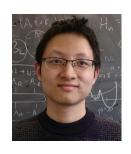
# emergence of conformal symmetry in critical quantum spin chains and tensor networks

NCGOA 2019 Vanderbilt University

**Ashley Milsted** Yijian Zou, Guifre Vidal

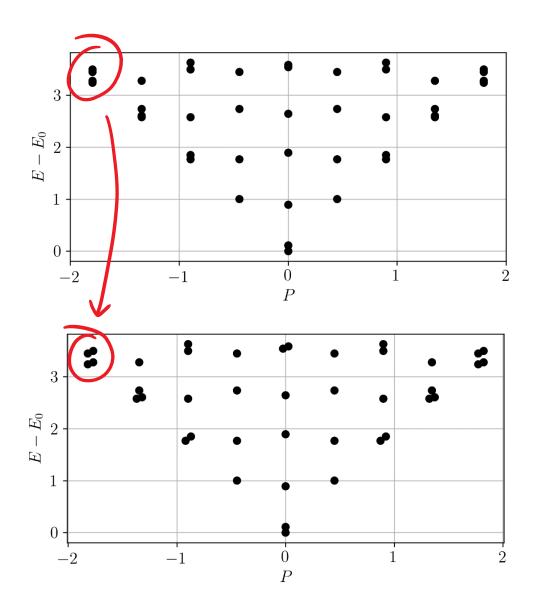














ABUSE OF X-AXES FOR THE NEXT 33 SLIDES

#### critical spin chain

1+1D CFT

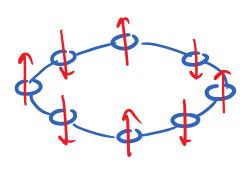
$$H = \sum_{j=1}^{N} h_j$$

central charge: c

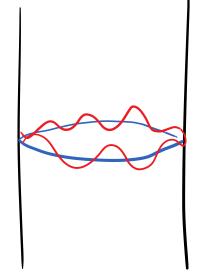
on the circle

primary fields:  $\Delta_{\phi}, s_{\phi}$ 

OPE coefficients:  $C_{\phi_2\phi_3}^{\phi_1}$  (3-point correlators)





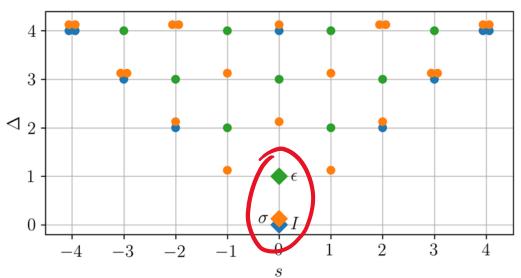


Belavin, Polyakov, Zamolodchikov, Nucl. Phys. B 241, 333 (1984)

# conformal data: 1+1D Ising CFT

central charge: 
$$c = \frac{1}{2}$$



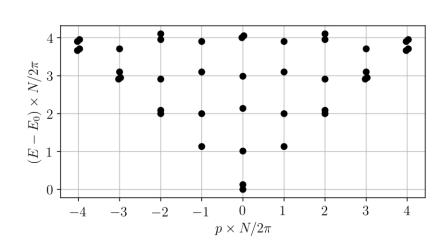


#### primary fields

| $\phi$     | Δ   | s |
|------------|-----|---|
| I          | 0   | 0 |
| $\sigma$   | 1/8 | 0 |
| $\epsilon$ | 1   | 0 |

nonzero OPE coefficients: 
$$C^{\epsilon}_{\sigma\sigma}=\frac{1}{2}$$
 (not involving  $\it{I}$ )

#### critical spin chain



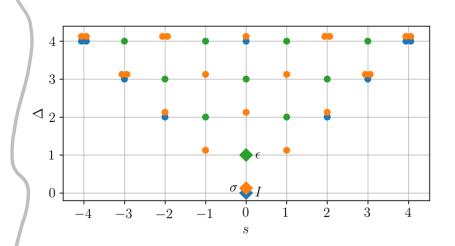
# lattice energy-momentum spectrum

$$E_{\alpha} = A + \frac{B}{N} (\Delta_{\alpha} - \frac{c}{12}) + \mathcal{O}(N^{-x})$$

$$P_{\alpha} = \frac{2\pi}{N} s_{\alpha}$$

Cardy, Blöte, Nightingale, Affleck (1986)

#### 1+1D CFT



# CFT energy-momentum spectrum

$$E_{\alpha} = A + \frac{B}{N} (\Delta_{\alpha} - \frac{c}{12})$$

$$P_{\alpha} = \frac{2\pi}{N} s_{\alpha}$$

#### critical spin chain

 $\phi_{j}$ 

lattice primary field operators

$$\exp\left(\sum_{n} \left[a_{n}L_{n} + \overline{a}_{n}\overline{L}_{n}\right]\right)$$

"lattice conformal transformations"

e.g. Koo & Saleur, 1994

#### 1+1D CFT

$$\phi^{CFT}(x)$$

primary field operators

$$\exp\left(\sum_{n}\left[a_{n}L_{n}^{\text{CFT}}+\overline{a}_{n}\overline{L}_{n}^{\text{CFT}}\right]\right)$$

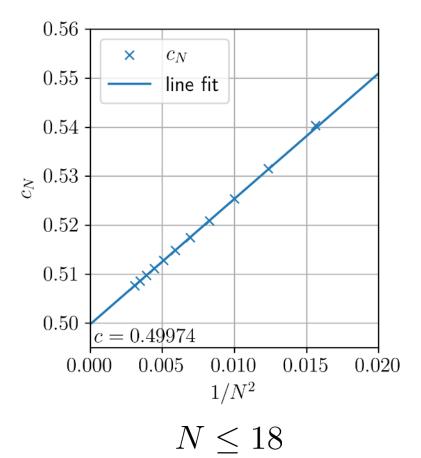
conformal transformations acting on the CFT Hilbert space

$$\langle \phi_{\alpha} | \mathcal{O} | \phi_{\beta} \rangle \xrightarrow{N \to \infty} \langle \phi_{\alpha}^{CFT} | \mathcal{O}^{CFT} | \phi_{\beta}^{CFT} \rangle$$

