Universal Quantum Computation with Gapped Boundaries

Iris Cong, Meng Cheng, Zhenghan Wang

cong@g.harvard.edu

Department of Physics Harvard University, Cambridge, MA

May 4th, 2019

Refs.: C, Cheng, Wang, Comm. Math. Phys. (2017) 355: 645.C, Cheng, Wang, Phys. Rev. Lett. 119, 170504 (2017).

• Quantum computing:

- Feynman (1982): Use a quantum-mechanical computer to simulate quantum physics (classically intractable)
- Encode information in qubits, gates = unitary operations
- Applications: Factoring/breaking RSA (Shor, 1994), quantum machine learning, ...

• Quantum computing:

- Feynman (1982): Use a quantum-mechanical computer to simulate quantum physics (classically intractable)
- Encode information in qubits, gates = unitary operations
- Applications: Factoring/breaking RSA (Shor, 1994), quantum machine learning, ...
- Major challenge: local decoherence of qubits

Introduction: Topological Quantum Computation

- **Topological** quantum computing (TQC) (Kitaev, 1997; Freedman et al., 2003):
 - Encode information in topological degrees of freedom
 - Perform topologically protected operations

- Traditional realization of TQC: *anyons* in *topological phases of matter* (e.g. Fractional Quantum Hall FQH)
 - Elementary quasiparticles in 2 dimensions s.t. $|\psi_1\psi_2\rangle=e^{i\phi}|\psi_2\psi_1
 angle$

• Traditional realization of TQC: *anyons* in *topological phases of matter* (e.g. Fractional Quantum Hall - FQH)

• Elementary quasiparticles in 2 dimensions s.t. $|\psi_1\psi_2
angle=e^{i\phi}|\psi_2\psi_1
angle$

- Qubit encoding: degeneracy arising from the fusion rules
 - e.g. Toric code: $e^{i}m^{j} \otimes e^{k}m^{l} = e^{(i+k)(\text{mod }2)}m^{(j+l)(\text{mod }2)}$ (i, j = 0, 1)
 - e.g. Ising: $\sigma \otimes \sigma = 1 \oplus \psi$, $\psi \oplus \psi = 1$
 - e.g. Fibonacci: $\tau \otimes \tau = 1 \oplus \tau$

Topological Quantum Computation

- Topologically protected operations: Braiding of anyons
 - Move one anyon around another \rightarrow pick up phase (due to Aharonov-Bohm)

Figures: (1) Z. Wang, Topological Quantum Computation. (2) C. Nayak et al., Non-abelian anyons and topological quantum computation. • Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)
- These are difficult to realize, existence is still uncertain

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)
- These are difficult to realize, existence is still uncertain
- Question: Given a top. phase that supports only abelian anyons, is it possible "engineer" other non-abelian objects?

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)
- These are difficult to realize, existence is still uncertain
- Question: Given a top. phase that supports only abelian anyons, is it possible "engineer" other non-abelian objects?
 - \bullet Answer: Yes! We consider boundaries of the topological phase \rightarrow gapped boundaries
 - We'll even get a universal gate set from gapped boundaries of an abelian phase (specifically, bilayer $\nu = 1/3$ FQH)

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- $\bullet\,$ Universal TQC with gapped boundaries in bilayer $\nu=1/3$ FQH
- Summary and Outlook

• Framework of TQC

- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- $\bullet\,$ Universal TQC with gapped boundaries in bilayer $\nu=1/3$ FQH
- Summary and Outlook

Formally, an anyon model $\mathcal B$ consists of the following data:

- Set of anyon types/labels: $\{a, b, c...\}$, one of which should represent the vacuum $\mathbf{1}$
 - Each anyon type has a topological twist $\theta_i \in U(1)$:

¹More general cases exist, but are not used in this talk.

Figures: Z. Wang, Topological Quantum Computation (2010)

Formally, an anyon model $\mathcal B$ consists of the following data:

• Set of anyon types/labels: $\{a, b, c...\}$, one of which should represent the vacuum $\mathbf{1}$

• Each anyon type has a topological twist $\theta_i \in U(1)$:

• For each pair of anyon types, a set of fusion rules: $a \otimes b = \bigoplus_c N_{ab}^c c$.

