . .⊗H
◦
in

and define the corresponding unitary operator Wi : Hr(i) ⊗ Hi → H. Now finally, we are ready
to faithfully represent Mi onH, by the following:

∀x ∈Mi, λi(x) = Vi(x⊗ IdHl(i))V
∗
i
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We now call
(M1, τ1) ∗ (M2, τ2) := ((λ1(M1) ∪ λ2(M2))′′, ωξ)

where ωξ is the vector state associated to ξ. The same construction can be generalized for an arbi-
trary free product of tracial von Neumann algebras.

Free group factors were studied for many reasons. They were viewed as exotic creatures before
Voiculescu’s seminal work. There are a couple of problems that people were interested in greatly,
in the operator algebras.

Example 7 (Free group factor isomorphism). For n 6= m, is L(Fn) not isomorphic to L(Fm)?

Remark 4. Note that this problem is easy at the level of groups. The non isomorphism is guar-
anteed because of different abelianizations. At the level of C∗ algebras, the non isomorphism is
also achieved, and this is a highly non trivial work due to Voiculescu and Pimnser, and involves
computation of K-theory of these free group factors.

Example 8 (Absence of Cartan Subalgebras). Does there exist a seperable II − 1 factor which
does not have a Cartan subalgebra?

Remark 5. A Cartan subalgebra is a MASA whose normalizer generates the whole von Neumann
algebra. The diagonal algebra in the matrix algebras is a good example to consider. In fact, this is
a very central example, because it was proven by Feldman and Moore that a II − 1 factor contains
a Cartan subalgebra if and only if it arises from a measurable ergodic equivalence relation. Refer
[FM77]

Example 9 (Prime II − 1 factors). Are the free group factors prime?

Remark 6. Primeness is an essential property. A II − 1 factor is prime if it cannot be expressed
as a W ∗ tensor product of infinite dimensional von Neumann algebras.

These problems (except the first one) were knocked out by Voiculescu with the introduction of free
entropy dimension.

4.4.2 Generating a free group factor

We already saw that δ(s) = 1 for a semicircular. Also,W ∗(s) ∼= L(F1), so it is a natural question to
wonder if free entropy dimension is the quantity that could possibly determine the rank of the free
group factor that the set generates. In essence, we wonder if the free entropy dimension captures
the “degree of freeness” of the variables.

Proposition 4.10. Let Xj , 1 ≤ j ≤ n be self adjoint random variables in (M, τ). Then one has
δ(X1, . . . , Xn) ≤ n. If moreover, Xj ∈ M1, 1 ≤ j < n where M1 is a unital sub von Neumann
algebra of M , that is isomorphic to a free group factor, then δ(X1, . . . , Xn) ≥ 0.
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Proof. The first claim of the proposition is obvious because of the fact that the sum of squares of
the atoms is a positive number. Secondly, we simply apply the proposition 3.26 to our definition,
and get

χ(X1 + εS1, . . . , Xn + εSn) ≥ χ(εS1, . . . , εSn) =

−n
∣∣log(ε)

∣∣+ χ(S1, . . . , Sn)

From just plugging this into the definition and recognizing that the free entropy of a bunch of
semicirculars is positive, one has the result.

Now, we would like to recall a fact that we have already discussed, which is an immediate corollary
to the above lemmas.

Corollary 4.11. If δ(X1, . . . , Xn) = n then Ker(Xj − tId) = 0, in particular, each Xj has an
atomless distribution.

In fact, if one starts with Xi freely independent, with free entropy greater than −∞, one has
that δ(X1, . . . , Xn) = δ(X1) + . . . + δ(Xn) = n. More generally, we have W ∗(X1, . . . , Xn) =
W ∗(X1) ∗ . . . ∗W ∗(Xn) ∼= W ∗(s1) ∗ . . . ∗W ∗(sn) ∼= L(Fn) where si are free semicirculars.

