Hopf Monads and Generalized Symmetries of Fusion Categories

Modjtaba Shokrian Zini, Joint with Zhenghan Wang, Shawn X. Cui

Outline

- From Algebra to Monads and T-Module Category
- Bimonads: a Monoidal T-Module Category
- Hopf Monads (HM): a Fusion T-Module Category
- Diagrammatic Formulation
- Examples of HM
- Condensable Algebras and Condensation
- Generalized Symmetry and Extension Theory

From Algebra to Monads and T-Module Category Algebra \mathcal{A} in a monoidal category \mathcal{C} :

object $\mathcal{A} \in \mathcal{C}$ with $\mu: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}, \eta: 1 \to \mathcal{A}$

 μ (multiplication) , η (unit) both are \mathcal{A} -linear:

associativity: $\mu(\mu \otimes Id_{\mathcal{A}}) = \mu(Id_{\mathcal{A}} \otimes \mu)$ \mathcal{A} -linearity of unit: $\mu(\eta \otimes Id_{\mathcal{A}}) = Id_{\mathcal{A}} = \mu(Id_{\mathcal{A}} \otimes \eta)$

• Generalization: Consider (action of \mathcal{A}) $\mathcal{A} \otimes -$ instead of the object \mathcal{A} . The endomorphism $T(X) = \mathcal{A} \otimes X$: $\mathcal{C} \to \mathcal{C}$ has two associated natural transformations

 $\mu: T^2 \to T, \eta: Id_{\mathcal{C}} \to T$ satisfying

 $\mu_X \mu_{T(X)} = \mu_X T(\mu_X), \ \mu_X \eta_{T(X)} = Id_{T(X)} = \mu_X T(\eta_X)$ $T \in End(\mathcal{C})$ is a *monad* and can be defined on any category. T -module category \mathcal{C}^T has objects

 $\{(M,r)|M \in \mathcal{C}, r \in Hom_{\mathcal{C}}(T(M),M): T(M) \to M\}$ such that r is T -linear: $rT(r) = r\mu_M$

$$r\eta_M = id_M \colon M \to T(M) \to M$$

Bimonads: a Monoidal T-Module Category

• Bialgebra \mathcal{A} :

$$\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}, \ \epsilon: \mathcal{A} \to 1$$

satisfying co-linearity, but also compatibility with algebra structure, which requires a braiding structure τ on C:

$$(\mu \otimes \mu) (Id_{\mathcal{A}} \otimes \tau_{A,A} \otimes Id_{\mathcal{A}}) (\Delta \otimes \Delta) = \Delta \mu$$

loosely speaking braiding is needed to exchange y, z in $(x \otimes y)$. $(z \otimes t) = (xz) \otimes (yt)$ before a "component-wise" multiplication.

• Generalize by requiring T to be *comonoidal* :

counit: $T_0: T(1) \rightarrow 1$,

coproduct (comonoidal map), $T_2(X,Y): T(X \otimes Y) \to T(X) \otimes T(Y)$

satisfying colinearity. T_2 for $T = \mathcal{A} \otimes -is (Id_{\mathcal{A}} \otimes \tau_{A,A} \otimes Id_{\mathcal{A}})(\Delta \otimes \Delta)$.

Compatibility with η and μ (have to be comonoidal):

$$T_2(X,Y)\mu_{X\otimes Y} = (\mu_X \otimes \mu_Y)T_2(T(X),T(Y))T(T_2(X,Y));$$

$$T_0\mu_1 = T_0T(T_0);$$

$$T_2(X,Y)\eta_{X\otimes Y} = (\eta_X \otimes \eta_Y);$$

$$T_0\eta_1 = \mathrm{id}_1.$$

• **Bimonad** T is a monad on a monoidal \mathcal{C} with above structural identities.

Another point of view: Given monad T, when does the monoidal structure of C lift to a monoidal structure on C^T ?

Answer (Moerdijk, 2002): Whenever *T* is a bimonad

 $(M,r) \otimes (N,s) = (M \otimes N, (r \otimes s)T_2(M,N))$

Hopf Monads (HM): Towards a Fusion T-Module Category

Hopf algebra \mathcal{A} has an antipode $S: \mathcal{A} \to \mathcal{A}, S^2 = Id_{\mathcal{A}}$ such that:

 $\mu(S \otimes Id_{\mathcal{A}})\Delta = \eta\epsilon = \mu(Id_{\mathcal{A}} \otimes S)\Delta$

We could start with a (left/right) rigid category C, and define (left/right) antipode satisfying certain equations.