- The fusion space of $a \otimes b$ is a vector space V_{ab} with basis $V_{ab}^{c, 1}$.
- The fusion space of $a_1 \otimes a_2 \otimes ... \otimes a_n$ to b is a vector space $V^b_{a_1a_2...a_n}$ with basis given by anyon labels in intermediate segments, e.g.

 $> = \theta_i$

¹More general cases exist, but are not used in this talk.

Figures: Z. Wang, Topological Quantum Computation (2010)

Formally, an anyon model $\mathcal B$ consists of the following data: [Cont'd]

• Associativity: for each
$$(a, b, c, d)$$
, a set of
(unitary) linear transformations
 $\{F_{d;ef}^{abc} : V_d^{abc} \rightarrow V_d^{abc}\}$ satisfying
"pentagons"
 $i j k = \sum_n F_{lym}^{ijk}$

Figures: Z. Wang, Topological Quantum Computation (2010)

Formally, an anyon model $\mathcal B$ consists of the following data: [Cont'd]

 (Non-degenerate) braiding: For each (a, b, c) s.t. N^c_{a,b} ≠ 0, a set of phases¹ R^c_{ab} ∈ U(1) compatible with associativity ("hexagons"):

$$a b \\ c = R_c^{ab}$$

¹More general cases exist, but are not used in this talk.

Figures: Z. Wang, Topological Quantum Computation (2010)

Formally, an anyon model $\mathcal B$ consists of the following data: [Cont'd]

 (Non-degenerate) braiding: For each (a, b, c) s.t. N^c_{a,b} ≠ 0, a set of phases¹ R^c_{ab} ∈ U(1) compatible with associativity ("hexagons"):

$$a b \\ c = R_c^{ab}$$

Mathematically, this is captured by a (unitary) *modular tensor category* (UMTC)

Figures: Z. Wang, Topological Quantum Computation (2010)

¹More general cases exist, but are not used in this talk.

- In this framework, a 2D topological phase of matter is an equivalence class of gapped Hamiltonians H = {H} whose low-energy excitations form the same anyon model B
- Examples (on the lattice) include Kitaev's quantum double models, Levin-Wen string-net models, ...

- Physical system: Bilayer FQH system, 1/3 Laughlin state of opposite chirality in each layer
- Equivalent to \mathbb{Z}_3 toric code (Kitaev, 2003)
- Anyon types: $e^a m^b$, a, b = 0, 1, 2
- Twist: $\theta(e^am^b) = \omega^{ab}$ where $\omega = e^{2\pi i/3}$
- Fusion rules: $e^a m^b \otimes e^c m^d \rightarrow e^{(a+c) \pmod{3}} m^{(b+d) \pmod{3}}$
- F symbols all trivial (0 or 1)
- $R_{e^am^b,e^cm^d} = e^{2\pi ibc/3}$
- UMTC: $SU(3)_1 \times \overline{SU(3)_1} \cong \mathfrak{D}(\mathbb{Z}_3) = \mathcal{Z}(\mathsf{Rep}(\mathbb{Z}_3)) = \mathcal{Z}(\mathsf{Vec}_{\mathbb{Z}_3})$

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal gate set with gapped boundaries in bilayer $\nu=1/3$ FQH
- Summary and Outlook

 A gapped boundary is an equivalence class of gapped local (commuting) extensions of H ∈ H to the boundary

- A gapped boundary is an equivalence class of gapped local (commuting) extensions of H ∈ H to the boundary
- In the anyon model: Collection of bulk bosonic ($\theta = 1$) anyons which condense to vacuum on the boundary (think Bose condensation)
 - All other bulk anyons condense to confined "boundary excitations" $\alpha,\beta,\gamma...$
- $\bullet\,$ Mathematically, Lagrangian algebra $\mathcal{A}\in\mathcal{B}$

Gapped Boundaries: Framework

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk):

_

$$\begin{array}{c|c} a & b \\ \hline \end{array} & = \sum_{c} M_{c}^{ab} \underbrace{ \begin{array}{c} a & b \\ \hline \end{array} \\ c \end{array} }$$

→ ∃ >

Gapped Boundaries: Framework

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk):

 $\begin{array}{c|c} a & b \\ \hline \end{array} = \sum_{c} M_{c}^{ab} \begin{array}{c|c} a & b \\ \hline \end{array}$

(More generally, we also define these with boundary excitations, but that is unnecessary for this talk.)