It is a very important open problem whetherW ∗(X1, . . . , Xn) ∼= L(Fδ(X1,...,Xn)). Well, this doesn’t
make sense if the free entropy dimension is not an integer. Questions of these nature motivated
Ken Dykema (and independently, Florin Radulescu in [Rad94]) to define interpolated free group
factors in [Dyk94]. The interpolated free group factors L(Ft) precisely are “free group factors of
non integer rank” in the sense that the following properties are satisfied:

1. L(Ft) ∼= L(Fn) for t = n and n ∈ N.

2. L(Fr1) ∗ L(Fr2) = L(Fr1+r2)

3. L(Fr)γ = L

F(
1+ r−1

γ2

)


where for a II1 factor M , Mγ means the algebra defined as follows: for 0 < γ ≤ 1, Mγ = pMp
where p is a self adjoint projection of trace γ. Upon viewing the definition of these interpolated
free group factors, Voiculescu observed the following immediate corollary:

Corollary 4.12. If X1, . . . , Xn generate a II1 factor and are free then

W ∗(X1, . . . , Xn) ∼= L(Fδ(X1,...,Xn))

At first sight, this seems like a good generalization of the observation we made earlier. But what
will be an incredible result is one that somehow relaxes the freeness condition. From our change
of variables formulae, we find that free entropy dimension is an algebra invariant. In other words,
if two sets of random variables generate the same algebra, then their free entropy dimension is the
same. In our effort to try to expand this invariant, we need to record this basic result about the
impact of adding random variables from the generated von Neumann algebra on free entropy.
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Proposition 4.13. Let (X1, . . . , Xn) be a free family of self adjoint random variables in (M, τ)
and assume χ(X1, . . . , Xn) > −∞ and Y1, . . . , Ym ∈ W ∗(X1, . . . , Xn). Then

n = δ(X1, . . . , Xn) ≤ δ(X1, . . . , Xn, Y1, . . . , Ym)

Proof. Let (S1, . . . Sm+n) be a free semicircular family in (M, τ) which is free from (X1, . . . , Xn).
Now, let us try and compute the right hand side, in particular:

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1, . . . , Ym + εSn+m)

we know that this will be greater than when we condition with the free semicirculars S1, . . . , Sn
(see proposition 3.11) .

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1, . . . , Ym + εSn+m) ≤

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1, . . . , Ym + εSn+m|S1, . . . , Sn)

From proposition 3.25, one has

= χ(X1, . . . , Xn, Y1 + εSn+1, . . . , Ym + εSn+m|S1, . . . , Sn)

and since Yi ∈ W ∗(X1, . . . , Xn), we again have

= χ(X1, . . . , Xn, εSn+1, . . . , εSn+m|S1, . . . , Xn)

Now applying the formula for condition entropy, we have

= χ(X1, . . . , Xn, εS1, . . . , εSn)− χ(S1, . . . , Sn)

using additivity of free entropy, we have

4.4.3 An important smoothness condition

It turns out that for considering a transformation of X1, X2, . . . , Xn to get Y1, . . . , Ym, in order
to tame the free entropy dimension, we require this following crucial smoothness condition, that
seems to be unfortunately quite necessary for our purposes (as we shall see later).

Proposition 4.14. Let X1, . . . , Xn, Y1, . . . , Ym be self adjoint random variables in (M, τ) such
that Yj ∈ W ∗(X1, . . . , Xn). Let (S1, . . . , Sn) be a semicircular family in (M, τ) free with respect
to (X1, . . . , Xn) and let

d2(Yj;X1, . . . , Xn)(ε) = inf{
∥∥Yj − T∥∥2

, T ∈ W ∗(X1 + εS1, . . . , Xn + εSn)}

We assume that d2(Yj;X1, . . . , Xn)(ε) = O(εs) for all 0 < s < 1 and 1 ≤ j ≤ m. Then we have

δ(X1, . . . , Xn, Y1, . . . , Ym) ≤ δ(X1, . . . , Xn)
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Proof. Let us without loss of generality, consider an extended semicircular family S1, . . . , Sn+m

free from X1, . . . , Xn. We have from proposition 3.25

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1, . . . , Ym + εSn+m)