## example

#### critical Ising spin chain

$$c_N \equiv 2\langle I|L_{-2}^{\dagger}L_{-2}|I\rangle$$



#### 1+1D Ising CFT

$$c=2\;\langle I^{\scriptscriptstyle CFT}|L_{-2}^{\scriptscriptstyle CFT}^{\dagger}L_{-2}^{\scriptscriptstyle CFT}|I^{\scriptscriptstyle CFT}
angle$$

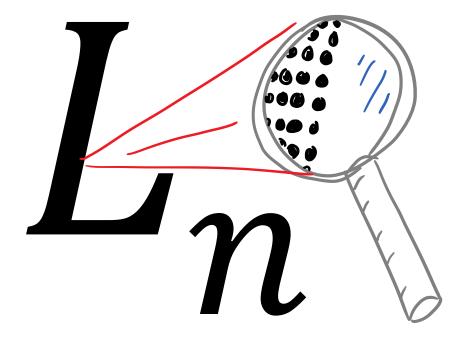
$$c_{I\!sing}=rac{1}{2}$$

#### outline

We show how "lattice Virasoro generators" can be used to...

- 1. ...systematically identify low-energy eigenstates of critical spin chains with energy eigenstates in the CFT,
- 2. find "lattice primary field operators" that approximately obey the correct operator algebra,
- 3. identify emergent conformal transformations in Tensor Networks (e.g. MERA) that describe critical systems.

"detailed emergence of conformal symmetry in lattice systems"



# lattice Virasoro generators

and extracting conformal data

**AM**, G. Vidal, Phys. Rev. B 96 245105 (2017)

Y. Zou, **AM**, G. Vidal, PRL 121, 230402 (2018)

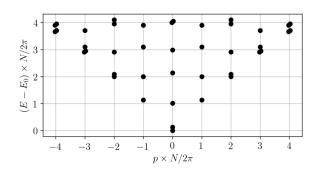
Y. Zou, AM, G. Vidal, arXiv:1901.06439 (2019)

# extracting conformal data

#### critical spin chain

#### 1+1D CFT

low-energy spectrum



$$E_{\alpha} = A + \frac{B}{N} (\Delta_{\alpha} - \frac{c}{12}) + \mathcal{O}(N^{-x})$$
$$P_{\alpha} = \frac{2\pi}{N} s_{\alpha}$$

central charge: c

 $\Rightarrow$  some  $\Delta_{\phi}, s_{\phi}$ 

primary fields:  $\Delta_{\phi}, s_{\phi}$ 

OPE coefficients:  $C^{\phi_1}_{\phi_2\phi_3}$  (3-point correlators)

#### identifying primary states on the lattice

#### critical spin chain

$$H_n \propto \sum_{j=1}^{N} e^{-inj\frac{2\pi}{N}} h_j$$

"lattice Virasoro generators" distinguish

"lattice primary states"

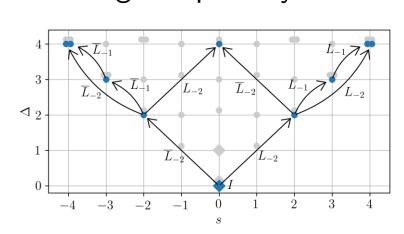
1+1D CFT

$$H_n^{\text{CFT}} \propto \int \mathrm{d}x \; e^{-inx \frac{2\pi}{N}} h^{\text{CFT}}(x)$$

$$H_n^{ ext{CFT}} \equiv L_n^{ ext{CFT}} + \overline{L}_{-n}^{ ext{CFT}}$$

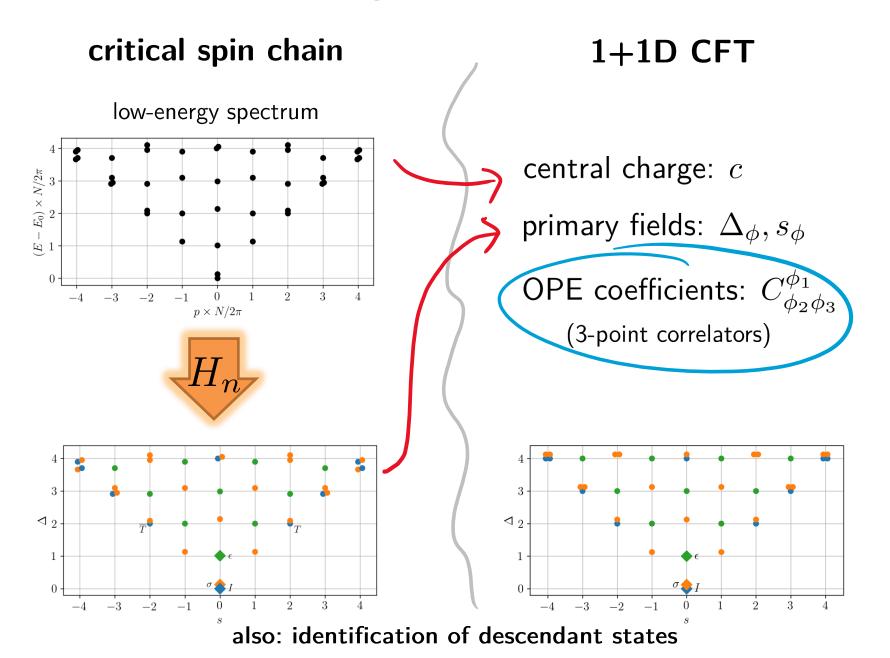
Virasoro generators (ladder operators)

distinguish primary states



Koo & Saleur (1994) **AM** & G. Vidal, PRB 96, 245105 (2017)

