Hopf Monads and Generalized Symmetries of Fusion Categories

Modjtaba Shokrian Zini, Joint with Zhenghan Wang, Shawn X. Cui

Outline

- From Algebra to Monads and T-Module Category
- Bimonads: a Monoidal T-Module Category
- Hopf Monads (HM): a Fusion T-Module Category
- Diagrammatic Formulation
- Examples of HM
- Condensable Algebras and Condensation
- Generalized Symmetry and Extension Theory

From Algebra to Monads and T-Module Category
Algebra \mathcal{A} in a monoidal category \mathcal{C} :

$$
\mu: \mathcal{A} \otimes \stackrel{\text { object } \mathcal{A} \in \mathcal{C}}{\mathcal{A} \rightarrow \mathcal{A}, \eta: 1 \rightarrow \mathcal{A}}
$$

μ (multiplication) , η (unit) both are \mathcal{A}-linear:
associativity: $\mu\left(\mu \otimes I d_{\mathcal{A}}\right)=\mu\left(I d_{\mathcal{A}} \otimes \mu\right)$ \mathcal{A}-linearity of unit: $\mu\left(\eta \otimes I d_{\mathcal{A}}\right)=I d_{\mathcal{A}}=\mu\left(I d_{\mathcal{A}} \otimes \eta\right)$

- Generalization: Consider (action of \mathcal{A}) $\mathcal{A} \otimes$ - instead of the object \mathcal{A}. The endomorphism $T(X)=\mathcal{A} \otimes X: \mathcal{C} \rightarrow \mathcal{C}$ has two associated natural transformations
$\mu: T^{2} \rightarrow T, \eta: I d_{\mathcal{C}} \rightarrow T$ satisfying

$$
\mu_{X} \mu_{T(X)}=\mu_{X} T\left(\mu_{X}\right), \mu_{X} \eta_{T(X)}=I d_{T(X)}=\mu_{X} T\left(\eta_{X}\right)
$$

$T \in \operatorname{End}(\mathcal{C})$ is a monad and can be defined on any category.
T-module category \mathcal{C}^{T} has objects

$$
\left\{(M, r) \mid M \in \mathcal{C}, r \in \operatorname{Hom}_{\mathcal{C}}(T(M), M): T(M) \rightarrow M\right\}
$$

such that r is T-linear: $r T(r)=r \mu_{M}$

$$
\begin{array}{ccc}
T^{2}(M) & T(r) & T(M) \\
\mu_{M} \downarrow & r & \downarrow \\
T(M) & & M \\
r \eta_{M}=i d_{M}: M \rightarrow T(M) \rightarrow M
\end{array}
$$

Bimonads: a Monoidal T-Module Category

- Bialgebra \mathcal{A} :

$$
\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \quad \epsilon: \mathcal{A} \rightarrow 1
$$

satisfying co-linearity, but also compatibility with algebra structure, which requires a braiding structure τ on \mathcal{C} :

$$
(\mu \otimes \mu)\left(I d_{\mathcal{A}} \otimes \tau_{A, A} \otimes I d_{\mathcal{A}}\right)(\Delta \otimes \Delta)=\Delta \mu
$$

loosely speaking braiding is needed to exchange y, z in $(x \otimes y) .(z \otimes t)=$ $(x z) \otimes(y t)$ before a "component-wise" multiplication.

- Generalize by requiring T to be comonoidal :

$$
\text { counit: } T_{0}: T(1) \rightarrow 1,
$$

coproduct (comonoidal map), $T_{2}(X, Y): T(X \otimes Y) \rightarrow T(X) \otimes T(Y)$ satisfying colinearity. T_{2} for $T=\mathcal{A} \otimes-$ is $\left(I d_{\mathcal{A}} \otimes \tau_{A, A} \otimes I d_{\mathcal{A}}\right)(\Delta \otimes \Delta)$.

Compatibility with η and μ (have to be comonoidal):

$$
\begin{aligned}
& T_{2}(X, Y) \mu_{X \otimes Y}=\left(\mu_{X} \otimes \mu_{Y}\right) T_{2}(T(X), T(Y)) T\left(T_{2}(X, Y)\right) \\
& T_{0} \mu_{\mathbb{I}}=T_{0} T\left(T_{0}\right) \\
& T_{2}(X, Y) \eta_{X \otimes Y}=\left(\eta_{X} \otimes \eta_{Y}\right) \\
& T_{0} \eta_{\mathbb{I}}=\operatorname{id}_{\mathbb{\mathbb { }}}
\end{aligned}
$$

- Bimonad T is a monad on a monoidal \mathcal{C} with above structural identities.
Another point of view: Given monad T, when does the monoidal structure of \mathcal{C} lift to a monoidal structure on \mathcal{C}^{T} ?
Answer (Moerdijk, 2002): Whenever T is a bimonad

$$
(M, r) \otimes(N, s)=\left(M \otimes N,(r \otimes s) T_{2}(M, N)\right)
$$

Hopf Monads (HM): Towards a Fusion T-Module Category

Hopf algebra \mathcal{A} has an antipode $S: \mathcal{A} \rightarrow \mathcal{A}, S^{2}=I d_{\mathcal{A}}$ such that:

$$
\mu\left(S \otimes I d_{\mathcal{A}}\right) \Delta=\eta \epsilon=\mu\left(I d_{\mathcal{A}} \otimes S\right) \Delta
$$

