Sums of squares

Nashville Math Club

September 22, 2020

Squares of integers

Question
How many numbers are perfect squares?

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Question

But how common are they?

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Question

But how common are they?

- Look at the whole numbers from 1 to X. about \sqrt{X} of them are perfect squares.

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Question

But how common are they?

- Look at the whole numbers from 1 to X. about \sqrt{X} of them are perfect squares.
- So about $\frac{\sqrt{x}}{X}=\frac{1}{\sqrt{x}}$ are.

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Question

But how common are they?

- Look at the whole numbers from 1 to X. about \sqrt{X} of them are perfect squares.
- So about $\frac{\sqrt{x}}{X}=\frac{1}{\sqrt{x}}$ are.
- So up to a million, about 0.1% are, up to a trillion, about 1 in a million are.

Squares of integers

Question

How many numbers are perfect squares?

- Of course, there are infinitely many: $1,4,9,16,25,36, \ldots$.

Question

But how common are they?

- Look at the whole numbers from 1 to X. about \sqrt{X} of them are perfect squares.
- So about $\frac{\sqrt{x}}{X}=\frac{1}{\sqrt{x}}$ are.
- So up to a million, about 0.1% are, up to a trillion, about 1 in a million are. So 0% of numbers are perfect squares.

Sums of squares

- The question gets more interesting if we ask about sums of squares.

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$.

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \nRightarrow$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 2,4=2^{2}+0^{2}, 5=2^{2}+1^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not ด, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not \subset$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not \supset, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \varnothing, 7$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7,7$, $8=2^{2}+2^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7,7$, $8=2^{2}+2^{2}, 9=3^{2}+0^{2}$,

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 2,4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7,7$, $8=2^{2}+2^{2}, 9=3^{2}+0^{2}, 10=3^{2}+1^{2}$.

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7$, $8=2^{2}+2^{2}, 9=3^{2}+0^{2}, 10=3^{2}+1^{2}$.
- So 70% of them are.

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7$, $8=2^{2}+2^{2}, 9=3^{2}+0^{2}, 10=3^{2}+1^{2}$.
- So 70% of them are. What is special about the numbers $3,6,7$?

Sums of squares

- The question gets more interesting if we ask about sums of squares.
- 20 is a sum of two squares as $20=2^{2}+4^{2}$. So is $16=4^{2}+0^{2}$.

Question

Which numbers from 1 to 10 are sums of two squares?

- $1=1^{2}+0^{2}, 2=1^{2}+1^{2}, \not 又, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}, \not, 7$, $8=2^{2}+2^{2}, 9=3^{2}+0^{2}, 10=3^{2}+1^{2}$.
- So 70% of them are. What is special about the numbers $3,6,7$? How can you test?

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or $1 \bmod 4$.

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4 . Can you explain this?

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4 . Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4. Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.
- Now $(2 n)^{2}=4 n^{2}$ is a multiple of 4 , and $(2 n+1)^{2}=4\left(n^{2}+n\right)+1$ is a multiple of 4 plus 1 .

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4. Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.
- Now $(2 n)^{2}=4 n^{2}$ is a multiple of 4 , and $(2 n+1)^{2}=4\left(n^{2}+n\right)+1$ is a multiple of 4 plus 1 .
- What about a sum of two squares?

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4. Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.
- Now $(2 n)^{2}=4 n^{2}$ is a multiple of 4 , and $(2 n+1)^{2}=4\left(n^{2}+n\right)+1$ is a multiple of 4 plus 1 .
- What about a sum of two squares? (0 or 1) plus (0 or 1) equals $0,1,2$.

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4. Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.
- Now $(2 n)^{2}=4 n^{2}$ is a multiple of 4 , and $(2 n+1)^{2}=4\left(n^{2}+n\right)+1$ is a multiple of 4 plus 1 .
- What about a sum of two squares? (0 or 1) plus (0 or 1) equals $0,1,2$.
- So a number that's $4 n+3$ (its $3 \bmod 4$) can never be a sum of two squares.