 $s^{l} = \{s^{l}_{X} \colon T(^{\vee}T(X)) \to {}^{\vee}X\}_{X \in \operatorname{Ob}(\mathcal{C})}$

Or we could try to generalize definition of Hopf algebra given by the Fusion operator. Then:

C only needs to be monoidal!

• Diagrams:

$$\mu_X = \bigwedge_{A \to X}^A \bigwedge_X^X, \quad \eta_X = \bigwedge_X^A \bigwedge_X^X, \quad (A \otimes ?)_2(X, Y) = \bigvee_{A \to X}^A \bigwedge_Y^Y, \quad (A \otimes ?)_0 = \bigcap_A^Q.$$

• Define fusion operators (left) $H_{X,Y}^l$ and (right) $H_{X,Y}^r$:

$$H_{X,Y}^{l} = \bigvee_{A \ X \ A \ Y}^{A \ X \ A \ Y} \text{ and } H_{X,Y}^{r} = \bigvee_{A \ A \ X \ Y}^{A \ X \ A \ Y} \left| .$$

They only need to be invertible, and in that antipodes appear:

$$S = \bigoplus_{A}^{A}, \quad S^{-1} = \bigoplus_{A}^{A}, \quad H_{X,Y}^{l^{-1}} = \bigcup_{A \times A \times Y}^{A \times A \times Y} \text{ and } H_{X,Y}^{r^{-1}} = \bigcup_{A \times A \times Y}^{A \times A \times Y}.$$

2.6. **Fusion operators.** Let T be a bimonad on a monoidal category C. The *left* fusion operator of T is the natural transformation $H^l: T(1_{\mathcal{C}} \otimes T) \to T \otimes T$ defined by:

$$H^l_{X,Y} = (TX \otimes \mu_Y)T_2(X,TY) \colon T(X \otimes TY) \to TX \otimes TY.$$

The right fusion operator of T is the natural transformation $H^r: T(T \otimes 1_{\mathcal{C}}) \to T \otimes T$ defined by:

 $H^r_{X,Y} = (\mu_X \otimes TY)T_2(TX,Y) \colon T(TX \otimes Y) \to TX \otimes TY.$

(left/right) fusion operator invertible \rightarrow (left/right) *Hopf monad*.

- Will always assume a left and right Hopf monad.
- Another point of view: For a bimonad T, how do we get C^T to be rigid assuming C is rigid ?

Answer: if and only if *T* is a Hopf monad. Then:

 ${}^{\vee}\!(M,r)=({}^{\vee}\!M,s^l_MT({}^{\vee}\!r))\quad\text{and}\quad(M,r){}^{\vee}=(M^{\vee},s^r_MT(r^{\vee})).$

More precisely, let T be an endofunctor of a monoidal category C endowed with a natural transformation $H_{X,Y}: T(X \otimes TY) \to TX \otimes TY$ satisfying the left pentagon equation:

$$(TX \otimes H_{Y,Z})H_{X,Y \otimes TZ} = (H_{X,Y} \otimes TZ)H_{X \otimes TY,Z}T(X \otimes H_{Y,Z}),$$

and with a morphism $T_0: T\mathbb{1} \to \mathbb{1}$ and a natural transformation $\eta_X: X \to TX$ satisfying:

$$\begin{aligned} H_{X,Y}\eta_{X\otimes TY} &= \eta_X \otimes TY, \\ (TX\otimes T_0)H_{X,1} &= T(X\otimes T_0), \end{aligned} \qquad \begin{array}{l} T_0\eta_1 &= \mathrm{id}_1, \\ (T_0\otimes TX)H_{1,X}T(\eta_X) &= \mathrm{id}_{TX}. \end{aligned}$$

Then T admits a unique bimonad structure (T, μ, η, T_2, T_0) having left fusion operator H. The product μ and comonoidal structural morphism T_2 are given by:

$$\mu_X = (T_0 \otimes TX)H_{1,X}$$
 and $T_2(X,Y) = H_{X,Y}T(X \otimes \eta_Y).$

A tuple (T, H, T_0, η) is all you need to define a HM. When H is invertible, T is called a *left HM*.

There is a lot more; e.g.

(Maschke's Criterion of semisimplicity) TFAE for a HM T:

- *T* admits a *cointegral* (*a notion of bimonads*)
- *T* is separable (a notion of monads)
- *T* is semisimple (a notion of monads)

Also, if T is an additive monad and C is abelian semisimple, then

 \mathcal{C}^T is abelian semisimple if and only if T is semisimple.

