1 Take-Home Problems

1. Prove that \(p(n) < p(n+1) \) for all \(n \geq 1 \).

2. a). If \(\lambda \) is a partition of \(n \) with no distinct parts (in other words, every part that appears in the sum shows up at least twice), what can we say about its conjugate? (Hint: Think about the example where we found that having one as a part meant that the conjugate had a distinct largest part and vice versa. Try to find a similar meaning here.)
 b). Write down a product formula that gives the generating function for the number of partitions of \(n \) with no distinct parts.

3. An overpartition of a number \(n \) is a partition of \(n \) where the first occurrence of any part may be overlined. For example, the overpartitions of 2 are
 \[2, \bar{2}, 1 + 1, \bar{1} + 1, \]
 and the overpartitions of 3 are
 \[3, \bar{3}, 2 + 1, 2 + \bar{1}, 2 + \bar{1}, 2 + 1, 1 + 1, 1 + 1, 1 + 1. \]
 a). What are the overpartitions of 4?
 b). Let \(\bar{p}(n) \) be the number of overpartitions of \(n \). What is the generating function for \(\bar{p}(n) \)? (Hint: Recall how we found the generating function for \(p(n) \).)

4. A partition \(\lambda \) is said to be self-conjugate if the conjugate of \(\lambda \) is \(\lambda \) itself. Using Ferrers Diagrams, prove that the number of self-conjugate partitions of a number \(n \) is the same as the number of partitions of \(n \) into distinct odd parts. (Hint: try “folding” Ferrers diagrams of partitions with distinct odd parts.)

5. Let \(n \) be a positive whole number, and for any number \(x \), let \([x]\) be the largest whole number less than or equal to \(x \). For instance, \(\pi = 3.14..., \) so \([\pi]\) = 3, and \([5]\) = 5 since 5 is already a whole number.
 a). Find a formula for the sum of the numbers \(1 + 2 + ... + [\sqrt{n}] \). Conclude that this sum is less than \(n \).
b). Let $S = \{s_1, s_2, \ldots, s_k\}$ be a collection of numbers from the set $\{1, 2, \ldots, [\sqrt{n}]\}$. Show that there is a partition of n which starts with $s_1 + s_2 + \ldots + s_k$. For instance, if $n = 101$, so that $[\sqrt{101}] = 10$, if S is the collection $S = 1, 3, 4, 9$ of whole numbers less than or equal to 10, then $1 + 3 + 4 + 9 + 84$ is a partition of 101 which “starts” with $1 + 3 + 4 + 9$.

c). Recall from an earlier math club meeting that the number of collections of numbers from $\{1, 2, \ldots, [\sqrt{n}]\}$, that is, the number of subsets, is $2^{[\sqrt{n}]}$. Conclude that the number of partitions of n grows exponentially with n, and give a function $f(n)$ such that $f(n) < p(n)$.

d). Can you find better approximations to $p(n)$? How many partitions are “missed” by this procedure? Can you find an upper bound for $p(n)$, that is, a function $g(n)$ such that $p(n)$ is always less than $g(n)$?