Basic Facts

- Look at the first squares $1,4,9,16,25, \ldots$ and divide by 4 with remainder. What do you notice?
- If we look modulo 4 , the remainders are $1,0,1,0,1, \ldots$. So squares look like they're 0 or 1 mod 4. Can you explain this?
- Explanation: Every number is even or odd. So its of the form $x=2 n$ or $x=2 n+1$.
- Now $(2 n)^{2}=4 n^{2}$ is a multiple of 4 , and $(2 n+1)^{2}=4\left(n^{2}+n\right)+1$ is a multiple of 4 plus 1 .
- What about a sum of two squares? (0 or 1) plus (0 or 1) equals $0,1,2$.
- So a number that's $4 n+3$ (its $3 \bmod 4$) can never be a sum of two squares.
- This explains 3 and 7. What about 6? The answer has to do with prime factorizations.

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)
We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)
We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

- Its just algebra!

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)
We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

- Its just algebra! But its the first hint of a long story... and new identities have been made famous by Fields Medalist Manjul Bhargava.

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)
We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

- Its just algebra! But its the first hint of a long story... and new identities have been made famous by Fields Medalist Manjul Bhargava. Its even related to black holes!

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)

We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

- Its just algebra! But its the first hint of a long story... and new identities have been made famous by Fields Medalist Manjul Bhargava. Its even related to black holes!
- Example: $8=2^{2}+2^{2}, 10=3^{2}+1^{2}$, so $80=(6-2)^{2}+(2+6)^{2}=16+64$ is a sum of two squares.

A Crazy Formula

- A product of sums of two squares is a sum of two squares.

Fact (Brahmagupta-Fibonacci identity)

We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} .
$$

- Its just algebra! But its the first hint of a long story... and new identities have been made famous by Fields Medalist Manjul Bhargava. Its even related to black holes!
- Example: $8=2^{2}+2^{2}, 10=3^{2}+1^{2}$, so $80=(6-2)^{2}+(2+6)^{2}=16+64$ is a sum of two squares.
- Natural first step: which prime numbers are $\square+\square$?

The key result

- Fermat, the prince of amateur mathematicians, proved:

The key result

- Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem)
A prime $p>2$ is a sum of two squares if and only if p is $1 \bmod 4$.

The key result

- Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem)

A prime $p>2$ is a sum of two squares if and only if p is $1 \bmod 4$.

- $p=2=1^{2}+1^{2}$; all other primes are 1 or $3 \bmod 4$.

The key result

- Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem)
A prime $p>2$ is a sum of two squares if and only if p is $1 \bmod 4$.

- $p=2=1^{2}+1^{2}$; all other primes are 1 or $3 \bmod 4$.
- If something is $3 \bmod 4$, then its not a sum of two squares.

The key result

- Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem)
A prime $p>2$ is a sum of two squares if and only if p is $1 \bmod 4$.

- $p=2=1^{2}+1^{2}$; all other primes are 1 or $3 \bmod 4$.
- If something is $3 \bmod 4$, then its not a sum of two squares.
- So we just have to show primes of the form $4 n+1$ are.

The key result

- Fermat, the prince of amateur mathematicians, proved:

Theorem (Fermat's Two Squares Theorem)
A prime $p>2$ is a sum of two squares if and only if p is $1 \bmod 4$.

- $p=2=1^{2}+1^{2}$; all other primes are 1 or $3 \bmod 4$.
- If something is 3 mod 4 , then its not a sum of two squares.
- So we just have to show primes of the form $4 n+1$ are.
- Any ideas about how to do this?

World record

- Shockingly short (but not easy!) proof:

World record

- Shockingly short (but not easy!) proof:

A One-Sentence Proof That Every Prime $\boldsymbol{p} \equiv \mathbf{1}(\bmod 4)$ Is a Sum of Two Squares

D. ZAGIER
Department of Mathematics, University of Maryland, College Park, MD 20742

The involution on the finite set $S=\left\{(x, y, z) \in \mathbb{N}^{3}: x^{2}+4 y z=p\right\}$ defined by

$$
(x, y, z) \mapsto \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } x>2 y\end{cases}
$$

has exactly one fixed point, so $|S|$ is odd and the involution defined by $(x, y, z) \mapsto$ (x, z, y) also has a fixed point.

World record

- Shockingly short (but not easy!) proof:

A One-Sentence Proof That Every Prime $\boldsymbol{p} \equiv \mathbf{1}(\bmod 4)$ Is a Sum of Two Squares

D. ZAGIER
Department of Mathematics, University of Maryland, College Park, MD 20742

The involution on the finite set $S=\left\{(x, y, z) \in \mathbb{N}^{3}: x^{2}+4 y z=p\right\}$ defined by

$$
(x, y, z) \mapsto \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } x>2 y\end{cases}
$$

has exactly one fixed point, so $|S|$ is odd and the involution defined by $(x, y, z) \mapsto$ (x, z, y) also has a fixed point.