We will always assume \mathcal{C} is fusion, T is linear semisimple HM. So,

 \mathcal{C}^T is a fusion category (and T is separable with a cointegral.)

Other parts of the theory of Hopf algebras can be generalized as well:

- Decomposition Theorem of (left,right) Hopf modules
- Integrals
- Sovereign and involutory HM
- Quasitriangular and ribbon HM

For more see:

- Bruguieres, Alain, and Alexis Virelizier. "Hopf monads." *Advances in Mathematics* 215.2 (2007): 679-733.
- Bruguieres, Alain, Steve Lack, and Alexis Virelizier. "Hopf monads on monoidal categories." *Advances in Mathematics* 227.2 (2011): 745-800.

Diagrammatic Formulation

- The theory as explained was the *strictified* version. To do computations, we need a *skeletal* formulation. So associators are no longer trivial but can work with a unique object from isomorphism classes.
- Diagrams make calculations easier and more intuitive!

4.1. **Diagrammatic Notations.** Let C be a fusion category and $L(C) = \{a, b, c, \dots\}$ be a complete set of representatives, i.e., a set that contains a representative for each isomorphism class of simple objects of C. Let N_{ab}^c be the fusion coefficients,

$$a \otimes b \simeq \bigoplus_{c \in \mathcal{L}(\mathcal{C})} N_{ab}^c c.$$

For each $b \in L(\mathcal{C})$,

(5)
$$T(b) = \bigoplus_{a \in L(\mathcal{D})} T_{ab} a, \quad T_{ab} \in \mathbb{N}.$$

For each $a, b \in L(C)$, there exists a natural isomorphism,

(6)
$$T_2(a,b): T(a) \otimes T(b) \xrightarrow{\simeq} T(a \otimes b).$$

The isomorphism $T_2(a, b)$ determines a family of invertible matrices $\{T_c^{ab} : a, b \in L(\mathcal{C}), c \in L(\mathcal{D})\}$, where the matrix elements of T_c^{ab} are given by (7) $\{T_{c;(f\gamma),(d\alpha;e\beta)}^{ab} : f \in L(\mathcal{C}), d, e \in L(\mathcal{D}), 1 \le \alpha \le T_{da}, 1 \le \beta \le T_{eb}, 1 \le \gamma \le T_{cf}\}$. • Basic diagrams:

Associator

FIGURE 1. (I) \otimes ; (II) $Id_{\mathcal{C}}$; (III) T; (IV) $T \circ \otimes \circ (Id \times T)$; (V) $\otimes \circ (T \times T)$.

FIGURE 3. (Left) the associator natural isomorphism; (Right) the matrix elements of the associator natural isomorphism in the basis given by labels of internal edges.

FIGURE 4. The matrix elements of T_c^{ab} .

Co-associativity:

FIGURE 5. The hexagon equation for T_2 .

Pentagon equation becomes Heptagon equation as associator is no longer trivial:

Heptagon Equation⁵,

 $(id_{T(X)} \otimes H_{Y,Z})H_{X,Y \otimes Z} =$

(2) $a_{T(X),T(Y),T(Z)}(H_{X,Y} \otimes T(Z))H_{X \otimes T(Y),Z}a_{X,T(Y),T(Z)}^{-1}T(id_X \otimes H_{Y,Z})$

FIGURE 10. Heptagon equation for H

Can also write all equations explicitly. A left HM is a collection of data $\{T_{ab}, H^{ab}_{c;(f\gamma;g\theta),(d\alpha;e\beta)}, \epsilon_{\alpha}, \eta_{a,\alpha}\}$ satisfying:

$$\begin{split} &\sum_{\theta} H^{af}_{d;(g'\beta';h'\theta),(g\beta;h\gamma)} H^{bc}_{h';(e'\alpha';f'\gamma'),(e\alpha;fw)} \\ &\sum_{\tilde{e},\tilde{f},\tilde{g},\hat{f}\tilde{\alpha},\tilde{\beta},\hat{\beta}} H^{bc}_{g;(\tilde{e}\tilde{\alpha};\tilde{f}\tilde{\beta}),(e\alpha;f\beta)} \left(F^{a\tilde{e}\tilde{f}}_{h}\right)^{-1}_{\tilde{g}g} H^{\tilde{g}c}_{d;(\hat{f}\tilde{\beta};f'\gamma'),(\tilde{f}\tilde{\beta};h\gamma)} H^{ab}_{\hat{f};(g'\beta';e'\alpha'),(\tilde{e}\tilde{\alpha};\tilde{g}\hat{\beta})} F^{g'e'f'}_{d;h'\hat{f}} \end{split}$$

