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Introduction: Quantum Computation

Quantum computing:
Feynman (1982): Use a quantum-mechanical computer to simulate
quantum physics (classically intractable)
Encode information in qubits, gates = unitary operations
Applications: Factoring/breaking RSA (Shor, 1994), quantum
machine learning, ...

Major challenge: local decoherence of qubits
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Introduction: Topological Quantum Computation

Topological quantum computing (TQC) (Kitaev, 1997; Freedman
et al., 2003):

Encode information in topological degrees of freedom
Perform topologically protected operations

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Topological Quantum Computation

Traditional realization of TQC: anyons in topological phases of

matter (e.g. Fractional Quantum Hall - FQH)
Elementary quasiparticles in 2 dimensions s.t. | 1 2i = e

i�| 2 1i

Qubit encoding: degeneracy arising from the fusion rules

e.g. Toric code: e imj ⌦ e
k
m

l = e
(i+k)(mod 2)

m
(j+l)(mod 2) (i , j = 0, 1)

e.g. Ising: � ⌦ � = 1�  ,  �  = 1
e.g. Fibonacci: ⌧ ⌦ ⌧ = 1� ⌧
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Topological Quantum Computation

Topologically protected operations: Braiding of anyons
Move one anyon around another ! pick up phase (due to
Aharonov-Bohm)

Figures: (1) Z. Wang, Topological Quantum Computation.
(2) C. Nayak et al., Non-abelian anyons and topological quantum computation.
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Problem

Problem: Abelian anyons have no degeneracy, so no computation
power ! need non-abelian anyons for TQC (e.g. ⌫ = 5/2, 12/5)

These are di�cult to realize, existence is still uncertain

Question: Given a top. phase that supports only abelian anyons, is it
possible “engineer” other non-abelian objects?

Answer: Yes! We consider boundaries of the topological phase !
gapped boundaries

We’ll even get a universal gate set from gapped boundaries of an
abelian phase (specifically, bilayer ⌫ = 1/3 FQH)
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Overview

Framework of TQC

Introduce gapped boundaries and their framework

Gapped boundaries for TQC

Universal TQC with gapped boundaries in bilayer ⌫ = 1/3 FQH

Summary and Outlook
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Framework of TQC

Formally, an anyon model B consists of the following data:

Set of anyon types/labels: {a, b, c ...}, one of which
should represent the vacuum 1

Each anyon type has a topological twist ✓i 2 U(1):

For each pair of anyon types, a set of fusion rules: a⌦ b = �cN
c
abc .

The fusion space of a⌦ b is a vector space Vab with basis V c
ab.

1

The fusion space of a1 ⌦ a2 ⌦ ...⌦ an to b is a vector space V
b
a1a2...an

with basis given by anyon labels in intermediate segments, e.g.

1
More general cases exist, but are not used in this talk.

Figures: Z. Wang, Topological Quantum Computation (2010)
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Framework of TQC

Formally, an anyon model B consists of the following data: [Cont’d]

Associativity: for each (a, b, c , d), a set of
(unitary) linear transformations
{F abc

d ;ef : V abc
d ! V

abc
d } satisfying

“pentagons”

Figures: Z. Wang, Topological Quantum Computation (2010)
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Framework of TQC

Formally, an anyon model B consists of the following data: [Cont’d]

(Non-degenerate) braiding: For
each (a, b, c) s.t. Nc

a,b 6= 0, a set

of phases1 R
c
ab 2 U(1) compatible

with associativity (“hexagons”):

Mathematically, this is captured by
a (unitary) modular tensor category

(UMTC)

1
More general cases exist, but are not used in this talk.
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Framework of TQC

In this framework, a 2D topological phase of matter is an
equivalence class of gapped Hamiltonians H = {H} whose
low-energy excitations form the same anyon model B
Examples (on the lattice) include Kitaev’s quantum double models,
Levin-Wen string-net models, ...
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Framework of TQC: Example