- We will try to discover our own proof.

Moving to algebra

- Mantra: Always use algebra when you can.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!
- If instead we wanted to study differences of two squares, we'd have $n=x^{2}-y^{2}=(x+y)(x-y)$.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!
- If instead we wanted to study differences of two squares, we'd have $n=x^{2}-y^{2}=(x+y)(x-y)$.
- For example, any odd number $2 n+1$ is a difference of two squares.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!
- If instead we wanted to study differences of two squares, we'd have $n=x^{2}-y^{2}=(x+y)(x-y)$.
- For example, any odd number $2 n+1$ is a difference of two squares. Solve $x+y=2 n+1, x-y=1$ to get $x=n+1$, $y=n$.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!
- If instead we wanted to study differences of two squares, we'd have $n=x^{2}-y^{2}=(x+y)(x-y)$.
- For example, any odd number $2 n+1$ is a difference of two squares. Solve $x+y=2 n+1, x-y=1$ to get $x=n+1$, $y=n$. Thus, $2 n+1=(x+y)(x-y)=(n+1)^{2}-n^{2}$.

Moving to algebra

- Mantra: Always use algebra when you can.
- We want to solve $n=x^{2}+y^{2}$.
- Main algebra trick: Factor!
- If instead we wanted to study differences of two squares, we'd have $n=x^{2}-y^{2}=(x+y)(x-y)$.
- For example, any odd number $2 n+1$ is a difference of two squares. Solve $x+y=2 n+1, x-y=1$ to get $x=n+1$, $y=n$. Thus, $2 n+1=(x+y)(x-y)=(n+1)^{2}-n^{2}$.
- This doesn't seem to work for us. We need a bigger number system.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations. But we can say something much better:

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations. But we can say something much better:
- A complex number is a number $x+i y$ where x, y are real numbers.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations. But we can say something much better:
- A complex number is a number $x+i y$ where x, y are real numbers.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial factors into degree one factors if you allow complex numbers.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations. But we can say something much better:
- A complex number is a number $x+i y$ where x, y are real numbers.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial factors into degree one factors if you allow complex numbers.

- This is completely crazy! You throw in one extra number to solve quadratic equations, and suddenly you can solve polynomials of any degree.

Complex Numbers

- You may have seen the imaginary unit i defined by $i^{2}=-1$.
- This allows us to solve quadratic equations. But we can say something much better:
- A complex number is a number $x+i y$ where x, y are real numbers.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial factors into degree one factors if you allow complex numbers.

- This is completely crazy! You throw in one extra number to solve quadratic equations, and suddenly you can solve polynomials of any degree.
- Really great article giving pictures to explain this: "The Fundamental Theorem of Algebra for Artists"'.

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$.

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$?

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.
- What about i^{3} ?

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.
- What about i^{3} ? Answer: $i^{3}=i^{2} \cdot i=-i$.

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.
- What about i^{3} ? Answer: $i^{3}=i^{2} \cdot i=-i$.
- What is $\frac{3+5 i}{7-2 i}$?

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.
- What about i^{3} ? Answer: $i^{3}=i^{2} \cdot i=-i$.
- What is $\frac{3+5 i}{7-2 i}$? Answer: Trick: Multiply top and bottom by the conjugate $7+2 i$ to get a difference of squares

Practicing with complex numbers

- Try computing some complex numbers yourself! Do the following:
- Compute $(3+5 i)-(7-2 i)$. Answer: Add real and imaginary parts: $(3-7)+(5+2) i=-4+7 i$.
- What is $(3+5 i)(7-2 i)$? Answer: Expand out $(3+5 i)(7-2 i)=21+35 i-6 i-10 i^{2}=(21+10)+29 i=31+29 i$.
- What about i^{3} ? Answer: $i^{3}=i^{2} \cdot i=-i$.
- What is $\frac{3+5 i}{7-2 i}$? Answer: Trick: Multiply top and bottom by the conjugate $7+2 i$ to get a difference of squares

$$
\frac{3+5 i}{7-2 i}=\frac{(3+5 i)(7+2 i)}{(7-2 i)(7+2 i)}=\frac{21+35 i+6 i+10 i^{2}}{49-4 i^{2}}=\frac{11+41 i}{53}
$$

$$
=\frac{11}{53}+\frac{41}{53} i .
$$

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.
- For example: $5=2^{2}+1^{2}=(2+i)(2-i)$.