# extracting conformal data



# lattice primary operators and OPE coefficients

#### critical spin chain

$$C_{\phi_2\phi_3}^{\phi_1} \approx \langle \phi_1 | \phi_2 | \phi_3 \rangle$$

$$\phi_j$$

find **lattice** primary field operators **variationally** 

$$\langle \phi^{(n,m)} | \phi | I \rangle$$

#### 1+1D CFT

$$C_{\phi_2\phi_3}^{\phi_1} = \langle \phi_1^{\rm \scriptscriptstyle CFT} | \phi_2^{\rm \scriptscriptstyle CFT} | \phi_3^{\rm \scriptscriptstyle CFT} \rangle$$

$$\phi^{CFT}(x)$$

primary field operators

$$\langle \phi^{(n,m)\,{ iny CFT}}|\;\phi^{{ iny CFT}}\;|I^{{ iny CFT}}
angle$$

accuracy  $\sim 10^{-7}$  (for Ising model)

**YZ, AM,** G. Vidal, arXiv:1901.06439 (2019)

# extracting conformal data

critical spin chain

1+1D CFT

low-energy spectrum

lattice Virasoro generators

AM & G. Vidal (2017)

lattice primary operators

**YZ**, **AM**, G. Vidal, arXiv:1901.06439 (2019)

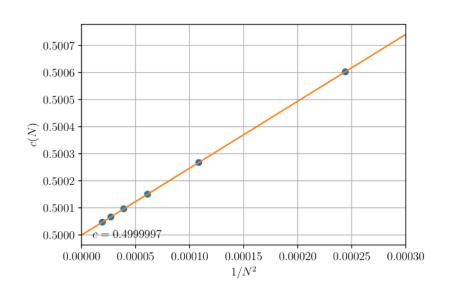
central charge: c

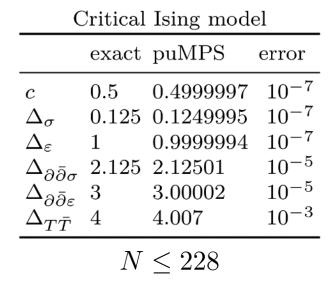
primary fields:  $\Delta_{\phi}, s_{\phi}$ 

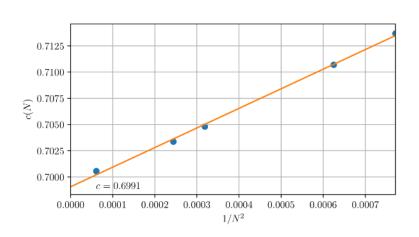
OPE coefficients:  $C_{\phi_2\phi_3}^{\phi_1}$  (3-point correlators)

extends to richer chiral symmetries
e.g. superconformal, affine Lie + Virasoro

### extracting precise conformal data using puMPS







| OF model, TCI point                   |       |         |           |  |
|---------------------------------------|-------|---------|-----------|--|
|                                       | exact | puMPS   | error     |  |
| c                                     | 0.7   | 0.6991  | $10^{-4}$ |  |
| $\Delta_{\sigma}$                     | 0.075 | 0.07492 | $10^{-5}$ |  |
| $\Delta_arepsilon$                    | 0.2   | 0.2001  | $10^{-4}$ |  |
| $\Delta_{\sigma'}$                    | 0.875 | 0.8747  | $10^{-4}$ |  |
| $\Delta_{arepsilon'}$                 | 1.2   | 1.203   | $10^{-3}$ |  |
| $\Delta_{\varepsilon^{\prime\prime}}$ | 3.0   | 3.002   | $10^{-3}$ |  |
| $N \le 128$                           |       |         |           |  |

**YZ**, **AM**, G. Vidal, PRL 121, 230402 (2018)

#### the story so far

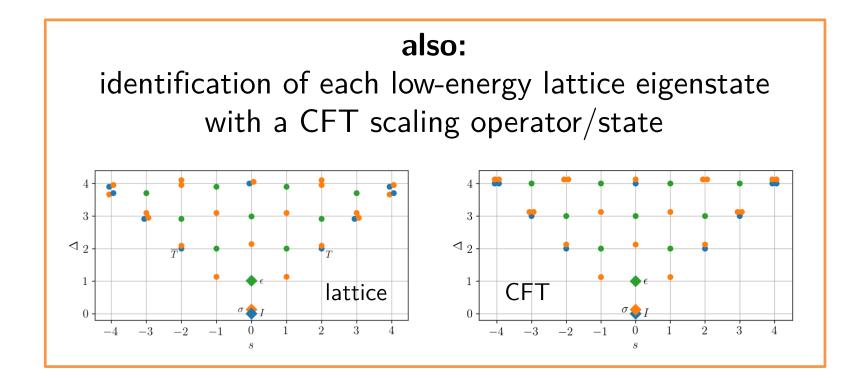
critical quantum spin chain Hamiltonian

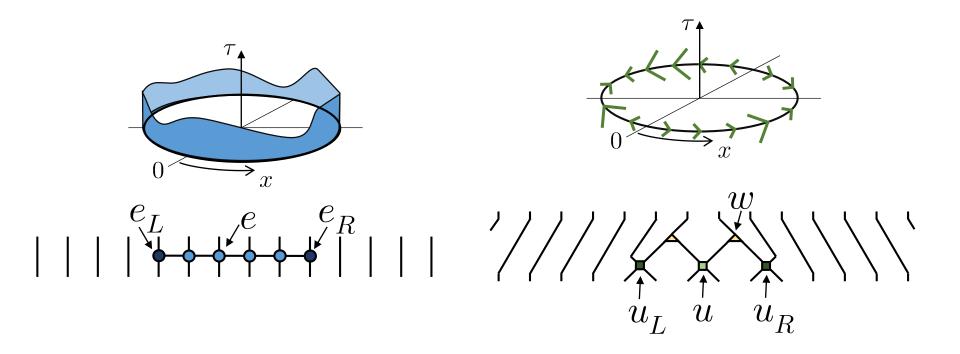


lattice Virasoro generators + low-energy eigenstates



#### complete conformal data





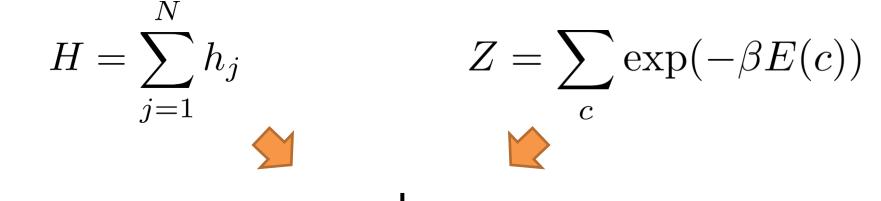
## tensor networks as conformal transformations

