Generating Functions and Partitions

Vanderbilt Math Circle

February 11, 2019
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.”
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

Example: $1 + x + x^2 + x^3 + \ldots$
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: \(1 + x + x^2 + x^3 + \ldots = GF(1) \)
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: $1 + x + x^2 + x^3 + \ldots = GF(1)$
- Example: $GF(n)$
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: \(1 + x + x^2 + x^3 + \ldots = GF(1) \)
- Example: \(GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots \)
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: $1 + x + x^2 + x^3 + \ldots = GF(1)$
- Example: $GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots$
- Example: $GF(2^{-n})$
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- **Example:** $1 + x + x^2 + x^3 + \ldots = GF(1)$
- **Example:** $GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots$
- **Example:** $GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots$

Applications:
- create formulas,
- make estimations,
- establish divisibility properties,
- and more
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- **Example:** \(1 + x + x^2 + x^3 + \ldots = GF(1)\)
- **Example:** \(GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots\)
- **Example:** \(GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots\)

Applications:
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: \(1 + x + x^2 + x^3 + \ldots = GF(1) \)
- Example: \(GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots \)
- Example: \(GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots \)

Applications:
- create formulas,
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- **Example:** \(1 + x + x^2 + x^3 + \ldots = GF(1) \)
- **Example:** \(GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots \)
- **Example:** \(GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots \)

Applications:

- create formulas,
- make estimations,
“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: \(1 + x + x^2 + x^3 + \ldots = GF(1)\)
- Example: \(GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots\)
- Example: \(GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots\)

Applications:
- create formulas,
- make estimations,
- establish divisibility properties,
Generating Functions

“A generating function is a clothesline on which we hang up a sequence of numbers for display.” What does this mean?

Another way to think about it: “Infinite polynomial”

- Example: $1 + x + x^2 + x^3 + \ldots = GF(1)$
- Example: $GF(n) = 0 + x + 2x^2 + 3x^3 + \ldots$
- Example: $GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \ldots$

Applications:

- create formulas,
- make estimations,
- establish divisibility properties,
- and more
A problem to work on

Question: What is the value of 0.9999...?
A problem to work on

Question: What is the value of $0.9999\ldots$?

Answer: Set $x = 0.9999\ldots$.

Do you believe this?
A problem to work on

Question: What is the value of 0.9999...?

Answer: Set \(x = 0.9999... \). Then \(10x = 9.999... \),
A problem to work on

Question: What is the value of 0.9999...?

Answer: Set $x = 0.9999...$. Then $10x = 9.999...$, so $10x - 9 = 0.999\cdots = x$.
Question: What is the value of 0.9999...?

Answer: Set $x = 0.9999....$ Then $10x = 9.999...$, so $10x - 9 = 0.999... = x$. Solving for x tells us that $x = 1$.
A problem to work on

Question: What is the value of 0.9999 . . . ?

Answer: Set \(x = 0.9999 . . . \). Then \(10x = 9.999 . . . \), so \(10x - 9 = 0.999 . . . = x \). Solving for \(x \) tells us that \(x = 1 \).

Do you believe this?
Finding Infinite Sums

Problem 1:
\[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \]

Problem 2:
\[1 + a + a^2 + a^3 + \ldots \]

Does your answer for Problem 2 always work?

Problem 3:
\[\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}}} \]

Problem 4:
\[2 + \frac{1}{1 + 1} + \frac{1}{2 + 1} + \frac{1}{1 + 1} + \frac{1}{2 + 1} + \ldots \]
Finding Infinite Sums

Problem 1: \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \)
Finding Infinite Sums

Problem 1: \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots\)

Problem 2: \(1 + a + a^2 + a^3 + \ldots\)
Finding Infinite Sums

Problem 1: \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \)

Problem 2: \(1 + a + a^2 + a^3 + \ldots \)
Does your answer for Problem 2 always work?
Finding Infinite Sums

Problem 1: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots$

Problem 2: $1 + a + a^2 + a^3 + \ldots$
Does your answer for Problem 2 always work?