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.
- For example: $5=2^{2}+1^{2}=(2+i)(2-i)$.
- Prime numbers are numbers that can't be split up into products of smaller numbers (except for 1 and p).

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.
- For example: $5=2^{2}+1^{2}=(2+i)(2-i)$.
- Prime numbers are numbers that can't be split up into products of smaller numbers (except for 1 and p).
- What we are asking: Do primes split up or not over the set of Gaussian integers $\mathbb{Z}[i]=\{x+i y \mid x, y$ are integers $\}$.

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.
- For example: $5=2^{2}+1^{2}=(2+i)(2-i)$.
- Prime numbers are numbers that can't be split up into products of smaller numbers (except for 1 and p).
- What we are asking: Do primes split up or not over the set of Gaussian integers $\mathbb{Z}[i]=\{x+i y \mid x, y$ are integers $\}$.
- These form a lattice: they are the points (x, y) with whole number coordinates: (note: the point $3+i$ should say $2+i$)

Complex numbers for our problem

- For us: $p=\left(x^{2}+y^{2}\right)$ factors as $p=(x+i y)(x-i y)$.
- For example: $5=2^{2}+1^{2}=(2+i)(2-i)$.
- Prime numbers are numbers that can't be split up into products of smaller numbers (except for 1 and p).
- What we are asking: Do primes split up or not over the set of Gaussian integers $\mathbb{Z}[i]=\{x+i y \mid x, y$ are integers $\}$.
- These form a lattice: they are the points (x, y) with whole number coordinates: (note: the point $3+i$ should say $2+i$)

```
Gaussian integers R[i]
```


Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be?

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be? p in \mathbb{Z} is prime if $p=a b$ with a, b in \mathbb{Z} means a or b is ± 1.

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be? p in \mathbb{Z} is prime if $p=a b$ with a, b in \mathbb{Z} means a or b is ± 1.
- What is special about ± 1 ?

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be? p in \mathbb{Z} is prime if $p=a b$ with a, b in \mathbb{Z} means a or b is ± 1.
- What is special about ± 1 ? Answer: They are the only integers a with $1 / a$ still an integer; you can solve $a b=1$ in \mathbb{Z}.

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be? p in \mathbb{Z} is prime if $p=a b$ with a, b in \mathbb{Z} means a or b is ± 1.
- What is special about ± 1 ? Answer: They are the only integers a with $1 / a$ still an integer; you can solve $a b=1$ in \mathbb{Z}. These are called units.

Properties of $\mathbb{Z}[i]$

- Gaussian integers have a lot of similar properties to the number system of ordinary integers \mathbb{Z}.
- You can add, subtract, and multiply, them.
- There are prime numbers here. What should a prime be? p in \mathbb{Z} is prime if $p=a b$ with a, b in \mathbb{Z} means a or b is ± 1.
- What is special about ± 1 ? Answer: They are the only integers a with $1 / a$ still an integer; you can solve $a b=1$ in \mathbb{Z}. These are called units.
- What are the units in $\mathbb{Z}[i]$?

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).
- The units are exactly the integers with $|a|=1$.

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).
- The units are exactly the integers with $|a|=1$.
- The norm of a Gaussian integer is

$$
N(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2} .
$$

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).
- The units are exactly the integers with $|a|=1$.
- The norm of a Gaussian integer is

$$
\begin{aligned}
& N(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2} \text {. So } \\
& N(2+i)=2^{2}+1^{2}=5 .
\end{aligned}
$$

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).
- The units are exactly the integers with $|a|=1$.
- The norm of a Gaussian integer is

$$
\begin{aligned}
& N(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2} . \text { So } \\
& N(2+i)=2^{2}+1^{2}=5 .
\end{aligned}
$$

- Why is this useful? Its multiplicative: $N(x y)=N(x) N(y)$. Check this in the next few minutes.