AM & G. Vidal

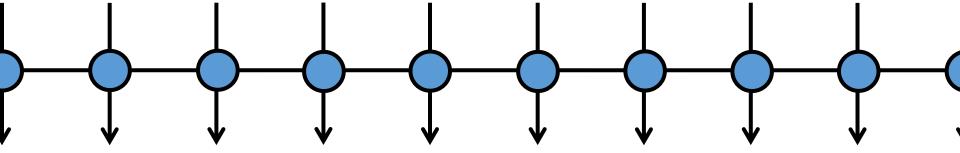
arXiv: 1805.12524, 1807.02501, 1812.00529 (2018)

tensor networks are **powerful computational tools** for characterizing critical systems (see e.g. DMRG, MERA)

we identify **emergent conformal transformations** in **Tensor Networks** (e.g. MERA) that describe critical systems

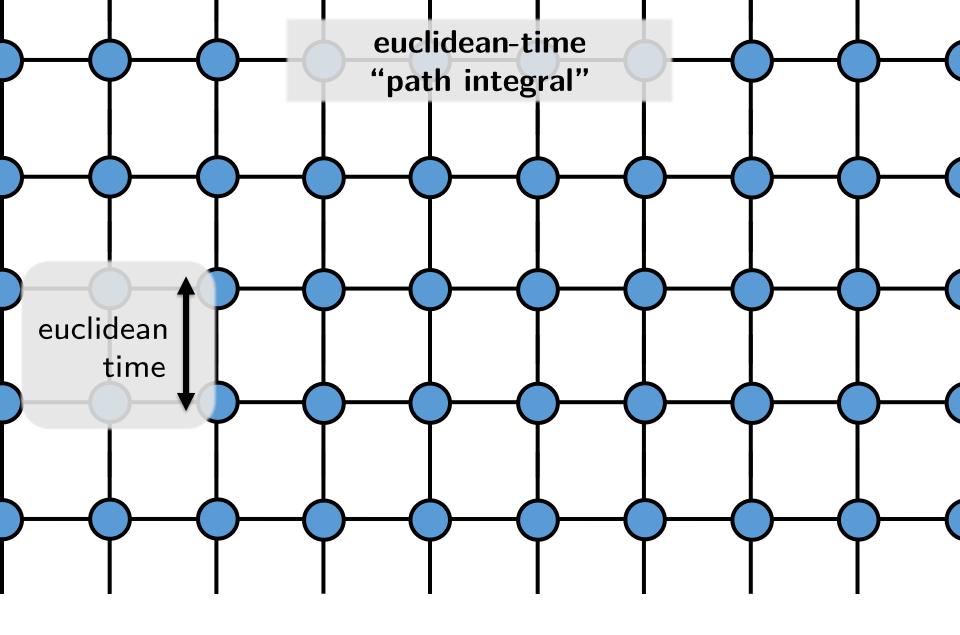


"euclideon" tensor



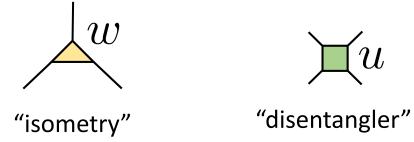
$$\exp(-\delta H)$$

(transfer matrix / euclidean-time propagator)