= χ(X1 + εS1, . . . , Xn + εSn, Y1 − T1 + εSn+1, . . . , Ym − Tm + εSn+m)

where Tj is the conditional expectation of Yj onto the subspaceW ∗(X1+εS1, . . . , Xn+εSn). Now,
we use subadditivity to remove out the Xi’s, and remove a factor of εs by adding the Jacobian cost
(of this trivial transformation):

≤ χ(X1 + εS1, . . . , Xn + εSn)

+χ(ε−s(Y1 − T1) + ε1−sSn+1, . . . , ε
−s(Ym − Tm) + ε1−sSn+m) +mlog(εs) (2)

Now, since d2(Yj;X1, . . . , Xn)(ε) = O(εs), for s strictly less than 1, we have Yj − Tj is strictly
2-norm bounded by a factor of εs, so the free entropy of the perturbation of Si by these Yj − Tj
will have bounded free entropy independent of ε. Indeed,

V ar2 = τ

 m∑
j=1

(ε−s(Yj − Tj) + ε1−sSj+m)2

 =
m∑
j=1

τ(ε−s(Yj − Tj) + ε1−sSj+m)2

=
m∑
j=1

∥∥(ε−s(Yj − Tj) + ε1−sSj+m)
∥∥2

2
≤

m∑
j=1

(
ε−s
∥∥(Yj − Tj)

∥∥
2

+ ε1−s
∥∥Sj+m∥∥2

)2

≤
m∑
j=1

(
ε−sεsO(1) +

∥∥Sj+m∥∥2

)2

= O(1)

Now, it follows from this that expression (2) is

≤ χ(X1 + εS1, . . . , Xn + εSn) +K +mslog(ε)

dividing by
∣∣log(ε)

∣∣, taking limsup and adding n to the LHS and m+ (n−m) to the RHS, we get
the result:

δ(X1, . . . , Xn, Y1, . . . , Ym) ≤ δ(X1, . . . , Xn) +m(1− s)
Letting s be arbitrarily close to 1, we have the result we seek.

Observe that this result gives the reverse inequality of Proposition 4.13. In particular, we can get
closer to some kind of invariant result for free entropy dimension, provided we have this notion
of smoothness d2(Yj : X1, . . . , Xn)(ε) is O(1). This smoothness condition we have described
is a kind of Holder condition, and it is immediate that this smoothness holds in the case of non
commutative polynomials. We can now employ this weapon in the context of non commutative
power series transformations, if we can verify that it is smooth in the above spirit. But by no means
is this non commutative power series the most general situation we can hope for. But unfortunately,
getting to L∞ functional transformations (the best situation one can hope for) is not possible.
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4.4.4 Smoothness of non commutative power series transformations

Let us set up our construction. Let t1, . . . , tn be non commuting indeterminates and let

F (t1, . . . , tn) =
∞∑
k=0

∑
1≤i1...ik≤n

Ci1...ikti1,...ik

be a non commutative power series. Let Rj ≥ 0 (1 ≤ j ≤ n) be real numbers. We recall that
(R1, . . . , Rn) is a multi radius of convergence if

∞∑
k=0

∑
1≤i1...ik≤n

∣∣Ci1...ik∣∣Ri1 . . . Rik <∞

Proposition 4.15. Let X1, . . . , Xn, Y be non-commutative random variables in (M, τ) and as-
sume that there is a non-commutative power series F such that (R1, . . . , Rn) is a multi radius of
convergence for some Rj >

∥∥Xj

∥∥ and F (X1, . . . , Xn) = Y . If T1, . . . , Tn are non-commutative
random variables in (M, τ) and

φ(ε) = inf{‖Y − T‖ : T ∈ C∗(X1 + εT1, . . . , Xn + εTn)}

Then, φ(ε) = O(ε)

Proof. First remark that this result will be particularly useful because, φ(ε) = O(ε) implies that
d2(Y ;X1, . . . , Xn)(ε) = O(εs) for all 0 < s < 1. Indeed, ‖Y − T‖2 ≤ ‖Y − T‖, and the C∗

algebra generated is norm dense in the W ∗ algebra generated.

