Graph Theory II

Nashville Math Club

October 20, 2020
The seven bridges of Konigsberg
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?
The handshake lemma

Lemma

The sum of the degrees of all the vertices in a graph is equal to two times the number of edges in the graph.
The handshake lemma

Lemma

The sum of the degrees of all the vertices in a graph is equal to two times the number of edges in the graph.

This means there must always be an even number of odd vertices!
The handshake lemma

Lemma

The sum of the degrees of all the vertices in a graph is equal to two times the number of edges in the graph.

This means there must always be an even number of odd vertices!

Example
The handshake lemma

Lemma

The sum of the degrees of all the vertices in a graph is equal to two times the number of edges in the graph.

This means there must always be an even number of odd vertices!

Example

\[5 + 3 + 3 + 3 = 14 = 2 \times 7.\]
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?

Each landmass is a vertex and each bridge is an edge.
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?

Each landmass is a vertex and each bridge is an edge. Notice that whenever one enters a vertex by an edge they must leave the vertex by a different edge.
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?

Each landmass is a vertex and each bridge is an edge. Notice that whenever one enters a vertex by an edge they must leave the vertex by a different edge. Therefore, each vertex (except for the starting and finishing ones) must have an even degree.
The seven bridges of Konigsberg

Question

Can we walk through all seven bridges of Konigsberg exactly once?

Each landmass is a vertex and each bridge is an edge. Notice that whenever one enters a vertex by an edge they must leave the vertex by a different edge. Therefore, each vertex (except for the starting and finishing ones) must have an even degree. The walk is only possible if exactly zero or two vertices have odd degree.
Euler paths and circuits

Definition

- An **Euler path** in a graph or multigraph is a path which uses each edge exactly once.
Euler paths and circuits

Definition

- An **Euler path** in a graph or multigraph is a path which uses each edge exactly once.
- An **Euler circuit** is an Euler path which starts and stops at the same vertex.
Euler paths and circuits

Question

Which of these graphs have Euler paths or circuits?

Is there a connection between the degrees of each vertex and your answer above?

How would you draw a graph that's guaranteed to have an Euler circuit?
Euler paths and circuits

Which of these graphs have Euler paths or circuits?

Is there a connection between the degrees of each vertex and your answer above?

How would you draw a graph that's guaranteed to have an Euler circuit?
Graph Theory II

Euler paths and circuits

Question

- Which of these graphs have Euler paths or circuits?
- Is there a connection between the degrees of each vertex and your answer above?
Euler paths and circuits

Question

- Which of these graphs have Euler paths or circuits?
- Is there a connection between the degrees of each vertex and your answer above?
- How would you draw a graph that’s guaranteed to have an Euler circuit?
Euler paths and circuits

Theorem

- A connected graph has an Euler circuit if and only if the degree of each vertex is even.
Euler paths and circuits

Theorem

- A connected graph has an Euler circuit if and only if the degree of each vertex is even.
- A connected graph has an Euler path if and only if there are at most two vertices with odd degree.
Suppose instead of traveling on each bridge in Konigsberg you wanted instead to travel to each landmass exactly once.
Suppose instead of traveling on each bridge in Konigsberg you wanted instead to travel to each landmass exactly once.

Definition

- A **Hamilton path** is a path which visits each vertex of a graph exactly once.
Suppose instead of traveling on each bridge in Konigsberg you wanted instead to travel to each landmass exactly once.

Definition

- A **Hamilton path** is a path which visits each vertex of a graph exactly once.
- A **Hamilton cycle** is a Hamilton path which starts and stops at the same vertex.
Question: Is there a Hamilton path for Königsberg?

Question: How can we determine if there is a Hamilton path for a general graph G?
Hamilton paths

Question

Is there a Hamilton path for Konigsberg?
Hamilton paths

Question
Is there a Hamilton path for Konigsberg?

Question
How can we determine if there is a Hamilton path for a general graph G?
Recall K_n is the graph with n vertices where each pair of distinct vertices is connected by a unique edge.
Recall K_n is the graph with n vertices where each pair of distinct vertices is connected by a unique edge.

For which n does K_n have an Euler path? An Euler circuit? For which n does K_n have a Hamilton path? A Hamilton cycle?
Recall K_n is the graph with n vertices where each pair of distinct vertices is connected by a unique edge.

Question

For which n does K_n have an Euler path? An Euler circuit?
Recall K_n is the graph with n vertices where each pair of distinct vertices is connected by a unique edge.

Question

- For which n does K_n have an Euler path? An Euler circuit?
- For which n does K_n have a Hamilton path? A Hamilton cycle?
Planar graphs and platonic solids

Recall that a graph is **planar** if its edges only intersect at vertices and is **connected** if there is a path from each vertex to every other vertex.
Planar graphs and platonic solids

Recall that a graph is **planar** if its edges only intersect at vertices and is **connected** if there is a path from each vertex to every other vertex.
Planar graphs and platonic solids

Recall that a graph is **planar** if its edges only intersect at vertices and is **connected** if there is a path from each vertex to every other vertex.