prepares **ground states** at edges



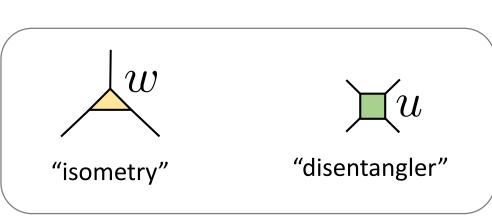


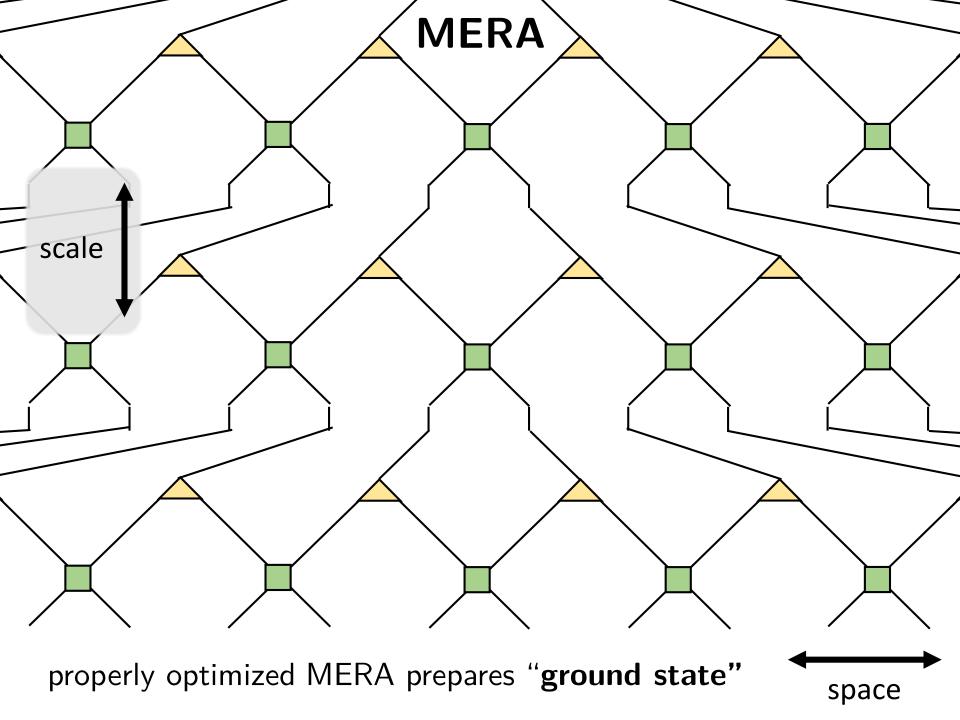
$$H = \sum_{j=1}^{N} h_j$$

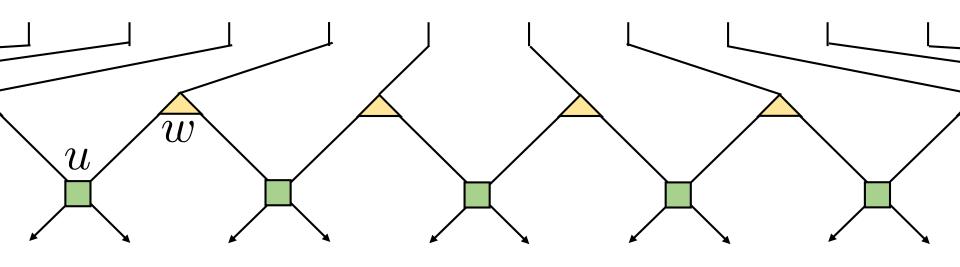
$$Z = \sum_{c} \exp(-\beta E(c))$$

# variational optimization





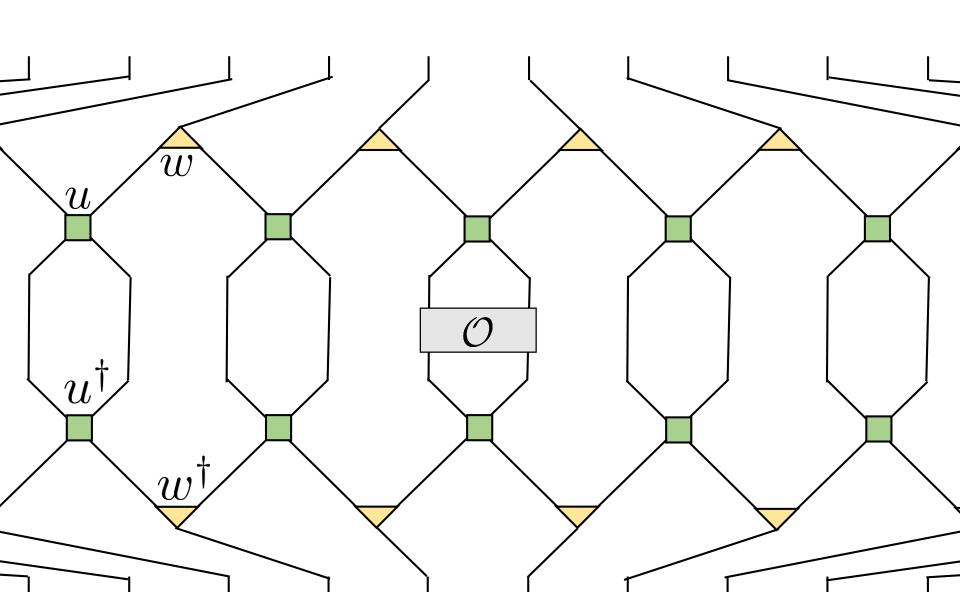


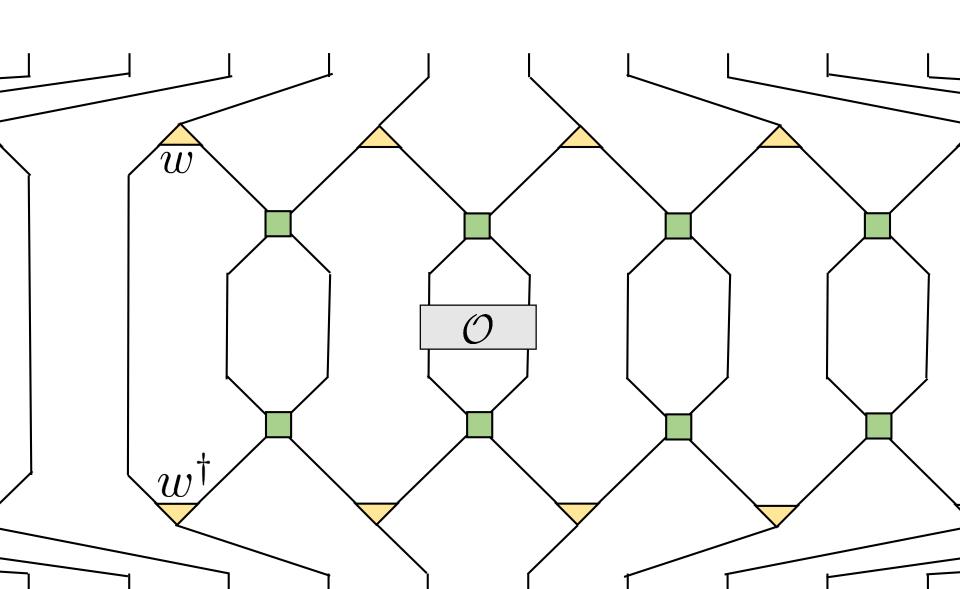


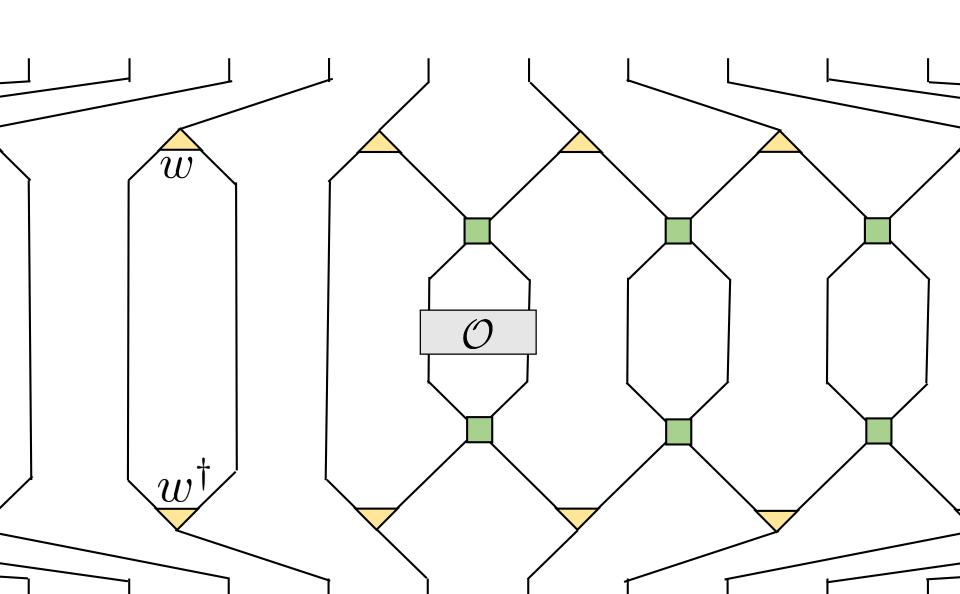