Problem 3: $\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}}}$
Finding Infinite Sums

Problem 1: \[1 + rac{1}{2} + rac{1}{4} + rac{1}{8} + \ldots\]

Problem 2: \[1 + a + a^2 + a^3 + \ldots\]
Does your answer for Problem 2 always work?

Problem 3: \[\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}}}\]

Problem 4:
\[
2 \div \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \ldots}}}}}}
\]
Recap

From Problem 2, we have: $GF(1) = \frac{1}{1-x}$.
Recap

From Problem 2, we have: $GF(1) = \frac{1}{1-x}$.

- Remember:
Recap

From Problem 2, we have: $GF(1) = \frac{1}{1-x}$.

Remember: This is formal.
Rabbit problem

It takes one month for rabbits to mature, and after they have matured, every pair of rabbits produces another pair of rabbits, one boy and one girl.
Rabbit problem

It takes one month for rabbits to mature, and after they have matured, every pair of rabbits produces another pair of rabbits, one boy and one girl.

If we start with a pair of baby rabbits,

- how many pairs of rabbits are there after one month?
Rabbit problem

It takes one month for rabbits to mature, and after they have matured, every pair of rabbits produces another pair of rabbits, one boy and one girl.

If we start with a pair of baby rabbits,

- how many pairs of rabbits are there after one month?
- two months?
It takes one month for rabbits to mature, and after they have matured, every pair of rabbits produces another pair of rabbits, one boy and one girl.

If we start with a pair of baby rabbits,

- how many pairs of rabbits are there after one month?
- two months?
- three months?
Rabbit problem

It takes one month for rabbits to mature, and after they have matured, every pair of rabbits produces another pair of rabbits, one boy and one girl.

If we start with a pair of baby rabbits,

- how many pairs of rabbits are there after one month?
- two months?
- three months?
Fibonacci Numbers

Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.
Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and

$$F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2.$$

- Example: $F_{1,000} = 4.34665576 \cdots \times 10^{208}$
Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.

- Example: $F_{1,000} = 4.34665576 \cdots \times 10^{208}$
- Example: $\frac{F_{10}}{F_9} = \frac{55}{34} \approx 1.6176470588 \ldots$
Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.

- **Example:** $F_{1,000} = 4.34665576 \ldots \times 10^{208}$
- **Example:** $\frac{F_{10}}{F_9} = \frac{55}{34} \approx 1.6176470588 \ldots$
- **Example:** $\frac{F_{100}}{F_{99}} = \frac{354224848179261915075}{218922995834555169026} \approx 1.6180339887 \ldots$
Fibonacci Numbers

Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.

- Example: $F_{1,000} = 4.34665576 \ldots \times 10^{208}$
- Example: $\frac{F_{10}}{F_9} = \frac{55}{34} \approx 1.6176470588 \ldots$
- Example: $\frac{F_{100}}{F_{99}} = \frac{354224848179261915075}{218922995834555169026} \approx 1.6180339887 \ldots$

The ratio of Fibonacci numbers F_{n+1}/F_n approaches the golden ratio:
Fibonacci Numbers

Fibonacci Numbers: We let $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.

- Example: $F_{1,000} = 4.34665576 \cdots \times 10^{208}$
- Example: $\frac{F_{10}}{F_9} = \frac{55}{34} \approx 1.6176470588 \cdots$
- Example: $\frac{F_{100}}{F_{99}} = \frac{354224848179261915075}{218922995834555169026} \approx 1.6180339887 \cdots$

The ratio of Fibonacci numbers F_{n+1}/F_n approaches the golden ratio:

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6180339887 \cdots$$
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:
- $xf(x)$

What do you notice?

What is $f(x) - xf(x) - x^2f(x)$?

We can solve and get $GF(F_{n+1}) = f(x) = x^1 - x^2 - x^3$.