We could start with a (left/right) rigid category \mathcal{C}, and define (left/right) antipode satisfying certain equations.

$$
s^{l}=\left\{s_{X}^{l}: T\left({ }^{\vee} T(X)\right) \rightarrow{ }^{\vee} X\right\}_{X \in \mathrm{Ob}(\mathcal{C})}
$$

Or we could try to generalize definition of Hopf algebra given by the Fusion operator. Then:
\mathcal{C} only needs to be monoidal!

- Diagrams:

$$
\mu_{X}=\left.\bigcap_{A A}^{A}\right|_{X} ^{X}, \quad \eta_{X}=\left.\left.\right|_{0} ^{A}\right|_{X} ^{X}, \quad(A \otimes ?)_{2}(X, Y)=\left.\left.\bigvee_{A}^{A}\right|_{X} ^{A}\right|_{Y} ^{A}, \quad(A \otimes ?)_{0}=\overbrace{A}^{0} .
$$

- Define fusion operators (left) $H_{X, Y}^{l}$ and (right) $H_{X, Y}^{r}$:

They only need to be invertible, and in that antipodes appear:
2.6. Fusion operators. Let T be a bimonad on a monoidal category \mathcal{C}. The left fusion operator of T is the natural transformation $H^{l}: T\left(1_{\mathcal{C}} \otimes T\right) \rightarrow T \otimes T$ defined by:

$$
H_{X, Y}^{l}=\left(T X \otimes \mu_{Y}\right) T_{2}(X, T Y): T(X \otimes T Y) \rightarrow T X \otimes T Y .
$$

The right fusion operator of T is the natural transformation $H^{r}: T\left(T \otimes 1_{\mathcal{C}}\right) \rightarrow T \otimes T$ defined by:

$$
H_{X, Y}^{r}=\left(\mu_{X} \otimes T Y\right) T_{2}(T X, Y): T(T X \otimes Y) \rightarrow T X \otimes T Y .
$$

(left/right) fusion operator invertible \rightarrow (left/right) Hopf monad.

- Will always assume a left and right Hopf monad.
- Another point of view: For a bimonad T, how do we get \mathcal{C}^{T} to be rigid assuming \mathcal{C} is rigid ?
Answer: if and only if T is a Hopf monad. Then:

$$
{ }^{\vee}(M, r)=\left({ }^{\vee} M, s_{M}^{l} T\left({ }^{\vee} r\right)\right) \quad \text { and } \quad(M, r)^{\vee}=\left(M^{\vee}, s_{M}^{r} T\left(r^{\vee}\right)\right) .
$$

More precisely, let T be an endofunctor of a monoidal category \mathcal{C} endowed with a natural transformation $H_{X, Y}: T(X \otimes T Y) \rightarrow T X \otimes T Y$ satisfying the left pentagon equation:

$$
\left(T X \otimes H_{Y, Z}\right) H_{X, Y \otimes T Z}=\left(H_{X, Y} \otimes T Z\right) H_{X \otimes T Y, Z} T\left(X \otimes H_{Y, Z}\right)
$$

and with a morphism $T_{0}: T \mathbb{1} \rightarrow \mathbb{1}$ and a natural transformation $\eta_{X}: X \rightarrow T X$ satisfying:

$$
\begin{array}{ll}
H_{X, Y} \eta_{X \otimes T Y}=\eta_{X} \otimes T Y, & T_{0} \eta_{1}=\mathrm{id}_{1} \\
\left(T X \otimes T_{0}\right) H_{X, 1}=T\left(X \otimes T_{0}\right), & \left(T_{0} \otimes T X\right) H_{1, X} T\left(\eta_{X}\right)=\mathrm{id}_{T X}
\end{array}
$$

Then T admits a unique bimonad structure ($T, \mu, \eta, T_{2}, T_{0}$) having left fusion operator H. The product μ and comonoidal structural morphism T_{2} are given by:

$$
\mu_{X}=\left(T_{0} \otimes T X\right) H_{1, X} \quad \text { and } \quad T_{2}(X, Y)=H_{X, Y} T\left(X \otimes \eta_{Y}\right)
$$

A tuple $\left(T, H, T_{0}, \eta\right)$ is all you need to define a HM . When H is invertible, T is called a left $H M$.

There is a lot more; e.g.
(Maschke's Criterion of semisimplicity) TFAE for a HM T:

- T admits a cointegral (a notion of bimonads)
- T is separable (a notion of monads)
- T is semisimple (a notion of monads)

Also, if T is an additive monad and \mathcal{C} is abelian semisimple, then \mathcal{C}^{T} is abelian semisimple if and only if T is semisimple.
We will always assume \mathcal{C} is fusion, T is linear semisimple HM. So, \mathcal{C}^{T} is a fusion category (and T is separable with a cointegral.)