A special function

- The size of an integer is $|a|$. If you multiply integers together, they usually get bigger (except when you multiply by 0 or ± 1).
- The units are exactly the integers with $|a|=1$.
- The norm of a Gaussian integer is

$$
\begin{aligned}
& N(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2} \text {. So } \\
& N(2+i)=2^{2}+1^{2}=5 .
\end{aligned}
$$

- Why is this useful? Its multiplicative: $N(x y)=N(x) N(y)$. Check this in the next few minutes.
- Ok, let's check: Its the secret behind our strange identity!

$$
\begin{gathered}
N((a+b i)(c+d i))=N((a c-b d)+(a d+b c) i) \\
=(a c-b d)^{2}+(a d+b c)^{2} \\
=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=N(a+b i) N(c+d i)
\end{gathered}
$$

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$.

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 !

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$.

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$. What numbers satisfy this?

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$. What numbers satisfy this?
- If $a^{2}+b^{2}=1$, we have a, b are $0, \pm 1$.

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$. What numbers satisfy this?
- If $a^{2}+b^{2}=1$, we have a, b are $0, \pm 1$. Only possibilities: $\pm 1, \pm i$. That's it!

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$. What numbers satisfy this?
- If $a^{2}+b^{2}=1$, we have a, b are $0, \pm 1$. Only possibilities: $\pm 1, \pm i$. That's it!
- These are the Gaussian integers on the unit circle (note: the point $3+i$ should say $2+i$)

Using norms to discover units

- Since we can divide with complex numbers, we are asking: for which x is there a y with $x y=1$. Thus, $N(x) N(y)=1$.
- But the only units in \mathbb{Z} are ± 1 ! So we have to have $N(x)=1$. What numbers satisfy this?
- If $a^{2}+b^{2}=1$, we have a, b are $0, \pm 1$. Only possibilities: $\pm 1, \pm i$. That's it!
- These are the Gaussian integers on the unit circle (note: the point $3+i$ should say $2+i$)
Gaussian integer units

Primes in $\mathbb{Z}[i]$

- We can finally define primes.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

- The main reason: You can do long division: Given a, b, solve $a=b q+r$ with $0 \leq N(r)<N(b)$.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

- The main reason: You can do long division: Given a, b, solve $a=b q+r$ with $0 \leq N(r)<N(b)$. Why: solve $\frac{a}{b}=q+\frac{r}{b}$ with $N\left(\frac{r}{b}\right)<1$.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

- The main reason: You can do long division: Given a, b, solve $a=b q+r$ with $0 \leq N(r)<N(b)$. Why: solve $\frac{a}{b}=q+\frac{r}{b}$ with $N\left(\frac{r}{b}\right)<1$.
- But lattice you are always at distance less than 1 from a lattice point! Maximal distance is diagonal of square: $\sqrt{2} / 2<1$.

Primes in $\mathbb{Z}[i]$

- We can finally define primes. A prime Gaussian integer is a number x such that if $x=a b$, then one of a or b is $\pm 1, \pm i$.

Theorem (Fundamental Theorem of Arithmetic)

Every Gaussian integer factors uniquely as a product of primes.

- The main reason: You can do long division: Given a, b, solve $a=b q+r$ with $0 \leq N(r)<N(b)$. Why: solve $\frac{a}{b}=q+\frac{r}{b}$ with $N\left(\frac{r}{b}\right)<1$.
- But lattice you are always at distance less than 1 from a lattice point! Maximal distance is diagonal of square: $\sqrt{2} / 2<1$.
- This is extremely special! For example, $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ means that the theorem is false for $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$.

A picture of the Gaussian primes

Final basic facts

Theorem (Wilson's Theorem)
If p is a prime integer, then $(p-1)!\equiv-1(\bmod p)$.

Final basic facts

Theorem (Wilson's Theorem)
If p is a prime integer, then $(p-1)!\equiv-1(\bmod p)$.

Final basic facts

Theorem (Wilson's Theorem)
If p is a prime integer, then $(p-1)!\equiv-1(\bmod p)$.

Lemma (Lagrange)
If p is prime of the form $4 n+1$, then $-1 \equiv m^{2}(\bmod p)$ for an m.

Final basic facts

Theorem (Wilson's Theorem)
If p is a prime integer, then $(p-1)!\equiv-1(\bmod p)$.

Lemma (Lagrange)
If p is prime of the form $4 n+1$, then $-1 \equiv m^{2}(\bmod p)$ for an m.
$-1 \equiv 12!\equiv(1 \cdot 12)(2 \cdot 11)(3 \cdot 10) \ldots(6 \cdot 7) \equiv(-1)^{6}(6!)^{2} \equiv(6!)^{2}$

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.
- As $m / p \pm i / p$ is not a Gaussian integer, p doesn't divide $m+i$ or $m-i$.