What does this tell us about F_n?
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:

- $xf(x)$
- $x^2 f(x)$
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:
- $xf(x)$
- $x^2f(x)$

What do you notice?
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:
- $xf(x)$
- $x^2 f(x)$

What do you notice? What is $f(x) - xf(x) - x^2 f(x)$?
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:
- $xf(x)$
- $x^2f(x)$

What do you notice? What is $f(x) - xf(x) - x^2f(x)$?

We can solve and get $GF(F_{n+1}) = f(x) = \frac{x}{1-x-x^2}$.
Formula for F_n

Let $f(x) = GF(F_{n+1}) = F_1 + F_2x + F_3x^2 + F_4x^3 + \ldots$.

Question: Write down:
- $xf(x)$
- $x^2f(x)$

What do you notice? What is $f(x) - xf(x) - x^2f(x)$?

We can solve and get $GF(F_{n+1}) = f(x) = \frac{x}{1-x-x^2}$.

- What does this tell us about F_n?
Formula for F_n

- How do we factor $1 - x - x^2$?
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?

Let $\phi = \frac{1 + \sqrt{5}}{2}$, $\phi' = \frac{1 - \sqrt{5}}{2}$. Then

$$GF(F_n) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 - \phi' x)}$$
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?

Let $\phi = \frac{1+\sqrt{5}}{2}, \phi' = \frac{1-\sqrt{5}}{2}$. Then

$$GF(F_n) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 - \phi' x)}$$

$$= \frac{1}{\phi - \phi'} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \phi' x} \right)$$
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?

Let $\phi = \frac{1 + \sqrt{5}}{2}, \phi' = \frac{1 - \sqrt{5}}{2}$. Then

$$GF(F_n) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 - \phi' x)}$$

$$= \frac{1}{\phi - \phi'} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \phi' x} \right)$$

$$= \frac{1}{\sqrt{5}} \left((1 + \phi x + \phi^2 x^2 + \ldots) - (1 + \phi' x + (\phi')^2 x^2 + \ldots) \right).$$
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?

Let $\phi = \frac{1+\sqrt{5}}{2}, \phi' = \frac{1-\sqrt{5}}{2}$. Then

$$GF(F_n) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 - \phi' x)}$$

$$= \frac{1}{\phi - \phi'} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \phi' x} \right)$$

$$= \frac{1}{\sqrt{5}} \left((1 + \phi x + \phi^2 x^2 + \ldots) - (1 + \phi' x + (\phi')^2 x^2 + \ldots) \right).$$

Comparing like terms on each side:
Formula for F_n

- How do we factor $1 - x - x^2$?
- What are its roots?

Let $\phi = \frac{1+\sqrt{5}}{2}, \phi' = \frac{1-\sqrt{5}}{2}$. Then

$$GF(F_n) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 - \phi' x)}$$

$$= \frac{1}{\phi - \phi'} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \phi' x} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\left(1 + \phi x + \phi^2 x^2 + \ldots \right) - \left(1 + \phi' x + (\phi')^2 x^2 + \ldots \right) \right).$$

Comparing like terms on each side:

$$F_{n+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$
Lucas Numbers

Lucas numbers are defined similar to Fibonacci numbers:

\[
L_1 = 1, \quad L_2 = 3, \quad \text{and} \quad L_n = L_{n-1} + L_{n-2} \quad \text{for} \quad n \geq 3.
\]

Problem: Find a formula for \(L_n \) in the same way as for Fibonacci numbers.
Lucas Numbers

Lucas numbers are defined similar to Fibonacci numbers:

\[L_1 = 1, \quad L_2 = 3, \quad \text{and} \quad L_n = L_{n-1} + L_{n-2} \text{ for } n \geq 3. \]
Lucas Numbers

Lucas numbers are defined similar to Fibonacci numbers:

\[L_1 = 1, \quad L_2 = 3, \quad \text{and} \quad L_n = L_{n-1} + L_{n-2} \quad \text{for} \quad n \geq 3. \]

Problem: Find a formula for \(L_n \) in the same way as for Fibonacci numbers.
Fibonacci Problems

We have a formula for F_n.