Gapped Boundaries: Framework

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk): $\int_{a}^{a} \int_{b}^{b} = \sum_{c} M_{c}^{ab} \int_{c}^{ab}$

(More generally, we also define these with boundary excitations, but that is unnecessary for this talk.)

M symbols must be compatible with F symbols ("mixed pentagons"):

- Physical system: Bilayer $\nu = 1/3$ FQH, equiv. to \mathbb{Z}_3 toric code
- Anyon types: $e^a m^b$, a, b = 0, 1, 2

- Physical system: Bilayer $\nu = 1/3$ FQH, equiv. to \mathbb{Z}_3 toric code
- Anyon types: $e^a m^b$, a, b = 0, 1, 2
- Two gapped boundary types:
 - Electric charge condensate: $\mathcal{A}_1 = 1 \oplus e \oplus e^2$
 - Magnetic flux condensate: $\mathcal{A}_2 = 1 \oplus m \oplus m^2$

- Physical system: Bilayer u = 1/3 FQH, equiv. \mathbb{Z}_3 toric code
- We will work mainly with $\mathcal{A}_1 = 1 \oplus e \oplus e^2$:
 - \bullet Algebraically, $\mathcal{A}_1,\,\mathcal{A}_2$ are equivalent by electric-magnetic duality
 - Easier to work with charge condensate read-out can be done by measuring electric charge (Barkeshli, 2016)
 - It is interesting to consider both A_1 and A_2 at the same time we do this in a separate paper³, will briefly mention in our Outlook

³C, Cheng, Wang, Phys. Rev. B 96, 195129 (2017) < □ → < = →

- Physical system: Bilayer u = 1/3 FQH, equiv. \mathbb{Z}_3 toric code
- We will work mainly with $\mathcal{A}_1 = 1 \oplus e \oplus e^2$:
 - \bullet Algebraically, $\mathcal{A}_1,\,\mathcal{A}_2$ are equivalent by electric-magnetic duality
 - Easier to work with charge condensate read-out can be done by measuring electric charge (Barkeshli, 2016)
 - It is interesting to consider both A_1 and A_2 at the same time we do this in a separate paper³, will briefly mention in our Outlook
- M symbols for this theory are all 0 or 1

³C, Cheng, Wang, Phys. Rev. B 96, 195129 (2017)

- Framework of TQC
- Introduce gapped boundaries and their framework

• Gapped boundaries for TQC

- Universal gate set with gapped boundaries in bilayer u = 1/3 FQH
- Summary and Outlook

Qudit encoding:

• Gapped boundaries give rise to a natural ground state degeneracy: *n* gapped boundaries on a plane, with total charge vacuum

Qudit encoding:

- Gapped boundaries give rise to a natural ground state degeneracy: *n* gapped boundaries on a plane, with total charge vacuum
- For qudit encoding: use n = 2

For our bilayer $\nu = 1/3$ FQH system, we have:

∃ > <</p>

Topologically protected operations:

- Tunnel-a operations
- Loop-a operations
- Braiding gapped boundaries
- Topological charge measurement*

Starting from state $|b\rangle$, tunnel an *a* anyon from A_1 to A_2 :

Compute using *M*-symbols:

Result:

Starting from state $|b\rangle$, loop an *a* anyon around one of the boundaries:

Loop-a Operations

Similar computation methods lead to the formula:

where $s_{ab} = \tilde{s}_{ab}/d_b$ is given by the modular S matrix of the theory:

$$\tilde{s}_{ij} = \bigcirc$$

Braid gapped boundaries around each other:

(Mathematically, this gives a representation of the (spherical) 2n-strand pure braid group.)