a layer of MERA behaves like a dilation

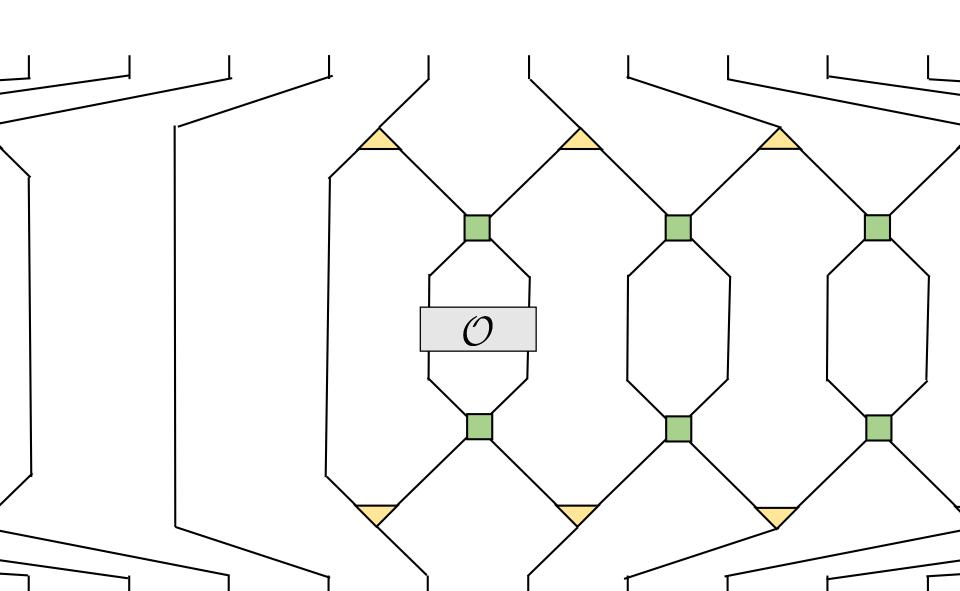
$$\sim \exp(-isD)$$

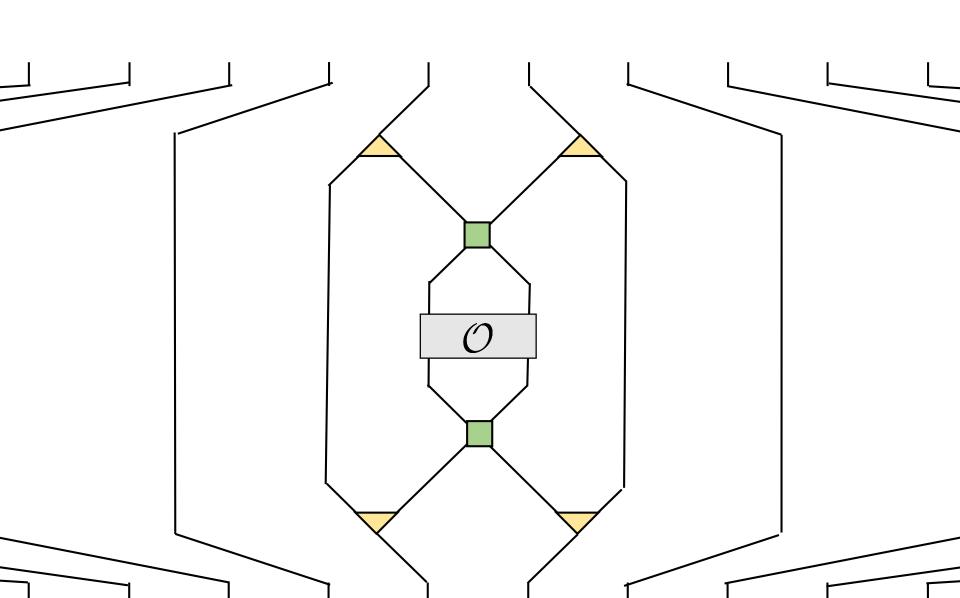
G. Vidal 2007, R. Pfeifer et al. 2009



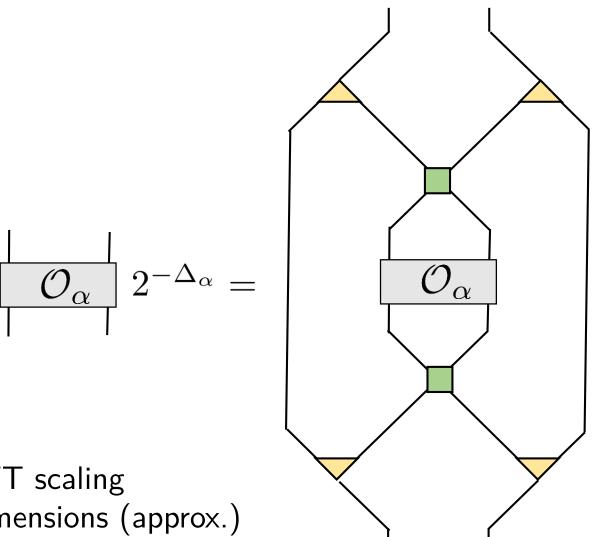








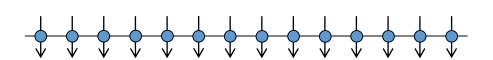
# critical spin chains



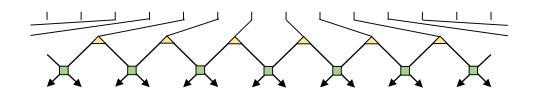
 $\Delta_{lpha}:$  CFT scaling dimensions (approx.)