Other parts of the theory of Hopf algebras can be generalized as well:

- Decomposition Theorem of (left,right) Hopf modules
- Integrals
- Sovereign and involutory HM
- Quasitriangular and ribbon HM

For more see:

- Bruguieres, Alain, and Alexis Virelizier. "Hopf monads." Advances in Mathematics 215.2 (2007): 679-733.
- Bruguieres, Alain, Steve Lack, and Alexis Virelizier. "Hopf monads on monoidal categories." Advances in Mathematics227.2 (2011): 745-800.

Diagrammatic Formulation

- The theory as explained was the strictified version. To do computations, we need a skeletal formulation. So associators are no longer trivial but can work with a unique object from isomorphism classes.
- Diagrams make calculations easier and more intuitive!
4.1. Diagrammatic Notations. Let \mathcal{C} be a fusion category and $\mathrm{L}(\mathcal{C})=\{a, b, c, \cdots\}$ be a complete set of representatives, i.e., a set that contains a representative for each isomorphism class of simple objects of \mathcal{C}. Let $N_{a b}^{c}$ be the fusion coefficients,

$$
a \otimes b \simeq \oplus_{c \in \mathrm{~L}(\mathcal{C})} N_{a b}^{c} c
$$

For each $b \in \mathbf{L}(\mathcal{C})$,

$$
\begin{equation*}
T(b)=\oplus_{a \in \mathbf{L}(\mathcal{D})} T_{a b} a, \quad T_{a b} \in \mathbb{N} . \tag{5}
\end{equation*}
$$

For each $a, b \in \mathrm{~L}(\mathcal{C})$, there exists a natural isomorphism,

$$
\begin{equation*}
T_{2}(a, b): T(a) \otimes T(b) \quad \xrightarrow{\simeq} \quad T(a \otimes b) . \tag{6}
\end{equation*}
$$

The isomorphism $T_{2}(a, b)$ determines a family of invertible matrices $\left\{T_{c}^{a b}: a, b \in\right.$ $\mathrm{L}(\mathcal{C}), c \in \mathrm{~L}(\mathcal{D})\}$, where the matrix elements of $T_{c}^{a b}$ are given by

$$
\begin{equation*}
\left\{T_{c ;(f \gamma),(d \alpha ; e \beta)}^{a b}: f \in \mathrm{~L}(\mathcal{C}), d, e \in \mathrm{~L}(\mathcal{D}), 1 \leq \alpha \leq T_{d a}, 1 \leq \beta \leq T_{e b}, 1 \leq \gamma \leq T_{c f}\right\} \tag{7}
\end{equation*}
$$

- Basic diagrams:

I

II
III

IV

V

FIGURE 1. (I) \otimes; (II) $I d_{\mathcal{C}}$; (III) T; (IV) $T \circ \otimes \circ(I d \times T) ;(\mathrm{V})$
$\otimes \circ(T \times T)$.

Associator

Figure 3. (Left) the associator natural isomorphism; (Right) the matrix elements of the associator natural isomorphism in the basis given by labels of internal edges.

$$
\begin{aligned}
& T_{2}(a, b): T(a \otimes b) \\
& \rightarrow T(a) \otimes T(b)
\end{aligned}
$$

Figure 4. The matrix elements of $T_{c}^{a b}$.

Co-associativity:

Figure 5. The hexagon equation for T_{2}.

Pentagon equation becomes Heptagon equation as associator is no longer trivial:

- Heptagon Equation ${ }^{5}$,

$$
\left(i d_{T(X)} \otimes H_{Y, Z}\right) H_{X, Y \otimes Z}=
$$

(2) $a_{T(X), T(Y), T(Z)}\left(H_{X, Y} \otimes T(Z)\right) H_{X \otimes T(Y), Z} a_{X, T(Y), T(Z)}^{-1} T\left(i d_{X} \otimes H_{Y, Z}\right)$
$H: T(a \otimes T(b))$
$\rightarrow T(a) \otimes T(b)$

Figure 10. Heptagon equation for H

Can also write all equations explicitly. A left HM is a collection of data $\left\{T_{a b}, H_{c ; i f(f ; g),(d \alpha ; \beta),}^{a b}, \epsilon_{\alpha}, \eta_{a, \alpha}\right\}$ satisfying:

$$
\begin{gathered}
\sum_{\theta} H_{d ;\left(g^{\prime} \beta^{\prime} ; h^{\prime} \theta\right),(g \beta ; h \gamma)}^{a f} H_{h^{\prime} ;\left(e^{\prime} \alpha^{\prime} ; f^{\prime} \gamma^{\prime}\right),(e \alpha ; f w)}^{b c}= \\
\sum_{\tilde{e}, \tilde{f}, \tilde{g}, \hat{\tilde{\alpha}}, \tilde{\beta}, \hat{\beta}} H_{g ;(\tilde{\alpha} ; \tilde{f} \tilde{\beta}),(e \alpha ; f \beta)}^{b c}\left(F_{h}^{a \tilde{f} \tilde{f}}\right)_{\tilde{g} g}^{-1} H_{d ;\left(\hat{f} \hat{\beta} ; f^{\prime} \gamma^{\prime}\right),(\tilde{f} \tilde{\beta} ; h \gamma)}^{\tilde{g} c} H_{\tilde{f} ;\left(g^{\prime} \beta^{\prime} ; e^{\prime} \alpha^{\prime}\right),(\tilde{e} \tilde{c} ; \tilde{g} \hat{\beta})}^{a b} F_{d ; h^{\prime} \hat{f}}^{g^{\prime} e^{\prime} f^{\prime}} \\
\sum_{\beta} \eta_{c, \beta} H_{c ;(e \gamma ; f \theta),(d \alpha ; c \beta)}^{a b}=\delta_{f, d} \delta_{e, a} \delta_{\theta, \alpha} \eta_{a, \gamma}, \quad \sum_{\alpha} \eta_{1, \alpha} \epsilon_{\alpha}=1, \\
\sum_{\theta} H_{b ;(b \gamma ; 1 \theta),(c \alpha ; d \beta)}^{a 1} \epsilon_{\theta}=\delta_{c, 1} \delta_{d, a} \delta_{\gamma, \beta} \epsilon_{\alpha}, \quad \sum_{\beta, \gamma} H_{b ;(1 \gamma ; b \theta),(a \beta ; a \alpha)}^{1 a} \eta_{a \beta} \epsilon_{\gamma}=\delta_{\theta, \alpha} . \\
\sum_{f, g \in L} T_{f a} T_{g b} N_{f g}^{c}=\sum_{d, e \in L} T_{d b} T_{c e} N_{a d}^{e} .
\end{gathered}
$$

Examples of HM:

- Hopf algebras: $\mathcal{A} \otimes-$, or $-\otimes \mathcal{A}$, both are left and right HM due to braiding.
- Adjunctions: \mathcal{C}, \mathcal{D} monoidal and $U: \mathcal{D} \rightarrow \mathcal{C}$ a strong monoidal functor

$$
U_{2}(X, Y): U(X) \otimes U(Y) \rightarrow U(X \otimes Y), U_{0}: 1 \rightarrow U(1)
$$

both isomorphisms, with a left adjoint $F: \mathcal{C} \rightarrow \mathcal{D}$. Then
$T=U F$ is always a bimonad and fusion operators H^{l}, H^{r} can be defined. Then

$$
T \text { is a left/right } \mathrm{HM} \text { if } H^{l} / H^{r} \text { is invertible. }
$$

Also:

$$
T=U F \text { is a (left/right) } \mathrm{HM} \text { when } \mathcal{C} \text { is (left/right) rigid. }
$$

Adjunctions " \cong " HM

- When \mathcal{C}, \mathcal{D} are fusion, then TFAE:

Existence of left adjoint <-> Existence of right adjoint <-> right exact <-> left exact

- Therefore, for an adjunction to give a HM, all we need is a strong monoidal functor which is left exact; tensor functors U.
- If so, F exists and $T=U F$ is HM.
- Further, $\mathcal{D} \cong \mathcal{C}^{T}((U, F)$ pair is monadic).
- It goes both ways: a HM T, the forgetful functor $\mathcal{C}^{T} \rightarrow \mathcal{C}$ given by

$$
U_{T}:(M, r) \rightarrow M
$$

is a tensor functor (Alain Bruguieres,Sonia Natale,2010), with left adjoint

$$
F_{T}: M \rightarrow\left(T(M), \mu_{M}\right) \Rightarrow T=U_{T} F_{T} .
$$

Group Symmetries

Definition 4.17. An action of a group G on a tensor category \mathcal{C} (by tensor autoequivalences) is a strong monoidal functor

$$
\begin{equation*}
\rho: \underline{G} \rightarrow \underline{\text { End }}_{\otimes} \mathcal{C} \tag{4.1}
\end{equation*}
$$

In other words, it consists in the following data:
(1) For each $g \in G$, a tensor endofunctor $\rho^{g}: \mathcal{C} \rightarrow \mathcal{C}$;
(2) For each pair $g, h \in G$, a monoidal isomorphism $\rho_{2}^{g, h}: \rho^{g} \rho^{h} \xrightarrow{\sim} \rho^{g h}$;
(3) A monoidal isomorphism $\rho_{0}: \operatorname{id}_{\mathcal{C}} \xrightarrow{\sim} \rho^{1}$;

Examples are many:

- Vec with trivial G symmetry
- $\mathcal{D}\left(\mathbb{Z}_{N}\right)$ with \mathbb{Z}_{2} symmetry $\left(a_{1}, a_{2}\right) \rightarrow\left(a_{2}, a_{1}\right)$
- $G<S_{n}$ symmetry on $\mathcal{C} \boxtimes \mathcal{C} \boxtimes \cdots \boxtimes \mathcal{C}$.
- 3-fermion model $S O(8)_{1}=\left\{1, \psi_{1}, \psi_{2}, \psi_{3}\right\}$ with S_{3} symmetry
- We have