Fibonacci Problems

We have a formula for F_n. Does that tell us everything about these numbers?
Fibonacci Problems

We have a formula for F_n.

- Does that tell us everything about these numbers?

Open Problem: Show that there are infinitely many F_n that are prime.
Fibonacci Problems

We have a formula for F_n.

- Does that tell us everything about these numbers?

Open Problem: Show that there are infinitely many F_n that are prime.

Recently Solved Problem: Show that there are finitely many F_n that are of the form a^b for integers a, b with $b > 1$.
Partition Function $p(n)$

A *partition* of a positive integer n is a way of writing n as a sum of positive integers.
Partition Function \(p(n) \)

A *partition* of a positive integer \(n \) is a way of writing \(n \) as a sum of positive integers.

- *Example:* \(4 + 1 \) is a partition of 5
Partition Function $p(n)$

A *partition* of a positive integer n is a way of writing n as a sum of positive integers.

- *Example:* $4 + 1$ is a partition of 5
- *Example:* $1 + 4$ is the same partition
Partition Function $p(n)$

A *partition* of a positive integer n is a way of writing n as a sum of positive integers.

- *Example:* $4 + 1$ is a partition of 5
- *Example:* $1 + 4$ is the same partition (order doesn’t matter)
Partition Function $p(n)$

A *partition* of a positive integer n is a way of writing n as a sum of positive integers.

- *Example*: $4 + 1$ is a partition of 5
- *Example*: $1 + 4$ is the same partition (order doesn’t matter)
- *Example*: $2 + 2 + 1$ is a different partition of 5
Partition Function $p(n)$

A *partition* of a positive integer n is a way of writing n as a sum of positive integers.

- *Example:* $4 + 1$ is a partition of 5
- *Example:* $1 + 4$ is the same partition (order doesn’t matter)
- *Example:* $2 + 2 + 1$ is a different partition of 5

Problem: How many partitions are there of 4?
Partition Function \(p(n) \)

A *partition* of a positive integer \(n \) is a way of writing \(n \) as a sum of positive integers.

- *Example:* \(4 + 1 \) is a partition of 5
- *Example:* \(1 + 4 \) is the same partition (order doesn’t matter)
- *Example:* \(2 + 2 + 1 \) is a different partition of 5

Problem: How many partitions are there of 4?

\[
4,
\]
Partition Function \(p(n) \)

A *partition* of a positive integer \(n \) is a way of writing \(n \) as a sum of positive integers.

- *Example:* \(4 + 1 \) is a partition of 5
- *Example:* \(1 + 4 \) is the same partition (order doesn’t matter)
- *Example:* \(2 + 2 + 1 \) is a different partition of 5

Problem: How many partitions are there of 4?

\[4, 3 + 1, \]
Partition Function $p(n)$

A partition of a positive integer n is a way of writing n as a sum of positive integers.

- *Example:* $4 + 1$ is a partition of 5
- *Example:* $1 + 4$ is the same partition (order doesn’t matter)
- *Example:* $2 + 2 + 1$ is a different partition of 5

Problem: How many partitions are there of 4?

$4, 3 + 1, 2 + 2,$
Partition Function $p(n)$

A partition of a positive integer n is a way of writing n as a sum of positive integers.

- Example: $4 + 1$ is a partition of 5
- Example: $1 + 4$ is the same partition (order doesn’t matter)
- Example: $2 + 2 + 1$ is a different partition of 5

Problem: How many partitions are there of 4?

$$4, 3 + 1, 2 + 2, 2 + 1 + 1,$$
A *partition* of a positive integer *n* is a way of writing *n* as a sum of positive integers.

- *Example:* $4 + 1$ is a partition of 5
- *Example:* $1 + 4$ is the same partition (order doesn’t matter)
- *Example:* $2 + 2 + 1$ is a different partition of 5

Problem: How many partitions are there of 4?