Simplify with (bulk) *R* and *F* moves to get:

Gapped Boundaries for TQC: Example

For our bilayer $\nu = 1/3$ FQH case: $(A_1 = A_2 = 1 \oplus e \oplus e^2)$

- Tunnel an *e* anyon from A_1 to A_2 : $W_a(\gamma)|b\rangle = |a \otimes b\rangle$ $\rightarrow W_e(\gamma) = \sigma_3^x$, where $\sigma_3^x|i\rangle = |(i+1) \pmod{3}\rangle$
- Loop an *m* anyon around A_2 : $W_m(\alpha_2)|e^j\rangle = \omega^j|e^j\rangle$ $\rightarrow W_m(\alpha_2) = \sigma_3^z$
- Braid gapped boundaries: get $\wedge \sigma_3^z$

< ∃ > <

- Motivation:
 - Property F conjecture (Naidu and Rowell, 2011): Braidings alone cannot be universal for TQC for most physically plausible systems

- Motivation:
 - Property F conjecture (Naidu and Rowell, 2011): Braidings alone cannot be universal for TQC for most physically plausible systems
- Topological charge projection (TCP) (Barkeshli and Freedman, 2016):
 - $\bullet\,$ Doubled theories: Wilson line lifts to a loop \to measure topological charge through the loop

Resulting projection operator: (*O_x*(β) = *W_{xx̃}*(γ_i) or *W_x*(α_i))

$$P_{\beta}^{(a)} = \sum_{x \in \mathcal{C}} S_{0a} S_{xa}^* \mathcal{O}_x(\beta).$$
(3)

- Topological charge projection (TCP): [Cont'd]
 - $\bullet\,$ Given an anyon theory $\mathcal C$, its $\mathcal S,\mathcal T$ matrices

$$\mathcal{S} = \left\{ \begin{array}{c} \tilde{s}_{ij} = igcolor{i}{j} \\ i & j \end{array}
ight\}, \qquad \mathcal{T} = \mathsf{diag}(heta_i)$$

give mapping class group representations $V_{\mathcal{C}}(Y)$ for surfaces Y.

• Barkeshli and Freedman showed that topological charge projections generate all matrices in $V_{\mathcal{C}}(Y)$

¹More general cases exist, but are not used in this talk.

- Topological charge projection (TCP): [Cont'd]
 - $\bullet\,$ Given an anyon theory $\mathcal C$, its $\mathcal S,\mathcal T$ matrices

$$\mathcal{S} = \left\{ \begin{array}{c} \tilde{s}_{ij} = igcology{int} \ i \ j \end{array}
ight\}, \qquad \mathcal{T} = \mathsf{diag}(heta_i)$$

give mapping class group representations $V_{\mathcal{C}}(Y)$ for surfaces Y.

- Barkeshli and Freedman showed that topological charge projections generate all matrices in $V_{\mathcal{C}}(Y)$
- General topological charge measurements (TCMs):
 - Projection operators P^(a)_β = ∑_{x∈C} S_{0a}S^{*}_{xa}O_x(β) → topological charge measurements perform the *complement* of P^(a)_β
 - Not always physical, but special cases are *symmetry protected* we examine this

¹More general cases exist, but are not used in this talk.

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- \bullet Universal gate set with gapped boundaries in bilayer $\nu=1/3$ FQH
- Summary and Outlook

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- The single-qutrit Hadamard gate H_3 , defined as $H_3|j\rangle = \frac{1}{\sqrt{3}} \sum_{i=0}^2 \omega^{ij} |i\rangle$, $j = 0, 1, 2, \omega = e^{2\pi i/3}$
- **2** The two-qutrit entangling gate SUM₃, defined as $SUM_3|i\rangle|j\rangle = |i\rangle|(i+j) \mod 3\rangle$, i, j = 0, 1, 2.
- The single-qutrit generalized phase gate $Q_3 = \text{diag}(1, 1, \omega)$.
- Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H_3^2 .
- A projection *M* of a state in the qutrit space C³ to Span{|0⟩} and its orthogonal complement Span{|1⟩, |2⟩}, so that the resulting state is coherent if projected into Span{|1⟩, |2⟩}.