$$\begin{split} \sum_{\beta} \eta_{c,\beta} \ H^{ab}_{c;(e\gamma;f\theta),(d\alpha;c\beta)} &= \delta_{f,d} \delta_{e,a} \delta_{\theta,\alpha} \eta_{a,\gamma}, & \sum_{\alpha} \eta_{\mathbf{1},\alpha} \ \epsilon_{\alpha} &= 1, \\ \sum_{\theta} H^{a\mathbf{1}}_{b;(b\gamma;\mathbf{1}\theta),(c\alpha;d\beta)} \ \epsilon_{\theta} &= \delta_{c,\mathbf{1}} \delta_{d,a} \delta_{\gamma,\beta} \epsilon_{\alpha}, & \sum_{\beta,\gamma} H^{\mathbf{1}a}_{b;(\mathbf{1}\gamma;b\theta),(a\beta;a\alpha)} \ \eta_{a\beta} \ \epsilon_{\gamma} &= \delta_{\theta,\alpha}. \end{split}$$

$$\sum_{f,g\in L} T_{fa}T_{gb}N_{fg}^c = \sum_{d,e\in L} T_{db}T_{ce}N_{ad}^e.$$

Examples of HM:

- Hopf algebras: $\mathcal{A} \otimes -$, or $\otimes \mathcal{A}$, both are left and right HM due to braiding.
- Adjunctions: \mathcal{C}, \mathcal{D} monoidal and $U: \mathcal{D} \to \mathcal{C}$ a *strong monoidal* functor $U_2(X, Y): U(X) \otimes U(Y) \to U(X \otimes Y), U_0: 1 \to U(1)$

both isomorphisms, with a left adjoint $F: \mathcal{C} \to \mathcal{D}$. Then

T = UF is always a bimonad and fusion operators H^l , H^r can be defined. Then

T is a left/right HM if H^l/H^r is invertible.

Also:

T = UF is a (left/right) HM when C is (left/right) rigid.

Adjunctions " \cong " HM

• When \mathcal{C}, \mathcal{D} are fusion, then TFAE:

Existence of left adjoint <-> Existence of right adjoint <-> right exact <-> left exact

- Therefore, for an adjunction to give a HM, all we need is a strong monoidal functor which is left exact; *tensor functors U*.
- If so, F exists and T = UF is HM.
- Further, $\mathcal{D} \cong \mathcal{C}^T$ ((U, F) pair is *monadic*).
- It goes both ways: a HM T, the forgetful functor $\mathcal{C}^T \to \mathcal{C}$ given by

$$U_T\colon (M,r)\to M$$

is a tensor functor (Alain Bruguieres, Sonia Natale, 2010), with left adjoint

$$F_T: M \to (T(M), \mu_M) \Rightarrow T = U_T F_T.$$

Group Symmetries

Definition 4.17. An action of a group G on a tensor category C (by tensor autoequivalences) is a strong monoidal functor

$$(4.1) \qquad \qquad \rho: \underline{G} \to \underline{\mathrm{End}}_{\otimes} \mathcal{C}.$$

In other words, it consists in the following data:

- (1) For each $g \in G$, a tensor endofunctor $\rho^g : \mathcal{C} \to \mathcal{C}$;
- (2) For each pair $g, h \in G$, a monoidal isomorphism $\rho_2^{g,h} : \rho^g \rho^h \xrightarrow{\sim} \rho^{gh}$;
- (3) A monoidal isomorphism $\rho_0 : \operatorname{id}_{\mathcal{C}} \xrightarrow{\sim} \rho^1$;

Examples are many:

- *Vec* with trivial *G* symmetry
- $\mathcal{D}(\mathbb{Z}_N)$ with \mathbb{Z}_2 symmetry $(a_1, a_2) \rightarrow (a_2, a_1)$
- $G < S_n$ symmetry on $\mathcal{C} \boxtimes \mathcal{C} \boxtimes \cdots \boxtimes \mathcal{C}$.
- 3-fermion model $SO(8)_1 = \{1, \psi_1, \psi_2, \psi_3\}$ with S_3 symmetry

• We have

Theorem 4.21. Let C be a tensor category over a field \Bbbk , and let ρ be an action of a finite group G on C by tensor autoequivalences. Then:

(1) The k-linear exact endofunctor

$$\mathbb{T}^{\rho} = \bigoplus_{g \in G} \rho^g$$

admits a canonical structure of Hopf monad on C; (2) There is a canonical isomorphism of categories:

 $\mathcal{C}^G \simeq \mathcal{C}^{\mathbb{T}^{\rho}}$

over \mathcal{C} , where \mathcal{C}^G denotes the equivariantization of \mathcal{C} under G;

- The structural morphisms are derived similar to Hopf Algebra structure on $\mathbb{C}[G]$.
- This makes sense as T modules are like *fixed* points of T. Hence equivariantization can be generalized as the process of taking T modules.