$4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1$

$p(n)$ is the number of partitions of *n*, so $p(4) = 5$.
Partition Function $p(n)$

Problem: Find:

- $p(0)$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$
- $p(4) = 5$

Look at the sequence $p(n)$ so far. Is there a pattern? What is $p(5)$?
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
Partition Function $p(n)$

Problem: Find:
- $p(0) = 1$
- $p(1)$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2)$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3)$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$

Look at the sequence $p(n)$ so far. Is there a pattern? What is $p(5)$?
Partition Function $p(n)$

Problem: Find:
- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$
- $p(4)$
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$
- $p(4) = 5$
Partition Function $p(n)$

Problem: Find:
- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$
- $p(4) = 5$

Look at the sequence $p(n)$ so far.
- Is there a pattern?
Partition Function $p(n)$

Problem: Find:

- $p(0) = 1$
- $p(1) = 1$
- $p(2) = 2$
- $p(3) = 3$
- $p(4) = 5$

Look at the sequence $p(n)$ so far.

- Is there a pattern?
- What is $p(5)$?
More partitions

Problem: What is $p(7)$?
More partitions

Problem: What is $p(7)$? $p(9)$?
More partitions

Problem: What is $p(7)$? $p(9)$? $p(99)$?
More partitions

Problem: What is $p(7)$? $p(9)$? $p(99)$?

<table>
<thead>
<tr>
<th>n</th>
<th>$p(n)$</th>
<th>n</th>
<th>$p(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>54</td>
<td>386155</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>59</td>
<td>831820</td>
</tr>
<tr>
<td>14</td>
<td>135</td>
<td>64</td>
<td>1741630</td>
</tr>
<tr>
<td>19</td>
<td>490</td>
<td>69</td>
<td>3554345</td>
</tr>
<tr>
<td>24</td>
<td>1575</td>
<td>74</td>
<td>7089500</td>
</tr>
<tr>
<td>29</td>
<td>4565</td>
<td>79</td>
<td>13848650</td>
</tr>
<tr>
<td>34</td>
<td>12310</td>
<td>84</td>
<td>26543660</td>
</tr>
<tr>
<td>39</td>
<td>31185</td>
<td>89</td>
<td>49995925</td>
</tr>
<tr>
<td>44</td>
<td>75175</td>
<td>94</td>
<td>92669720</td>
</tr>
<tr>
<td>49</td>
<td>173525</td>
<td>99</td>
<td>169229875</td>
</tr>
</tbody>
</table>
More partitions

Problem: What is $p(7)$? $p(9)$? $p(99)$?

<table>
<thead>
<tr>
<th>n</th>
<th>$p(n)$</th>
<th>n</th>
<th>$p(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>54</td>
<td>386155</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>59</td>
<td>831820</td>
</tr>
<tr>
<td>14</td>
<td>135</td>
<td>64</td>
<td>1741630</td>
</tr>
<tr>
<td>19</td>
<td>490</td>
<td>69</td>
<td>3554345</td>
</tr>
<tr>
<td>24</td>
<td>1575</td>
<td>74</td>
<td>7089500</td>
</tr>
<tr>
<td>29</td>
<td>4565</td>
<td>79</td>
<td>13848650</td>
</tr>
<tr>
<td>34</td>
<td>12310</td>
<td>84</td>
<td>26543660</td>
</tr>
<tr>
<td>39</td>
<td>31185</td>
<td>89</td>
<td>49995925</td>
</tr>
<tr>
<td>44</td>
<td>75175</td>
<td>94</td>
<td>92669720</td>
</tr>
<tr>
<td>49</td>
<td>173525</td>
<td>99</td>
<td>169229875</td>
</tr>
</tbody>
</table>

Do you notice anything about these values?
Euler Products

Figure: Leonard Euler (1707-1783)
Euler’s Product

Generating functions consider formal infinite sums.
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does $\prod_{n=1}^{\infty} (1 + q^n)$ mean?
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does $\prod_{n=1}^{\infty} (1 + q^n)$ mean?

Let’s start by writing down finite products:
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does \(\prod_{n=1}^{\infty} (1 + q^n) \) mean?

