Completrous of n-ratJ etc.

completions of n-categories, Ostriti's tho for n-cats, SETS
(joint with Scott Morrison)

Out line:
0 review definition of completion
1 Some properties of the completion
$\left(2\right.$ regular representation $C \rightarrow R_{e p}(c)$
(3) TQFTs with defects
(4) Proof of Ostrik the for n-categories

5 (5) other stuff, us time permits
(0) Recall def'n of completion

C: pivotal n-category
\bar{C} : completion of C
$\bar{C}^{0}=\{$ ways of uniformly labeling stratification, so that evaluation of u-dimil diagrams is the same for all full stratification 3
(0) Recall def'n of completion
C : pivotal n-category
\bar{C} : completion of C
$\bar{C}^{0}=\{$ ways of uniformly labeling stratificuto so that evaluation of u-dimil diagrams is the same for all full stratification 3

$$
\overline{C^{0}} \ni \bar{a}=\left(a_{0}, a_{1}, \ldots a_{n}, b_{0}, \cdots, b_{n-1}\right)
$$

Generalized idempotent condition:

Generalized idempotent condition:

$\bar{C}^{1}\left(\bar{a} \mid \bar{q}^{\prime}\right)=\{$ ways of uniformly labeling stratifications
of \bar{a} as so that evaluations of fall diargams are all equal $\}$

$$
\bar{x}: \bar{q} \rightarrow \bar{q}^{\prime} \quad \bar{x}=\left(x_{1}, x_{2}, \cdots\right)
$$

- for $n=1$, we can renormalize to eliminate bubble factors (0), and the completion is the usual idempotent completion

$$
\underset{a_{1} a_{1}}{0}=\stackrel{0}{a_{1}}
$$

- for $n=1$, we can renormalize to eliminate bubble factors ($)$, and the completion is the usual idempotent completion

- for $n=2$, we can again renormalize to eliminate bubble factors, and the completion is the familiar 2-category:

$$
\begin{aligned}
& \text { familiar 2-category: } \\
& {\left[\begin{array} { l }
{ 0 \text { - special frow, alg. objects is } C } \\
{ 1 \text { -bimodule objects in } C } \\
{ 2 \text { -intertwines } }
\end{array} \left\{\begin{array}{l}
X= \\
b=\phi
\end{array}\right.\right.}
\end{aligned}
$$

- for $n \geq 3$, not possible to eliminate babble factors

More examples:
If C is a braided category $(n=3)$, then \bar{C}^{0} contains $\{$ commutative alg. objects in $C\}$ $\bar{C}^{\prime}(* \rightarrow *)$ contains \{associative alg. objects in C\} ~
If $C=G_{(n)} \cong \pi_{n}(B G) \quad(G$: finite group),
then \bar{C}^{0} contains $\{(H, \omega) \mid$ w an u-cocycle on $H\}$ $H \subset G$

* But above lists are far from exaastive:

$$
\overline{V e c}(3){ }^{\circ} \supset\{\text { fusion categories }\}
$$

(1) Properties of the completion
(9) $C \underset{\substack{\xi \\ n-M_{\text {orith }}}}{\sim}(\Rightarrow$ Cand \bar{C} lead to
isomorphic TQ\&Ts, hamil tonians, etc.).
(b) $C \underset{\substack{\hat{\pi} \\ \text { morita }}}{\approx} D \bar{C} \underset{\substack{\uparrow \\ \text { functor }}}{\approx \bar{D}}$
(1) Properties of the completion
(9) $C \underset{\substack{3 \\ \text { n-Morith }}}{\sim}(\Rightarrow C$ and \bar{C} lead to
isomorphic $T Q \in T_{s}$, hamal Ionians, etc.)
(b) $C \underset{\substack{\lambda \\ \text { morita }}}{\approx D} \bar{C} \underset{\substack{\uparrow \\ \text { functor }}}{\approx \bar{D}}$
(c) In semi-simple case,
$\bar{C}^{0} \longleftrightarrow$ C-modules (ie Sapped boundaries for C)
More generally,

$$
\bar{C} \xlongequal[f_{\text {functor }}]{\cong} R_{\text {ep }}(C)
$$

(d) Equivariantization arises naturally from the completion $\bar{G}_{(n)}$
Deequivariantiztion arises naturally from the completion $\operatorname{Rep}(G)_{(n)}$
(More generally, get twisted [de] equivariantizations)
(e) $\overline{V e c_{(n+1)}} \sim g$ state sum models for

$$
(n+1) \text {-dim'l TQfTs (eg. Turaev-Viro sum) }
$$

(2) The regular representation (s)