- 4 同 6 4 日 6 4 日 6

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

• $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- ② ∧σ₃^z can be implemented by gapped boundary braiding. Conjugate second qutrit by H₃ to get SUM₃.

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- O₃ < δ₃ can be implemented by gapped boundary braiding. Conjugate second qutrit by H₃ to get SUM₃.
- TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU $(3)_1$). Follow by σ_3^x for Q_3 .

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU $(3)_1$). Follow by σ_3^x for Q_3 .
- Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H₃² - we have a Pauli-X from tunneling e.

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU $(3)_1$). Follow by σ_3^x for Q_3 .
- Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H₃² we have a Pauli-X from tunneling e.
- Projective measurement we use the TCM which is the complement of

$$P_{\gamma}^{(1)} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$
 (4)

Conjugating $1 - P_{\gamma}^{(1)}$ with the Hadamard gives the result.

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

- Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + h.c.$
 - t = (complex) tunneling amplitude, $W_{\gamma}(e) = \text{tunnel-}e$ operator

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

• Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + h.c.$

• t = (complex) tunneling amplitude, $W_{\gamma}(e) = \text{tunnel-}e$ operator

• Implementing $M \leftrightarrow$ ground state of H' is doubly degenerate for $|e\rangle, |e^2\rangle \leftrightarrow t$ is real (beyond topological protection)

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

• Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + h.c.$

• t = (complex) tunneling amplitude, $W_{\gamma}(e) = \text{tunnel-}e$ operator

- Implementing $M \leftrightarrow$ ground state of H' is doubly degenerate for $|e\rangle, |e^2\rangle \leftrightarrow t$ is real (beyond topological protection)
- Physically, could realize in fractional quantum spin Hall state quantum spin Hall + time-reversal symmetry (exchange two layers)
 - Topologically equiv. to $\nu=1/3$ Laughlin, e= bound state of spin up/down quasiholes
 - *e* is time-reversal invariant \rightarrow tunneling amplitude of *e* must be real \rightarrow symmetry-protected TCM

・ロン ・四 ・ ・ ヨン ・ ヨン

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- Universal gate set with gapped boundaries in bilayer u = 1/3 FQH
- Summary and Outlook

- Decoherence is a major challenge to quantum computing \rightarrow topological quantum computing (TQC)
- TQC with anyons requires non-abelian topological phases (difficult to implement) → engineer non-abelian objects (e.g. gapped boundaries) from abelian phases
- We can get a **universal quantum computing gate set** from a purely abelian theory (bilayer $\nu = 1/3$ FQH), which is trivial for anyonic TQC
 - Topologically protected qudit encoding and Clifford gates
 - Symmetry-protected implementation for non-Clifford projection

(日) (同) (三) (三)

- Practical implementation of the symmetry-protected TCM
- More thorough study of symmetry-protected quantum computation
 - Amount of protection offered and computation power
- Other routes to engineer non-abelian objects
 - Boundary defects/parafermion zero modes from gapped boundaries of $\nu=1/3~{\rm FQH}$ (Lindner et al., 2014)
 - Genons and symmetry defects (Barkeshli et al., 2014; C, Cheng, Wang, 2017; Delaney and Wang, 2018)
 - How would these look when combined with gapped boundaries?

- Special thanks to Cesar Galindo, Shawn Cui, Maissam Barkeshli for answering many questions
- Many thanks to Prof. Freedman and everyone at Station Q for a great summer
- None of this would have been possible without the guidance and dedication of Prof. Zhenghan Wang

Quantum Convolutional Neural Networks

Iris Cong

Soonwon Choi

Mikhail D. Lukin

arXiv:1810.03787

Why quantum machine learning?

Machine learning: interpret and process large amounts of data

Quantum physics: many-body interactions \rightarrow extremely large complexity

Near-term quantum computers/ quantum simulators

8

Quantum Machine Learning

- Using a *quantum computer* to perform machine learning tasks
- Many open questions:
 - Why/how does quantum machine learning work?
 - Concrete circuit models suitable for near-term implementation?
 - Relationship to quantum many-body physics?
 - Relationship with quantum information theory?