#### critical spin chain

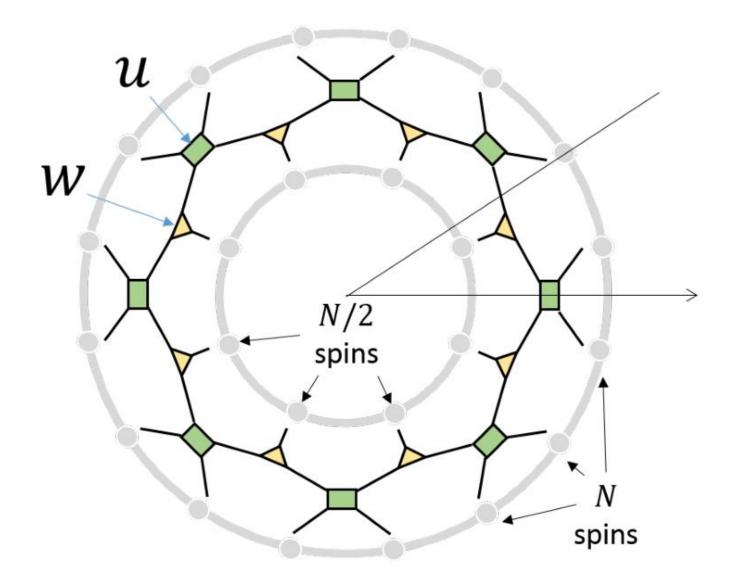
#### 1+1D CFT

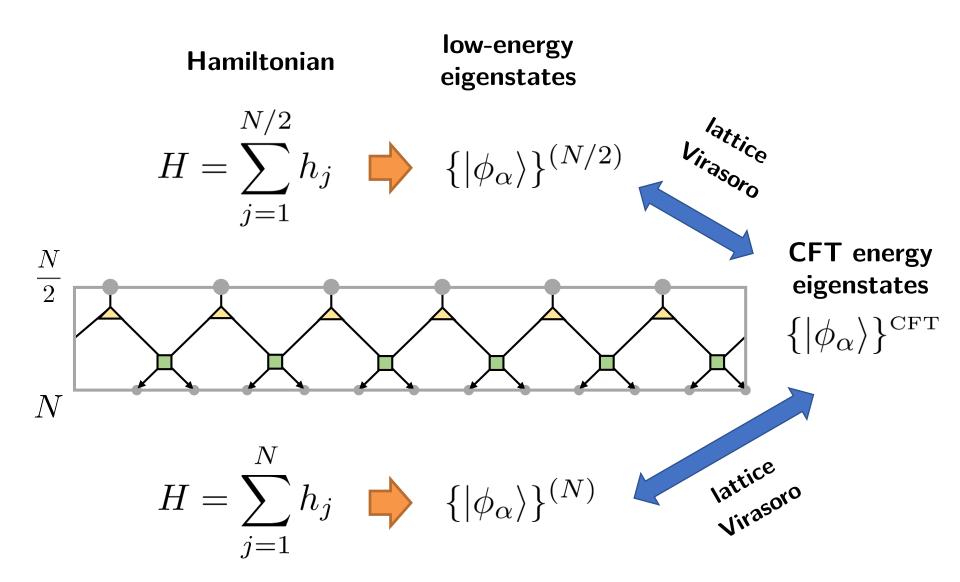


$$\tau \rightarrow \tau + \delta$$
 (time) translation



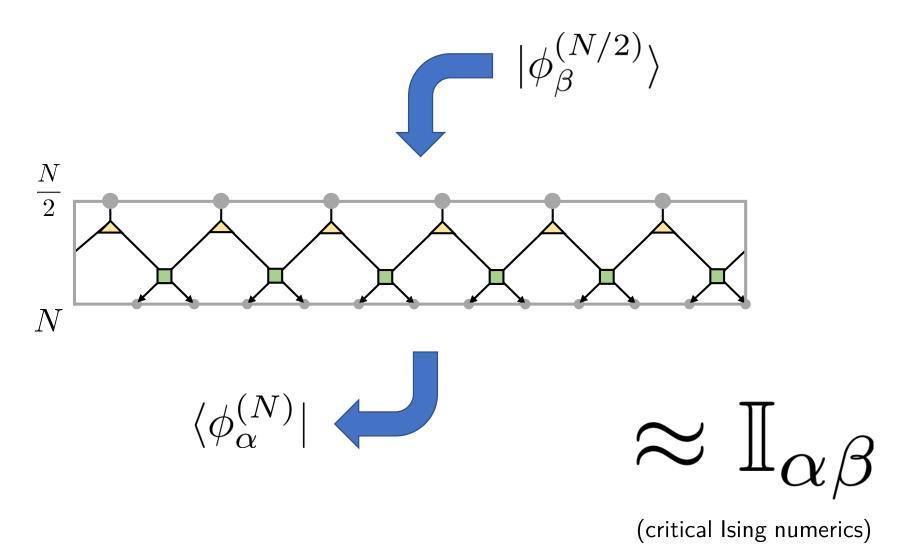
$$x \to x + sx$$
 dilation



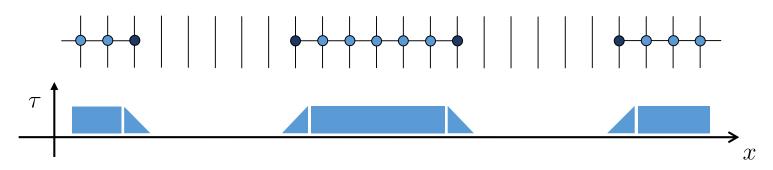


(fix relative phases using lattice Virasoro / primary operators)