Condensable Algebras & Condensation

In a modular tensor category \mathcal{B} , an algebra \mathcal{A} which is :

- Commutative: $\mu \tau_{A,A} = \mu$
- Connected: $Hom(1, \mathcal{A}) = \mathbb{C}$.
- Separable: μ admits a splitting $\zeta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, a morphism of $(\mathcal{A}, \mathcal{A})$ —bimodules:

 $(\mu \otimes Id_{\mathcal{A}})(Id_{\mathcal{A}} \otimes \zeta) = (Id_{\mathcal{A}} \otimes \mu)(\zeta \otimes Id_{\mathcal{A}}), \mu\zeta = Id_{\mathcal{A}}$

Take \mathcal{A} –module $\mathcal{B}_{\mathcal{A}}$. There exist:

Condensation (Induction) functor $D_{\mathcal{A}}: \mathcal{B} \to \mathcal{B}_{\mathcal{A}}$, a tensor functor Forgetful functor $E_{\mathcal{A}}: \mathcal{B}_{\mathcal{A}} \to \mathcal{B}$, the adjoint

Hence, $T_{\mathcal{A}} = D_{\mathcal{A}} E_{\mathcal{A}}$ is a HM and $\mathcal{B} \cong \mathcal{B}_{\mathcal{A}}^{T_{\mathcal{A}}}$.

Condensation Example

To derive the condensation $\mathcal{B}_{\mathcal{A}}$:

- $Ob(\mathcal{B}_{\mathcal{A}}) = Ob(\mathcal{B})$
- Frobenius reciprocity: $\operatorname{Hom}_{\mathcal{B}}(X, \mathcal{A} \otimes Y) = \operatorname{Hom}_{\mathcal{B}_{\mathcal{A}}}(X, Y)$.

5.2.2. $D(S_3)$. Consider the case $\mathcal{B} = D(S_3)$ and the condensable algebra $\mathcal{A} = A + C$. The objects are denoted by $\{A, B, C, D, E, F, G, H\}$ where $\{A, B, C\}$ is the canonical image of Rep (S_3) in $D(S_3)$. By using the framework in 3.2.4, one derives the condensed category $\mathcal{B}_{\mathcal{A}} = D(\mathbb{Z}_2) \oplus \{X, Y\}$ with the following fusion rules for X, Y^6 :

(27)

$$mX = Y, mY = X, \psi Y = X, \psi X = Y, eY = Y,$$

 $X^2 = \mathbf{1} + e + Y, XY = m + \psi + X, Y^2 = \mathbf{1} + e + Y,$

• One can derive the induction and forgetful functors:

(28)

$$E_{\mathcal{A}}: \mathbf{1} \to A + C, e \to B + C, m \to D, \psi \to E, X \to D + E, Y \to F + G + H,$$
(29)

$$D_{\mathcal{A}}: A \to \mathbf{1}, B \to e, C \to \mathbf{1} + e, D \to m + X, E \to \psi + X, F, G, H \to Y.$$
C. Delaney

Then $T_{\mathcal{A}} = D_{\mathcal{A}} E_{\mathcal{A}}$ is $(2 + e) \otimes -$ on objects 1, e, Y and $(1 + Y) \otimes -$ on objects m, ψ, X .