Theorem 4.21. Let \mathcal{C} be a tensor category over a field \mathbb{k}, and let ρ be an action of a finite group G on \mathcal{C} by tensor autoequivalences. Then:
(1) The \mathbb{k}-linear exact endofunctor

$$
\mathbb{T}^{\rho}=\bigoplus_{g \in G} \rho^{g}
$$

admits a canonical structure of Hopf monad on \mathcal{C};
(2) There is a canonical isomorphism of categories:

$$
\mathcal{C}^{G} \simeq \mathcal{C}^{\mathbb{T}^{\rho}}
$$

over \mathcal{C}, where \mathcal{C}^{G} denotes the equivariantization of \mathcal{C} under G;

- The structural morphisms are derived similar to Hopf Algebra structure on $\mathbb{C}[G]$.
- This makes sense as T - modules are like fixed points of T. Hence equivariantization can be generalized as the process of taking T - modules.

Condensable Algebras \& Condensation

In a modular tensor category \mathcal{B}, an algebra \mathcal{A} which is :

- Commutative: $\mu \tau_{A, A}=\mu$
- Connected: $\operatorname{Hom}(1, \mathcal{A})=\mathbb{C}$.
- Separable: μ admits a splitting $\zeta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$, a morphism of (\mathcal{A}, \mathcal{A}) -bimodules:

$$
\left(\mu \otimes I d_{\mathcal{A}}\right)\left(I d_{\mathcal{A}} \otimes \zeta\right)=\left(I d_{\mathcal{A}} \otimes \mu\right)\left(\zeta \otimes I d_{\mathcal{A}}\right), \mu \zeta=I d_{\mathcal{A}}
$$

Take \mathcal{A}-module $\mathcal{B}_{\mathcal{A}}$. There exist:
Condensation (Induction) functor $D_{\mathcal{A}}: \mathcal{B} \rightarrow \mathcal{B}_{\mathcal{A}}$, a tensor functor Forgetful functor $E_{\mathcal{A}}: \mathcal{B}_{\mathcal{A}} \rightarrow \mathcal{B}$, the adjoint
Hence, $T_{\mathcal{A}}=D_{\mathcal{A}} E_{\mathcal{A}}$ is a HM and $\mathcal{B} \cong \mathcal{B}_{\mathcal{A}}^{T_{\mathcal{A}}}$.

Condensation Example

To derive the condensation $\mathcal{B}_{\mathcal{A}}$:

- $O b\left(\mathcal{B}_{\mathcal{A}}\right)=O b(\mathcal{B})$
- Frobenius reciprocity: $\operatorname{Hom}_{\mathcal{B}}(X, \mathcal{A} \otimes Y)=\operatorname{Hom}_{\mathcal{B}_{\mathcal{A}}}(X, Y)$.
5.2.2. $D\left(S_{3}\right)$. Consider the case $\mathcal{B}=D\left(S_{3}\right)$ and the condensable algebra $\mathcal{A}=$ $A+C$. The objects are denoted by $\{A, B, C, D, E, F, G, H\}$ where $\{A, B, C\}$ is the canonical image of $\operatorname{Rep}\left(S_{3}\right)$ in $D\left(S_{3}\right)$. By using the framework in 3.2.4, one derives the condensed category $\mathcal{B}_{\mathcal{A}}=D\left(\mathbb{Z}_{2}\right) \oplus\{X, Y\}$ with the following fusion rules for X, Y^{6} :

$$
\begin{array}{r}
m X=Y, m Y=X, \psi Y=X, \psi X=Y, e Y=Y, \\
X^{2}=\mathbf{1}+e+Y, X Y=m+\psi+X, Y^{2}=\mathbf{1}+e+Y \tag{27}
\end{array}
$$

- One can derive the induction and forgetful functors:
(28)

$$
E_{\mathcal{A}}: \mathbf{1} \rightarrow A+C, e \rightarrow B+C, m \rightarrow D, \psi \rightarrow E, X \rightarrow D+E, Y \rightarrow F+G+H
$$

(29)

$$
D_{\mathcal{A}}: A \rightarrow \mathbf{1}, B \rightarrow e, C \rightarrow \mathbf{1}+e, D \rightarrow m+X, E \rightarrow \psi+X, F, G, H \rightarrow Y .
$$

Then $T_{\mathcal{A}}=D_{\mathcal{A}} E_{\mathcal{A}}$ is $(2+e) \otimes-$ on objects $1, e, Y$ and $(1+Y) \otimes$ - on objects m, ψ, X.