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.
- As $m / p \pm i / p$ is not a Gaussian integer, p doesn't divide $m+i$ or $m-i$.
- So p divides a product of two numbers, but neither of those two numbers by themselves! This implies that p is a Gaussian prime (the same is true for integer primes).

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.
- As $m / p \pm i / p$ is not a Gaussian integer, p doesn't divide $m+i$ or $m-i$.
- So p divides a product of two numbers, but neither of those two numbers by themselves! This implies that p is a Gaussian prime (the same is true for integer primes).
- Thus, p has a non-trivial factorization

$$
p=(a+b i)(c+d i) .
$$

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.
- As $m / p \pm i / p$ is not a Gaussian integer, p doesn't divide $m+i$ or $m-i$.
- So p divides a product of two numbers, but neither of those two numbers by themselves! This implies that p is a Gaussian prime (the same is true for integer primes).
- Thus, p has a non-trivial factorization

$$
p=(a+b i)(c+d i) .
$$

- Take norms:

Finally, our proof!

- Claim: If $p \equiv 1(\bmod 4)$, then $p=x^{2}+y^{2}$ is solvable.
- Pick the m with $p \mid\left(m^{2}+1\right)$ by Lagrange.
- Factor $m^{2}+1=(m+i)(m-i)$.
- As $m / p \pm i / p$ is not a Gaussian integer, p doesn't divide $m+i$ or $m-i$.
- So p divides a product of two numbers, but neither of those two numbers by themselves! This implies that p is a Gaussian prime (the same is true for integer primes).
- Thus, p has a non-trivial factorization

$$
p=(a+b i)(c+d i) .
$$

- Take norms:

$$
N(p)=p^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
$$

Wrapping up

Wrapping up

- So $a^{2}+b^{2}=p=c^{2}+d^{2}$!

Wrapping up

- So $a^{2}+b^{2}=p=c^{2}+d^{2}$!
- For example, $13 \mid\left((6!)^{2}+1\right)=(720+i)(720-i)$.

Wrapping up

- So $a^{2}+b^{2}=p=c^{2}+d^{2}$!
- For example, $13 \mid\left((6!)^{2}+1\right)=(720+i)(720-i)$.
- 13 splits up as $13=(3+2 i)(3-2 i)$. So $13^{2}=3^{2}+2^{2}$.

Any numbers

- What about non-prime numbers?

Any numbers

- What about non-prime numbers? By combining what we learned, you can show:

Any numbers

- What about non-prime numbers? By combining what we learned, you can show:

Theorem

An integer $n>1$ is a sum of two squares if and only if the exponents of any prime that's $3(\bmod 4)$ in the prime factorization of n is even (note: zero is an even number).

Any numbers

- What about non-prime numbers? By combining what we learned, you can show:

Theorem

An integer $n>1$ is a sum of two squares if and only if the exponents of any prime that's $3(\bmod 4)$ in the prime factorization of n is even (note: zero is an even number).

Example

$5096=2^{3} \cdot 13^{1} \cdot 7^{2}$ is a sum of two squares $\left(14^{2}\right.$ and $\left.70^{2}\right)$, but $35672=2^{3} \cdot 13^{1} \cdot 7^{3}$ is not.

Final thoughts

- What about sums of three squares? Four squares? A famous theorem of Lagrange says every number is a sum of 4 squares.

Final thoughts

- What about sums of three squares? Four squares? A famous theorem of Lagrange says every number is a sum of 4 squares.
- How many ways can you write a number as a sum of two squares?

Final thoughts

- What about sums of three squares? Four squares? A famous theorem of Lagrange says every number is a sum of 4 squares.
- How many ways can you write a number as a sum of two squares?
- How many primes of the form $x^{2}+n y^{2}$ are there?

Final thoughts

- What about sums of three squares? Four squares? A famous theorem of Lagrange says every number is a sum of 4 squares.
- How many ways can you write a number as a sum of two squares?
- How many primes of the form $x^{2}+n y^{2}$ are there?

Final thoughts

- What about sums of three squares? Four squares? A famous theorem of Lagrange says every number is a sum of 4 squares.
- How many ways can you write a number as a sum of two squares?
- How many primes of the form $x^{2}+n y^{2}$ are there?

- What other questions can you think of?