- Observation: If we replace $Y \rightarrow 1 + e$, and $X \rightarrow m + \psi$, fusion rules still hold.
- Also, $\{X, Y\}$ would be all irreducible modules of algebra 1 + e and as $\mathcal{D}(\mathbb{Z}_2)$ is module category of algebra 1, so $\mathcal{B}_{\mathcal{A}} = (2 + e)$ -modules.
- In fact, the algebra $1 \oplus (1 + e)$ has a (*unique*) Hopf algebra structure:

The algebra structure is a \mathbb{Z}_2 –graded algebra $\mathbb{C}[x,y]/\langle x^2 - x, y^2 - x, xy - y \rangle$, where 1, x have grade 0 (corresponding to two dimensional v.s. \mathbb{C}^2 of 1) and y has grade one (corresponding to one dimensional v.s. \mathbb{C} of e).

$$\begin{split} \Delta(x) &= 1 \otimes x + x \otimes 1 - \frac{3}{2}x \otimes x + \frac{1}{2}y \otimes y, \\ \Delta(y) &= 1 \otimes y - \frac{3}{2}x \otimes y + y \otimes 1 - \frac{3}{2}y \otimes x. \\ \epsilon(x) &= \epsilon(y) = 0. \\ S(x) &= x, \qquad S(y) = -y. \end{split}$$

And so $\mathcal{H} = \{1 - x\} \bigoplus \{x, y\}$ is a \mathbb{Z}_2 -graded hopf algebra. Its modules in $Vec_{\mathbb{Z}_2}$ is $Rep(S_3)$. Its modules in $\mathcal{D}(\mathbb{Z}_2)$ is $\mathcal{D}(\mathbb{Z}_2) \bigoplus \{X, Y\}$.

Classification of Hopf Algebras is a big problem, even in Vec.

Conjecture 5.1. In $Vec_{\mathbb{Z}_p}$, the algebra $1 \oplus Vec_{\mathbb{Z}_p}$ admits a categorical Hopf algebra structure whose representation category is the near group category given by $G = \mathbb{Z}_p$ and multiplicity m = |G| - 1, if and only if $p = q^m - 1$ for some prime q.

• Think of the previous example as an extension and then an equivariantization (:= HM gauging) given by taking modules of the Hopf monad $T = (2 + e) \otimes -$ on $\mathcal{D}(\mathbb{Z}_2)$:

 $\mathcal{D}(\mathbb{Z}_2) \to \mathcal{D}(\mathbb{Z}_2) \bigoplus \{X, Y\} \to \mathcal{D}(S_3)$

Example of HA symmetry with nontrivial extension: $T_{\mathcal{A}}$ is $(2 + e) \otimes -$ on objects 1, e, Y and $(1 + Y) \otimes -$ on objects m, ψ, X .

In general, condensed $\mathcal{B}_{\mathcal{A}} = (deconfined) \oplus (confined)$ and the deconfined part (here is $\mathcal{D}(\mathbb{Z}_2)$) to which $T_{\mathcal{A}}$ should be restricted (by the substitution Y = 1 + e). It should give a (special) case of HM gauging

$$(deconfined) \to \mathcal{B}_{\mathcal{A}} \to \mathcal{B}$$

 Condensable algebras behave like "normal subgroups" for modular categories.

Generalized Symmetry & Extension Theory

- Notice by adjunction, any tensor functor $U: \mathcal{D} \to \mathcal{C}$, gives a HM. Define a category symmetry of fusion \mathcal{C} as a pair (U, \mathcal{D}) .
- To generalize symmetries, first look examples we have from HM point of view: Group symmetry: gauging starts with an action $\rho : \underline{G} \to \underline{\operatorname{Aut}}_{\otimes} \mathcal{C}$ Then a G -graded $\mathcal{C}_{G}^{\times} = \bigoplus_{g} \mathcal{C}_{g}$ extension of $\mathcal{C}(=\mathcal{C}_{e})$ is derived. HA symmetry (condensation $\mathcal{D}(S_{3})$): grading is given by how the HA breaks into irreducible algebras: $1 \oplus 1 + e$.
- In general what is the grading for $\mathcal{C}_T^{\times} = \bigoplus_i \mathcal{C}_{m_i}$?

In fact T itself seems to be graded in both cases:

$$T = \bigoplus_{g} \rho(g), T = \bigoplus_{i} (m_i \otimes -)$$

Same answer for both:

 m_i is the irreducible coalgebra *decomposition* of coalgebra $(T(1), T_2(1,1), T_0)$ as it acts on itself.

Groups: $T^G(1) = \mathbb{C}[G]$. 1 with $T_2(1,1)(1_g) = 1_g \otimes 1_g$, so coalgebra decomposition is $T(1) = \bigoplus 1_g$.

HA: $T(1) = \mathcal{A}$ which breaks into its coalgebra decomposition.

• Observation: As $(T(X), T_2(1, X))$ is a T(1) comodule, can define $T = \bigoplus_i T_{m_i}$ where $T_{m_i}(X)$ is a m_i -comodule. Further, there is $m_1 = 1$, and X is inside $T_1(X)$ so $\mathcal{C} \subset \mathcal{C}_{m_1}$. Conjectured to be equal.