#### matrix elements in low-energy subspace



**AM** & G. Vidal, arXiv: 1812.00529 (2018)

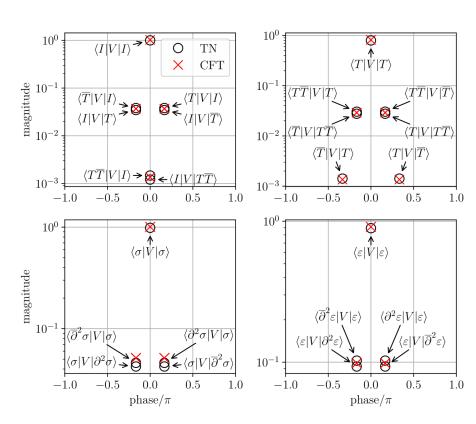


#### local euclidean evolution (translation)

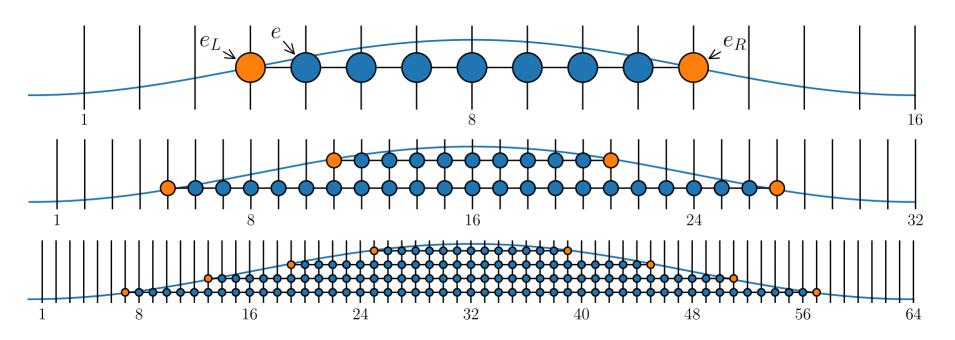
#### compare with:

$$\exp\left(-\frac{2\pi}{N}\sum_{n=-N/2}^{N/2}a_n(L_n+\overline{L}_{-n})\right)$$

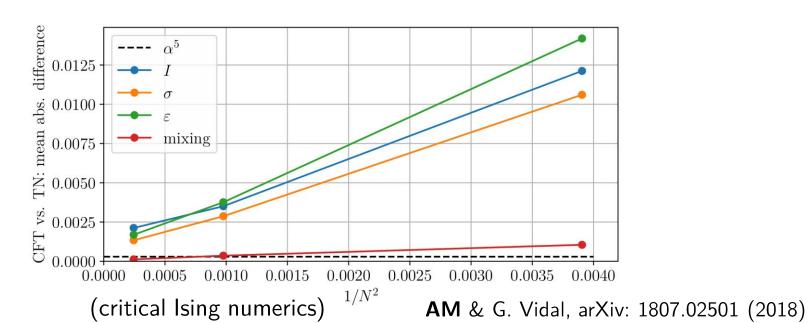
$$a_n = \frac{1}{4}\operatorname{sinc}\left(\frac{n}{4}\right)\operatorname{sinc}\left(\frac{n}{N}\right)\left(1 + e^{in\pi}\right)$$

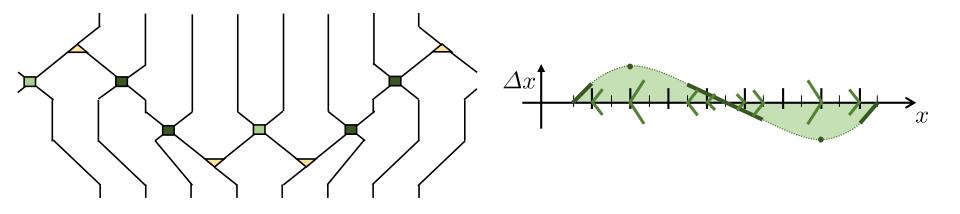


(critical Ising numerics)



refinement of nonuniform Euclidean evolution



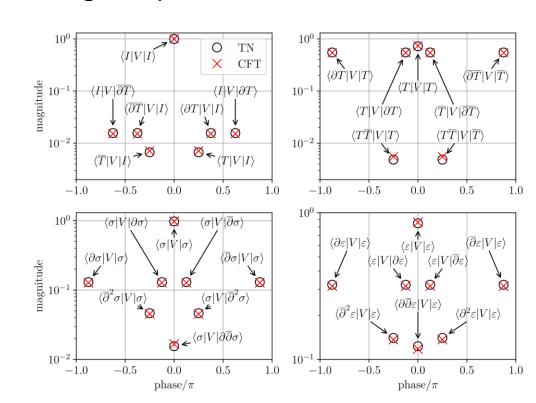


#### local rescaling of space

#### compare with:

$$\exp\left(-i\frac{2\pi}{N}\sum_{n}b_{n}P_{n}\right)$$

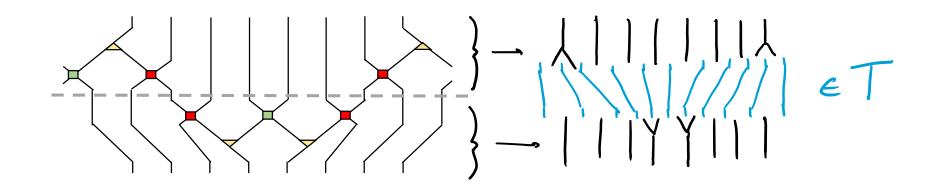
 $b_1 = 0.5, \quad b_3 = 0.0275,$ otherwise  $b_n = 0$ 



**AM** & G. Vidal, arXiv: 1805.12524 (2018)

(critical Ising numerics)

#### connection to Thompson's group(s)



#### unitary representation?



variational critical Ising MERA fulfills these approximately

(numerically) exact non-tree solutions exist

#### summary

We show how "lattice Virasoro generators" can be used to...

- 1. ...systematically identify low-energy eigenstates of critical spin chains with energy eigenstates in the CFT,
- 2. find "lattice primary field operators" that approximately obey the correct operator algebra,
- 3. identify emergent conformal transformations in Tensor Networks (e.g. MERA) that describe critical systems.

"detailed emergence of conformal symmetry in lattice systems"

#### extension to richer symmetry

we assumed only conformal symmetry:

$$[L_n^{CFT}, L_m^{CFT}] = (n-m)L_{n+m}^{CFT} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$

if there is **more** symmetry (e.g. SUSY, U(1), SU(N)...), we can extract even more data!