Physical system: Bilayer FQH system, 1/3 Laughlin state of opposite
chirality in each layer

Equivalent to Z3 toric code (Kitaev, 2003)

Anyon types: eamb, a, b = 0, 1, 2

Twist: ✓(eamb) = !ab where ! = e
2⇡i/3

Fusion rules: eamb ⌦ e
c
m

d ! e
(a+c)(mod 3)

m
(b+d)(mod 3)

F symbols all trivial (0 or 1)

Reamb,ecmd = e
2⇡ibc/3

UMTC: SU(3)1 ⇥ SU(3)1 ⇠= D(Z3) = Z(Rep(Z3)) = Z(VecZ3)

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Gapped Boundaries: Framework

A gapped boundary is an equivalence class of gapped local
(commuting) extensions of H 2 H to the boundary

In the anyon model: Collection of bulk bosonic (✓ = 1) anyons which
condense to vacuum on the boundary (think Bose condensation)

All other bulk anyons condense to confined “boundary excitations”
↵,�, �...

Mathematically, Lagrangian algebra A 2 B
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Gapped Boundaries: Framework

More rigorously, gapped boundaries come with M symbols (like F

symbols for the bulk):

(More generally, we also define these with boundary excitations, but that
is unnecessary for this talk.)
M symbols must be compatible with F symbols (“mixed pentagons”):
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Gapped Boundaries: Example

Physical system: Bilayer ⌫ = 1/3 FQH, equiv. to Z3 toric code

Anyon types: eamb, a, b = 0, 1, 2

Two gapped boundary types:
Electric charge condensate: A1 = 1� e � e

2

Magnetic flux condensate: A2 = 1�m �m
2

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Gapped Boundaries: Example

Physical system: Bilayer ⌫ = 1/3 FQH, equiv. to Z3 toric code

Anyon types: eamb, a, b = 0, 1, 2

Two gapped boundary types:
Electric charge condensate: A1 = 1� e � e

2

Magnetic flux condensate: A2 = 1�m �m
2

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Gapped Boundaries: Example

Physical system: Bilayer ⌫ = 1/3 FQH, equiv. Z3 toric code

We will work mainly with A1 = 1� e � e
2:

Algebraically, A1, A2 are equivalent by electric-magnetic duality
Easier to work with charge condensate - read-out can be done by
measuring electric charge (Barkeshli, 2016)
It is interesting to consider both A1 and A2 at the same time - we do
this in a separate paper3, will briefly mention in our Outlook

M symbols for this theory are all 0 or 1

3C, Cheng, Wang, Phys. Rev. B 96, 195129 (2017)
Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Gapped Boundaries: Example

Physical system: Bilayer ⌫ = 1/3 FQH, equiv. Z3 toric code

We will work mainly with A1 = 1� e � e
2:

Algebraically, A1, A2 are equivalent by electric-magnetic duality
Easier to work with charge condensate - read-out can be done by
measuring electric charge (Barkeshli, 2016)
It is interesting to consider both A1 and A2 at the same time - we do
this in a separate paper3, will briefly mention in our Outlook

M symbols for this theory are all 0 or 1

3C, Cheng, Wang, Phys. Rev. B 96, 195129 (2017)
Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Overview

Framework of TQC

Introduce gapped boundaries and their framework

Gapped boundaries for TQC

Universal gate set with gapped boundaries in bilayer ⌫ = 1/3 FQH

Summary and Outlook

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Gapped Boundaries for TQC

Qudit encoding:

Gapped boundaries give rise to a natural ground state degeneracy: n
gapped boundaries on a plane, with total charge vacuum

For qudit encoding: use n = 2

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Gapped Boundaries for TQC: Example

For our bilayer ⌫ = 1/3 FQH system, we have:

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Gapped Boundaries for TQC

Topologically protected operations:

Tunnel-a operations

Loop-a operations

Braiding gapped boundaries

Topological charge measurement⇤

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Tunnel-a Operations

Starting from state |bi, tunnel an a anyon from A1 to A2:

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Tunnel-a Operations

Compute using M-symbols:

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Tunnel-a Operations

Result:

Wa(�) =
X

c

M
ab
c (A1)[M

ab
c ]†(A2)

r
dadb

dc
(1)

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Loop-a Operations

Starting from state |bi, loop an a anyon around one of the boundaries:
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Loop-a Operations

Similar computation methods lead to the formula:

where sab = s̃ab/db is given by the modular S matrix of the theory:

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Braiding Gapped Boundaries

Braid gapped boundaries around each other:

(Mathematically, this gives a representation of the (spherical) 2n-strand
pure braid group.)

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Braiding Gapped Boundaries

Simplify with (bulk) R and F moves to get:

�22 =
X

c,c 0

F
a2a1b1
b2;c 0c

R
b1a1
c 0 R

a1b1
c (F a2a1b1

b2
)�1
c 00c 0 (2)
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Gapped Boundaries for TQC: Example

For our bilayer ⌫ = 1/3 FQH case: (A1 = A2 = 1� e � e
2)

Tunnel an e anyon from A1 to A2: Wa(�)|bi = |a⌦ bi
! We(�) = �x3 , where �

x
3 |ii = |(i + 1)(mod 3)i

Loop an m anyon around A2: Wm(↵2)|e ji = !j |e ji
! Wm(↵2) = �z3
Braid gapped boundaries: get ^�z3

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Topological Charge Projection/Measurement

Motivation:
Property F conjecture (Naidu and Rowell, 2011): Braidings alone
cannot be universal for TQC for most physically plausible systems

Topological charge projection (TCP) (Barkeshli and Freedman,
2016):

Doubled theories: Wilson line lifts to a loop ! measure topological
charge through the loop

Resulting projection operator: (Ox(�) = Wxx(�i ) or Wx(↵i ))

P
(a)
� =

X

x2C
S0aS

⇤
xaOx(�). (3)

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Topological Charge Projection/Measurement

Topological charge projection (TCP): [Cont’d]
Given an anyon theory C, its S, T matrices

S =

( )
, T = diag(✓i )

give mapping class group representations VC(Y ) for surfaces Y .
Barkeshli and Freedman showed that topological charge projections
generate all matrices in VC(Y )

General topological charge measurements (TCMs):

Projection operators P(a)
� =

P
x2C S0aS

⇤
xaOx(�) ! topological charge

measurements perform the complement of P(a)
�

1

Not always physical, but special cases are symmetry protected – we
examine this

1
More general cases exist, but are not used in this talk.
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Universal Gate Set

Universal (metaplectic) gate set for the qutrit model (Cui and Wang,
2015):

1 The single-qutrit Hadamard gate H3, defined as
H3|ji = 1p

3

P2
i=0 !

ij |ii, j = 0, 1, 2, ! = e
2⇡i/3

2 The two-qutrit entangling gate SUM3, defined as
SUM3|ii|ji = |ii|(i + j) mod 3i, i , j = 0, 1, 2.

3 The single-qutrit generalized phase gate Q3 = diag(1, 1,!).

4 Any nontrivial single-qutrit classical (i.e. Cli↵ord) gate not equal to
H

2
3 .

5 A projection M of a state in the qutrit space C3 to Span{|0i} and
its orthogonal complement Span{|1i, |2i}, so that the resulting state
is coherent if projected into Span{|1i, |2i}.

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Universal Gate Set - Bilayer ⌫ = 1/3 FQH

Universal (metaplectic) gate set for the qutrit model (Cui and Wang,
2015):

1 H3 = S for C = SU(3)1 (single layer ⌫ = 1/3 FQH), so it can be
implemented by TCP.

2 ^�z3 can be implemented by gapped boundary braiding. Conjugate
second qutrit by H3 to get SUM3.