Let \(v \) be the number of vertices, \(e \) the number of edges, and \(f \) the number of faces or regions.
Planar graphs and platonic solids

Draw several planar connected graphs and compute v, e, and f for each of them.

Definition: The Euler Characteristic χ is defined by $\chi := v - e + f$.
Planar graphs and platonic solids

Draw several planar connected graphs and compute v, e, and f for each of them.
Do you notice any patterns?
Planar graphs and platonic solids

Draw several planar connected graphs and compute v, e, and f for each of them. Do you notice any patterns?

Definition

The **Euler Characteristic** χ is defined by

$$\chi := v - e + f.$$
Planar graphs and platonic solids

Draw several planar connected graphs and compute v, e, and f for each of them.
Do you notice any patterns?

Definition

The **Euler Characteristic** χ is defined by

$$\chi := v - e + f.$$

Question

What is the Euler characteristic of the graphs you drew?
Planar graphs and platonic solids

Recall a tree is a graph with no cycles.
Recall a tree is a graph with no cycles.

Question

What is the Euler characteristic of a tree?
Recall a **tree** is a graph with no cycles.

Question

What is the Euler characteristic of a tree?

Notice that all trees have $\nu = e + 1$.
Recall a **tree** is a graph with no cycles.

Question

What is the Euler characteristic of a tree?

Notice that all trees have $v = e + 1$.
What is f for a tree?
Recall a tree is a graph with no cycles.

Question

What is the Euler characteristic of a tree?

Notice that all trees have $v = e + 1$.
What is f for a tree? $f = 1$ for all trees.
Recall a tree is a graph with no cycles.

Question

What is the Euler characteristic of a tree?

Notice that all trees have $v = e + 1$. What is f for a tree? $f = 1$ for all trees. Therefore all trees have Euler characteristic

$$
\chi = v - e + f = 2.
$$
Theorem

The Euler characteristic of every planar connected graph is 2.
Theorem

The Euler characteristic of every planar connected graph is 2.

Proof

If you have a connected planar graph that isn’t a tree, remove an edge that completes a cycle.
Planar graphs and platonic solids

Theorem

The Euler characteristic of every planar connected graph is 2.

Proof

- If you have a connected planar graph that isn’t a tree, remove an edge that completes a cycle.
- What does this do to the Euler characteristic?
Theorem

The Euler characteristic of every planar connected graph is 2.

Proof

- If you have a connected planar graph that isn’t a tree, remove an edge that completes a cycle.
- What does this do to the Euler characteristic?
- We can do this until we are left with a tree.
Planar graphs and platonic solids

Theorem

The Euler characteristic of every planar connected graph is 2.

Proof

- If you have a connected planar graph that isn’t a tree, remove an edge that completes a cycle.
- What does this do to the Euler characteristic?
- We can do this until we are left with a tree.
- Therefore the Euler characteristic of all connected planar graphs is 2.
Planar graphs and platonic solids

Each platonic solid has a corresponding planar connected graph.
Planar graphs and platonic solids

Each platonic solid has a corresponding planar connected graph
Planar graphs and platonic solids
Planar graphs and platonic solids

Each platonic solid has a corresponding planar connected graph.
Graph colorings

Mapmakers want to color this map, but want each adjacent region to have a different color. How many colors are needed?
Mapmakers want to color this map, but want each adjacent region to have a different color.
Mapmakers want to color this map, but want each adjacent region to have a different color. How many colors are needed?
Graph Theory II

Graph colorings

Definition

- Given a graph G, a coloring of the vertices is called a **vertex coloring**
Graph colorings

Definition

- Given a graph G, a coloring of the vertices is called a **vertex coloring**.
- If all adjacent vertices are colored differently, the coloring is called **proper**.
Graph colorings

Definition

- Given a graph G, a coloring of the vertices is called a **vertex coloring**.
- If all adjacent vertices are colored differently, the coloring is called **proper**.

Question

Does every graph have a proper coloring?
Graph colorings

Definition
- Given a graph G, a coloring of the vertices is called a **vertex coloring**
- If all adjacent vertices are colored differently, the coloring is called **proper**.

Question

Does every graph have a proper coloring?

Definition

The smallest number of colors needed to get a proper vertex coloring is called the **chromatic number** of the graph.
Question

- What are the chromatic numbers of each of these graphs?
Graph Theory II

Graph colorings

Question

- What are the chromatic numbers of each of these graphs?
- For each positive integer \(n \), is there a graph with chromatic number equal to \(n \)?
Graph colorings

Question

- What are the chromatic numbers of each of these graphs?
- For each positive integer n, is there a graph with chromatic number equal to n?
- What is the chromatic number of a tree?
If we represent each region by a vertex and adjacent regions are connected by an edge, what properties does our graph have?
Graph colorings

If we represent each region by a vertex and adjacent regions are connected by an edge what properties does our graph have?
Graph colorings

Theorem (The four color theorem)

If G is a planar graph, then its chromatic number is less than or equal to 4.
Theorem (The four color theorem)

If G *is a planar graph, then its chromatic number is less than or equal to* 4.

Therefore every map can be colored with 4 or less colors!
Question

What is the smallest number of colors that can be used to color the vertices of a cube so that no adjacent vertices have the same color?