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Squares of integers

How many numbers are perfect squares?

Question J

@ Of course, there are infinitely many: 1,4,9,16,25,36,....
Question J

But how common are they?

@ Look at the whole numbers from 1 to X. about v/ X of them
are perfect squares.

@ So about g = ﬁ are.

@ So up to a million, about 0.1% are, up to a trillion, about 1 in
a million are. So 0% of numbers are perfect squares.
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squares.

@ 20 is a sum of two squares as 20 = 22442, So is 16 = 4% 4 0°.

Which numbers from 1 to 10 are sums of two squares?

Question J

01=124022=124+123,4=224+0%2,5=224+12 4, 7,
8=224+22 9=32402% 10 = 32+ 12
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@ The question gets more interesting if we ask about sums of
squares.

@ 20 is a sum of two squares as 20 = 22442, So is 16 = 4% 4 0°.

Which numbers from 1 to 10 are sums of two squares?

Question J

01=124022=124+123,4=224+0%2,5=224+12 4, 7,
8=1224+229=3240% 10 = 3%+ 12
@ So 70% of them are.
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@ The question gets more interesting if we ask about sums of
squares.

@ 20 is a sum of two squares as 20 = 22442, So is 16 = 4% 4 0°.

Which numbers from 1 to 10 are sums of two squares?

Question J

01=124+022=12+12 3, 4=224+0%5=22+126,7,
8=22+22,0=32+0%10=3%+12

@ So 70% of them are. What is special about the numbers
3,6,77 How can you test?
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Sums of squares

Basic Facts

@ Look at the first squares 1,4,9,16,25, ... and divide by 4 with
remainder. What do you notice?

o If we look modulo 4, the remainders are 1,0,1,0,1,.... So
squares look like they're 0 or 1 mod 4. Can you explain this?

@ Explanation: Every number is even or odd. So its of the form
x=2norx=2n+1.

o Now (2n)2 = 4n? is a multiple of 4, and
(2n+1)? = 4(n? + n) + 1 is a multiple of 4 plus 1.

e What about a sum of two squares? (0 or 1) plus (0 or 1)
equals 0,1, 2.

@ So a number that's 4n + 3 (its 3 mod 4) can never be a sum
of two squares.

@ This explains 3 and 7. What about 67 The answer has to do
with prime factorizations.
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A Crazy Formula

@ A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta—Fibonacci identity)
We have

(a® + b?)(c* + d?) = (ac — bd)? + (ad + bc)?.

@ lts just algebra! But its the first hint of a long story... and new
identities have been made famous by Fields Medalist Manjul
Bhargava. Its even related to black holes!

o Example: 8 =22+22 10=3%2+12, so
80 = (6 —2)2 + (2 +6)? = 16 + 64 is a sum of two squares.

@ Natural first step: which prime numbers are (1 + 7
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The key result

e Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem) }

A prime p > 2 is a sum of two squares if and only if p is 1 mod 4.

e p=2=12+ 12 all other primes are 1 or 3 mod 4.
@ If something is 3 mod 4, then its not a sum of two squares.
@ So we just have to show primes of the form 4n+ 1 are.

@ Any ideas about how to do this?
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@ Shockingly short (but not easy!) proof:

A One-Sentence Proof That Every Prime p =1 (mod 4)
Is a2 Sum of Two Squares

D. ZAGIER
Department of Mathematics, University of Maryland, College Park, MD 20742
The involution on the finite set S = {(x,y,z) € N*:x2 + 4yz = p} defined by
(x+2z,z,y-x—2z) ifx<y—-z
(x,9,2) » {2y —x,y,x—y+z) ify—z<x<2y
(x—2y,x—y+z,p) ifx>2y

has exactly one fixed point, so |S|is odd and the involution defined by (x, y,z) —
(x,z,y) also has a fixed point. O
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World record

@ Shockingly short (but not easy!) proof:

A One-Sentence Proof That Every Prime p =1 (mod 4)
Is a2 Sum of Two Squares

D. ZAGIER
Department of Mathematics, University of Maryland, College Park, MD 20742
The involution on the finite set S = {(x,y,z) € N*:x2 + 4yz = p} defined by
(x+2z,z,y-x—2z) ifx<y—-z
(x,9,2) » {2y —x,y,x—y+z) ify—z<x<2y
(x—2y,x—y+z,p) ifx>2y

has exactly one fixed point, so |S|is odd and the involution defined by (x, y,z) —
(x,z,y) also has a fixed point. O

o We will try to discover our own proof.



