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Sums of squares

Squares of integers

Question
How many numbers are perfect squares?

Of course, there are infinitely many: 1, 4, 9, 16, 25, 36, . . ..

Question
But how common are they?

Look at the whole numbers from 1 to X . about
√
X of them

are perfect squares.

So about
√
X
X = 1√

X
are.

So up to a million, about 0.1% are, up to a trillion, about 1 in
a million are. So 0% of numbers are perfect squares.
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Sums of squares

Sums of squares

The question gets more interesting if we ask about sums of
squares.

20 is a sum of two squares as 20 = 22 + 42. So is 16 = 42 + 02.

Question
Which numbers from 1 to 10 are sums of two squares?

1 = 12 + 02,2 = 12 + 12, �3, 4 = 22 + 02, 5 = 22 + 12, �6, �7,
8 = 22 + 22, 9 = 32 + 02, 10 = 32 + 12.
So 70% of them are. What is special about the numbers
3, 6, 7? How can you test?
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Sums of squares

Basic Facts

Look at the first squares 1, 4, 9, 16, 25, . . . and divide by 4 with
remainder. What do you notice?

If we look modulo 4, the remainders are 1, 0, 1, 0, 1, . . . . So
squares look like they’re 0 or 1 mod 4. Can you explain this?
Explanation: Every number is even or odd. So its of the form
x = 2n or x = 2n + 1.
Now (2n)2 = 4n2 is a multiple of 4, and
(2n + 1)2 = 4(n2 + n) + 1 is a multiple of 4 plus 1.
What about a sum of two squares? (0 or 1) plus (0 or 1)
equals 0, 1, 2.
So a number that’s 4n + 3 (its 3 mod 4) can never be a sum
of two squares.
This explains 3 and 7. What about 6? The answer has to do
with prime factorizations.
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Sums of squares

A Crazy Formula

A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta–Fibonacci identity)

We have

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

Its just algebra! But its the first hint of a long story... and new
identities have been made famous by Fields Medalist Manjul
Bhargava. Its even related to black holes!
Example: 8 = 22 + 22, 10 = 32 + 12, so
80 = (6− 2)2 + (2+ 6)2 = 16+ 64 is a sum of two squares.
Natural first step: which prime numbers are �+�?
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Sums of squares

The key result

Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat’s Two Squares Theorem)

A prime p > 2 is a sum of two squares if and only if p is 1 mod 4.

p = 2 = 12 + 12; all other primes are 1 or 3 mod 4.
If something is 3 mod 4, then its not a sum of two squares.
So we just have to show primes of the form 4n + 1 are.
Any ideas about how to do this?
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World record

Shockingly short (but not easy!) proof:

We will try to discover our own proof.
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Sums of squares

Moving to algebra

Mantra: Always use algebra when you can.

We want to solve n = x2 + y2.
Main algebra trick: Factor!
If instead we wanted to study differences of two squares, we’d
have n = x2 − y2 = (x + y)(x − y).
For example, any odd number 2n + 1 is a difference of two
squares. Solve x + y = 2n + 1, x − y = 1 to get x = n + 1,
y = n. Thus, 2n + 1 = (x + y)(x − y) = (n + 1)2 − n2.
This doesn’t seem to work for us. We need a bigger number
system.
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Sums of squares

Complex Numbers

You may have seen the imaginary unit i defined by i2 = −1.

This allows us to solve quadratic equations. But we can say
something much better:
A complex number is a number x + iy where x , y are real
numbers.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial factors into degree one factors if you allow
complex numbers.

This is completely crazy! You throw in one extra number to
solve quadratic equations, and suddenly you can solve
polynomials of any degree.
Really great article giving pictures to explain this: “The
Fundamental Theorem of Algebra for Artists”.
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Sums of squares

Practicing with complex numbers

Try computing some complex numbers yourself! Do the
following:

Compute (3+ 5i)− (7− 2i). Answer: Add real and
imaginary parts: (3− 7) + (5+ 2)i = −4+ 7i .
What is (3+ 5i)(7− 2i)? Answer: Expand out
(3+5i)(7−2i) = 21+35i−6i−10i2 = (21+10)+29i = 31+29i .
What about i3? Answer: i3 = i2 · i = −i .
What is 3+5i

7−2i ? Answer: Trick: Multiply top and bottom by the
conjugate 7+ 2i to get a difference of squares

3+ 5i
7− 2i

=
(3+ 5i)(7+ 2i)
(7− 2i)(7+ 2i)

=
21+ 35i + 6i + 10i2

49− 4i2
=

11+ 41i
53

=
11
53

+
41
53

i .
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Sums of squares

Complex numbers for our problem

For us: p = (x2 + y2) factors as p = (x + iy)(x − iy).