3 TCP can implement diag(1,!,!) (Dehn twist of SU(3)1). Follow by
�x3 for Q3.

4 Any nontrivial single-qutrit classical (i.e. Cli↵ord) gate not equal to
H

2
3 - we have a Pauli-X from tunneling e.

5 Projective measurement - we use the TCM which is the complement
of

P
(1)
� =

1

3

2

4
1 1 1
1 1 1
1 1 1

3

5 . (4)

Conjugating 1� P
(1)
� with the Hadamard gives the result.

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Universal Gate Set - Bilayer ⌫ = 1/3 FQH

To get the projective measurement, we introduce a symmetry-protected

topological charge measurement:

Want to tune system s.t. quasiparticle tunneling along � is enhanced
! implement H 0 = �tW�(e) + h.c.

t = (complex) tunneling amplitude, W�(e) = tunnel-e operator

Implementing M $ ground state of H 0 is doubly degenerate for
|ei, |e2i $ t is real (beyond topological protection)

Physically, could realize in fractional quantum spin Hall state –
quantum spin Hall + time-reversal symmetry (exchange two layers)

Topologically equiv. to ⌫ = 1/3 Laughlin, e = bound state of spin
up/down quasiholes
e is time-reversal invariant ! tunneling amplitude of e must be real
! symmetry-protected TCM

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Implementing M $ ground state of H 0 is doubly degenerate for
|ei, |e2i $ t is real (beyond topological protection)

Physically, could realize in fractional quantum spin Hall state –
quantum spin Hall + time-reversal symmetry (exchange two layers)

Topologically equiv. to ⌫ = 1/3 Laughlin, e = bound state of spin
up/down quasiholes
e is time-reversal invariant ! tunneling amplitude of e must be real
! symmetry-protected TCM

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Overview

Framework of TQC

Introduce gapped boundaries and their framework

Gapped boundaries for TQC

Universal gate set with gapped boundaries in bilayer ⌫ = 1/3 FQH

Summary and Outlook

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Summary

Decoherence is a major challenge to quantum computing !
topological quantum computing (TQC)

TQC with anyons requires non-abelian topological phases (di�cult
to implement) ! engineer non-abelian objects (e.g. gapped
boundaries) from abelian phases

We can get a universal quantum computing gate set from a
purely abelian theory (bilayer ⌫ = 1/3 FQH), which is trivial for
anyonic TQC

Topologically protected qudit encoding and Cli↵ord gates
Symmetry-protected implementation for non-Cli↵ord projection

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019



Outlook

Practical implementation of the symmetry-protected TCM

More thorough study of symmetry-protected quantum computation
Amount of protection o↵ered and computation power

Other routes to engineer non-abelian objects
Boundary defects/parafermion zero modes from gapped boundaries of
⌫ = 1/3 FQH (Lindner et al., 2014)
Genons and symmetry defects (Barkeshli et al., 2014; C, Cheng,
Wang, 2017; Delaney and Wang, 2018)
How would these look when combined with gapped boundaries?

Iris Cong, Harvard TQC with Gapped Boundaries NCGOA, May 2019
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Why quantum machine learning?



Machine learning: interpret and process large amounts of data

Unmanned Vehicle Genomics

Quantum physics: many-body interactionsà extremely large complexity Near-term quantum computers/
quantum simulatorsQuantum phases of matterQuantum chemistry

Quantum many-body physicsMachine learning Exciting!

Image recognition

= Cat

= Dog

H. Bernien et al, Nature (2017)
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• Using a quantum computer to perform machine learning tasks

• Many open questions:

• Why/how does quantum machine learning work?

• Concrete circuit models suitable for near-term implementation?

• Relationship to quantum many-body physics?

• Relationship with quantum information theory?