Sums of squares

Moving to algebra

@ Mantra: Always use algebra when you can.



Sums of squares

Moving to algebra

@ Mantra: Always use algebra when you can.

o We want to solve n = x? + y2.



Sums of squares

Moving to algebra

@ Mantra: Always use algebra when you can.
o We want to solve n = x? + y2.

@ Main algebra trick: Factor!



Sums of squares

Moving to algebra

@ Mantra: Always use algebra when you can.
o We want to solve n = x? + y2.
@ Main algebra trick: Factor!

o If instead we wanted to study differences of two squares, we'd
have n = x?> — y2 = (x + y)(x — y).



Sums of squares

Moving to algebra

Mantra: Always use algebra when you can.
We want to solve n = x? + y2.
Main algebra trick: Factor!

If instead we wanted to study differences of two squares, we'd
have n = x2 — y2 = (x + y)(x — y).

For example, any odd number 2n + 1 is a difference of two
squares.



Sums of squares

Moving to algebra

Mantra: Always use algebra when you can.
We want to solve n = x? + y2.
Main algebra trick: Factor!

If instead we wanted to study differences of two squares, we'd
have n = x2 — y2 = (x + y)(x — y).

For example, any odd number 2n + 1 is a difference of two
squares. Solve x+y=2n+1, x—y=1toget x=n+1,
y=n.



Sums of squares

Moving to algebra

Mantra: Always use algebra when you can.

We want to solve n = x? + y2.

Main algebra trick: Factor!

If instead we wanted to study differences of two squares, we'd
have n = x2 — y2 = (x + y)(x — y).

For example, any odd number 2n + 1 is a difference of two
squares. Solve x+y=2n+1, x—y=1toget x=n+1,
y=n. Thus, 2n+1=(x+y)(x—y)=(n+1)? — n?
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Moving to algebra

Mantra: Always use algebra when you can.

We want to solve n = x? + y2.

Main algebra trick: Factor!

If instead we wanted to study differences of two squares, we'd
have n = x2 — y2 = (x + y)(x — y).

For example, any odd number 2n + 1 is a difference of two
squares. Solve x+y=2n+1, x—y=1toget x=n+1,
y=n. Thus, 2n+1=(x+y)(x—y)=(n+1)? — n?

This doesn’t seem to work for us. We need a bigger number
system.
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Complex Numbers

@ You may have seen the imaginary unit i defined by i = —1.

@ This allows us to solve quadratic equations. But we can say
something much better:

@ A complex number is a number x + jy where x, y are real
numbers.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial factors into degree one factors if you allow
complex numbers.

@ This is completely crazy! You throw in one extra number to
solve quadratic equations, and suddenly you can solve
polynomials of any degree.

@ Really great article giving pictures to explain this: “The
Fundamental Theorem of Algebra for Artists".
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Sums of squares

Practicing with complex numbers

@ Try computing some complex numbers yourself! Do the
following:

e Compute (3 + 5/) — (7 — 2i). Answer: Add real and
imaginary parts: (3—7)+ (5+2)i=—4+7i.

e What is (3 + 5/)(7 — 2i)? Answer: Expand out
(3+5i)(7—2i) = 21+35i—6i—10i2 = (21+10)+29i = 31+29i.

o What about i3? Answer: 3 =i%.i= —i.

o What is %7 Answer: Trick: Multiply top and bottom by the
conjugate 7 + 2/ to get a difference of squares

34+5i  (3+5i)(7+2i) 21+35i+6i+10i% 11+41i
720 (7—2i)(7+2i) 49 — 42 - 53

_n
~ 53 53"
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Complex numbers for our problem
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For us: p = (x? + y?) factors as p = (x + iy)(x — iy).

For example: 5 =22 412 = (2+i)(2 —i).

Prime numbers are numbers that can't be split up into

products of smaller numbers (except for 1 and p).

What we are asking: Do primes split up or not over the set of

Gaussian integers Z[i] = {x + iy ‘x,y are integers}.

@ These form a lattice: they are the points (x, y) with whole
number coordinates: (note: the point 3 4 i should say 2 + /)
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Properties of Z[i]

e Gaussian integers have a lot of similar properties to the
number system of ordinary integers Z.
@ You can add, subtract, and multiply, them.