For example: 5 = 22 + 12 = (2+ i)(2− i).
Prime numbers are numbers that can’t be split up into
products of smaller numbers (except for 1 and p).
What we are asking: Do primes split up or not over the set of
Gaussian integers Z[i ] = {x + iy

∣∣x , y are integers}.
These form a lattice: they are the points (x , y) with whole
number coordinates: (note: the point 3+ i should say 2+ i)
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Sums of squares

Properties of Z[i ]

Gaussian integers have a lot of similar properties to the
number system of ordinary integers Z.

You can add, subtract, and multiply, them.
There are prime numbers here. What should a prime be? p
in Z is prime if p = ab with a, b in Z means a or b is ±1.
What is special about ±1? Answer: They are the only integers
a with 1/a still an integer; you can solve ab = 1 in Z. These
are called units.
What are the units in Z[i ]?
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Sums of squares

A special function

The size of an integer is |a|. If you multiply integers together,
they usually get bigger (except when you multiply by 0 or ±1).

The units are exactly the integers with |a| = 1.
The norm of a Gaussian integer is
N(a+ bi) = (a+ bi)(a− bi) = a2 + b2. So
N(2+ i) = 22 + 12 = 5.
Why is this useful? Its multiplicative: N(xy) = N(x)N(y).
Check this in the next few minutes.
Ok, let’s check: Its the secret behind our strange identity!

N((a+ bi)(c + di)) = N((ac − bd) + (ad + bc)i)

= (ac − bd)2 + (ad + bc)2

= a2c2+a2d2+b2c2+b2d2 = (a2+b2)(c2+d2) = N(a+bi)N(c+di).
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N(a+ bi) = (a+ bi)(a− bi) = a2 + b2. So
N(2+ i) = 22 + 12 = 5.

Why is this useful? Its multiplicative: N(xy) = N(x)N(y).
Check this in the next few minutes.
Ok, let’s check: Its the secret behind our strange identity!

N((a+ bi)(c + di)) = N((ac − bd) + (ad + bc)i)

= (ac − bd)2 + (ad + bc)2
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Sums of squares

Using norms to discover units

Since we can divide with complex numbers, we are asking: for
which x is there a y with xy = 1.

Thus, N(x)N(y) = 1.
But the only units in Z are ±1! So we have to have N(x) = 1.
What numbers satisfy this?
If a2 + b2 = 1, we have a, b are 0,±1. Only possibilities:
±1,±i . That’s it!
These are the Gaussian integers on the unit circle (note: the
point 3+ i should say 2+ i)
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Sums of squares

Primes in Z[i ]

We can finally define primes.

A prime Gaussian integer is a
number x such that if x = ab, then one of a or b is ±1,±i .

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

The main reason: You can do long division: Given a, b, solve
a = bq + r with 0 ≤ N(r) < N(b). Why: solve a

b = q + r
b

with N( rb ) < 1.
But lattice you are always at distance less than 1 from a lattice
point! Maximal distance is diagonal of square:

√
2/2 < 1.

This is extremely special! For example,
6 = 2 · 3 = (1+

√
−5)(1−

√
−5) means that the theorem is

false for Z[
√
−5] = {a+ b

√
−5

∣∣ a, b ∈ Z}.
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Sums of squares

Final basic facts

Theorem (Wilson’s Theorem)

If p is a prime integer, then (p − 1)! ≡ −1 (mod p).

Lemma (Lagrange)

If p is prime of the form 4n + 1, then −1 ≡ m2 (mod p) for an m.

−1 ≡ 12! ≡ (1·12)(2·11)(3·10) . . . (6·7) ≡ (−1)6(6!)2 ≡ (6!)2 (mod 13)
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Sums of squares

Finally, our proof!

Claim: If p ≡ 1 (mod 4), then p = x2 + y2 is solvable.

Pick the m with p|(m2 + 1) by Lagrange.
Factor m2 + 1 = (m + i)(m − i).
As m/p± i/p is not a Gaussian integer, p doesn’t divide m+ i
or m − i .
So p divides a product of two numbers, but neither of those
two numbers by themselves! This implies that p is a Gaussian
prime (the same is true for integer primes).
Thus, p has a non-trivial factorization

p = (a+ bi)(c + di).

Take norms:

N(p) = p2 = (a2 + b2)(c2 + d2).
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Sums of squares

Wrapping up

So a2 + b2 = p = c2 + d2!
For example, 13|((6!)2 + 1) = (720+ i)(720− i).
13 splits up as 13 = (3+ 2i)(3− 2i). So 132 = 32 + 22.
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Sums of squares

Any numbers

What about non-prime numbers?

By combining what we
learned, you can show:

Theorem
An integer n > 1 is a sum of two squares if and only if the
exponents of any prime that’s 3 (mod 4) in the prime factorization
of n is even (note: zero is an even number).

Example

5096 = 23 · 131 · 72 is a sum of two squares (142 and 702), but
35672 = 23 · 131 · 73 is not.
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Sums of squares

Final thoughts

What about sums of three squares? Four squares? A famous
theorem of Lagrange says every number is a sum of 4 squares.

How many ways can you write a number as a sum of two
squares?
How many primes of the form x2 + ny2 are there?

What other questions can you think of?
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