• Next, what is C_{m_i} ?

Group: Fixed points of $\rho(g) = T_{1_g}$, i.e. $T_{1_g}(X) \cong X \cong 1_g \otimes X$. HA: comodules of m_i .

In general:

$$\mathcal{C}_{m_i} = \{X \mid X \in \mathcal{C}, T_{m_i}(X) \cong m_i \otimes X, X \text{ an } m_i \text{ comodule}\}.$$

Fusion rules and associators

Fusion rules: in case of groups they are derived from a *strong* monoidal functor

$$\phi_G: co - T^G(1) = co - (\mathbb{C}[G], 1) = Vec_G \to Bimodc(\mathcal{C}).$$

The image, as ϕ_G is strong monoidal and all elements Vec_G are invertible, are the invertible bimodules $Pic(\mathcal{C})$.

 $\phi_G(g) \boxtimes_{\mathcal{C}} \phi_G(h) \cong \phi_G(g \otimes h) \Rightarrow \quad \otimes: \mathcal{C}_g \boxtimes \mathcal{C}_h \to \mathcal{C}_{gh}$ In general: monoidal functor ϕ_T from category of T(1) -comodules to $Bimodc(\mathcal{C})$ to get $\otimes: \mathcal{C}_{m_i} \boxtimes \mathcal{C}_{m_j} \to \bigoplus_x \mathcal{C}_{m_x}$ assuming $m_i \otimes m_j = \bigoplus_x m_x$.

• More generally, $\mu: T^2 \to T$ restricted to $T_{m_i}(T_{m_j}(X))$ should tell us what the result is for $\mathcal{C}_{m_i} \boxtimes \mathcal{C}_{m_j}$.

Fusion rules for \mathcal{C}_G^{\times} exist iff there is a lifting of $\rho: G \to Aut_{\otimes}(\mathcal{C})$ to a strong monoidal $\rho: \underline{G} \to \underline{Aut}_{\otimes}\mathcal{C}$.

This is equivalent to a vanishing of an obstruction class in $H^3_\rho(G, Z)$ where Z are invertible elements of \mathcal{C} . Then all fusion rules are classified by $H^2_\rho(G, Z)$.

• In general, may need to consider "some cohomology" like

 $H^{3}_{\phi_{T}}(co - T(1))$, something like the Davydov-Yetter (DY) cohomology.

Fact: DY-cohomology $H_F^2(\mathcal{C})$ for a tensor functor $F: \mathcal{C} \to \mathcal{C}'$ (both $\mathcal{C}, \mathcal{C}'$ fusion) parametrizes additively trivial first order deformations of F as a tensor functor modulo equivalence, and $H_F^3(\mathcal{C})$ is the obstruction space for such deformations.

But associators (fusion F-matrices) are not unique and relate to vanishing of a class in $H^4(G, \mathbb{C}^{\times})$, classified by $H^3(G, \mathbb{C}^{\times})$. In general, may need to consider DY-cohomology like $H^4_{Id}(co - T(1), \mathbb{C}^{\times})$.

Fact: $H_{Id}^3(\mathcal{C})$ parametrizes additively trivial first order deformations of C as a tensor category modulo equivalence, and $H_{Id}^4(\mathcal{C})$ is the obstruction space for such deformations

• Example: $H_{Id}^{i}(Vec_{G}, \mathbb{C}^{\times}) = H^{i}(G, \mathbb{C}^{\times})$. So DY-cohomology gives what we want for the case of group symmetry.

Examples of HM extension and a final piece of the puzzle:

- Group symmetry
- Hopf Algebra symmetry:

Given $T = \mathcal{A} \otimes -$, \mathcal{A} a HA in \mathcal{C} , then $\mathcal{C}_T^{\times} = \bigoplus \mathcal{C}_{m_i} = \mathcal{C}^T$. What is the extension of T to \mathcal{C}_T^{\times} ? In case of groups, extension is unique. In case of HA, there is always a canonical extension

$$T^{\times}((M,r)) = (T(M),T(r))$$
, basically $T^{\times} = \mathcal{A} \otimes -$

Need not be unique, recall $\mathcal{D}(S_3)$ condensation, where $\mathcal{A} = 2 + e$:

" $T_{\mathcal{A}} = D_{\mathcal{A}} E_{\mathcal{A}}$ is $(2 + e) \otimes -$ on objects 1, *e*, *Y* and $(1 + Y) \otimes -$ on objects m, ψ, X ."