@ There are prime numbers here. What should a prime be? p
in Z is prime if p = ab with a, b in Z means a or b is £1.

@ What is special about 17 Answer: They are the only integers
a with 1/a still an integer; you can solve ab =1 in Z. These
are called units.

e What are the units in Z[i]?
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Sums of squares

A special function

@ The size of an integer is |a|. If you multiply integers together,
they usually get bigger (except when you multiply by 0 or £1).

@ The units are exactly the integers with |a| = 1.

@ The norm of a Gaussian integer is
N(a+ bi) = (a+ bi)(a — bi) = a®> + b%. So
N(2+i)=22+1%2=5.

e Why is this useful? Its multiplicative: N(xy) = N(x)N(y).
Check this in the next few minutes.

@ Ok, let's check: Its the secret behind our strange identity!
N((a+ bi)(c+ di)) = N((ac — bd) + (ad + bc)i)

= (ac — bd)? + (ad + bc)?
= a°c?+a°d*+b>*+b>d? = (a®+b%)(c?+d?) = N(a+bi)N(c+di).
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@ Since we can divide with complex numbers, we are asking: for
which x is there a y with xy = 1. Thus, N(x)N(y) = 1.

@ But the only units in Z are £1! So we have to have N(x) = 1.
What numbers satisfy this?

o If > + b> =1, we have a, b are 0, £1. Only possibilities:
+1,+i. That's it!

@ These are the Gaussian integers on the unit circle (note: the
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@ We can finally define primes. A prime Gaussian integer is a
number x such that if x = ab, then one of a or b is £1, 4.

Theorem (Fundamental Theorem of Arithmetic)
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Sums of squares

Primes in Z[/]

@ We can finally define primes. A prime Gaussian integer is a
number x such that if x = ab, then one of a or b is £1, 4.

Theorem (Fundamental Theorem of Arithmetic) J

Every Gaussian integer factors uniquely as a product of primes.

@ The main reason: You can do long division: Given a, b, solve
a = bg+ r with 0 < N(r) < N(b). Why: solve § =g+
with N(3) < 1.

@ But lattice you are always at distance less than 1 from a lattice
point! Maximal distance is diagonal of square: v/2/2 < 1.

@ This is extremely speciall For example,
6=2-3=(14+-5)(1 —+/—5) means that the theorem is
false for Z[v/=5] = {a+ bv/=5 | a,b € Z}.
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Final basic facts

Theorem (Wilson's Theorem)
If p is a prime integer, then (p — 1)! = —1 (mod p). J
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Lemma (Lagrange)
If p is prime of the form 4n+ 1, then —1 = m? (mod p) for an m. J

—1=12! = (1-12)(2-11)(3:10)...(6-7) = (-1)%(6!)> = (6!)> (mod 13)
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Finally, our proof!

Claim: If p=1 (mod 4), then p = x> + y? is solvable.

Pick the m with p|(m? + 1) by Lagrange.

Factor m?> + 1= (m+i)(m —i).

As m/p=+i/pis not a Gaussian integer, p doesn't divide m+ i
orm—i.

So p divides a product of two numbers, but neither of those
two numbers by themselves! This implies that p is a Gaussian
prime (the same is true for integer primes).

Thus, p has a non-trivial factorization

p = (a+ bi)(c+di).

Take norms:

N(p) = p* = (a* + b?)(c* + d?).
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Wrapping up

@ Soa’+ b?>=p=c’+d?
o For example, 13|((6!)? + 1) = (720 + i)(720 — /).
o 13 splits up as 13 = (3 + 2/)(3 — 2i). So 132 =32 422,
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Any numbers

@ What about non-prime numbers? By combining what we
learned, you can show:

Theorem

An integer n > 1 is a sum of two squares if and only if the
exponents of any prime that's 3 (mod 4) in the prime factorization
of n is even (note: zero is an even number).

Example

5096 = 23 .13 - 72 is a sum of two squares (142 and 702), but
35672 = 2% - 13! - 7% is not.
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Sums of squares

Final thoughts

@ What about sums of three squares? Four squares? A famous
theorem of Lagrange says every number is a sum of 4 squares.

@ How many ways can you write a number as a sum of two
squares?

o How many primes of the form x? + ny? are there?

@ What other questions can you think of?