- Observation: If we replace $Y \rightarrow 1+e$, and $X \rightarrow m+\psi$, fusion rules still hold.
- Also, $\{X, Y\}$ would be all irreducible modules of algebra $1+e$ and as $\mathcal{D}\left(\mathbb{Z}_{2}\right)$ is module category of algebra 1 , so $\mathcal{B}_{\mathcal{A}}=(2+e)$-modules.
- In fact, the algebra $1 \oplus(1+e)$ has a (unique) Hopf algebra structure:
The algebra structure is a \mathbb{Z}_{2}-graded algebra $\mathbb{C}[x, y] /\left\langle x^{2}-x, y^{2}-x, x y-y\right\rangle$, where $1, x$ have grade 0 (corresponding to two dimensional v.s. $\mathbb{C}^{\wedge} 2$ of 1) and y has grade one (corresponding to one dimensional v.s. \mathbb{C} of e).

$$
\begin{gathered}
\Delta(x)=1 \otimes x+x \otimes 1-\frac{3}{2} x \otimes x+\frac{1}{2} y \otimes y, \\
\Delta(y)=1 \otimes y-\frac{3}{2} x \otimes y+y \otimes 1-\frac{3}{2} y \otimes x . \\
\epsilon(x)=\epsilon(y)=0 . \\
S(x)=x, \quad S(y)=-y .
\end{gathered}
$$

And so $\mathcal{H}=\{1-x\} \bigoplus\{x, y\}$ is a \mathbb{Z}_{2}-graded hopf algebra. Its modules in $V e c_{\mathbb{Z}_{2}}$ is $\operatorname{Rep}\left(S_{3}\right)$. Its modules in $\mathcal{D}\left(\mathbb{Z}_{2}\right)$ is $\mathcal{D}\left(\mathbb{Z}_{2}\right) \bigoplus\{X, Y\}$. Classification of Hopf Algebras is a big problem, even in Vec.

Conjecture 5.1. In $V e c_{\mathbb{Z}_{\mathrm{p}}}$, the algebra $1 \oplus \operatorname{Vec}_{\mathbb{Z}_{\mathrm{p}}}$ admits a categorical Hopf algebra structure whose representation category is the near group category given by $G=$ \mathbb{Z}_{p} and multiplicity $m=|G|-1$, if and only if $p=q^{m}-1$ for some prime q.

- Think of the previous example as an extension and then an equivariantization (: HM gauging) given by taking modules of the Hopf monad $T=(2+e) \otimes-$ on $\mathcal{D}\left(\mathbb{Z}_{2}\right)$:

$$
\mathcal{D}\left(\mathbb{Z}_{2}\right) \rightarrow \mathcal{D}\left(\mathbb{Z}_{2}\right) \oplus\{X, Y\} \rightarrow \mathcal{D}\left(S_{3}\right)
$$

Example of HA symmetry with nontrivial extension: $T_{\mathcal{A}}$ is $(2+e) \otimes-$ on objects $1, e, Y$ and $(1+Y) \otimes$ - on objects m, ψ, X. In general, condensed $\mathcal{B}_{\mathcal{A}}=($ deconfined $) \oplus($ confined $)$ and the deconfined part (here is $\mathcal{D}\left(\mathbb{Z}_{2}\right)$) to which $T_{\mathcal{A}}$ should be restricted (by the substitution $Y=1+e$). It should give a (special) case of HM gauging

$$
(\text { deconfined }) \rightarrow \mathcal{B}_{\mathcal{A}} \rightarrow \mathcal{B}
$$

- Condensable algebras behave like "normal subgroups" for modular categories.

Generalized Symmetry \& Extension Theory

- Notice by adjunction, any tensor functor $U: \mathcal{D} \rightarrow \mathcal{C}$, gives a HM. Define a category symmetry of fusion \mathcal{C} as a pair (U, \mathcal{D}).
- To generalize symmetries, first look examples we have from HM point of view:

Group symmetry: gauging starts with an action $\rho: \underline{G} \rightarrow$ Aut $_{\otimes} \mathcal{C}$
Then a G-graded $\mathcal{C}_{G}^{\times}=\oplus_{g} \mathcal{C}_{g}$ extension of $\mathcal{C}\left(=\mathcal{C}_{e}\right)$ is derived.
HA symmetry (condensation $\mathcal{D}\left(S_{3}\right)$): grading is given by how the HA breaks into irreducible algebras: $1 \oplus 1+e$.

- In general what is the grading for $\mathcal{C}_{T}^{\times}=\bigoplus_{i} \mathcal{C}_{m_{i}}$?

In fact T itself seems to be graded in both cases:

$$
T=\oplus_{g} \rho(g), T=\oplus_{i}\left(m_{i} \otimes-\right)
$$

Same answer for both:
m_{i} is the irreducible coalgebra decomposition of coalgebra ($\left.T(1), T_{2}(1,1), T_{0}\right)$ as it acts on itself.
Groups: $T^{G}(1)=\mathbb{C}[G] .1$ with $T_{2}(1,1)\left(1_{g}\right)=1_{g} \otimes 1_{g}$, so coalgebra decomposition is $T(1)=\bigoplus 1_{g}$.
HA: $T(1)=\mathcal{A}$ which breaks into its coalgebra decomposition.

- Observation: As $\left(T(X), T_{2}(1, X)\right)$ is a $T(1)$ comodule, can define $T=$ $\oplus_{i} T_{m_{i}}$ where $T_{m_{i}}(X)$ is a m_{i}-comodule. Further, there is $m_{1}=1$, and X is inside $T_{1}(X)$ so $\mathcal{C} \subset \mathcal{C}_{m_{1}}$. Conjectured to be equal.
- Next, what is $\mathcal{C}_{m_{i}}$?