After deriving T^{\times} , can equivariantize (get T^{\times} -modules) to get $\mathcal{C}_T^{\times,T^{\times}}$.

6.3.2. A generalization of the Haagerup category $Haag_p$. Fib as a fusion category fits into another potential sequence of fusion categories whose fusion rules will be denoted as $Haag_p$. $Haag_p$ has 2p classes of simple objects denotes as $\alpha^i, i = 0, 1, ..., p - 1$, and $\rho_i, i = 0, 1, ..., p - 1$, where $\alpha^0 = 1, \rho_0 = \rho$. The α^i 's obey \mathbb{Z}_p fusion rule. The non-group fusion rules are determined by:

$$\alpha^i \otimes \rho = \rho_i = \rho \otimes \alpha^{p-i}, \quad \rho^2 = \mathbf{1} \oplus \sum_{i=0}^{p-1} \rho_i.$$

For p = 2, this is the fusion rule of $PSU(2)_6$, and for p = 3, this is the Haagerup fusion rule.

Open Question 6.2. Is there a HM on $Vec_{\mathbb{Z}_p}$ with an extension that realizes $Haag_p$ for each prime p?

6.3.3. The Doubled Haagerup category $D(Haag_p)$. The hypothetical modular category $D(Haag_p)$, defined in [15], for all odd prime p is of rank $p^2 + 3$ with anyons $1, b, a_h, d_l$ with $1 \le h \le \frac{p^2-1}{2}, 1 \le l \le \frac{p^2+3}{2}$ of quantum dimensions $1, p\delta + 1, p\delta + 2, p\delta$, and $\delta = \frac{p+\sqrt{p^2+4}}{2}$ satisfying $\delta^2 = 1 + p\delta$. It is known to exist for $p \le 13$ [16].

Proposition 2. The object A = 1 + b of DHaag has a condensable algebra structure.

Consider the condensable algebra $\mathcal{A} = \mathbf{1} + b$, then we have⁷

 $D_{\mathcal{A}}(1) = 1, D_{\mathcal{A}}(b) = 1 + X, D_{\mathcal{A}}(a_h) = X + \alpha_{i,j} + \alpha_{i,j}^*, D_{\mathcal{A}}(d_l) = X,$

where $\alpha_{i,j}$ form $D(\mathbb{Z}_p)$, and $X^2 = D(\mathbb{Z}_p) + p^2 X$. So $\mathcal{C} = D(\mathbb{Z}_p) \oplus \{X\}$ with deconfined $\mathcal{D} = D(\mathbb{Z}_p)$. It follows the HM is

$$T_{\mathcal{A}}(1) = 2 + X, T_{\mathcal{A}}(\alpha_{ij}) = \alpha_{i,j} + \alpha^*_{i,j} + X, T_{\mathcal{A}}(X) = D(\mathbb{Z}_p) + (p^2 + 2)X.$$

So $T_{\mathcal{A}}(a) = a + a^* + X \otimes a$ is a HM on $D(\mathbb{Z}_p) \oplus \{X\}$, and the question in general is what T is on $D(\mathbb{Z}_p)$?

Open Question 6.3. Can $D(Haag_p)$ be realized through gauging a Hopf monad symmetry on $D(\mathbb{Z}_p)$?

References:

- Cui, S. X., Zini, M. S., & Wang, Z. (2019). On generalized symmetries and structure of modular categories. *Science China Mathematics*, *62*(3), 417-446.
- Etingof, P., Nikshych, D., & Ostrik, V. (2009). Fusion categories and homotopy theory. *arXiv preprint arXiv:0909.3140*.
- Bruguières, A., & Natale, S. (2011). Exact sequences of tensor categories. *International Mathematics Research Notices*, 2011(24), 5644-5705.
- Barkeshli, M., Bonderson, P., Cheng, M., & Wang, Z. (2014). Symmetry, defects, and gauging of topological phases. *arXiv preprint arXiv:1410.4540*.
- Evans, D. E., & Gannon, T. (2011). The exoticness and realisability of twisted Haagerup–Izumi modular data. *Communications in mathematical physics*, 307(2), 463.
- Gannon, T., & Morrison, S. (2017). Modular data for the extended Haagerup subfactor. *Communications in Mathematical Physics*, *356*(3), 981-1015.
- Grossman, P., & Snyder, N. (2012). Quantum subgroups of the Haagerup fusion categories. *Communications in Mathematical Physics*, *311*(3), 617-643.