Let’s start by writing down finite products:

\[
\prod_{n=1}^{1} (1 + q^n)
\]

\[
\prod_{n=1}^{2} (1 + q^n)
\]

\[
\prod_{n=1}^{3} (1 + q^n)
\]
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does $\prod_{n=1}^{\infty} (1 + q^n)$ mean?

Let’s start by writing down finite products:

- $\prod_{n=1}^{1} (1 + q^n) = 1 + q$
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does $\prod_{n=1}^{\infty} (1 + q^n)$ mean?

Let’s start by writing down finite products:

- $\prod_{n=1}^{1} (1 + q^n) = 1 + q$
- $\prod_{n=1}^{2} (1 + q^n)$
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does $\prod_{n=1}^{\infty} (1 + q^n)$ mean?

Let’s start by writing down finite products:

- $\prod_{n=1}^{1} (1 + q^n) = 1 + q$
- $\prod_{n=1}^{2} (1 + q^n) = 1 + q + q^2 + q^3$
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does \(\prod_{n=1}^{\infty} (1 + q^n) \) mean?

Let’s start by writing down finite products:

- \(\prod_{n=1}^{1} (1 + q^n) = 1 + q \)
- \(\prod_{n=1}^{2} (1 + q^n) = 1 + q + q^2 + q^3 \)
- \(\prod_{n=1}^{3} (1 + q^n) \)
Euler’s Product

Generating functions consider formal infinite sums.

- What about infinite products?
- What does \(\prod_{n=1}^{\infty} (1 + q^n) \) mean?

Let’s start by writing down finite products:

- \(\prod_{n=1}^{1} (1 + q^n) = 1 + q \)
- \(\prod_{n=1}^{2} (1 + q^n) = 1 + q + q^2 + q^3 \)
- \(\prod_{n=1}^{3} (1 + q^n) = 1 + q + q^2 + 2q^3 + q^4 + q^5 + q^6 \)
Euler’s Product

Question: How do we determine the coefficient of q^{10} for \(\prod_{n=1}^{\infty} (1 + q^n) \) without multiplying out the first 10 terms?
Euler’s Product

Question: How do we determine the coefficient of q^{10} for

\[
\prod_{n=1}^{\infty} (1 + q^n)
\]

without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?
Euler’s Product

Question: How do we determine the coefficient of q^{10} for

$$\prod_{n=1}^{\infty} (1 + q^n)$$

without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

10,
Question: How do we determine the coefficient of q^{10} for \(\prod_{n=1}^{\infty} (1 + q^n) \) without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

10, 9 + 1,
Euler’s Product

Question: How do we determine the coefficient of \(q^{10} \) for
\[
\prod_{n=1}^{\infty} (1 + q^n)
\]
without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

\[
10, 9 + 1, 8 + 2,
\]
Euler’s Product

Question: How do we determine the coefficient of q^{10} for
\[
\prod_{n=1}^{\infty} (1 + q^n)
\] without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

10, $9 + 1$, $8 + 2$, $7 + 3$,
...
Question: How do we determine the coefficient of q^{10} for
$$\prod_{n=1}^{\infty} (1 + q^n)$$ without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

$$10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1,$$
Euler’s Product

Question: How do we determine the coefficient of q^{10} for
$$\prod_{n=1}^{\infty} (1 + q^n)$$ without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

$$10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1, 6 + 4,$$
Euler’s Product

Question: How do we determine the coefficient of q^{10} for $\prod_{n=1}^{\infty} (1 + q^n)$ without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1, 6 + 4, 6 + 3 + 1
Euler’s Product

Question: How do we determine the coefficient of q^{10} for
\[\prod_{n=1}^{\infty} (1 + q^n)\] without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10 with each number in the sum distinct?

10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1, 6 + 4, 6 + 3 + 1

Hence, \[\prod_{n=1}^{\infty} (1 + q^n) = 1 + q + \cdots + 7q^{10} + \ldots.\]