Group: Fixed points of $\rho(g)=T_{1_{g}}$, i.e. $T_{1_{g}}(X) \cong X \cong 1_{g} \otimes X$.
HA: comodules of m_{i}.
In general:

$$
\mathcal{C}_{m_{i}}=\left\{X \mid X \in \mathcal{C}, T_{m_{i}}(X) \cong m_{i} \otimes X, X \text { an } m_{i} \text { comodule }\right\}
$$

Fusion rules and associators

Fusion rules: in case of groups they are derived from a strong monoidal functor

$$
\phi_{G}: c o-T^{G}(1)=c o-(\mathbb{C}[G] .1)=\operatorname{Vec}_{G} \rightarrow \operatorname{Bimodc}(\mathcal{C}) .
$$

The image, as ϕ_{G} is strong monoidal and all elements $V e c_{G}$ are invertible, are the invertible bimodules $\operatorname{Pic}(\mathcal{C})$.

$$
\phi_{G}(g) \boxtimes_{\mathcal{C}} \phi_{G}(h) \cong \phi_{G}(g \otimes h) \Rightarrow \otimes: \mathcal{C}_{g} \boxtimes \mathcal{C}_{h} \rightarrow \mathcal{C}_{g h}
$$

In general: monoidal functor ϕ_{T} from category of T (1) -comodules to $\operatorname{Bimodc}(\mathcal{C})$ to get $\otimes: \mathcal{C}_{m_{i}} \boxtimes \mathcal{C}_{m_{j}} \rightarrow \oplus_{x} \mathcal{C}_{m_{x}}$ assuming $m_{i} \otimes m_{j}=$ $\oplus_{x} m_{x}$.

- More generally, $\mu: T^{2} \rightarrow T$ restricted to $T_{m_{i}}\left(T_{m_{j}}(X)\right)$ should tell us what the result is for $\mathcal{C}_{m_{i}} \boxtimes \mathcal{C}_{m_{j}}$.

Fusion rules for \mathcal{C}_{G}^{\times}exist iff there is a lifting of $\rho: G \rightarrow A u t_{\otimes}(\mathcal{C})$ to a strong monoidal $\rho: \underline{G} \rightarrow{\underline{\text { utt }_{\otimes}} \mathcal{C}}^{\mathcal{C}}$.
This is equivalent to a vanishing of an obstruction class in $H_{\rho}^{3}(G, Z)$ where Z are invertible elements of \mathcal{C}. Then all fusion rules are classified by $H_{\rho}^{2}(G, Z)$.

- In general, may need to consider "some cohomology" like $H_{\phi_{T}}^{3}(c o-T(1))$, something like the Davydov-Yetter (DY) cohomology. Fact: DY-cohomology $H_{F}^{2}(\mathcal{C})$ for a tensor functor $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ (both $\mathcal{C}, \mathcal{C}^{\prime}$ fusion) parametrizes additively trivial first order deformations of F as a tensor functor modulo equivalence, and $H_{F}^{3}(\mathcal{C})$ is the obstruction space for such deformations.

But associators (fusion F-matrices) are not unique and relate to vanishing of a class in $H^{4}\left(G, \mathbb{C}^{\times}\right)$, classified by $H^{3}\left(G, \mathbb{C}^{\times}\right)$. In general, may need to consider DY-cohomology like $H_{I d}^{4}\left(c o-T(1), \mathbb{C}^{\times}\right)$.
Fact: $H_{I d}^{3}(\mathcal{C})$ parametrizes additively trivial first order deformations of C as a tensor category modulo equivalence, and $H_{I d}^{4}(\mathcal{C})$ is the obstruction space for such deformations

- Example: $H_{I d}^{i}\left(\operatorname{Vec}_{G}, \mathbb{C}^{\times}\right)=H^{i}\left(G, \mathbb{C}^{\times}\right)$. So DY-cohomology gives what we want for the case of group symmetry.

Examples of HM extension and a final piece of the puzzle:

- Group symmetry
- Hopf Algebra symmetry:

Given $T=\mathcal{A} \otimes-, \mathcal{A}$ a HA in \mathcal{C}, then $\mathcal{C}_{T}^{\times}=\bigoplus \mathcal{C}_{m_{i}}=\mathcal{C}^{T}$. What is the extension of T to \mathcal{C}_{T}^{\times}? In case of groups, extension is unique. In case of HA, there is always a canonical extension

$$
T^{\times}((M, r))=(T(M), T(r)), \text { basically } T^{\times}=\mathcal{A} \otimes-
$$