Let $x \in C^{0}$. We want to construct a C-module (ie. functor from C to [(n-1)-cats, functors, nat. trans,]) Algebraically,

$$
\begin{aligned}
y \in C^{0} & \longmapsto(n-1)-c a t \operatorname{mor}_{c}(x \rightarrow y) \\
\left(e: y \rightarrow y^{\prime}\right) \in c^{\prime} & \longmapsto \text { functor } \operatorname{mor}(x \rightarrow y) \rightarrow \operatorname{mor}\left(x \rightarrow y^{\prime}\right) \\
\alpha & \longmapsto \alpha \cdot e
\end{aligned}
$$

(and so on)

In terms of string diagrams, the above C-module corresponds to a "smooth" boundary condition labeled by x :

boundary balk
Continuing in this way, we get a functor

$$
C \rightarrow[C \text {-modules, } \underbrace{C \text {-module-bimodules, }]}]=R_{\varphi p}(C)
$$

Since \bar{C} is Morita equivalent to C, we have the composite map

$$
\bar{C}^{0} \underset{\substack{\text { regular rept }}}{\longrightarrow} \operatorname{Rep}(\bar{C})^{0} \xrightarrow[\substack{r \\ \text { restriction }}]{\rightarrow} R_{\text {ep }}(C)^{0}
$$

* The above map is the easy half of the n-Ostrik tho. We want an inverse to this map
$n=1$ example: minimal idempotent in $\mathbb{C}[G] \mapsto$ irrap, of G $n=2$ example: alg, object A in Q-cat C

$$
\mapsto C \text {-module } \quad A \text {-mod }
$$

(3) TQFTs with defects

Thm $n+\varepsilon$: from any pivotal u-cat, we can construct an $(n+\varepsilon)$-dim'l TQfT.
Proof: String diagrams.
(3) TQfTs with defects

Tum $n+\varepsilon$: from any pivotal $u-c a t$, we can construct an $(n+\varepsilon)$-dim'l $T Q f T$.
proof: String diagrams.
Tho $n+1$: Let C be a pivotal n-cat and let $z: C\left(S^{n}\right) \rightarrow \mathbb{C}$ be sack that the induced inner products on $C\left(B^{\prime \prime} ; s\right)$ are positive definite for all ∂-conditions $s \in C\left(S^{n-1}\right)$.
The $\exists!(n+1)$-dim'l TQFT with $Z\left(B^{n+1}\right)=z$.
Proof: Induct on handle index.
Def' $n: C$ is semisimple if it sat is ties above Mupotherese.

The $n+1 w /$ defects. Let C and D be semisimple pivotaln-cats (as above). Let M be a $C-D$ bimodule. Suppose $\exists y: M[$ such that the
induced inner products on $M\left[\begin{array}{c}S^{n} \\ M^{n}\end{array}, S\right]$ are positive-definity for all d-conditions S. The there $\exists!$ TQfT-with-defects

Proof: Induct on index of defect-handles.

We are interested in the case $D=$ trio, M: C-module.

$$
\begin{aligned}
& z(\omega) \in A(\partial \omega) \\
& \left.z\left(W_{\omega}^{\lambda} \omega\right)\right) \in A\binom{0}{0}
\end{aligned}
$$

We are interested in the case $D=$ trio, M: C-module.

$$
\begin{aligned}
& z(\omega) \in A(\partial \omega)
\end{aligned}
$$

$$
\begin{aligned}
& \partial W=M_{1} \cup M_{2} \\
& c \in A\left(m_{l}\right) \\
& z\left(w_{i} c\right) \in A\left(M_{2}\right)
\end{aligned}
$$

(4) Proof of n-Ostrik thm

$$
1,1,1, x, \ldots
$$

$$
1,1, \lambda, x, \cdots \cdots
$$

θ

(Alternative definition: $n-a l y=$ maximally useless
lego blocks $)$

What we wart:

$$
y=j+
$$

What we have:

IDEA:

SET classification (?)
$S E T \longleftrightarrow$ sapped boundary for $G_{(n)}$
~ Deft $\longleftrightarrow n$-alg object in $G_{(n)}$
n-0strik the
n=2: $\sum_{\text {pail of them }}^{\operatorname{pairs}(H, w),} H \subset G, \omega \in H^{2}(H, \cup(1))$
$n \geqslant 3$: pairs $(H, \omega), \quad H C G, \quad \omega \in H^{n}(H, U(1))$
NOT all of them, even when $G \cong$ trio
A semísimple 1-cats: Θ riv
NOT true for $(n \geq 2)$-cats