Main Contributions

Review of (Classical) CNN

• Structured neural network: multiple *layers* of image processing

5 6 7 8

3 2 1 0

1

 $y_{i,j} = w_0 x_{i,j} + w_1 x_{i+,j} + w_2 x_{i,j+1} + w_3 x_{i+1,j+1}$

2

3 4

6 8 3 4

Quantum CNN Architecture

Same types of layers:

- 1. Convolution
 - Local unitaries, trans. inv., 1D, 2D, 3D ...
- 2. Pooling
 - Reduce system size
 - Final unitary depends on meas. outcomes
- 3. Fully connected
 - Non-local measurement

Total number of parameters ~ O(log N)

Application: Quantum Phase Recognition

Problem: Given quantum many-body system in (unknown) ground state $|\psi_G\rangle$, does $|\psi_G\rangle$ belong to a particular quantum phase \mathcal{P} ?

Direct analog of image classification, but *intrinsically quantum problem*

Claim: Quantum CNN is very efficient in quantum phase recognition

Example: 1D ZXZ Model (
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$
 SPT)

• SPT phase: cannot be detected by local order parameter

Phase diagram is obtained from iDMRG with bond dimension 150. Input states are obtained from DMRG with system sizes 45, 135, bond dimension 130. Circuit is performed using matrix-product state update.

Example: 1D ZXZ Model (
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$
 SPT)

- *S* = 1 Haldane phase transition:
- Same phase, map spin-1 to pair of

spin-1/2

Sample Complexity

- Existing approaches to detect SPT: measure nonzero expectation value of string order parameters (long operator product)
 - Problem: expectation value vanishes near phase boundary \rightarrow many repetitions
 - QCNN: much sharper \rightarrow fewer repetitions
- Quantify with sample complexity: How many copies of the input state are required to determine with 95% confidence that $|\psi_G\rangle \in \mathcal{P}$?

$$M_{\rm min} = \frac{1.96^2}{(\arcsin\sqrt{p} - \sqrt{\arcsin p_0})^2}$$
Sample Complexity

• Comparison with existing approaches:

string order parameters

- SOP (red): independent of string length
- QCNN (blue): much better and

improves with depth up to finite size

 $h_1 = 0.5 \, J$:

Why does it work?

 $\text{QCNN} \approx \text{MERA} + \text{QEC} \approx \text{``RG flow''}$

Training: Example

- *N* = 15 spins (depth 1) for simulations
- Initialize all unitaries to random values
- Train along $h_2 = 0$ (solvable)
- Gradient descent: $MSE = \frac{1}{2M} \sum_{\alpha=1}^{M} (y_i f_{\{U_i, V_j, F\}}(|\psi_{\alpha}\rangle))^2$

- Observation: training on 1D, solvable set can still produce the correct 2D phase diagram
- Demonstrates how QCNN structure avoids overfitting

Optimizing Quantum Error Correction

Problem: Given a realistic but unknown error model, find a resourceefficient, fault-tolerant quantum error correction code to protect against these errors.

QCNN structure resembles nested quantum error correction, and can be used to simultaneously optimize encoder and decoder

Optimizing Quantum Error Correction

Error models:

- Isotropic depolarization $(p_x = p_y = p_z)$
- Anisotropic depolarization $\mathcal{N}_{1,i}: \rho \mapsto (1-\sum_{\mu} p_{\mu})\rho + \sum_{\mu} p_{\mu}\sigma^{\mu}_{i}\rho\sigma^{\mu}_{i}$
- Anisotropic depolarization + correlated error (X_i X_{i+1})

$$\mathcal{N}_{2,i}: \rho \mapsto (1-p_{xx})\rho + p_{xx}X_iX_{i+1}\rho X_iX_{i+1}$$

Optimizing Quantum Error Correction

Circuit structure:

Results for correlated error:

Summary

- Concrete circuit model for quantum classification
- Application to quantum phase recognition:
 - 1D SPT phase ($\mathbb{Z}_2 \times \mathbb{Z}_2$)
 - Theoretical explanation: QCNN $\approx~$ MERA + QEC \approx RG flow
- Optimizing Quantum Error Correction

Thanks!