Need not be unique, recall $\mathcal{D}\left(S_{3}\right)$ condensation, where $\mathcal{A}=2+e$:
" $T_{\mathcal{A}}=D_{\mathcal{A}} E_{\mathcal{A}}$ is $(2+e) \otimes-$ on objects $1, e, Y$ and $(1+Y) \otimes-$ on objects m, ψ, X."
After deriving T^{\times}, can equivariantize (get T^{\times}-modules) to get $\mathcal{C}_{T}^{\times,} T^{\times}$.
6.3.2. A generalization of the Haagerup category Haag_{p}. Fib as a fusion category fits into another potential sequence of fusion categories whose fusion rules will be denoted as $\mathrm{Haag}_{p^{*}}$. Haag $_{p}$ has $2 p$ classes of simple objects denotes as $\alpha^{i}, i=$ $0,1, \ldots, p-1$, and $\rho_{i}, i=0,1, \ldots, p-1$, where $\alpha^{0}=1, \rho_{0}=\rho$. The $\alpha^{i \prime}$ s obey \mathbb{Z}_{p} fusion rule. The non-group fusion rules are determined by:

$$
\alpha^{i} \otimes \rho=\rho_{i}=\rho \otimes \alpha^{p-i}, \quad \rho^{2}=\mathbf{1} \oplus \sum_{i=0}^{p-1} \rho_{i} .
$$

For $p=2$, this is the fusion rule of $\operatorname{PSU}(2)_{6}$, and for $p=3$, this is the Haagerup fusion rule.

Open Question 6.2. Is there a $H M$ on $\operatorname{Vec}_{Z_{\mathrm{p}}}$ with an extension that realizes Haag_{p} for each prime p ?
6.3.3. The Doubled Haagerup category $D\left(\right.$ Haag $\left._{p}\right)$. The hypothetical modular category $D\left(\mathrm{Haag}_{p}\right)$, defined in [15], for all odd prime p is of rank $p^{2}+3$ with anyons $1, b, a_{h}, d_{l}$ with $1 \leq h \leq \frac{p^{2}-1}{2}, 1 \leq l \leq \frac{p^{2}+3}{2}$ of quantum dimensions $1, p \delta+1, p \delta+2, p \delta$, and $\delta=\frac{p+\sqrt{p^{2}+4}}{2}$ satisfying $\delta^{2}=1+p \delta$. It is known to exist for $p \leq 13$ [16].

Proposition 2. The object $\mathcal{A}=1+b$ of DHaag has a condensable algebra structure.

Consider the condensable algebra $\mathcal{A}=\mathbf{1}+b$, then we have ${ }^{7}$

$$
D_{\mathcal{A}}(\mathbf{1})=\mathbf{1}, D_{\mathcal{A}}(b)=\mathbf{1}+X, D_{\mathcal{A}}\left(a_{h}\right)=X+\alpha_{i, j}+\alpha_{i, j}^{*}, D_{\mathcal{A}}\left(d_{l}\right)=X,
$$

where $\alpha_{i, j}$ form $D\left(\mathbb{Z}_{p}\right)$, and $X^{2}=D\left(\mathbb{Z}_{p}\right)+p^{2} X$. So $\mathcal{C}=D\left(\mathbb{Z}_{p}\right) \oplus\{X\}$ with deconfined $\mathcal{D}=D\left(\mathbb{Z}_{p}\right)$. It follows the HM is

$$
T_{\mathcal{A}}(\mathbf{1})=2+X, T_{\mathcal{A}}\left(\alpha_{i j}\right)=\alpha_{i, j}+\alpha_{i, j}^{*}+X, T_{\mathcal{A}}(X)=D\left(\mathbb{Z}_{p}\right)+\left(p^{2}+2\right) X
$$

So $T_{\mathcal{A}}(a)=a+a^{*}+X \otimes a$ is a HM on $D\left(\mathbb{Z}_{p}\right) \oplus\{X\}$, and the question in general is what T is on $D\left(\mathbb{Z}_{p}\right)$?
Open Question 6.3. Can $D\left(\operatorname{Haag}_{p}\right)$ be realized through gauging a Hopf monad symmetry on $D\left(\mathbb{Z}_{p}\right)$?

References:

- Cui, S. X., Zini, M. S., \& Wang, Z. (2019). On generalized symmetries and structure of modular categories. Science China Mathematics, 62(3), 417-446.
- Etingof, P., Nikshych, D., \& Ostrik, V. (2009). Fusion categories and homotopy theory. arXiv preprint arXiv:0909.3140.
- Bruguières, A., \& Natale, S. (2011). Exact sequences of tensor categories. International Mathematics Research Notices, 2011(24), 5644-5705.
- Barkeshli, M., Bonderson, P., Cheng, M., \& Wang, Z. (2014). Symmetry, defects, and gauging of topological phases. arXiv preprint arXiv:1410.4540.
- Evans, D. E., \& Gannon, T. (2011). The exoticness and realisability of twisted Haagerup-Izumi modular data. Communications in mathematical physics, 307(2), 463.
- Gannon, T., \& Morrison, S. (2017). Modular data for the extended Haagerup subfactor. Communications in Mathematical Physics, 356(3), 981-1015.
- Grossman, P., \& Snyder, N. (2012). Quantum subgroups of the Haagerup fusion categories. Communications in Mathematical Physics, 311(3), 617-643.