Quantum Machine Learning

Goal of our work



Main Contributions
Concrete + efficient circuit model for 

quantum classification problems Application: Quantum
Phase Recognition

Theoretical Explanation: 
RG Flow, MERA, 

Quantum Error Correction

Convolution Pooling

Fully 
Connected
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• Good connection to existing ML techniques
Application: Optimizing 

Quantum Error Correction
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Review of (Classical) CNN
• Structured neural network: multiple layers of image processing

Cat Dog
=

Example (simplified):

Convolution Pooling Fully connected

Pooling layersConvolution layers

!",$ = &'(",$ + &*("+,$+ &,(",$+*+ &-("+*,$+*

Fully connected



Quantum CNN Architecture
Same types of layers:
1. Convolution

• Local unitaries, trans. inv., 1D, 2D, 3D …

2. Pooling
• Reduce system size
• Final unitary depends on meas. 

outcomes

3. Fully connected
• Non-local measurement

Convolution Pooling
Fully 

Connected

Total number of parameters ~ O(log N)



Application: Quantum Phase Recognition

Direct analog of image classification, but intrinsically quantum problem

if ⟩|01 ∈ 3
if ⟩|01 ∉ 3

Convolution Pooling

Fully 
Connected

⟩|01

Problem: Given quantum many-body system in (unknown) ground state 
⟩|01 , does ⟩|01 belong to a particular quantum phase 3?

Claim: Quantum CNN is very efficient in quantum phase recognition



• SPT phase: cannot be detected by local order parameter

•

Example: 1D ZXZ Model (G = ℤ6×ℤ6 SPT)

Phase diagram is obtained from iDMRG with bond dimension 150.
Input states are obtained from DMRG with system sizes 45, 135, bond dimension 130.
Circuit is performed using matrix-product state update.
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• S = 1 Haldane phase transition:

• Same phase, map spin-1 to pair of

spin-1/2 

Example: 1D ZXZ Model (G = ℤ6×ℤ6 SPT)



Sample Complexity
• Existing approaches to detect SPT: measure nonzero expectation value of 

string order parameters (long operator product)

• Problem: expectation value vanishes near phase boundary à many repetitions

• QCNN: much sharper à fewer repetitions 

• Quantify with sample complexity: How many copies of the input state 

are required to determine with 95% confidence that ⟩|01 ∈ 3?



Sample Complexity

• Comparison with existing approaches: 

string order parameters 

• SOP (red): independent of string length

• QCNN (blue): much better and 

improves with depth up to finite size

h1 = 0.5 J:
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Why does it work?

Cat Dog

=

C P FCPC
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• N = 15 spins (depth 1) for simulations

• Initialize all unitaries to random values

• Train along h2 = 0 (solvable) 

• Gradient descent:

• Observation: training on 1D, solvable set can still produce the correct 2D 

phase diagram

• Demonstrates how QCNN structure avoids overfitting

Training: Example

Paramagnetic

SPT

Antiferromagnetic



Optimizing Quantum Error Correction

QCNN⇢phys

⇢l

… error …

⇢el

Problem: Given a realistic but unknown error model, find a resource-
efficient, fault-tolerant quantum error correction code to protect against 
these errors.

QCNN structure resembles nested quantum error correction, and can 
be used to simultaneously optimize encoder and decoder⇢phys

⇢l
QCNN-1 ⇢phys

⇢l

…

Encoder Decoder



Error models:

• Isotropic depolarization (px = py = pz)

• Anisotropic depolarization

• Anisotropic depolarization + correlated error (Xi Xi+1)

Optimizing Quantum Error Correction



Circuit structure: Results for correlated error:

Optimizing Quantum Error Correction
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Summary
• Concrete circuit model for quantum classification

• Application to quantum phase recognition: 
• 1D SPT phase (ℤ6×ℤ6)
• Theoretical explanation: QCNN ≈ MERA + QEC ≈ RG flow

• Optimizing Quantum Error Correction 
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Thanks!