Now, we have from the analyticity of the transformation, we have F defines an analytic function

Φ :
n∏
j=1

{Z ∈M, ‖Z‖ < Rj} →M

given by Φ(Z1, . . . , Zn) = F (Z1, . . . , Zn). Then, we have

G(ε) = Φ(X1 + εT1, . . . , Xn + εTn)− Φ(X1, . . . , Xn)

defines an analytic function on ε in some neighborhood of 0 ∈ C. If one is familiar with analytic
functions around 0, it is easy to see that

∥∥G(ε)
∥∥ = O(‖ε‖) as ε→ 0. And also,

∥∥G(ε)
∥∥ ≥ φ(ε) by

construction. Hence we have the result.

4.4.5 Free entropy dimension as a ‘smooth’ algebra invariant

Corollary 4.16. Let (X1, . . . , Xn) be a free family of self adjoint random variables in (M, τ) such
that χ(Xj) > −∞, (1 ≤ j ≤ n). Let Yk = Y ∗k = Fk(X1, . . . , Xn), (1 ≤ k ≤ n) where the Fk’s
are non commutative power series for which there is a multi radius of convergence (R1, . . . , Rn)
such that

∥∥Xj

∥∥ < Rj (1 ≤ j ≤ n). Then

n = δ(X1, . . . , Xn) = δ(X1, . . . , Xn, Y1, . . . , Ym)
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Proof. From Proposition 4.15, one has that the hypothesis of 4.14 is satisfied. But also observe
that the hypothesis of 4.13 is also satisfied independently. Thus, from 4.14 and 4.13, one has the
desired equality.

Finally, we have the main result:

Corollary 4.17. (Voiculescu ’94) Let X1, . . . , Xn, Y1, . . . , Ym be self adjoint random variables
in (M, τ) such that W ∗(X1, . . . , Xn) = W ∗(Y1, . . . , Ym). Assume that Yk = Fk(X1, . . . , Xn)
where the Fk’s are non commutative power series with (‖X‖+ ε, . . . , ‖Xn‖+ ε) a multi radius of
convergence for some ε > 0. Assume also that (Y1, . . . , Ym) is a free family and χ(Yj) > −∞ for
all j. Then δ(X1, . . . , Xn) ≥ m and in particular, n ≥ m.

Proof. We know that δ(X1, . . . , Xn, Y1, . . . , Ym) ≥ δ(Y1, . . . , Ym), and we also know that by free
additivity δ(Y1, . . . , Ym) = m. However, by 4.14, we also have

δ(X1, . . . , Xn) ≥ δ(X1, . . . , Xn, Y1, . . . , Ym)

From the definition we also have that n ≥ δ(X1, . . . , Xn). Combining these, we have n ≥ m.

In particular, one has, suppose L(Fn) ∼= L(Fm) (without loss of generality, n ≤ m), then consider-
ing X1, . . . , Xn to be a free semicircular family generating L(Fn), and suppose there is Y1, . . . , Ym
which are a ‘nice’ smooth function of the Xi’s, and are free and generate L(Fm), then one has
n = m. Note that by replacing the ‘smooth’ with L∞, we solve the free group factor isomorphism
problem. Indeed, since Xi’s and Yj’s generate the same von Neumann algebras, one can guarantee
to get the Yj’s by an L∞ map of the Xi’s.

It is important to point here the following remark, which could attempt to salvage this approach.

Remark 7. If δ satisfies the following semicontinuity property: if X(p)
j strongly converges to Xj

as p→∞ for 1 ≤ j ≤ n in (M, τ) then

lim inf
p→∞

δ(X
(p)
1 , . . . , , X(p)

n ) ≥ δ(X1, . . . , Xn)

then it would follow that one can remove the assumption d2(Yj, X1, . . . , Xn)(ε) = O(ε) can be
removed from the proposition 4.15. This is extremely strong as it would further imply that one can
just use Yk ∈ W ∗(X1, . . . , Xn) and therefore imply the non isomorphism of the free group factors.
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